
COSETS AND LAGRANGE’S THEOREM

KEITH CONRAD

1. Introduction

Pick an integer m 6= 0. For a ∈ Z, the congruence class a mod m is the set of integers
a + mk as k runs over Z. We can write this set as a + mZ. This can be thought of as
a translated subgroup: start with the subgroup mZ and add a to it. This idea can be
carried over from Z to an arbitrary group, provided we distinguish between translation of
a subgroup on the left and on the right.

Definition 1.1. Let G be a group and H be a subgroup. For g ∈ G, the sets

gH = {gh : h ∈ H}, Hg = {hg : h ∈ H}

are called, respectively, a left H-coset and a right H-coset.

In other words, a coset is what we get when we take a subgroup and shift it (either on the
left or on the right). The best way to think about cosets is that they are shifted subgroups,
or translated subgroups.

Note g lies in both gH and Hg, since g = ge = eg. Typically gH 6= Hg. When G is
abelian, though, left and right cosets of a subgroup by a common element are the same
thing. When an abelian group operation is written additively, an H-coset should be written
as g +H, which is the same as H + g.

Example 1.2. In the additive group Z, with subgroup mZ, the mZ-coset of a is a+mZ.
This is just a congruence class modulo m.

Example 1.3. In the group R×, with subgroup H = {±1}, the H-coset of x is xH =
{x,−x}. This is “x up to sign.”

Example 1.4. When G = S3, and H = {(1), (12)}, the table below lists the left H-cosets
and right H-cosets of every element of the group. Compute a few of them for non-identity
elements to satisfy yourself that you understand how they are found.

g gH Hg
(1) {(1), (12)} {(1), (12)}
(12) {(1), (12)} {(1), (12)}
(13) {(13), (123)} {(13), (132)}
(23) {(23), (132)} {(23), (123)}
(123) {(13), (123)} {(23), (123)}
(132) {(23), (132)} {(13), (132)}

Notice first of all that cosets are usually not subgroups (some do not even contain the
identity). Also, since (13)H 6= H(13), a particular element can have different left and right
H-cosets. Since (13)H = (123)H, different elements can have the same left H-coset. (You
have already seen this happen with congruences: 14 + 3Z = 2 + 3Z, since 14 ≡ 2 mod 3.)
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In the next section we will see how cosets look in some geometric examples, where we
can visualize cosets. Then we will see that cosets arise in certain decimal patterns and as
“inhomogeneous solution spaces” to linear equations or differential equations. Then we will
look at some general properties of cosets. The index of a subgroup in a group, which tells
us how many cosets the subgroup has (either on the right or on the left), will lead to the
most basic important theorem about finite groups: Lagrange’s theorem. We will see a few
applications of Lagrange’s theorem and finish up with the more abstract topics of left and
right coset spaces and double coset spaces.

2. Geometric examples of cosets

When a group is defined in terms of vectors and matrices, we can often get a picture of
the group and its cosets.

Example 2.1. Let G = R2 and H = Re1 be the x-axis. The (left) H-coset of a vector
v ∈ R2 is

v +H = v + Re1 = {v + ce1 : c ∈ R}.
This is the line parallel to H (the x-axis) that passes through the endpoint of v. The H-
cosets in general are the lines parallel to H. Two parallel lines are either equal or disjoint,
so each pair of H-cosets is either equal or disjoint. In Figure 1, the H-cosets of v and v′

are equal while those of v and w are disjoint.

x

y

H

v +H = v′ +H

w +H

v v′

w

Figure 1. The cosets of Re1 in R2.

Example 2.2. Let G = Aff+(R), the 2 × 2 matrices ( x y
0 1 ) with x > 0 under matrix

multiplication. Geometrically, we identify elements of G with points (x, y) in the plane
where x > 0. Such points form a right half-plane:(

x y
0 1

)
←→ (x, y) ∈ R>0 ×R.
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The identity element becomes the point (1, 0). See Figure 2. This is quite similar to the
idea of identifying complex numbers x+ yi with points (x, y) in the plane.

x

y

(x, y)

(1, 0)

Figure 2. The group Aff+(R).

Unlike the geometric interpretation of complex number addition, which is ordinary vector
addition with the intuitive “parallelogram rule”, the group law on Aff+(R) when written
in terms of points in the plane is unfamiliar: starting from(

x y
0 1

)(
u v
0 1

)
=

(
xu xv + y
0 1

)
,

(
x y
0 1

)−1
=

(
1/x −y/x
0 1

)
,

we get the group law on points

(x, y)(u, v) = (xu, xv + y), (x, y)−1 =

(
1

x
,−y

x

)
.

Each matrix ( x y
0 1 ) in Aff+(R) breaks up as the product ( 1 y

0 1 )( x 0
0 1 ) (not as ( x 0

0 1 )( 1 y
0 1 )!).

These special types of matrices each form subgroups, which we will call H and K:

(2.1) H =

{(
1 y
0 1

)
: y ∈ R

}
, K =

{(
x 0
0 1

)
: x > 0

}
.

They are pictured in Figure 3.
For ( a b

0 1 ) in Aff+(R), what are its left and right H-cosets ( a b
0 1 )H and H( a b

0 1 )? To
compute these multiply a general element of H on the left and right by ( a b

0 1 ):(
a b
0 1

)(
1 y
0 1

)
=

(
a ay + b
0 1

)
,

(
1 y
0 1

)(
a b
0 1

)
=

(
a b+ y
0 1

)
.

Here a and b are fixed, while y varies over R. The numbers ay + b run over all of R and
the numbers b+ y run over R. This means the left and right H-cosets of ( a b

0 1 ) in Aff+(R)
are the same:

(2.2)

(
a b
0 1

)
H = H

(
a b
0 1

)
=

{(
a t
0 1

)
: t ∈ R

}
.

In the picture of Aff+(R), this is simply the vertical line parallel to H passing through the
point (a, b). See the first picture in Figure 4.
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x

y

(1, 0)

(x, 0)

(1, y)

K

H

Figure 3. The group Aff+(R).

To compute the left K-coset of ( a b
0 1 ), for x > 0 we have

(2.3)

(
a b
0 1

)(
x 0
0 1

)
=

(
ax b
0 1

)
.

As x > 0 varies, the right side of (2.3) runs through all matrices of the form ( t b
0 1 ) with

t > 0. Therefore

(2.4)

(
a b
0 1

)
K =

{(
t b
0 1

)
: t > 0

}
.

In particular, the left K-coset of ( a b
0 1 ) is determined by b alone and is independent of the

choice of a > 0: ( a b
0 1 )K = ( 1 b

0 1 )K. This is the horizontal line through (a, b). See the second
picture in Figure 4.

