1. Introduction

A reflection across one line in the plane is, geometrically, just like a reflection across every other line. That is, while reflections across two different lines in the plane are not strictly the same, they have the same type of effect. Similarly, two different transpositions in S_n are not the same permutation but have the same type of effect: swap two elements and leave everything else unchanged. The concept that makes the notion of “different, but same type of effect” precise is called conjugacy.

In a group G, two elements g and h are called conjugate when $h = xgx^{-1}$ for some $x \in G$. This relation is symmetric, since $g = yhy^{-1}$ with $y = x^{-1}$. When $h = xgx^{-1}$, we say x conjugates g to h. (Warning: when some people say “x conjugates g to h” they might mean $h = x^{-1}gx$ instead of $h = xgx^{-1}$.)

Example 1.1. In S_3, what are the conjugates of (12)? We make a table of $\sigma(12)\sigma^{-1}$ for all $\sigma \in S_3$.

<table>
<thead>
<tr>
<th>σ</th>
<th>(1)</th>
<th>(12)</th>
<th>(13)</th>
<th>(23)</th>
<th>(123)</th>
<th>(132)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(12)\sigma^{-1}$</td>
<td>(12)</td>
<td>(12)</td>
<td>(23)</td>
<td>(13)</td>
<td>(23)</td>
<td>(13)</td>
</tr>
</tbody>
</table>

The conjugates of (12) are in the second row: (12), (13), and (23). Notice the redundancy in the table: each conjugate of (12) arises in two ways.

We will see in Theorem 5.4 that in S_n all transpositions are conjugate to each other. In Appendix A is a proof that the reflections across each of two lines in the plane are conjugate to each other in the group of all isometries of the plane.

It is useful to collect all conjugate elements in a group together, and these are called conjugacy classes. We’ll look at some examples of this in Section 2, and some general theorems about conjugate elements in a group are proved in Section 3. Conjugate elements of D_n are described in Section 4 and conjugate permutations in symmetric and alternating groups are described in Section 5. In Section 6 we will introduce some subgroups that are related to conjugacy and use them to prove some theorems about finite p-groups, such as a classification of groups of order p^2 and the existence of a normal (!) subgroup of every order dividing the order of a p-group.

2. Conjugacy classes: definition and examples

For an element g of a group G, its conjugacy class is the set of elements conjugate to it: $\{xgx^{-1} : x \in G\}$.
Example 2.1. If G is abelian then every element is its own conjugacy class: $xgx^{-1} = g$ for all $x \in G$. In fact this characterizes abelian groups: to say every $g \in G$ is its own conjugacy class means $xgx^{-1} = g$ for every x and every g, which says $xg = gx$ for all x and g in G, so G is abelian.

Example 2.2. The conjugacy class of (12) in S_3 is $\{(12), (13), (23)\}$, as we saw in Example 1.1. Similarly, the reader can check the conjugacy class of (123) is $\{(123), (132)\}$. The conjugacy class of (1) is just $\{(1)\}$. So S_3 has three conjugacy classes:

\[
\{(1)\}, \ (\{12\}, \{13\}, \{23\}), \ (\{123\}, \{132\}).
\]

Example 2.3. In $D_4 = \langle r, s \rangle$, there are five conjugacy classes:

\[
\{1\}, \ \{r^2\}, \ \{s, r^2s\}, \ \{r, r^3\}, \ \{rs, r^3s\}.
\]

The members of a conjugacy class of D_4 are different but have the same type of effect on a square: r and r^3 are a 90 degree rotation in some direction, s and r^2s are a reflection across a diagonal, and rs and r^3s are a reflection across an edge bisector.

Example 2.4. There are five conjugacy classes in Q_8:

\[
\{1\}, \ \{-1\}, \ \{i, -i\}, \ \{j, -j\}, \ \{k, -k\}.
\]

Example 2.5. There are four conjugacy classes in A_4:

\[
\{(1)\}, \ \{(12)(34), (13)(24), (14)(23)\}, \ \{(123), (243), (134), (142)\}, \ \{(132), (234), (143), (124)\}.
\]

Notice the 3-cycles (123) and (132) are not conjugate in A_4. All 3-cycles in A_4 are conjugate in the larger group S_4, e.g., $(132) = (23)(123)(23)^{-1}$ and the conjugating permutation (23) is not in A_4.

In these examples, different conjugacy classes in a group are disjoint: they don’t overlap at all. This will be proved in general in Section 3. Also, the sizes of different conjugacy classes are not all the same, but these sizes all divide the size of the group. We will see in Section 6 why this is true.

The idea of conjugation can be applied not just to elements, but to subgroups. If $H \subseteq G$ is a subgroup and $g \in G$, the set

\[
gHg^{-1} = \{ghg^{-1} : h \in H\}
\]

is a subgroup of G, called naturally enough a conjugate subgroup to H. It’s a subgroup since it contains the identity ($e = geg^{-1}$) and is closed under multiplication and inversion: $(ghg^{-1})(gh'g^{-1}) = g(hh')g^{-1}$ and $(ghg^{-1})^{-1} = gh^{-1}g^{-1}$. Unlike different conjugacy classes, different conjugate subgroups are not disjoint: they all contain the identity.

Example 2.6. While D_4 has 5 conjugacy classes of elements (Example 2.3), it has 8 conjugacy classes of subgroups. In total there are 10 subgroups of D_4:

\[
\langle 1 \rangle = \{1\}, \ \langle s \rangle = \{1, s\}, \ \langle rs \rangle = \{1, rs\}, \ \langle r^2s \rangle = \{1, r^2s\}, \ \langle r^3s \rangle = \{1, r^3s\}, \ \langle r \rangle = \{1, r, r^2, r^3\}, \ \langle r^2 \rangle = \{1, r^2\}, \ \langle r^2s, s, r^2s \rangle = \{1, r^2, s, r^2s\}, \ \langle r^2rs \rangle = \{1, r^2, rs, r^3s\}, \ D_4.
\]

In this list the subgroups $\langle s \rangle$ and $\langle r^2s \rangle$ are conjugate, as are $\langle rs \rangle$ and $\langle r^3s \rangle$: check $r\langle s \rangle r^{-1} = \langle r^2s \rangle$ and $r\langle rs \rangle r^{-1} = \langle r^3s \rangle$. The other six subgroups of D_4 are conjugate only to themselves.

We will not discuss conjugate subgroups much, but the concept is important. For instance, a subgroup is conjugate only to itself precisely when it is a normal subgroup.
3. SOME BASIC PROPERTIES OF CONJUGACY CLASSES

Lemma 3.1. In a group, \((xgx^{-1})^n = xg^n x^{-1}\) for all positive integers \(n\).

Proof. This is left to the reader as an exercise using induction. The equation is in fact true for all \(n \in \mathbb{Z}\). \(\square\)

Theorem 3.2. All the elements of a conjugacy class have the same order.

Proof. This is saying \(g\) and \(xgx^{-1}\) have the same order. By Lemma 3.1, \((xgx^{-1})^n = xg^n x^{-1}\) for all \(n \in \mathbb{Z}^+\), so if \(g^n = 1\) then \((xgx^{-1})^n = xg^n x^{-1} = x x^{-1} = e\), and if \((xgx^{-1})^n = 1\) then \(xg^n x^{-1} = e\), so \(g^n = x^{-1} x = e\). Thus \((xgx^{-1})^n = 1\) if and only if \(g^n = 1\), so \(g\) and \(xgx^{-1}\) have the same order. \(\square\)

The converse to Theorem 3.2 is false: elements of the same order in a group need not be conjugate in that group. This is clear in abelian groups, where different elements are never conjugate but could have the same order. Looking at the nonabelian examples in Section 2, in \(D_4\) there are five elements of order two spread across 3 conjugacy classes. Similarly, there are non-conjugate elements of equal order in \(Q_8\) and \(A_4\). But in \(S_3\), elements of equal order in \(S_3\) are conjugate. Amazingly, this is the largest example of a finite group where that property holds: up to isomorphism, the only nontrivial finite groups where all elements of equal order are conjugate are \(\mathbb{Z}/(2)\) and \(S_3\). A proof is given in [3] and [6], and depends on the classification of finite simple groups. A conjugacy problem about \(S_3\) that remains open, as far as I know, is the conjecture that \(S_3\) is the only nontrivial finite group (up to isomorphism) in which different conjugacy classes all have different sizes.