To find out what the right K-coset of ( a b
0 1 ) is, multiply a general element of K by ( a b

0 1 )
on the right: (

x 0
0 1

)(
a b
0 1

)
=

(
ax bx
0 1

)
.

Letting x > 0 vary, we obtain

(2.5) K

(
a b
0 1

)
=

{(
u v
0 1

)
: u > 0, v =

b

a
u

}
.

This is a half-line out of the origin with slope b/a (third picture in Figure 4). In particular,
the left and right K-cosets of ( a b

0 1 ) in Aff+(R) are not the same if b 6= 0. A right K-coset
of ( a b

0 1 ) depends on both a and b, or more precisely on their ratio b/a, while its left K-coset
depends only on b.

For both H and K, its collection of all left cosets and its collection of all right cosets
fill up the group Aff+(R) in Figure 5 without overlap: a family of parallel half-lines, either
horizontal or vertical, and a family of half-lines out of the origin.

Later in this handout, we will see that left (or right) cosets of a subgroup in a group
exhibit properties that can be seen in our geometric examples: different left cosets of a
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Figure 4. Left and Right Cosets of H and K in Aff+(R).

Figure 5. Left and Right Coset Decompositions of Aff+(R) by H and K.

subgroup are disjoint, and the collection of all left cosets of a subgroup cover the group
(likewise for right cosets).

3. Cosets and decimal expansions

Each rational number a/b whose denominator b is relatively prime to 10 has a decimal
expansion that is purely periodic. For example,

1

3
= .3333333 . . . ,

1

7
= .142857142857142857 . . . ,

15

41
= .609756097560975 . . .

where the repeating part has 1 term, 6 terms, and 5 terms respectively. We abbreviate the
decimal expansion by writing only the periodic part and put a line over it, so

1

3
= .3,

1

7
= .142857,

15

41
= .60975.

In the tables below are all the reduced proper fractions with denominator 7, 13, and 27.
(We don’t include 3/27 in the second table, for instance, since it is not reduced.)
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Fraction Decimal Fraction Decimal Fraction Decimal

1/7 .142857 1/13 .076923 2/13 .153846
2/7 .285714 3/13 .230769 4/13 .307692
3/7 .428571 5/13 .384615 6/13 .461538
4/7 .571428 7/13 .538461 8/13 .615384
5/7 .714285 9/13 .692307 10/13 .769230
6/7 .857142 11/13 .846153 12/13 .923076

Fraction Decimal Fraction Decimal Fraction Decimal

1/27 .037 2/27 .074 4/27 .148
5/27 .185 7/27 .259 8/27 .296
10/27 .370 11/27 .407 13/27 .481
14/27 .518 16/27 .592 17/27 .629
19/27 .703 20/27 .740 22/27 .814
23/27 .851 25/27 .925 26/27 .962

There are two interesting features revealed in this table:

• the decimal expansions for all the reduced fractions with the same denominator
have the same period length (denominator 7 has period length 6, denominator 13
has period length 6, and denominator 27 has period length 3),
• if we cyclically shift the digits in the repeating part of the decimal expansions of

a reduced fraction, we get the repeating part of the decimal expansion of another
reduced fraction with the same denominator.

The first feature is explained by Euler’s theorem from elementary number theory, and
we won’t discuss it here. We want to focus on the second feature. First, let’s make sure
we understand what it is saying. The string of digits 142857 is the repeating part of the
decimal for 1/7, and if we shift the numbers one position to the left, getting 428571, we
look in the first table and see it is the repeating part of the decimal for 3/7. If we shift
one position to the left again, we get 285714, and when we look at the first table we find
that is the repeating part of the decimal for 2/7. Similarly, 407 is the repeating part of the
decimal for 11/27, and if we shift the terms one position to the left we get 074, which the
second table tells us is the repeating part of the decimal for 2/27. Are you surprised by
this? It turns out this phenomenon, which even a grade school student could discover, is
actually cosets in disguise. This is best explained by an example.

Example 3.1. Consider 5/13, which the first table tells us is .384615. Multiplying by 10
has the effect of cyclically shifting the digits in the decimal one position to the left:

10 · 5

13
= 10(.384615) = 10(.384615384615 . . . ) = 3.84615384615 . . . = 3.846153.

The numerator of 10(5/13) is 50, and 50 ≡ 11 mod 13, so 50/13 = 11/13 + integer. Since
we already saw that 50/13 = 3.846153, the integer part of 50/13 is 3 and therefore 11/13 =
.846153. In other words, shifting the digits in .384615 one position to the left turns 5/13 into
11/13, and the reason is that shifting digits in a decimal one position to the left corresponds
to multiplication by 10 and 5 · 10 ≡ 11 mod 13.

If we want to shift the digits to the left one more time, the fraction we get will again
be obtained from multiplying the new numerator by 10 and reducing the product mod 13:
11 · 10 = 110 ≡ 6 mod 13, or in terms of the original numerator, 5 · 102 ≡ 6 mod 13. In
general, if 5 · 10k ≡ r mod 13, where 0 ≤ r < 13, then r/13 will have a decimal expansion
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whose repeating part is the digits for 5/13 shifted to the left k times. All these decimals have
the same length, which is 6, and that means after we do this shifting 6 times we come back
to the original fraction and have run through all the cycle shifts of the digits in the decimal
for 5/13. The fractions we have created in this way are all r/13 where r ≡ 5 · 10k mod 13
for some k. In other words, the numerators of the fractions with denominator 13 having
a decimal with the same digit cycle (up to the choice of starting point) as the decimal for
5/13 is precisely {5 · 10k mod 13 : k = 1, 2, . . . }, which is a coset in (Z/(13))× of the cyclic
subgroup 〈10 mod 13〉.

In general, if a/b is a reduced fraction where (10, b) = 1, then the other reduced fractions
whose decimal has a repeating block that is a shift of the repeating block of the decimal for
a/b are precisely those fractions with denominator b and numerator in the coset a〈10 mod b〉
of (Z/(b))×.

Example 3.2. The fractions 2/27, 11/27, and 20/27 all have decimals with digit cycle
074 up to a shift, and in (Z/(27))× we have 〈10 mod 27〉 = {1, 10, 19} and modulo 27 the
numerators of the fractions are {2, 11, 20} = {2, 2 · 102, 2 · 10} = 2〈10 mod 27〉, which is a
coset of 〈10 mod 27〉.

4. Inhomogeneous solution spaces are cosets

When solving a linear equation Ax = b (A is a matrix), where the right side is non-
zero, we call the equation inhomogeneous. The general solution to this type of equation is
x0 + y, where x0 is a particular solution of Ax = b and y is the general solution to the
(homogeneous) equation Ax = 0. Let’s see how the solutions to an inhomogeneous linear
equation or inhomogeneous linear differential equation are an example of a coset. I do not
think the two examples that follow will give insight into cosets; they simply serve to show
that cosets appear in courses usually taken before abstract algebra.

Example 4.1. Consider a system of linear equations, written as a matrix equation Ax = b,
where A is an m × n real matrix, b ∈ Rm, and x is an unknown vector in Rn. Let W be
the solution set of the corresponding homogeneous equation, where the right side is 0:

W = {x ∈ Rn : Ax = 0}.
This is a group under vector addition. (It contains 0 ∈ Rn, if Ax = 0 and Ax′ = 0 then
A(x + x′) = Ax + Ax′ = 0 + 0 = 0, and A(−x) = −A(x) = −0 = 0.) For b 6= 0, if the
equation Ax = b has a solution, say x0, then the general solution to Ax = b is x0 + W .
Indeed, for each x ∈ Rn we have the following equivalences:

Ax = b ⇐⇒ Ax = Ax0 since Ax0 = b

⇐⇒ A(x− x0) = 0

⇐⇒ x− x0 ∈W
⇐⇒ x ∈ x0 +W.

The solution set x0 +W is a coset of W in Rn.

Remark 4.2. Consider the linear differential equation

(4.1) y′ + xy = x3.

The solutions to y′+xy = 0, where the right side is 0 (homogeneous case), are the functions

of the form ce−x
2/2. A particular solution to the equation (4.1) is x2 − 2, and anyone who
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had a good course in differential equations will know the general solution to (4.1) must take

the form x2− 2 + ce−x
2/2. Letting c vary, the solution set to (4.1) is x2− 2 + Re−x

2/2. This
is a coset of functions, so the same phenomenon we met with linear equations also occurs
for linear differential equations.

5. Properties of cosets

We will generally focus our attention on left cosets of a subgroup. Proofs of the corre-
sponding properties of right cosets will be completely analogous, and can be worked out by
the reader.

Since g = ge lies in gH, every element of G lies in some left H-coset, namely the left
coset defined by the element itself. (Take a look at Example 1.4, where (13) lies in (13)H.)
Similarly, g ∈ Hg since g = eg.

A subgroup is always a left and a right coset of itself: H = eH = He. (This is saying
nothing other than the obvious fact that if we multiply all elements of a subgroup by the
identity, on either the left or the right, we get nothing new.) What is more important to
recognize is that we can have gH = H (or Hg = H) even when g is not the identity. For
instance, in the additive group Z, 10 + 5Z = 5Z. All this is saying is that if we shift the
multiples of 5 by 10, we get back the multiples of 5. Isn’t that obvious? In fact, the only
way we can have a+ 5Z = 5Z is if a is a multiple of 5, i.e., if a ∈ 5Z.

For a subgroup H of a group G, and g ∈ G, when does gH equals H?

Theorem 5.1. For g ∈ G, gH = H if and only if g ∈ H.

Proof. Since g = ge ∈ gH, having gH = H certainly requires g ∈ H.
Now we need to show that if g ∈ H, then gH = H. We prove gH = H by showing each

is a subset of the other. Since g ∈ H, gh ∈ H for all h ∈ H, so gH ⊂ H. To see H ⊂ gH,
note h = g(g−1h) and that g−1h is in H (since g−1 ∈ H). �

Example 5.2. Consider the subgroup H = {1, s} of D4. We have

sH = {s, s2} = {s, e} = H.

Two of the elements of D4 that are not in H are r and r2. Their left H-cosets are not equal
to H:

rH = {r, rs}, r2H = {r2, r2s}.

Notice the left H-cosets H, rH, and r2H are not just unequal (which means each has
an element not in another), but are in fact disjoint (which means no element of one is in
another). This is similar to Example 2.1, where the cosets are a family of parallel lines:
different parallel lines are disjoint. This is a completely general phenomenon, as follows.

Theorem 5.3. If two left H-cosets share a common element, then they are equal. Equiv-
alently, two left H-cosets that are not equal have no elements in common, i.e., they are
disjoint.

Proof. To show left H-cosets with a common element are the same, suppose x belongs to
g1H and to g2H, say

(5.1) x = g1h1 = g2h2

where h1, h2 ∈ H. Then g1 = g2h2h
−1
1 . Each element of g1H has the form g1h for some

h ∈ H, and
g1h = g2(h2h

−1
1 h) ∈ g2H.
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Since h was arbitrary in H, we see g1H ⊂ g2H. The reverse inclusion, g2H ⊂ g1H, follows
by a similar argument (use the equation g2 = g1h1h

−1
2 instead). �

By Theorem 5.3, no element lies in more than one left H-coset. We call an element of a
left coset a representative of that coset. A set of representatives for all the left H-cosets is
called a complete set of left coset representatives.

Example 5.4. By the table in Example 1.4, each element of S3 is in exactly one of H,
(13)H, and (23)H, so

(5.2) S3 = H ∪ (13)H ∪ (23)H.

This is a union of disjoint sets. An example of a complete set of left coset representatives
of H is (1), (13), and (23). Another complete set of left coset representatives of H is (12),
(13), and (132).

Example 5.5. Let G = Z and H = mZ, for m > 0. The coset decomposition of H in G
(left and right is the same) is just the decompsition of Z into congruence classes modulo m:

(5.3) Z = mZ ∪ (1 +mZ) ∪ (2 +mZ) ∪ · · · ∪ (m− 1 +mZ).

It is standard to use {0, 1, . . . ,m− 1} as the coset representatives.

Example 5.6. Let G = Aff+(R) and K = {( x 0
0 1 ) : x > 0}. We saw in Example 2.2 that

a left K-coset of a matrix depends only on the upper-right entry of the matrix: ( a b
0 1 )K =

{( x b
0 1 ) : x > 0}. Moreover, since all matrices in a given left K-coset have a common

upper-right entry, we can use the upper-right entry to parametrize different left K-cosets:

(5.4) Aff+(R) =
⋃
b∈R

(
1 b
0 1

)
K,

where the union is disjoint. Coset representatives are the matrices ( 1 b
0 1 ).

Example 5.7. Consider the (additive) group R and the subgroup Z. Every real number,
up to addition by an integer, looks like a number between 0 and 1 (more precisely, in the
half-open interval [0, 1)). Different numbers in this range are not Z-translates of each other,
so [0, 1) is a complete set of (left) coset representatives of Z in R:

(5.5) R =
⋃

0≤x<1

(x+ Z),

where the sets making up this union are disjoint.