Corollary 3.3. If \(H\) is a cyclic subgroup of \(G\) then every subgroup conjugate to \(H\) is cyclic.

Proof. Writing \(H = \langle y \rangle = \langle y^n : n \in \mathbb{Z} \rangle\),

\[gHg^{-1} = \langle g^n y^g^{-1} : n \in \mathbb{Z} \rangle = \langle (gyg^{-1})^n : n \in \mathbb{Z} \rangle = \langle gyg^{-1} \rangle,\]

so \(gHg^{-1}\) is cyclic with a generator being a conjugate (by \(g\)) of a generator of \(H\). \(\square\)

Let’s verify the observation in Section 2 that different conjugacy classes are disjoint.

Theorem 3.4. Let \(G\) be a group and \(g, h \in G\). If the conjugacy classes of \(g\) and \(h\) overlap, then the conjugacy classes are equal.

Proof. We need to show every element conjugate to \(g\) is also conjugate to \(h\), and vice versa. Since the conjugacy classes overlap, we have \(xgx^{-1} = yhy^{-1}\) for some \(x, y\) in the group. Therefore

\[g = x^{-1} y h y^{-1} x = (x^{-1} y) h (x^{-1} y)^{-1},\]

so \(g\) is conjugate to \(h\). Each element conjugate to \(g\) is \(zg z^{-1}\) for some \(z \in G\), and

\[zg z^{-1} = z (x^{-1} y) h (x^{-1} y)^{-1} z^{-1} = (zx^{-1} y) h (zx^{-1} y)^{-1},\]

which shows each element of \(G\) that is conjugate to \(g\) is also conjugate to \(h\). To go the other way, from \(xgx^{-1} = yhy^{-1}\) write \(h = (y^{-1} x) g (y^{-1} x)^{-1}\) and carry out a similar calculation. \(\square\)

Theorem 3.4 says each element of a group belongs to just one conjugacy class. We call an element of a conjugacy class a representative of that class.

A conjugacy class consists of all \(xgx^{-1}\) for fixed \(g\) and varying \(x\). Instead we can look at all \(xgx^{-1}\) for fixed \(x\) and varying \(g\). That is, instead of looking at all the elements
conjugate to g we look at all the ways x can conjugate the elements of the group. This “conjugate-by-x" function is denoted $\gamma_x: G \to G$, so $\gamma_x(g) = xgx^{-1}$.

Theorem 3.5. Each conjugation function $\gamma_x: G \to G$ is an automorphism of G.

Proof. For all g and h in G,

$$\gamma_x(g)\gamma_x(h) = xgx^{-1}xhx^{-1} = xghx^{-1} = \gamma_x(gh),$$

so γ_x is a homomorphism. Since $h = xgx^{-1}$ if and only if $g = x^{-1}hx$, the function γ_x has inverse $\gamma_{x^{-1}}$, so γ_x is an automorphism of G. \hfill \square

Theorem 3.5 explains why conjugate elements in a group G are “the same except for the point of view": they are linked by an automorphism of G, namely some map γ_x. This means an element of G and its conjugates in G have the same group-theoretic properties, such as: having the same order, being an m-th power, being in the center, and being a commutator. Likewise, a subgroup H and its conjugates gHg^{-1} have the same group-theoretic properties.

Automorphisms of G having the form γ_x are called inner automorphisms. They are the only automorphisms that can be written down without knowing extra information about G (such as being told G is abelian or that G is a particular matrix group). For some G every automorphism of G is an inner automorphism. This is true for the groups S_n when $n \neq 6$ (that’s right: S_6 is the only symmetric group with an automorphism that isn’t conjugation by a permutation). The groups $GL_n(\mathbb{R})$ when $n \geq 2$ have extra automorphisms: since $(AB)^T = B^TA^T$ and $(AB)^{-1} = B^{-1}A^{-1}$, the function $f(A) = (A^T)^{-1}$ on $GL_n(\mathbb{R})$ is an automorphism and it is not inner.

Here is a simple result where inner automorphisms tell us something about all automorphisms of a group.

Theorem 3.6. If G is a group with trivial center, then the group $\text{Aut}(G)$ also has trivial center.

Proof. Let $\varphi \in \text{Aut}(G)$ and assume φ commutes with all other automorphisms. We will see what it means for φ to commute with an inner automorphism γ_x. For $g \in G$,

$$(\varphi \circ \gamma_x)(g) = \varphi(\gamma_x(g)) = \varphi(xgx^{-1}) = \varphi(x)\varphi(g)\varphi(x)^{-1}$$

and

$$(\gamma_x \circ \varphi)(g) = \gamma_x(\varphi(g)) = x\varphi(g)x^{-1},$$

so having φ and γ_x commute means, for all $g \in G$, that

$$\varphi(x)\varphi(g)\varphi(x)^{-1} = x\varphi(g)x^{-1} \iff x^{-1}\varphi(x)\varphi(g) = \varphi(g)x^{-1}\varphi(x),$$

so $x^{-1}\varphi(x)$ commutes with every value of φ. Since φ is onto, $x^{-1}\varphi(x) \in Z(G)$. The center of G is trivial, so $\varphi(x) = x$. This holds for all $x \in G$, so φ is the identity automorphism. We have proved the center of $\text{Aut}(G)$ is trivial. \hfill \square

4. **Conjugacy classes in D_n**

In the group D_n we will show rotations are conjugate only to their inverses and reflections are either all conjugate or fall into two conjugacy classes.

Theorem 4.1. The conjugacy classes in D_n are as follows.

1. If n is odd,
 - the identity element: $\{1\}$,
• \((n - 1)/2\) conjugacy classes of size 2: \(\{r^{\pm 1}\}, \{r^{\pm 2}\}, \ldots, \{r^{\pm (n-1)/2}\}\),
• all the reflections: \(\{r^i s : 0 \leq i \leq n - 1\}\).

(2) If \(n\) is even,
• two conjugacy classes of size 1: \(\{1\}, \{r^{\frac{n}{2}}\}\),
• \(n/2 - 1\) conjugacy classes of size 2: \(\{r^{\pm 1}\}, \{r^{\pm 2}\}, \ldots, \{r^{\pm (n-1)/2}\}\),
• the reflections fall into two conjugacy classes: \(\{r^{2i} s : 0 \leq i \leq \frac{n}{2} - 1\}\) and \(\{r^{2i+1} s : 0 \leq i \leq \frac{n}{2} - 1\}\).

Proof. Every element of \(D_n\) is \(r^i\) or \(r^i s\) for some integer \(i\). Therefore to find the conjugacy class of an element \(g\) we will compute \(r^i g r^{-i}\) and \((r^i s) g (r^i s)^{-1}\).

The formulas
\[
r^i r^j r^{-i} = r^j, \quad (r^i s) r^j (r^i s)^{-1} = r^{-j}
\]
as \(i\) varies show the only conjugates of \(r^j\) in \(D_n\) are \(r^j\) and \(r^{-j}\). Explicitly, the basic formula \(sr^j s^{-1} = r^{-j}\) shows us \(r^j\) and \(r^{-j}\) are conjugate; we need the more general calculation to be sure there is nothing further that \(r^j\) is conjugate to.

To find the conjugacy class of \(s\), we compute
\[
r^i s r^{-i} = r^{2i} s, \quad (r^i s) s (r^i s)^{-1} = r^{2i} s.
\]
As \(i\) varies, \(r^{2i} s\) runs through the reflections in which \(r\) occurs with an exponent divisible by 2. If \(n\) is odd then every integer modulo \(n\) is a multiple of 2 (since 2 is invertible mod \(n\) we can solve \(k \equiv 2i\) mod \(n\) for \(i\) no matter what \(k\) is). Therefore when \(n\) is odd
\[
\{r^{2i} s : i \in \mathbb{Z}\} = \{r^k s : k \in \mathbb{Z}\},
\]
so every reflection in \(D_n\) is conjugate to \(s\). When \(n\) is even, however, we only get half the reflections as conjugates of \(s\). The other half are conjugate to \(rs\):
\[
r^i (rs) r^{-i} = r^{2i+1} s, \quad (r^i s) (rs) (r^i s)^{-1} = r^{2i-1} s.
\]
As \(i\) varies, this gives us \(\{rs, r^3 s, \ldots, r^{n-1} s\}\).