Example 5.8. We saw in Example 2.1, where G = R2, that the cosets of the x-axis Re1 in
the plane are the lines parallel to the x-axis. A complete set of left coset representatives of
Re1 is a choice of one point on each line parallel to the x-axis. These choices could be made
at random, but a nicer method is to use the points lying on a line (any line) not parallel to
the x-axis. Such a line will pass once through each line parallel to the x-axis. An example
of such a line is the y-axis, i.e., the y-axis is a set of coset representatives for Re1 in R2:

(5.6) R2 =
⋃
y∈R

((0, y) + Re1),

where the union is disjoint. Coset representatives are {(0, y) : y ∈ R}.
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The decompositions in (5.2), (5.3), (5.4), (5.5), and (5.6) have analogues in every group
G. For a subgroup H of G, every element of G lies in some left H-coset, and different left
H-cosets are disjoint, so we can write G as a union of disjoint left H-cosets. Write these
different cosets as giH, so we have a disjoint union

(5.7) G =
⋃
i∈I

giH.

Here I is just an indexing set counting the number of different left H-cosets in G. Formula
(5.7) is called the left H-coset decomposition of G. The particular multipliers gi (which are
nothing other than a particular choice of one element from each left H-coset) are a complete
set of left coset representatives of H in G.

In a group, the passage from H to gH by left multiplication by g leads to no collapsing
of terms. For instance, in Example 5.4, the cosets of {(1), (12)} in S3 all have size 2. Even
in cases of an infinite subgroup, as in Example 2.1, the cosets all look like the original
subgroup (just shifted). Let’s prove such a comparison between a subgroup and each of its
cosets in general.

Theorem 5.9. Let H be a subgroup of the group G. Each left H-coset in G has a bijection
with H. In particular, when H is finite, the cosets of H all have the same size as H.

Proof. Pick a left coset, say gH. We can pass from gH to H by left multiplication by g−1:
g−1(gh) = h ∈ H. Conversely, we can pass from H to gH by left multiplication by g. These
functions from gH to H and vice versa are inverses to each other, showing gH and H are
in bijection with each other. �

Of course there is an analogous result for right cosets, which the reader can formulate.

6. The index and Lagrange’s theorem

For an integer m 6= 0, the number of cosets of mZ in Z is |m|. This gives us an interesting
way to think about the meaning of |m|, other than its definition as “m made positive.”
Passing from Z to other groups, counting the number of cosets of a subgroup gives a useful
numerical invariant.

Definition 6.1. Let H be a subgroup of a group G. The index of H in G is the number of
left cosets of H in G. This number, which is a positive integer or ∞, is denoted [G : H].

The terminology “index” is due to Cauchy in 1815 to count something that turns out to
be [G : H] in a special case. Concretely, the index of a subgroup tells us how many times
we have to translate the subgroup around (on the left) to cover the whole group.

Example 6.2. Since H = {(1), (12)} has 3 left cosets in S3, by Example 5.4, [S3 : H] = 3.

Example 6.3. The subgroup H = {1, s} of D4 has four left cosets:

H, rH = {r, rs}, r2H = {r2, r2s}, r3H = {r3, r3s}.

The index of H in D4 is 4.

Example 6.4. For a positive integer m, [Z : mZ] = m, since 0, 1, . . . ,m− 1 are a complete
set of coset representatives of mZ in Z.
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Example 6.5. What is the index of 15Z inside 3Z? (Not inside Z, but 3Z.) Modulo 15, a
multiple of 3 is congruent to 0, 3, 6, 9, or 12. That is, we have the disjoint union

3Z = 15Z ∪ (3 + 15Z) ∪ (6 + 15Z) ∪ (9 + 15Z) ∪ (12 + 15Z).

Thus [3Z : 15Z] = 5.

Example 6.6. The index [R : Z] is infinite, by Example 5.7: there are infinitely many
cosets of Z in R.

Remark 6.7. If we allow ourselves to use the language of cardinal numbers, which permits a
distinction between different orders of infinity, then we could define [G : H] as the cardinality
of the set of left H-cosets. This would have no effect on the meaning of a finite index, but
would allow a more refined meaning in the case of an infinite index. Since we will not have
much use for the index concept when it is infinite, we stick with the more concrete approach
in Definition 6.1.

In the case of finite groups, there is a simple formula for the index of a subgroup.

Theorem 6.8. When G is a finite group, and H is a subgroup, [G : H] = |G|/|H|.

For example, this formula says the index of {(1), (12)} in S3 is 6/2 = 3. Compare with the
computation of the same index in Example 6.2. Theorem 6.8 lets us read off the index of the
subgroup just from knowing the size of the subgroup, without actual coset constructions.

Proof. Since G is finite, H has finitely many left cosets in G. Let t = [G : H], and write
the different left cosets of H as g1H, . . . , gtH. We know that two left cosets of H are either
the same or are disjoint. Therefore we have

(6.1) G = g1H ∪ · · · ∪ gtH,
where the union is disjoint. By Theorem 5.9, each left H-coset has the same size as H, so
computing the size of both sides of (6.1) tells us

(6.2) |G| = t|H|.
Thus [G : H] = t = |G|/|H|. �

Using the formula for the index as a ratio, we get the next “transitivity” result quite
easily in the case of finite groups.

Theorem 6.9. In a group G, indices are multiplicative in towers: for subgroups K ⊂ H ⊂
G,

[G : K] = [G : H][H : K]

if [G : K] is finite or if [G : H] and [H : K] are finite. In particular, if G is finite then
[G : K] = [G : H][H : K].

An example of this when G is an infinite group is G = Z, H = 3Z, and K = 15Z:
[G : K] = 15, [G : H] = 3 and [H : K] = 5.

Proof. First suppose G is a finite group. Theorem 6.8 implies

[G : H][H : K] =
|G|
|H|
· |H|
|K|

=
|G|
|K|

= [G : K].

Now suppose G is possibly not finite. We will treat separately the cases when the right
side of the desired formula is finite and the left side is finite.
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Case 1: [G : H] and [H : K] are finite. Let m = [G : H] and n = [H : K]. Then G is
the union of m different left H-cosets g1H, . . . , gmH and H is the union of n different left
K-cosets h1K, . . . , hnK. We want to show [G : K] = mn, i.e., G is a union of mn different
left K-cosets.