That reflections in \(D_n\) form either one or two conjugacy classes, depending on the parity of \(n\), corresponds to a geometric feature of reflections: for odd \(n\) all reflections in \(D_n\) look the same (Figure 1) – reflecting across a line connecting a vertex and the midpoint on the opposite side – but for even \(n\) the reflections in \(D_n\) fall into two types – the \(r^{\text{even}}\)s reflect across a line through pairs of opposite vertices and the \(r^{\text{odd}}\)s reflect across a line through midpoints of opposite sides (Figure 2).

![Figure 1. Lines of Reflection for \(n = 3\) and \(n = 5\).]
5. Conjugacy classes in S_n and A_n

The following tables list a representative from each conjugacy class in S_n and A_n for $3 \leq n \leq 6$, along with the size of the conjugacy classes. Conjugacy classes disjointly cover a group, by Theorem 3.4, so the conjugacy class sizes add up to $n!$ for S_n and $n!/2$ for A_n.

<table>
<thead>
<tr>
<th>S_3</th>
<th>A_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep.</td>
<td>(1)</td>
</tr>
<tr>
<td>(123)</td>
<td>(123)</td>
</tr>
<tr>
<td>Size</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S_4</th>
<th>A_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep.</td>
<td>(1)</td>
</tr>
<tr>
<td>(12)(34)</td>
<td>(1234)</td>
</tr>
<tr>
<td>(12)</td>
<td>(123)</td>
</tr>
<tr>
<td>Size</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep.</td>
</tr>
<tr>
<td>(12)</td>
</tr>
<tr>
<td>(12)(34)</td>
</tr>
<tr>
<td>(12)</td>
</tr>
<tr>
<td>Size</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep.</td>
</tr>
<tr>
<td>(12345)</td>
</tr>
<tr>
<td>(12345)</td>
</tr>
<tr>
<td>(12)(34)</td>
</tr>
<tr>
<td>Size</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep.</td>
</tr>
<tr>
<td>(12)</td>
</tr>
<tr>
<td>(12)(34)(56)</td>
</tr>
<tr>
<td>(123)</td>
</tr>
<tr>
<td>(12)</td>
</tr>
<tr>
<td>Size</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep.</td>
</tr>
<tr>
<td>(123)</td>
</tr>
<tr>
<td>(123)(456)</td>
</tr>
<tr>
<td>(12345)</td>
</tr>
<tr>
<td>(123)(456)</td>
</tr>
<tr>
<td>Size</td>
</tr>
</tbody>
</table>

Notice elements of A_n can be conjugate in S_n while *not* being conjugate in A_n, such as (123) and (132) for $n = 3$ and $n = 4$. (See Example 2.5.) The permutations in S_3 and S_4 that conjugate (123) to (132) are not even, so (123) and (132) are not conjugate in A_3 or A_4. They are conjugate in A_5: $(132) = \sigma(123)\sigma^{-1}$ for $\sigma = (23)(45)$.

As a first step in understanding conjugacy classes in S_n, we compute the conjugates of a cycle, say a k-cycle.
Theorem 5.1. For each cycle \((i_1i_2\ldots i_k)\) in \(S_n\) and each \(\sigma \in S_n\),
\[
\sigma(i_1i_2\ldots i_k)\sigma^{-1} = (\sigma(i_1)\sigma(i_2)\ldots\sigma(i_k)).
\]

Before proving this formula, let’s look at two examples to see the formula works.

Example 5.2. In \(S_5\), let \(\sigma = (13)(254)\). Then
\[
\sigma(1432)\sigma^{-1} = (13)(254)(1432)(245)(13) = (1532)
\]
while \((\sigma(1)\sigma(4)\sigma(3)\sigma(2)) = (3215)\) since \(\sigma(1) = 3\), \(\sigma(4) = 2\), \(\sigma(3) = 1\), and \(\sigma(2) = 5\). Clearly \((1532) = (3215)\).

Example 5.3. In \(S_7\), let \(\sigma = (13)(265)\). Then
\[
\sigma(73521)\sigma^{-1} = (13)(265)(73521)(256)(13) = (12637)
\]
and \((\sigma(7)\sigma(3)\sigma(5)\sigma(2)\sigma(1)) = (71263) = (12637)\).

Proof. Let \(\pi = \sigma(i_1i_2\ldots i_k)\sigma^{-1}\). We want to show \(\pi\) is the cyclic permutation of the numbers \(\sigma(i_1), \sigma(i_2), \ldots, \sigma(i_k)\). That means two things:
- Show \(\pi\) sends \(\sigma(i_1)\) to \(\sigma(i_2)\), \(\sigma(i_2)\) to \(\sigma(i_3)\), and finally \(\sigma(i_k)\) to \(\sigma(i_1)\).
- Show \(\pi\) does not move a number other than \(\sigma(i_1), \ldots, \sigma(i_k)\).

The second step is essential. Just knowing a permutation cyclically permutes certain numbers does not mean it is the cycle built from those numbers, since it could move other numbers we haven’t looked at yet. (For instance, if \(\pi(1) = 2\) and \(\pi(2) = 1\), \(\pi\) need not be \((12)\). The permutation \((12)(345)\) also has that behavior.)

What does \(\pi\) do to \(\sigma(i_1)\)? The effect is
\[
\pi(\sigma(i_1)) = (\sigma(i_1i_2\ldots i_k)\sigma^{-1})(\sigma(i_1)) = ((\sigma(i_1i_2\ldots i_k)\sigma^{-1})\sigma(i_1)) = \sigma(i_1i_2\ldots i_k)(i_1) = \sigma(i_2).
\]
(The “\((i_1)\)” at the ends is not a 1-cycle, but denotes the point where a permutation is being evaluated.) Similarly, \(\pi(\sigma(i_2)) = \sigma(i_1i_2\ldots i_k)(i_2) = \sigma(i_3)\), and so on up to \(\pi(\sigma(i_k)) = \sigma(i_1i_2\ldots i_k)(i_k) = \sigma(i_1)\).

Now pick a number \(a\) that is not among \(\sigma(i_1), \ldots, \sigma(i_k)\). We want to show \(\pi(a) = a\). That means we want to show \(\sigma(i_1i_2\ldots i_k)\sigma^{-1}(a) = a\). Since \(a \neq \sigma(i_j)\) for \(j = 1, \ldots, k\), also \(\sigma^{-1}(a)\) is not \(i_j\) for \(j = 1, \ldots, k\). Therefore the cycle \((i_1i_2\ldots i_k)\) does not move \(\sigma^{-1}(a)\), so its effect on \(\sigma^{-1}(a)\) is to keep it as \(\sigma^{-1}(a)\). Hence
\[
\pi(a) = \sigma(i_1i_2\ldots i_k)\sigma^{-1}(a) = \sigma(\sigma^{-1}(a)) = a.
\]

We now know that every conjugate of a cycle is also a cycle of the same length. Is the converse true, i.e., if two cycles have the same length are they conjugate?

Theorem 5.4. All cycles of the same length in \(S_n\) are conjugate.

Proof. Pick two \(k\)-cycles, say
\[
(a_1\ a_2\ldots\ a_k), \quad (b_1\ b_2\ldots\ b_k).
\]
Choose \(\sigma \in S_n\) so that \(\sigma(a_1) = b_1, \ldots, \sigma(a_k) = b_k\), and let \(\sigma\) be an arbitrary bijection from the complement of \(\{a_1, \ldots, a_k\}\) to the complement of \(\{b_1, \ldots, b_k\}\). Then, using Theorem 5.1, we see conjugation by \(\sigma\) carries the first \(k\)-cycle to the second. \(\square\)
For instance, the transpositions (2-cycles) in S_n form a single conjugacy class, as we saw for S_3 in the introduction.

Now we consider the conjugacy class of an arbitrary permutation in S_n, not necessarily a cycle. It will be convenient to introduce some terminology. Writing a permutation as a product of disjoint cycles, arrange the lengths of those cycles in increasing order, including 1-cycles if there are fixed points. These lengths are called the cycle type of the permutation.\footnote{A more descriptive label might be “disjoint cycle structure”, but the standard term is “cycle type”.}

Example 5.5. We consider two permutations in cycle type. Let’s understand how this works in an example first.

Let π have the cycle type of a permutation in S_5 and so on. This cycle type of a permutation is exactly the level of detail that conjugacy

Lemma 5.6. \textbf{If} π_1 and π_2 are disjoint permutations in S_n, then $\sigma \pi_1 \sigma^{-1}$ and $\sigma \pi_2 \sigma^{-1}$ are disjoint permutations for all $\sigma \in S_n$.

\begin{proof}
Being disjoint means no number is moved by both π_1 and π_2. That is, there is no i such that $\pi_1(i) \neq i$ and $\pi_2(i) \neq i$. If $\sigma \pi_1 \sigma^{-1}$ and $\sigma \pi_2 \sigma^{-1}$ are not disjoint, then they both move some number, say j. Then (check!) $\sigma^{-1}(j)$ is moved by both π_1 and π_2, which is a contradiction.
\end{proof}

Theorem 5.7. \textbf{Two permutations in S_n are conjugate if and only if they have the same cycle type.}

\begin{proof}
Pick $\pi \in S_n$. Write π as a product of disjoint cycles. By Theorem 3.5 and Lemma 5.6, $\sigma \pi \sigma^{-1}$ will be a product of the σ-conjugates of the disjoint cycles for π, and these σ-conjugates are disjoint cycles with the same respective lengths. Therefore $\sigma \pi \sigma^{-1}$ has the same cycle type as π.
\end{proof}

Proof. Pick $\pi \in S_n$. Write π as a product of disjoint cycles. By Theorem 3.5 and Lemma 5.6, $\sigma \pi \sigma^{-1}$ will be a product of the σ-conjugates of the disjoint cycles for π, and these σ-conjugates are disjoint cycles with the same respective lengths. Therefore $\sigma \pi \sigma^{-1}$ has the same cycle type as π.\footnote{A more descriptive label might be “disjoint cycle structure”, but the standard term is “cycle type”.

Lemma 5.6. \textbf{If} π_1 and π_2 are disjoint permutations in S_n, then $\sigma \pi_1 \sigma^{-1}$ and $\sigma \pi_2 \sigma^{-1}$ are disjoint permutations for all $\sigma \in S_n$.

\begin{proof}
Being disjoint means no number is moved by both π_1 and π_2. That is, there is no i such that $\pi_1(i) \neq i$ and $\pi_2(i) \neq i$. If $\sigma \pi_1 \sigma^{-1}$ and $\sigma \pi_2 \sigma^{-1}$ are not disjoint, then they both move some number, say j. Then (check!) $\sigma^{-1}(j)$ is moved by both π_1 and π_2, which is a contradiction.
\end{proof}

Theorem 5.7. \textbf{Two permutations in S_n are conjugate if and only if they have the same cycle type.}

\begin{proof}
Pick $\pi \in S_n$. Write π as a product of disjoint cycles. By Theorem 3.5 and Lemma 5.6, $\sigma \pi \sigma^{-1}$ will be a product of the σ-conjugates of the disjoint cycles for π, and these σ-conjugates are disjoint cycles with the same respective lengths. Therefore $\sigma \pi \sigma^{-1}$ has the same cycle type as π.\footnote{A more descriptive label might be “disjoint cycle structure”, but the standard term is “cycle type”.}
For the converse direction, we need to explain why permutations \(\pi_1 \) and \(\pi_2 \) with the same cycle type are conjugate. Suppose the cycle type is \((m_1, m_2, \ldots)\). Then

\[
\pi_1 = (a_1 \ a_2 \ldots \ a_{m_1})(a_{m_1+1} \ a_{m_1+2} \ldots a_{m_1+m_2})\ldots
\]

and

\[
\pi_2 = (b_1 \ b_2 \ldots b_{m_1})(b_{m_1+1} b_{m_1+2} \ldots b_{m_1+m_2})\ldots,
\]

where the cycles here are disjoint. To carry \(\pi_1 \) to \(\pi_2 \) by conjugation in \(S_n \), define the permutation \(\sigma \in S_n \) by: \(\sigma(a_i) = b_i \) for all \(i \). Then \(\sigma \pi_1 \sigma^{-1} = \pi_2 \) by Theorems 3.5 and 5.4. (This is exactly the method used to find \(\sigma \) in Example 5.5.) \(\square \)

Since the conjugacy class of a permutation in \(S_n \) is determined by its cycle type, which is a certain partition of \(n \), the number of conjugacy classes in \(S_n \) is the number of partitions of \(n \). The number of partitions of \(n \) is denoted \(p(n) \). Here is a table of some values. Check the numbers at the start of the table for \(n \leq 6 \) agree with the number of conjugacy classes listed earlier in this section.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(n))</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

The function \(p(n) \) grows quickly, e.g., \(p(100) = 190,569,292 \). Using Theorem 5.7, there is a type of converse to Theorem 3.2: although elements of equal order in a group need not be conjugate in the group, conjugacy will occur by working in a larger group.

Corollary 5.8. Each finite group \(G \) can be embedded in a larger group where all elements of \(G \) with equal order become conjugate.

Proof. From Cayley’s theorem we can embed \(G \) into a symmetric group by associating to each \(g \in G \) the permutation \(\ell_g : G \to G \) where \(\ell_g(x) = gx \). By labeling the elements of \(G \) as \(\{g_1, \ldots, g_n\} \) we can make each permutation of \(G \) look like a permutation of \(\{1, \ldots, n\} \), and that makes the mapping \(g \mapsto \ell_g \) an injective homomorphism \(G \to S_n \), where \(n = |G| \).

Let \(g \in G \) have order \(m \), so \(m \mid n \). Left multiplication of \(g \) on \(G \), as a permutation of \(G \), is a product of disjoint \(m \)-cycles \((x \ gx \ gx^2 \ldots \ g^{m-1}x) \). The cycle decomposition of \(\ell_g \) will have \(|G|/m\) disjoint \(m \)-cycles. Therefore the cycle type of the permutation \(\ell_g \) in \(S_n \) depends on \(g \) only through its order \(m \). For another element \(g' \) in \(G \) with order \(m \), \(\ell_{g'} \) as a permutation of \(G \) has the same cycle type as \(\ell_g \), so \(\ell_g \) and \(\ell_{g'} \) are conjugate in \(S_n \) by Theorem 5.7. \(\square \)

Example 5.9. In the group \(G = \mathbb{Z}/(10) \), 2 and 4 have order 5 and are not conjugate in \(G \) since \(G \) is abelian. When we view \(G \) in \(S_{10} \) using Cayley’s theorem, \(\ell_2 = (02468)(13579) \) and \(\ell_4 = (04826)(15937) \). These are conjugate in \(S_{10} \): \(\ell_4 = \sigma \ell_2 \sigma^{-1} \), where \(\sigma = (0123456789) = (0123456789)(0123456789) \).

Corollary 5.8 is also true for infinite \(G \), by using infinite symmetric groups in the proof.

Let’s now look at conjugacy classes in \(A_n \). If \(\pi \) is an even permutation, then \(\sigma \pi \sigma^{-1} \) is also even, so a conjugacy class in \(S_n \) that contains one even permutation contains only even permutations. However, two permutations \(\pi_1 \) and \(\pi_2 \) in \(A_n \) can have the same cycle type (and thus be conjugate in the larger group \(S_n \)) while being non-conjugate in \(A_n \). The point is that we might be able to get \(\pi_2 = \sigma \pi_1 \sigma^{-1} \) for some \(\sigma \in S_n \) without being able to do this for \(\sigma \in A_n \).
Example 5.10. The 3-cycles (123) and (132) in A_3 are conjugate in S_3: $(23)(123)(23)^{-1} = (132)$. However, (123) and (132) are not conjugate in A_3 because A_3 is abelian: an element of A_3 is conjugate in A_3 only to itself.