Since G =
⋃m

i=1 giH and H =
⋃n

j=1 hjK, we have giH =
⋃n

j=1 gihjK, so

G =
m⋃
i=1

giH =
m⋃
i=1

n⋃
j=1

gihjK,

so [G : K] ≤ mn. To prove this inequality is an equality, we show the cosets gihjK are
different as i and j vary.

Suppose gihjK = gi′hj′K for some i, j, i′, j′. We will show i = i′ and j = j′. Since
K ⊂ H, we get gihjK ⊂ giH and gi′hj′K ⊂ gi′H, so giH and gi′H overlap. That means
giH = gi′H (Theorem 5.3), so i = i′ (the terms g1, . . . , gm lie in different left H-cosets).
Therefore gihjK = gihj′K, so hjK = hj′K. That implies j = j′ since h1, . . . , hn are in
different K-cosets.

Case 2: [G : K] < ∞. Since K ⊂ H ⊂ G, left K-cosets in H are special cases of left
K-cosets in G, so [H : K] ≤ [G : K] <∞. Each left H-coset in G is a union of left K-cosets
in G, so from [G : K] being finite we get [G : H] ≤ [G : K]. Thus [G : H] and [H : K] are
finite, so by Case 1, [G : K] = [G : H][H : K]. �

In Theorem 6.8, where G is finite, we found that |H| divides |G| since the ratio |G|/|H|
is a positive integer. This is called Lagrange’s theorem.

Theorem 6.10 (Lagrange, 1771). In a finite group, the size of each subgroup divides the
size of the group.

Proof. Let G be a finite group, and H a subgroup. By (6.2), |H| divides |G|. In fact, we
found the ratio |G|/|H| counts the number of left H-cosets in G. �

We will see some applications of Lagrange’s theorem in the next section.
The converse of Lagrange’s theorem is true for some groups (e.g., all cyclic groups), but

it is false in general: given a divisor of the size of the group, there need not be a subgroup
with that size.

Example 6.11. The smallest counterexample is A4, which has size 12. While A4 has
subgroups of size 1,2,3,4, and 12, it has no subgroup of size 6.

To prove there is no subgroup of size 6, we argue by contradiction. Suppose there is a
subgroup of A4 with size 6, say H. Then [A4 : H] = 12/6 = 2. We will show for each
g ∈ A4 that g2 ∈ H.

If g ∈ H then clearly g2 ∈ H. If g 6∈ H then gH is a left coset of H different from H
(since g ∈ gH and g 6∈ H), so from [G : H] = 2 the only left cosets of H are H and gH.
Which one is g2H? If g2H = gH then g2 ∈ gH, so g2 = gh for some h ∈ H, and that
implies g = h, so g ∈ H, but that’s a contradiction. Therefore g2H = H, so g2 ∈ H.

Every 3-cycle (abc) in A4 is a square: (abc) has order 3, so (abc) = (abc)4 = ((abc)2)2.
Thus H contains all 3-cycles in A4. The 3-cycles are

(123), (132), (124), (142), (134), (143), (234), (243)

and that is too much since there are 8 of them while |H| = 6. Hence H does not exist.
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Example 6.12. The next counterexample to the full converse of Lagrange’s theorem, in
terms of size, is SL2(Z/(3)). This group has size 24. It has subgroups of size 1, 2, 3, 4, 6,
8, and 24, but no subgroup of size 12.

To see why there is no subgroup of size 12, assume otherwise. Each subgroup H of size
12 in SL2(Z/(3)) has index 2, so just as in the previous example one can show a square
in SL2(Z/(3)) must lie in H. A tedious count shows there are 10 squares in SL2(Z/(3)).
Since |H| = 12, we don’t yet have a contradiction. To reach a contradiction, we use the
two squares ( 1 1

0 1 ) = ( 1 2
0 1 )2 and ( 1 0

1 1 ) = ( 1 0
2 1 )2. They must be in H, so their products

( 1 1
0 1 )( 1 0

1 1 ) = ( 2 1
1 1 ) and ( 1 0

1 1 )( 1 1
0 1 ) = ( 1 1

1 2 ) lie in H. These products turn out not to be
squares, so they fill up the available space in H. The inverses of these products also have to
lie in H, but an explicit calculation shows the inverses of these two products are matrices
not yet taken into account. Thus H is too small, so H does not exist.

Example 6.13. For n ≥ 5, An has no proper subgroup with index less than n,1 so A5 has
no subgroup with index 2, 3, or 4 even though it has subgroups of order 2, 3 or 4.

Remark 6.14. There is no simple dividing line between those finite groups that satisfy the
converse to Lagrange’s theorem (for each divisor, there is a subgroup of that size) and those
finite groups that do not. Three classes of finite groups that satisfy the converse include
abelian groups, dihedral groups, and groups of prime-power size. (These are all special cases
of “supersolvable” groups, and all supersolvable groups satisfy the converse of Lagrange’s
theorem, but some non-supersolvable groups also satisfy the converse of Lagrange’s theo-
rem.)

Since we defined the index of a subgroup as the number of its left cosets, presumably we
need to introduce a corresponding index for the count of right cosets. However, an extra
“right index” concept is not necessary, as we now explain.

Theorem 6.15. For every subgroup H of G, there are as many left H-cosets as right
H-cosets.

Proof. We will give two proofs, one in the case of finite G and the other in the case of
general G.

The “right” analogue of Theorem 5.9 says that each right H-coset is in bijection with
H. Therefore, supposing G is finite, running through the proof of Theorem 6.8 with right
cosets in place of left cosets shows |G|/|H| is a formula for the number of right H-cosets in
G. We already saw this is a formula for the number of left H-cosets, so the number of left
and right H-cosets is the same.

Now suppose G is an arbitrary group, possibly infinite. We want to give a bijection
between the collections of left and right H-cosets. One’s first guess, to send gH to Hg, is
not well-defined. For instance, taking G = S3 and H = {(1), (12)}, we have

(13)H = (123)H = {(13), (123)},
but

H(13) = {(13), (132)}, H(123) = {(23), (123)}.
So passing from gH to Hg depends on the coset representative g, which means it makes
no sense as a function from cosets to cosets. (If you want to remember an example of an
attempt to define a function that is in fact not well-defined, this is it.)

1See Corollary 8.1 in https://kconrad.math.uconn.edu/blurbs/grouptheory/Ansimple.pdf.

https://kconrad.math.uconn.edu/blurbs/grouptheory/Ansimple.pdf
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The correct way to turn left cosets into right cosets is to use inversion. For a subset
S ⊂ G, let S−1 = {s−1 : s ∈ S}. For instance, since subgroups are closed under inversion,
check that H−1 = H and (H−1)−1 = H. If we invert a left coset gH, we obtain

(gH)−1 = H−1g−1 = Hg−1.

Similarly, (Hg)−1 = g−1H. The function f(gH) = (gH)−1 gives a bijection between left
and right H-cosets. �

Theorem 6.15 does not say every right coset is a left coset, but only that the number of
each kind of coset is the same. For instance, we saw in Example 5.4 that the different left
cosets of H = {(1), (12)} in S3 are

{(1), (12)}, {(13), (123)}, {(23), (132)}.
The right coset H(13) = {(13), (132)} is not the same as a left coset. However, the collection
of right H-cosets has 3 members:

{(1), (12)}, {(13), (132)}, {(23), (123)}.

7. Applications of Lagrange’s theorem

Lagrange’s theorem leads to group-theoretic explanations of some divisibility properties
of integers. The idea is this: to prove a | b, find a group of size b containing a subgroup
of size a. After illustrating this in a few cases, we will use Lagrange’s theorem to extract
information about subgroups of a group.

Theorem 7.1. Binomial coefficients are integers: for n ≥ 1 and 0 ≤ m ≤ n, the ratio(
n

m

)
=

n!

m!(n−m)!

is an integer.

Proof. The size of Sn is n!. We are going to write down a subgroup with size m!(n−m)!.
Consider the permutations in Sn that separately permute the subsets {1, . . . ,m} and

{m+ 1, . . . , n}:
H = {σ ∈ Sn : σ permutes {1, 2, . . . ,m} and {m+ 1, . . . , n}}.

The reader can check H is a subgroup, and |H| = m!(n −m)!. If the reader is concerned
about the degenerate cases m = 0 and m = n, where one of the conditions defining H is an
empty condition, note these cases of the theorem are easily checked directly. �

Theorem 7.2. For positive integers a and b, the ratios

(ab)!

(a!)b
,

(ab)!

(a!)bb!

are integers.

Proof. Write out the integers from 1 to ab in sets of a consecutive integers:

1, 2, . . . , a; a+ 1, . . . , 2a; 2a+ 1, . . . , 3a; . . . ; (b− 1)a+ 1, . . . , ba.

There are b of these sets, separated by semi-colons. The permutations of 1, . . . , ba that
permute each set within itself is a subgroup of Sab and has size (a!)b. Therefore (a!)b | (ab)!.

The stronger divisibility relation (a!)bb! | (ab)! can be explained by finding a subgroup of
Sab with size (a!)bb!. This is left as an exercise for the reader. Hint: The new subgroup of
Sab should contain the one constructed in the previous paragraph. �
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Theorem 7.3. For m ≥ 1, let ϕ(m) = |(Z/(m))×| be the number of invertible numbers
modulo m. For m ≥ 3, ϕ(m) is even.

Here is a table illustrating the evenness of ϕ(m) once m ≥ 3. Can you find an explanation
yourself?

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ϕ(m) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8

Proof. For m ≥ 3, {±1} is a subgroup of (Z/(m))× with size 2, so 2 | ϕ(m) by Lagrange. �

Remark 7.4. Curiously, the initial partial sums of the numbers in the above table, added
to 1, are often but not always prime. See the table below. Composite values are in red and
some primes that are skipped include 17, 31, 37, and 41.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 +

∑m
k=1 ϕ(k) 2 3 5 7 11 13 19 23 29 33 43 47 59 65 73

Now we turn to applications of Lagrange’s theorem in group theory itself. (The previous
application to ϕ(m) is more properly considered an application to number theory than to
group theory.) In each application below, pay attention to the way Lagrange’s theorem is
used.

Theorem 7.5. Let G be a finite group and let H and K be subgroups with relatively prime
size. Then H ∩K = {e}.
Proof. Since H ∩K is a subgroup of both H and K, its size divides both |H| and |K| by
Lagrange. Therefore, by relative primality of these sizes, |H ∩K| = 1, so H ∩K = {e}. �

In the handout on orders of elements in a group, we proved the order of every element
in a finite abelian group divides the size of the group. Now we can show this for all finite
groups.

Theorem 7.6. Let G be a finite group. If g has order n, then n | |G|. In particular,

g|G| = e for every g ∈ G.

Proof. Let H = 〈g〉 be the subgroup generated by g. The size of H is exactly the order of

g, so |H| = n. By Lagrange, n | |G|. Since gn = e and n | |G|, we get g|G| = e. �

It is interesting to compare this method of showing the order of g divides |G| with the

proof from the abelian case. In the abelian case, we first proved g|G| = e and then deduced
the order of each element is a factor of |G|. In Theorem 7.6, we see that the proof in the
general case goes the other way: first show each element has order dividing |G| and then

conclude g|G| = e for each g.

Corollary 7.7. If G is a finite group and k is an integer relatively prime to |G|, then the
k-th power function on G is invertible.

This is not saying the k-th power function is multiplicative on G, but only that it is a
bijection.

Proof. By Bezout, when (k, |G|) = 1 we can write k` + |G|m = 1 for some integers ` and
m. Therefore

g = g1 = gk`(g|G|)m = gk`

since g|G| = 1. So we see how to invert the k-th power function: raise to the power `, where
k` ≡ 1 mod |G|. �
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Example 7.8. When G = D5, which has order 10, let’s raise all the elements to the third
power. The result is a rearrangement of the elements of the group. See the table below.
(Reflections don’t change since an odd power of a reflection is itself.)

g 1 r r2 r3 r4 s rs r2s r3s r4s

g3 1 r3 r r4 r2 s rs r2s r3s r4s

Since 3 ·7 ≡ 1 mod 10, the seventh power is the inverse of the third power: (g3)7 = g21 =
g · (g10)2 = g. For example, (r4)3 = r12 = r2 and (r2)7 = r14 = r4.

What about the converse of Corollary 7.7? That is, is the k-th power function on G
invertible only when k is relatively prime to |G|? This can be answered using Cauchy’s
theorem, but we don’t do that here.

Corollary 7.9. Every group of prime size is cyclic, and in fact each non-identity element
is a generator.

Proof. Let G be the group, with p = |G|. Pick a non-identity element g from G. By
Theorem 7.6, the order of g divides p and is greater than 1, so g has order p. Therefore
|〈g〉| = p, so 〈g〉 = G. �

Remark 7.10. Be careful not to mis-apply Corollary 7.9. While it tells us that the additive
group Z/(p) is cyclic (each non-zero number modulo p is an additive generator), it does
not tell us anything about the nature of the multiplicative group (Z/(p))×, which has size
p− 1. The group (Z/(p))× is cyclic for prime p, but the proof of that is not as simple as for
Z/(p). It certainly does not come from Corollary 7.9, since (Z/(p))× does not have prime
size (when p > 3).