Example 5.11. The 3-cycle (123) and its inverse (132) are conjugate in S_4 (by (23)) but they are not conjugate in A_4. To see this, let’s determine all possible $\sigma \in S_4$ that conjugate (123) to (132). For $\sigma \in S_4$, the condition $\sigma(123)\sigma^{-1} = (132)$ is the same as $(\sigma(1)\sigma(2)\sigma(3)) = (132)$. There are three possibilities:

- $\sigma(1) = 1$, so $\sigma(2) = 3$ and $\sigma(3) = 2$, and necessarily $\sigma(4) = 4$. Thus $\sigma = (23)$.
- $\sigma(1) = 3$, so $\sigma(2) = 2$ and $\sigma(3) = 1$, and necessarily $\sigma(4) = 4$. Thus $\sigma = (13)$.
- $\sigma(1) = 2$, so $\sigma(2) = 1$ and $\sigma(3) = 3$, and necessarily $\sigma(4) = 4$. Thus $\sigma = (12)$.

Therefore the only possible σ’s are transpositions, which are not in A_4.

While it would be nice if conjugacy classes in A_n are determined by cycle type as in S_n, we have seen that this is false: (123) and (132) are not conjugate in A_3 or A_4. How does a conjugacy class of even permutations in S_n break up when thinking about conjugacy classes in A_n? There are two possibilities: the conjugacy class stays as a single conjugacy class within A_n or it breaks up into two conjugacy classes of equal size in A_n. A glance at the earlier tables of conjugacy classes in A_n with small n shows this happening. For instance,

- there is one class of 8 3-cycles in S_4, but two classes of 4 3-cycles in A_4,
- there is one class of 24 5-cycles in S_5, but two classes of 12 5-cycles in A_5,
- there is one class of 144 5-cycles in S_6, but two classes of 72 5-cycles in A_6.

A rule that describes when each possibility occurs is as follows, but a proof is omitted.

Theorem 5.12. For $\pi \in A_n$, its conjugacy class in S_n remains as a single conjugacy class in A_n or it breaks into two conjugacy classes in A_n of equal size. The conjugacy class breaks up if and only if the lengths in the cycle type of π are distinct odd numbers.

Here is a table showing the cycle types in A_n that fall into two conjugacy classes for $4 \leq n \leq 14$. For example, the permutations in A_6 of cycle type (1,5) but not (3,3) fall into two conjugacy classes and the permutations in A_8 of cycle type (1,7) and (3,5) each fall into two conjugacy classes.

<table>
<thead>
<tr>
<th>n</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle type in A_n</td>
<td>(1,3)</td>
<td>(5)</td>
<td>(1,5)</td>
<td>(7)</td>
<td>(1,7)</td>
<td>(9)</td>
<td>(1,9)</td>
<td>(11)</td>
<td>(1,11)</td>
<td>(13)</td>
<td>(1,13)</td>
</tr>
<tr>
<td>(3,5)</td>
<td>(1,3,5)</td>
<td>(3,7)</td>
<td>(1,3,7)</td>
<td>(3,9)</td>
<td>(1,3,9)</td>
<td>(3,11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5,7)</td>
<td>(1,5,7)</td>
<td>(5,9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following table lists the number $c(n)$ (nonstandard notation) of conjugacy classes in A_n for small n.

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c(n)$</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>14</td>
<td>18</td>
<td>24</td>
<td>31</td>
<td>43</td>
<td>55</td>
<td>72</td>
</tr>
</tbody>
</table>

6. Centralizers and the class equation

We saw in Theorem 3.4 that different conjugacy classes do not overlap. Thus, they provide a way of covering the group by disjoint sets. This is analogous to the left cosets of a subgroup providing a disjoint covering of the group.

For $g \in G$, let K_g denote its conjugacy class in G:

$$K_g = \{xgx^{-1} : x \in G\}.$$
If the different conjugacy classes are $K_{g_1}, K_{g_2}, \ldots, K_{g_r}$, then

\begin{equation}
|G| = |K_{g_1}| + |K_{g_2}| + \cdots + |K_{g_r}|.
\end{equation}

Equation (6.1) plays the role for conjugacy classes in G that the formula $|G| = |H|[G : H]$ plays for cosets of H in G.

Let’s see how (6.1) looks for some groups from Section 2.

Example 6.1. For $G = S_3$, (6.1) says

$6 = 1 + 2 + 3$.

Example 6.2. For $G = D_4$,

$8 = 1 + 1 + 2 + 2 + 2$.

Example 6.3. For $G = Q_8$,

$8 = 1 + 1 + 2 + 2 + 2$.

Example 6.4. For $G = A_4$,

$12 = 1 + 3 + 4 + 4$.

The reason (6.1) is important is that $|K_{g_i}|$ divides the size of the group. We saw this earlier in examples. Now we will prove it in general.

Theorem 6.5. If G is a finite group then each conjugacy class in G has size dividing $|G|$.

Theorem 6.5 is not an immediate consequence of Lagrange’s theorem, because conjugacy classes are *not* subgroups. For example, no conjugacy class contains the identity except for the one-element conjugacy class containing the identity by itself. However, while a conjugacy class is not a subgroup, its size does equal the index of a subgroup, and that will explain why its size divides the size of the group.

Definition 6.6. For a group G, its *center* $Z(G)$ is the set of elements of G commuting with everything:

$Z(G) = \{ g \in G : gx = xg \text{ for all } x \in G \}$.

For $g \in G$, its *centralizer* $Z(g)$ is the set of elements of G commuting with g:

$Z(g) = \{ x \in G : xg = gx \}$.

The notation Z comes from German: center is Zentrum and centralizer is Zentralisator. Some English language books use the letter C, so $C(G) = Z(G)$ and $C(g) = Z(g)$. The center of the group and the centralizer of each element of the group are subgroups. The connection between them is the center is the intersection of all the centralizers: $Z(G) = \bigcap_{g \in G} Z(g)$.

Theorem 6.7. For each $g \in G$, its conjugacy class has the same size as the index of its centralizer:

$|\{xgx^{-1} : x \in G\}| = [G : Z(g)]$.

Proof. Consider the function $f : G \to K_g$ where $f(x) = xgx^{-1}$. This function is onto, since by definition every element of K_g is xgx^{-1} for some $x \in G$. We will now examine when f takes the same value at elements of G.

For x and x' in G, we have $xgx^{-1} = x'gx'^{-1}$ if and only if $gx^{-1}x' = x^{-1}x'g$.

Therefore $x^{-1}x'$ commutes with g, i.e., $x^{-1}x' \in Z(g)$, so $x' \in xZ(g)$. Although x and x' may be different, they lie in the same left coset of $Z(g)$:

$$f(x) = f(x') \iff xZ(g) = x'Z(g).$$

Conversely, suppose $xZ(g) = x'Z(g)$. Then $x = x'z$ for some $z \in Z(g)$, so $zg = gz$. Therefore x and x' conjugate g in the same way:

$$
\begin{align*}
 f(x) &= xgx^{-1} \\
 &= (x'z)g(x'z)^{-1} \\
 &= x'gz^{-1}x'^{-1} \\
 &= x'gz^{-1}x'^{-1} \\
 &= x'gx'^{-1} \\
 &= f(x').
\end{align*}
$$

Since we have shown that the converse of (6.2) is true, the function $f: G \to K_g$ takes the same value at two elements precisely when they are in the same left coset of $Z(g)$. Therefore the number of different values of f is the number of different left cosets of $Z(g)$ in G, and by definition that is the index $[G : Z(g)]$. Since f is surjective, we conclude that $|K_g| = [G : Z(g)]$. \hfill \square

Now we can prove Theorem 6.5.

Proof. By Theorem 6.7, the size of the conjugacy class of g is the index $[G : Z(g)]$, which divides $|G|$. \hfill \square

Returning to (6.1), we rewrite it in the form

$$|G| = \sum_{i=1}^{r} [G : Z(g_i)] = \sum_{i=1}^{r} \frac{|G|}{|Z(g_i)|}.\tag{6.3}$$

The conjugacy classes of size 1 are exactly those containing elements of the center of G (i.e., those g_i such that $Z(g_i) = G$). Combining all of these 1’s into a single term, we get

$$|G| = |Z(G)| + \sum_{i'} \frac{|G|}{|Z(g_{i'})|},\tag{6.4}$$

where the sum is now carried out only over those conjugacy classes $K_{g_{i'}}$ with more than one element. In the terms of this sum, $|Z(g_{i'})| < |G|$. Equation (6.4) is called the **class equation**. The difference between the class equation and (6.1) is that we have combined the terms contributing to the center of G into a single term.

Here is a good application of the class equation.

Theorem 6.8. When G is a nontrivial finite p-group it has a nontrivial center: some element of G other than the identity commutes with every element of G.

Proof. Let $|G| = p^n$, where $n > 0$. Consider a term $[G : Z(g_{i'})]$ in the class equation, where $g_{i'}$ does not lie in $Z(G)$. Then $Z(g_{i'}) \neq G$, so the index $[G : Z(g_{i'})]$ is a factor of $|G|$ other than 1. It is one of $\{p, p^2, \ldots, p^n\}$, and hence is **divisible by** p. In the class equation, all terms in the sum over i' are multiples of p.

Also, the left side of the class equation is a multiple of p, since $|G| = p^n$. So the class equation forces $p \mid |Z(G)|$. Since the center contains the identity, and has size divisible by p, it must contain non-identity elements as well. \hfill \square
With a little extra work we can generalize Theorem 6.8.

Theorem 6.9. If G is a nontrivial finite p-group and N is a nontrivial normal subgroup of G then $N \cap Z(G) \neq \{e\}$.

Proof. Since N is a normal subgroup of G, a conjugacy class in G that meets N lies entirely inside of N (that is, if $g \in N$ then $xgx^{-1} \in N$ for all $x \in G$). Let K_{g_1}, \ldots, K_{g_s} be the different conjugacy classes of G that lie inside N, so

$$|N| = |K_{g_1}| + \cdots + |K_{g_s}|.$$ \hfill (6.5)

(Note that elements of N can be conjugate in G without being conjugate in N, so breaking up N into its G-conjugacy classes in (6.5) is a coarser partitioning of N than breaking it into N-conjugacy classes.) The left side of (6.5) is a power of p greater than 1. Each term on the right side is a conjugacy class in G, so $|K_{g_i}| = [G : Z(g_i)]$, where $Z(g_i)$ is the centralizer of g_i in G. This index is a power of p greater than 1 except when $g_i \in Z(G)$, in which case $|K_{g_i}| = 1$. The g_i’s in N with $|K_{g_i}| = 1$ are elements of $N \cap Z(G)$. Therefore if we reduce (6.5) modulo p we get

$$0 \equiv |N \cap Z(G)| \mod p,$$

so $|N \cap Z(G)|$ is divisible by p. Since $|N \cap Z(G)| \geq 1$ the intersection $N \cap Z(G)$ contains a non-identity term. \qed

Remark 6.10. The finiteness assumption in Theorem 6.8 is important. There are infinite p-groups with trivial center! Here is an example. Consider the set G of infinite mod p square matrices $(M O \ O I_{\infty})$ where I_{∞} is an infinite identity matrix and M is a finite upper triangular square matrix of the form

$$\begin{pmatrix}
1 & a_{12} & \cdots & a_{1n} \\
0 & 1 & \cdots & a_{2n} \\
0 & 0 & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}$$

where there are 1’s on the main diagonal and the entries a_{ij} above the main diagonal are in \mathbb{Z}/p. Because each row or column of a matrix in G has only finitely many nonzero elements, matrix multiplication in G makes sense. To show G is a group under matrix multiplication, by borrowing the upper left 1 in I_{∞} we can write

$$(M O \ O I_{\infty}) = (M O O I_{\infty})$$

and thereby view the infinite matrix as having an $(n + 1) \times (n + 1)$ upper left part instead of an $n \times n$ upper left part. In this way all pairs of matrices $(M O I_{\infty})$ and $(O I_{\infty})$ in G can be considered to have M and N of the same size. Then we obtain a block multiplication formula (check!) $(M O I_{\infty})(N O I_{\infty}) = (MN O I_{\infty})$. Since the $n \times n$ upper triangular mod p matrices with 1’s on the main diagonal form a group, it now follows that G is a group. Since M has p-power order, every element of G has p-power order. Thus G is an “infinite p-group.”

To show the center of G is trivial, a non-identity element of G has the form $(M O I_{\infty})$, where M is $n \times n$ for some n and $M \neq I_n$. We have the following equations in $2n \times 2n$ matrices:

$$(M O I_n)(I_n I_n) = (M M I_n),$$

$$(O I_n)(I_n I_n) = (O O I_n).$$

Conjugation in a Group
\[
\begin{pmatrix}
I_n & I_n \\
O & I_n \\
\end{pmatrix}
\begin{pmatrix}
M & O \\
O & I_n \\
\end{pmatrix}
=
\begin{pmatrix}
M & I_n \\
O & I_n \\
\end{pmatrix}.
\]

These are not equal since \(M \neq I_n \). Now embed the \(2n \times 2n \) matrices \(A = (\begin{smallmatrix} M & O \\ O & I_n \end{smallmatrix}) \) and \(B = (\begin{smallmatrix} I_n & I_n \\ O & I_n \end{smallmatrix}) \) in \(G \) as \((\begin{smallmatrix} A & O \\ O & I_n \end{smallmatrix}) \) and \((\begin{smallmatrix} B & O \\ O & I_n \end{smallmatrix}) \). These do not commute. Note \((\begin{smallmatrix} A & O \\ O & I_n \end{smallmatrix}) = (\begin{smallmatrix} M & O \\ O & I_n \end{smallmatrix}) \) in \(G \), so \((\begin{smallmatrix} M & O \\ O & I_n \end{smallmatrix}) \notin Z(G)\).

The following corollary is the standard first application of Theorem 6.8.

Corollary 6.11. For all primes \(p \), every group of order \(p^2 \) is abelian. More precisely, a group of order \(p^2 \) is isomorphic to \(\mathbb{Z}/(p^2) \) or to \(\mathbb{Z}/(p) \times \mathbb{Z}/(p) \).

Proof. Let \(G \) be such a group. By Lagrange, the order of a non-identity element is \(p \) or \(p^2 \).

If there is an element of \(G \) with order \(p^2 \), then \(G \) is cyclic and therefore isomorphic to \(\mathbb{Z}/(p^2) \) (in many ways). We may henceforth assume \(G \) has no element of order \(p^2 \). That means every non-identity element of \(G \) has order \(p \).

From Theorem 6.8, there is a non-identity element in the center of \(G \). Call it \(a \). Since \(a \) has order \(p \), \(\langle a \rangle \) is not all of \(G \). Then \(b \in G - \langle a \rangle \). Then \(b \) also has order \(p \). We are going to show powers of \(a \) and powers of \(b \) provide an isomorphism of \(G \) with \(\mathbb{Z}/(p) \times \mathbb{Z}/(p) \). Let \(f: \mathbb{Z}/(p) \times \mathbb{Z}/(p) \to G \) by

\[
f(i, j) = a^i b^j.
\]

This is well-defined since \(a \) and \(b \) have order \(p \). It is a homomorphism since powers of \(a \) are in the center:

\[
f(i, j)f(i', j') = (a^i b^j)(a^{i'} b^{j'}) = a^{i+i'} b^{j+j'} = a^{i+j'} b^{j+i'} = f(i + i', j + j') = f((i, j) + (i', j')).
\]

The kernel is trivial: if \(f(i, j) = e \) then \(a^i = b^{-j} \). This is a common element of \(\langle a \rangle \cap \langle b \rangle \), which is trivial. Therefore \(a^i = b^j = e \), so \(i = j = 0 \) in \(\mathbb{Z}/(p) \).

Since \(f \) has trivial kernel it is injective. The domain and target have the same size, so \(f \) is surjective and thus is an isomorphism. \(\square \)

Corollary 6.12. A finite \(p \)-group \(\neq \{e\} \) has a normal subgroup of order \(p \).

Proof. Let \(G \) be a finite \(p \)-group with \(|G| > 1 \). By Theorem 6.8, \(Z(G) \) is a nontrivial \(p \)-group. Pick \(g \in Z(G) \) with \(g \neq e \). The order of \(g \) is \(p^r \) for some \(r \geq 1 \). Therefore \(g^{p^{r-1}} \) has order \(p \), so \(Z(G) \) contains a subgroup of order \(p \), which must be normal in \(G \) since every subgroup of \(Z(G) \) is a normal subgroup of \(G \). \(\square \)

We can bootstrap Corollary 6.12 to non-prime sizes by inducting on a stronger hypothesis.