Corollary 7.11. Let p and q be primes. Each non-trivial proper subgroup of a group of
size pq is cyclic.

Proof. A proper subgroup will have size equal to a non-trivial proper factor of pq, which is
either p or q. In either case, the subgroup has prime size and therefore is cyclic by Corollary
7.9. �

For instance, if we want to find all the subgroups of a group of size 6 (or 15 or 21. . . ),
we can compute the cyclic group generated by each element. Every non-trivial proper
subgroup will arise in this way, and we then throw in the trivial group and the whole group
to complete the list.

Here is an application of Lagrange’s theorem to a characterization of cyclic groups from
combinatorial information about their subgroups.

Theorem 7.12. A finite group that has at most one subgroup of each size is cyclic.

Proof. I learned this proof from F. Ladisch.
Let G be a group with at most one subgroup of each size, and let n be its order. We will

count the elements of G by collecting together all elements that generate the same subgroup.
That is, for each cyclic subgroup H we will collect together all of its generators and then
add up the number of these generators as H varies. This accounts for each element of G
exactly once (each element generates some cyclic subgroup), so

n =
∑

cyc. subgp. H

|{generators of H}|.
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Every subgroup of G has order dividing n, by Lagrange’s theorem, so we can sum over
cyclic subgroups of G by summing over cyclic subgroups of order d for each d dividing n:

n =
∑
d|n

∑
cyc.H,|H|=d

|{generators of H}|.

All cyclic groups of order d have the same number of generators: if 〈h〉 has order d then
each element of 〈h〉 is ha for a unique a between 1 and d, and ha generates 〈h〉 if and only
if (a, d) = 1. Thus the number of generators in a cyclic group of order d is |{1 ≤ a ≤ d :
(a, d) = 1}| = ϕ(d), so

(7.1) n =
∑
d|n

∑
cyc.H,|H|=d

ϕ(d) =
∑
d|n

ϕ(d)|{H ⊂ G : |H| = d,H cyclic}|.

This equation is valid for every finite group G of order n.
In the particular group Z/(n) of order n, which is cyclic, there is a unique cyclic subgroup

of every order dividing n, so (7.1) for G = Z/(n) becomes

(7.2) n =
∑
d|n

ϕ(d).

If G is a group of order n and it has at most one subgroup of order d for each d dividing
n, then |{H ⊂ G : |H| = d,H cyclic}| = 0 or 1 for all d dividing n, so

(7.3) n =
∑
d|n

ϕ(d)|{H ⊂ G : |H| = d,H cyclic}| ≤
∑
d|n

ϕ(d)
(7.2)
= n.

Therefore |{H ⊂ G : |H| = d,H cyclic}| = 1 for all d dividing n: if the count were ever 0
then the inequality in (7.3) would be strict and hence n < n, a contradiction. Since G has
a cyclic subgroup of order d for each d dividing n, taking d = n shows G is cyclic. �

The only subgroups used in this proof are cyclic, so we proved something slightly stronger
than what was stated in the theorem: a finite group that has at most one cyclic subgroup
of each size is cyclic.

Corollary 7.13. Let G be a finite group such that, for each d dividing |G|, the equation
xd = 1 in G has at most d solutions. Then G is cyclic.

Proof. We will show G has at most one subgroup of each size. If H is a subgroup of G with
order d, then every element of H satisfies the equation xd = 1 and thus, by hypothesis, H
is the complete set of solutions in G to the equation xd = 1. This shows there is at most
one subgroup of order d: if H and H ′ are both subgroups of order d then H and H ′ both
equal {g ∈ G : gd = 1}, so H = H ′. �

We conclude our list of applications of Lagrange’s theorem with a result that stands in
some sense “dual” to Theorem 7.5: instead of the subgroups having relatively prime size,
and getting information about the size of the intersection, we look at what happens when
the subgroups have relatively prime index. What can be said about the index of their
intersection?

Theorem 7.14. Let G be a finite group, with subgroups H and K. Set m = [G : H] and
n = [G : K]. Then

[m,n] ≤ [G : H ∩K] ≤ mn.
In particular, if m and n are relatively prime, then [G : H ∩K] = mn = [G : H][G : K].
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Proof. Since H ∩K ⊂ H ⊂ G and H ∩K ⊂ K ⊂ G, Theorem 6.9 tells us

[G : H ∩K] = [G : H][H : H ∩K] = [G : K][K : H ∩K].

Thus m and n each divide [G : H ∩K], so their least common multiple divides [G : H ∩K]
as well.

Now we want to show [G : H ∩K] ≤ mn. Writing this as

[G : H][H : H ∩K] ≤ [G : H][G : K],

our desired inequality is the same as

(7.4) [H : H ∩K] ≤ [G : K].

The number [G : K] counts how many left K-cosets are in G. Every left K-coset has the
form gK for some g ∈ G. Among these, some cosets contain elements of H. How many?
We will show there are [H : H ∩K] such cosets, and thus we obtain the inequality (7.4).

The point is, for h1 and h2 in H, that

(7.5) h1K = h2K ⇐⇒ h1(H ∩K) = h2(H ∩K).

(If this is true, then it tells us the number of left K-cosets of G represented by an element
of H is the same as the number of left (H ∩K)-cosets in H, since H ∩K is a subgroup of
H.) Well, on the left side of (7.5), there is such equality exactly when h1 = h2k for some
k ∈ K. Then k = h−12 h1 lies in H as well, so k ∈ H ∩K. But then the equation h1 = h2k
tells us h1(H ∩K) = h2(H ∩K). The reverse implication in (7.5) is left as an exercise for
the interested reader. �

8. Left and right coset spaces

The usefulness of modular arithemetic (in number theory, cryptography, etc.) suggests
the possibility of carrying it over from Z to other groups. After all, since congruence classes
modulo mZ are just a special instance of a coset decomposition, why not think about (left)
cosets for subgroups of groups other than Z as a generalization of Z/(m)?

Definition 8.1. Let G be a group and H be a subgroup. The left coset space G/H :=
{gH : g ∈ G} is the set consisting of the left H-cosets in G.

A left coset space is a set whose elements are the left cosets of a subgroup. It is a “set of
sets,” as the following examples illustrate.

Example 8.2. In the group S3, let H = {(1), (12)}. By (5.2), there are 3 left H-cosets:

S3/H = {H, (13)H, (23)H}
= {{(1), (12)}, {(13), (123)}, {(23), (132)}}.