Corollary 6.13. If \(G \) is a nontrivial finite \(p \)-group with size \(p^n \) then there is a normal subgroup of size \(p^j \) for every \(j = 0, 1, \ldots, n \).

Proof. We argue by induction on \(n \). The result is clear if \(n = 1 \). Suppose \(n \geq 2 \) and the theorem is true for \(p \)-groups of size \(p^{n-1} \). If \(|G| = p^n \) then it has a normal subgroup \(N \) of size \(p \) by the preceding corollary. Then \(|G/N| = p^{n-1} \), so for \(0 \leq j \leq n - 1 \) there is a normal subgroup of \(G/N \) with size \(p^j \). The pullback of this subgroup to \(G \) is normal and has size \(p^j \cdot |N| = p^{j+1} \). \(\square \)
Example 6.14. Let $G = D_4$. Its subgroups of size 2 are $\langle s \rangle$, $\langle rs \rangle$, $\langle r^2s \rangle$, $\langle r^3s \rangle$, and $\langle r^2 \rangle$. The last one is normal. The subgroups of size 4 are $\langle r \rangle$ and $\langle r^2, s \rangle$. Both are normal.

Appendix A. Conjugacy in plane geometry

We will show that all reflections in R^2 are conjugate to reflection across the x-axis in an appropriate group of transformations of the plane.

Definition A.1. An isometry of R^2 is a function $f: R^2 \to R^2$ that preserves distances: for all points P and Q in R^2, the distance between $f(P)$ and $f(Q)$ is the same as the distance between P and Q.

Isometries of R^2 include: translations, rotations, and reflections.\(^2\) Isometries are invertible (this requires proof, or include it in the definition if you want to be lazy about it), and under composition isometries form a group.

There are two ways to describe points of the plane algebraically, using vectors or complex numbers. We will work with points as complex numbers. The point (a,b) is considered as the complex number $a+bi$. We measure the distance to $a+bi$ from 0 with the absolute value $|a+bi| = \sqrt{a^2+b^2}$, and the distance between $a+bi$ and $c+di$ is the absolute value of their difference: $|(a+bi)-(c+di)| = \sqrt{(a-c)^2+(b-d)^2}$.

To each complex number $z = a+bi$, we have its complex conjugate $\overline{z} = a-bi$. By an explicit calculation, complex conjugation respects sums and products: $z+z'=z+z'$, $zz'=z\overline{z}$.

Two important algebraic properties of the absolute value on C are its behavior on products and on complex conjugates:

$$|zz'| = |z||z'|, \quad |\overline{z}| = |z|.$$

In particular, if $|w| = 1$ then $|wz| = |z|$.

An example of a reflection across a line in the plane is complex conjugation:

$$s(z) = \overline{z}.$$

This is reflection across the x-axis. It preserves distance:

$$|s(z) - s(z')| = |z - \overline{z'}| = |z - z'| = |z - z'|.$$

We will compare this reflection with the reflection across another line, first treating other lines through the origin and then treating lines that may not pass through the origin.

Pick a line through the origin that makes an angle, say θ, with respect to the positive x-axis. We can rotate the x-axis onto that line by rotating the x-axis counterclockwise around the origin through an angle of θ. A rotation around the origin, in terms of complex numbers, is multiplication by the number $\cos \theta + i \sin \theta$, which has absolute value 1. Let’s denote counterclockwise rotation around the origin by θ by r_θ:

$$r_\theta(z) = (\cos \theta + i \sin \theta)z, \quad |\cos \theta + i \sin \theta| = 1.$$

Every rotation \(r_\theta \) preserves distances:
\[
|r_\theta(z) - r_\theta(z')| = |(\cos \theta + i \sin \theta)(z - z')| = |(\cos \theta + i \sin \theta)||z - z'| = |z - z'|.
\]

Composing rotations around the origin amounts to adding angles: \(r_\theta \circ r_\varphi = r_{\theta + \varphi} \). In particular, \(r^{-1}_\theta = r_{-\theta} \) since \(r_\theta \circ r_{-\theta} = r_0 \), which is the identity \(r_0(z) = z \).

Now let’s think about some reflections besides complex conjugation. Let \(s_\theta \) be the reflection across the line through the origin making an angle of \(\theta \) with the positive \(x \)-axis. (In particular, complex conjugation is \(s_0 \).) Draw some pictures to convince yourself visually the reflection \(s_\theta \) is the composite of

- rotation of the plane by an angle of \(-\theta\) to bring the line of reflection onto the \(x \)-axis,
- reflection across the \(x \)-axis,
- rotation of the plane by \(\theta \) to return the line to its original position.

This says
\[(A.2) \quad s_\theta = r_\theta s_{-\theta} = r_\theta s r^{-1}_\theta.\]

So we see, in this algebraic formula, that a reflection across each line through the origin is conjugate, in the group of isometries of the plane, to reflection across the \(x \)-axis. The conjugating isometry is the rotation \(r_\theta \) that takes the line through the origin at angle \(\theta \) to the \(x \)-axis.

In order to compare complex conjugation to reflection across an arbitrary line, which need not pass through the origin, we bring in additional isometries: translations. A translation in the plane can be viewed as adding a particular complex number, say \(w \), to every complex number: \(t_w(z) = z + w \). This is an isometry since
\[
|t_w(z) - t_w(z')| = |(z + w) - (z' + w)| = |z - z'|.
\]

Note \(t_w \circ t_{w'} = t_{w+w'} \), and the inverse of \(t_w \) is \(t_{-w} \): \(t^{-1}_w = t_{-w} \).

In order to describe reflection across an arbitrary line in terms of complex conjugation, we need to describe an arbitrary line. A line makes a definite angle with respect to the positive \(x \)-direction (how far it tilts). Call that angle \(\theta \). Now pick a point on the line. Call it, say, \(w \). Our line is the only line in the plane that passes through \(w \) at an angle of \(\theta \) relative to the positive \(x \)-direction.

We can carry out reflection across this line in terms of reflection across the line parallel to it through the origin by using translations, in 3 steps:

- translate back by \(w \) (that is, apply \(t_{-w} \)) to carry the original line to a line through the origin at the same angle \(\theta \),
- reflect across this line through the origin (apply \(s_\theta \)),
- translate by \(w \) to return the line to its original position (apply \(t_w \)).

Putting this all together, with \((A.2)\), reflection across the line through \(w \) that makes an angle of \(\theta \) with the positive \(x \)-direction is the composite
\[(A.3) \quad t_w s_\theta t_{-w} = t_w(r_\theta s r^{-1}_\theta) t^{-1}_w = t_w r_\theta s(t_w r_\theta)^{-1}.\]

This is a conjugate of complex conjugation \(s \) in the group of isometries in the plane.

Let’s summarize what we have shown.

Theorem A.2. In the group of isometries of the plane, reflection across a line is conjugate to reflection across the \(x \)-axis.
Example A.3. Reflection across the horizontal line $y = b$ corresponds to $\theta = 0$ and $w = bi$. That is, this reflection is $t_{bi}st_{-bi}$: translate down by b, reflect across the x-axis, and then translate up by b.

Appendix B. Bounding a Group’s Size by Number of Conjugacy Classes

Obviously there are only a finite number of groups, up to isomorphism, with a given size. What might be more surprising is that there is also a finite number of groups, up to isomorphism, with a given number of conjugacy classes. The following theorem was proved by Landau [8] in 1903.

Theorem B.1. The size of a finite group can be bounded above from knowing the number of its conjugacy classes.