Example 8.3. In Aff+(R), with K = {( x 0
0 1 ) : x > 0}, each left K-coset contains one

matrix of the form ( 1 b
0 1 ), so

Aff+(R)/K =

{(
1 b
0 1

)
K : b ∈ R

}
.

Example 8.4. In R, every Z-coset is represented by a real number in [0, 1), so (5.5) tells
us

R/Z = {x+ Z : 0 ≤ x < 1}.
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Can we make G/H into a group using the group operation from G, in the same way that
Z/(m) inherits an additive group structure from that of Z? The natural idea would be to
multiply two left cosets by multiplying two representatives:

g1H · g2H := g1g2H.

Unfortunately, such an operation does not always make sense. That is, the coset on the
right can change if we change the coset representatives on the left without changing the
cosets themselves.

Example 8.5. Take G = S3 and H = {(1), (12)}. We have

(13)H = (123)H = {(13), (123)}, (23)H = (132)H = {(23), (132)},

but

(13)(23)H = (132)H, (123)(132)H = H,

and (132)H 6= H, so changing the coset representatives changed the ‘product’ coset.

In Example 8.5, multiplication of left cosets is not well-defined: it depends on the choice
of coset representative, and thus is not an honest operation at the level of cosets.

When G is abelian, this kind of difficulty does not arise: if g1H = g′1H and g2H = g′2H,
then g1g2H = g′1g

′
2H. One can proceed and turn G/H into a group, just as Z/(m) is a

group for addition. When G is non-abelian (the far more typical case), there are special
kinds of subgroups, called normal subgroups, for which multiplication of left cosets is a
well-defined operation in terms of representatives, and one can make G/H into a group by
multiplying coset representatives.

Why should we care about trying to make G/H into a group? There are at least three
reasons:

• The usefulness of modular arithmetic in Z/(m) suggests having an analogous con-
struction for other groups has got to be worthwhile, even if it is not yet clear what
we might be able to do with the construction. (Note: While we can both add and
multiply in Z/(m), we only have in mind that G/H could be a group, inheriting the
one operation on G, analogous just to addition in Z/(m).)
• Having groups of the form G/H is a method of constructing new groups out of old

ones (by replacing G with G/H). This could allow us to find alternate models for
certain kinds of groups, which might be more convenient to use than other models.
• When G is finite and H is a non-trivial proper subgroup of G, both H and G/H

have size less than the size of G. If G/H is a group, then we have two groups
related to G that have size less than |G|. This turns out to be very useful in proving
theorems about finite groups by induction on the size of the group.

Remark 8.6. In addition to the left coset space G/H, one can also consider the right
H-coset space

H\G := {Hg : g ∈ G}.

9. Double cosets

A coset can be viewed as the result of multiplying an element on one side by a subgroup.
Allowing multiplying on both sides (by possibly different subgroups) leads to the idea of a
double coset.
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Definition 9.1. Let G be a group and H and K be subgroups. A set of the form

HgK = {hgk : h ∈ H, k ∈ K}

is called an (H,K) double coset, or simply a double coset if H and K are understood.

While special instances of double cosets appeared in the work of Cauchy, their systematic
consideration in group theory is due to Frobenius.

In this section we will look at some examples of double cosets and see how they are
similar to and different from left and right cosets.

Example 9.2. Let’s look at double cosets in S3, with H = {(1), (12)} and K = {(1), (13)}.
The double coset of (1) is

H(1)K = HK = {hk : h ∈ H, k ∈ K} = {(1), (12), (13), (132)}

and the double coset of (23) is

H(23)K = {(1)(23)(1), (1)(23)(13), (12)(23)(1), (12)(23)(13)}
= {(23), (123)}.

Unlike a coset, we now see that a double coset does not have to have size dividing the size
of the group (4 does not divide 6). Moreover, different double cosets for the same pair of
subgroups can have different sizes (such as 4 and 2).

The reader can compute the (H,K)-double cosets of the other four elements of S3 and
find only the two examples above repeating. (Or appeal to Theorem 9.7 below.)

Example 9.3. Consider the group S3 again, but now use H = K = {(1), (12)}. There are
only two different double cosets:

H(1)H = HH = {(1), (12)}, H(13)H = {(13), (23), (123), (132)}.

Example 9.4. Take G = D4 = 〈r, s〉 and H = K = {1, s}. The different (H,H) double
cosets are

HH = H = {1, s}, HrH = {r, rs, r3s, r3}, Hr2H = {r2, r2s}.

This example shows the number of double cosets for a pair of subgroups need not divide
the size of the group (3 does not divide 8). This is a contrast to what happens with left
and right cosets of a subgroup.

Example 9.5. An ordinary coset is a special kind of double coset, where one of the sub-
groups is trivial: Hg{e} = Hg and {e}gK = gK.

Example 9.6. If G is abelian, then the product set HK is a subgroup of G and an (H,K)
double coset is just an ordinary coset of the subgroup HK.

Theorem 9.7. Fix two subgroups H and K of the group G. Every element of G lies in
some (H,K) double coset, and two (H,K) double cosets that overlap are equal. Equivalently,
different (H,K) double cosets are disjoint and they collectively cover the whole group.

Proof. Clearly g ∈ HgK: use h = e and k = e. Thus, every element of G is in some (H,K)
double coset.

Now assume HgK and Hg′K overlap:

(9.1) hgk = h′g′k′,
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where h and h′ belong to H and k and k′ belong to K. We want to prove HgK = Hg′K.
By (9.1) g = h−1h′g′k′k−1, so g lies in Hg′K. For h′′ in H and k′′ in K,

h′′gk′′ = h′′h−1h′gk′k−1k′′ ∈ Hg′K.
Letting h′′ and k′′ vary, we obtain HgK ⊂ Hg′K. The reverse inclusion is proved in the
same way, so HgK = Hg′K. �

As a generalization of left or right coset spaces from Appendix 8, we can contemplate a
double coset space

H\G/K = {HgK : g ∈ G}.
This is a left or right coset space when H or K is trivial. Inversion of elements turns each
left coset space G/H into a right coset space H\G. Similarly, inversion on H\G/K turns
it into K\G/H and vice versa.

We noted in Example 9.4 that the number of (H,K) double cosets does not have to divide
the size of the group. However, Frobenius did find a formula involving double coset spaces
that did exactly generalize the “index formulas” |G| = |H||G/H| = |H||H\G|, as follows.

Theorem 9.8. Let G be a finite group and H and K be subgroups. Then

|{(h, g, k) ∈ H ×G×K : hgk = g}| = |H||K||H\G/K|.

When one of the subgroups is trivial, this reduces to the index formula for the other
subgroup.
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