Proof. When there is only one conjugacy class, the group is trivial. Now fix a positive integer $k > 1$ and let G be a finite group with k conjugacy classes represented by g_1, \ldots, g_k (this includes g_i’s in the center). We exploit the class equation, written as

\[(B.1) \quad |G| = \sum_{i=1}^{k} \frac{|G|}{|Z(g_i)|}.\]

Dividing (B.1) by $|G|$, we get

\[(B.2) \quad 1 = \frac{1}{n_1} + \frac{1}{n_2} + \cdots + \frac{1}{n_k},\]

where $n_i = |Z(g_i)|$. Note each n_i exceeds 1 when G is nontrivial. We write the n_i’s in increasing order:

\[n_1 \leq n_2 \leq \cdots \leq n_k.\]

Since each n_i is at least as large as n_1, (B.2) implies

\[1 \leq \frac{k}{n_1},\]

so

\[(B.3) \quad n_1 \leq k.\]

Then, using $n_i \geq n_2$ for $i \geq 2$,

\[1 \leq \frac{1}{n_1} + \frac{k-1}{n_2}.\]

Thus $1 - 1/n_1 \leq (k - 1)/n_2$, so

\[(B.4) \quad n_2 \leq \frac{k-1}{1 - 1/n_1}.\]

By induction,

\[(B.5) \quad n_m \leq \frac{k+1-m}{1 - \frac{1}{n_1} - \frac{1}{n_2} - \cdots - \frac{1}{n_{m-1}}}\]

for $m \geq 2$.

Since (B.3) bounds n_1 by k and (B.5) bounds each of n_2, \ldots, n_k in terms of earlier n_i’s, there are only a finite number of such k-tuples. The ones that satisfy (B.2) can be tabulated. The largest value of n_k is $|G|$ (since 1 has centralizer G), so the solution with the largest value for n_k gives an upper bound on the size of a finite group with k conjugacy classes. \(\square\)
The number of conjugacy classes in a finite group is called the class number of that group.\footnote{The term “class number” is used in algebraic number theory for an entirely different value, the size of the ideal class group of a number field.} Since the identity element of a group is its own conjugacy class, the only finite group with class number 1 is the trivial group. Burnside [4, p. 461–462] and Miller [9] in 1911 independently determined all the finite groups (up to isomorphism) with class number 2, 3, 4, and 5. Poland [10] determined the groups with class number 6 and 7. Currently a complete list of groups with class number \(k\) is known for \(k \leq 14\) [12]. The results through \(k = 7\) are given below.

A group of order \(n\) has at most \(n\) conjugacy classes, and there are \(n\) conjugacy classes if and only if the group is abelian. Therefore a list of finite groups with \(k\) conjugacy classes will include all the abelian groups of order \(k\). When \(n = 2m + 1\) is odd and at least 3, the dihedral group \(D_n\) has \(m + 2\) conjugacy classes (they are \(\{1\}, \{r^i\}\) for \(1 \leq i \leq (n-1)/2\), and the reflections, so the number of conjugacy classes is \(1 + (n-1)/2 + 1 = m + 3\). When \(k = m + 3, 2m + 1 = 2k - 5\), so each integer \(k \geq 3\) is the class number of at least one nonabelian group, namely \(D_{2k-3}\).

Example B.2. Taking \(k = 2\), the only solution to (B.2) satisfying (B.3) and (B.5) is \(n_1 = 2, n_2 = 2\). Thus \(G \cong \mathbb{Z}/(2)\).

Example B.3. When \(k = 3\), the solutions \(n_1, n_2, n_3\) to (B.2) satisfying (B.3) and (B.5) are \(2,4,4\) and \(2,3,6\). Thus \(|G| \leq 6\) and \(S_3 \cong D_3\) has size 6 with 3 conjugacy classes.

Example B.4. When \(k = 4\), there are 14 solutions, such as \(4,4,4,4\) and \(2,3,7,42\). The second 4-tuple is actually the one with the largest value of \(n_4\), so a group with 4 conjugacy classes has size at most 42. In actuality, the groups with 4 conjugacy classes are \(\mathbb{Z}/(4), (\mathbb{Z}/(2))^2, D_{10}\), and \(A_4\), so the largest such group has order 12.

Example B.5. When \(k = 5\), there are 148 solutions, and the largest \(n_5\) that occurs is 1806. The groups with 5 conjugacy classes are \(\mathbb{Z}/(5), Q_8, D_4, D_7, \text{Aff}(\mathbb{Z}/(5)), S_4, A_5\), and the nonabelian group of size 21, so the largest such size is \(|A_5| = 60\).

Example B.6. The eight groups with 6 conjugacy classes are \(\mathbb{Z}/(6), D_6, D_9, \mathbb{Z}/(3) \rtimes \mathbb{Z}/(4), \mathbb{Z}/(3) \ltimes S_3, \text{Aff}(\mathbb{F}_9), \{(a b) : a, b \in \mathbb{F}_9, a^4 = 1\}, \) and \(\text{PSL}_2(\mathbb{Z}/(7))\).

In the semidirect products \(\mathbb{Z}/(3) \rtimes \mathbb{Z}/(4)\) and \(\mathbb{Z}/(3) \ltimes S_3\), \(\mathbb{Z}/(4)\) acts on \(\mathbb{Z}/(3)\) and \(S_3\) acts on \(\mathbb{Z}/(3)\) by inversion through natural homomorphisms to \(\{\pm 1\}\) by \(k \mod 4 \mapsto (-1)^k\) and \(\sigma \mapsto \text{sign}(\sigma)\).

Example B.7. The twelve groups with 7 conjugacy classes are \(\mathbb{Z}/(7), D_8, D_{11}, S_5, A_6, \text{Aff}(\mathbb{Z}/(7)), \text{SL}_2(\mathbb{Z}/(3)), \{(a b) : a, b \in \mathbb{Z}/(13), a^3 = 1\}, \{(a b) : a, b \in \mathbb{Z}/(13), a^4 = 1\}, \{(a b) : a, b \in \mathbb{Z}/(11), a^5 = 1\}, \text{Q}_{16}\) (generalized quaternion group of order 16), and the subgroup of order 16 in \(\text{GL}_2(\mathbb{Z}/(3))\).

For \(k \in \mathbb{Z}^+,\) all sufficiently groups have more than \(k\) conjugacy classes by Theorem B.1. Let \(c(n)\), for \(n \geq 1\), be the fewest number of conjugacy classes among all groups of order \(n\). so \(c(n) \to \infty\) as \(n \to \infty\). Can this growth be quantified? In 1963, Brauer showed \(c(n) \geq \log_2 \log_2 n\) for \(n \geq 2\) (note \(\log_2(\log_2 2) = 0\)). In 1992, Pyber [11] gave an exponential improvement by essentially removing one logarithm: \(c(n) \geq A \log_2(n)/\log_2 \log_2 n\) for some constant \(A > 0\). His proof relies on the classification of finite simpler groups. Almost 20 years later, Keller [7] in 2011 reduced the exponent in Pyber’s lower bound from 8 to 7. In
2015, Baumeister, Maróti, and Tong-Viet [1] reduced the exponent to an arbitrary number greater than 3: for all \(\varepsilon > 0 \) there is \(A_\varepsilon > 0 \) such that \(c(n) \geq A_\varepsilon \log_2 n / (\log_2 (\log_2 n))^{3+\varepsilon} \) for \(n \geq 3 \). Their proof, like the earlier work, uses the classification of finite simple groups. It is natural to guess that \(c(n) \geq A \log_2 n \) for some \(A > 0 \). Bertram [2] conjectured \(c(n) > \log_3 n \) for \(n \geq 1 \).

There is a logarithmic upper bound on \(c(n) \) for infinitely many \(n \): for prime \(p \), the set of \(\mod p \) polynomials modulo \(x^{p+2} \) with constant term 0, which is

\[
\{ x + a_2 x + \cdots + a_{p+1} x^{p+1} \mod x^{p+2} : a_i \in \mathbb{Z}/(p) \},
\]

forms a finite group under composition (not multiplication!) with order \(p^p \) and turns out to have at most \(p^p \) conjugacy classes [5, Sect. 3.3]. For large \(p \), \(p^3 \) is logarithmically smaller than \(p^p \): setting \(n = p^p \), so \(\log n = p \log p > p \) (for \(p \geq 3 \)), we have \(p^3 < (\log n)^3 \). Therefore \(c(n) < (\log n)^3 \) when \(n = p^p \) for all odd primes \(p \). This is not true for \(p = 2 \), since all groups of order 4 are abelian, so \(c(4) = 4 > 1 > (\log 2)^3 \).

For all \(n \), a group of order \(n \) has at most \(n \) conjugacy classes, so \(c(n) \leq n \), and \(c(n) = n \) if all groups of order \(n \) are abelian. That occurs infinitely often, e.g., when \(n \) is prime.

References