
CHARACTERS OF FINITE ABELIAN GROUPS

KEITH CONRAD

1. Introduction

The theme we will study is an analogue on finite abelian groups of Fourier analysis on
R. A Fourier series on the real line is the following type of series in sines and cosines:

f(x) =
∑
n≥0

an cos(nx) +
∑
n≥1

bn sin(nx).

This is 2π-periodic. Since einx = cos(nx) + i sin(nx) and e−inx = cos(nx) − i sin(nx), a
Fourier series can also be written in terms of complex exponentials:

f(x) =
∑
n∈Z

cne
inx,

where the summation runs over all integers (c0 = a0, cn = 1
2(an − bni) for n > 0, and

cn = 1
2(a|n| + b|n|i) for n < 0). The convenient algebraic property of einx, which is not

shared by sines and cosines, is that it is a group homomorphism from R to the unit circle
S1 = {z ∈ C : |z| = 1}:

ein(x+x
′) = einxeinx

′
.

We now replace the real line R with a finite abelian group. Here is the analogue of the
functions einx.

Definition 1.1. A character of a finite abelian group G is a homomorphism χ : G→ S1.

We will usually write abstract groups multiplicatively, so χ(g1g2) = χ(g1)χ(g2) and
χ(1) = 1.

Example 1.2. The trivial character of G is the homomorphism 1G defined by 1G(g) = 1
for all g ∈ G.

Example 1.3. Let G be cyclic of order 4 with generator γ. Since γ4 = 1, a character χ of
G has χ(γ)4 = 1, so χ takes only four possible values at γ, namely 1, −1, i, or −i. Once
χ(γ) is known, the value of χ elsewhere is determined by multiplicativity: χ(γj) = χ(γ)j .
So we get four characters, whose values can be placed in a table. See Table 1.

1 γ γ2 γ3

1G 1 1 1 1
χ1 1 −1 1 −1
χ2 1 i −1 −i
χ3 1 −i −1 i

Table 1.
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When G has size n and g ∈ G, for each character χ of G we have χ(g)n = χ(gn) = χ(1) =
1, so the values of χ lie among the nth roots of unity in S1. More precisely, the order of
χ(g) divides the order of g (which divides |G|).

Characters on finite abelian groups were first studied in number theory, which is a source
of many interesting finite abelian groups. For instance, Dirichlet used characters of the group
(Z/(m))× to prove that when (a,m) = 1 there are infinitely many primes p ≡ a mod m. The
quadratic reciprocity law of elementary number theory is concerned with a deep property
of a particular character, the Legendre symbol. Fourier series on finite abelian groups have
applications in engineering: signal processing (the fast Fourier transform [1, Chap. 9]) and
error-correcting codes [1, Chap. 11].

A context for appreciating this account of characters on finite abelian groups is in Section
2 on Fourier analysis on the real line. In Section 3 we will run through some properties of
characters of a finite abelian group G and introduce its dual groups. In particular, we will
see that G is isomorphic to its dual group, but not naturally, and G is naturally isomorphic
to its double-dual group (Pontryagin duality). Section 4 uses characters of G to develop a
finite analogue of Fourier series. In Section 6 we use characters of (Z/pZ)× to count solutions
to a congruence mod p. In Section 5 we use characters to prove a structure theorem for
finite abelian groups. In Section 7 we look at duality on group homomorphisms. Characters
are used in Section 8 to factor the group determinant of a finite abelian group. In Section
9, we decompose linear G-actions into common eigenspaces indexed by characters of G.

Our notation is completely standard, but we make two remarks about it. For a complex-
valued function f(x), the complex-conjugate function is usually denoted f(x) instead of

f(x) to stress that conjugation creates a new function. (We sometimes use the overline
notation also to mean the reduction g into a quotient group.) For n ≥ 1, we write µn for
the group of nth roots of unity in the unit circle S1. It is a cyclic group of size n.

Exercises.

1. Make a character table for Z/(2)× Z/(2), with columns labeled by elements of the
group and rows labeled by characters, as in Table 1.

2. Let G be a finite nonabelian simple group. (Examples include An for n ≥ 5.) Show
the only group homomorphism χ : G→ S1 is the trivial map.

2. Classical Fourier analysis

This section serves as motivation for our later treatment of finite abelian groups, where
there will be no convergence issues (just finite sums!), so we take a soft approach and
sidestep analytic technicalities that a serious treatment of Fourier analysis on R demands.

Fourier analysis for periodic functions on R is based on the functions einx for n ∈ Z.
Every “reasonably nice” function f : R→ C of period 2π can be expanded into a series

f(x) =
∑
n∈Z

cne
inx,

where the sum runs over Z and the nth Fourier coefficient cn can be recovered as an integral:

(2.1) cn =
1

2π

∫ 2π

0
f(x)e−inx dx.

This formula for cn can be explained by replacing f(x) in (2.1) by its Fourier series and in-
tegrating termwise (for “reasonably nice” functions this termwise integration is analytically
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justifiable), using the formula

1

2π

∫ 2π

0
eimxe−inx dx =

{
1, if m = n,

0, if m 6= n.

An important link between a function f(x) and its Fourier coefficients cn is given by Par-
seval’s formula ∑

n∈Z
|cn|2 =

1

2π

∫ 2π

0
|f(x)|2 dx.

Rather than working with functions f : R → C having period 2π, formulas look cleaner
using functions f : R→ C having period 1. The basic exponentials become e2πinx and the
Fourier series and coefficients for f are

(2.2) f(x) =
∑
n∈Z

cne
2πinx, cn =

∫ 1

0
f(x)e−2πinx dx.

Parseval’s formula becomes

(2.3)
∑
n∈Z
|cn|2 =

∫ 1

0
|f(x)|2 dx.

Note cn in (2.2) is not the same as cn in (2.1).
In addition to Fourier series there are Fourier integrals. The Fourier transform of a

function f that decays rapidly at ±∞ is the function f̂ : R → C defined by the integral
formula

f̂(y) =

∫
R
f(x)e−2πixy dx.

The analogue of the expansion (2.2) of a periodic function into a Fourier series is the Fourier

inversion formula, which expresses f in terms of its Fourier transform f̂ :

f(x) =

∫
R
f̂(y)e2πixy dy.

Define a Hermitian inner product of two functions f1 and f2 from R to C by the integral

〈f1, f2〉 =

∫
R
f1(x)f2(x) dx ∈ C,

Plancherel’s theorem compares the inner product of two functions and the inner product of
their Fourier transforms:

(2.4) 〈f̂1, f̂2〉 = 〈f1, f2〉.
In particular, when f1 = f2 = f the result is∫

R
|f̂(y)|2 dy =

∫
R
|f(x)|2 dx,

which is called Parseval’s formula since it is an analogue of (2.3).
The convolution of two functions f1 and f2 from R to C is a new function from R to C

defined by

(f1 ∗ f2)(x) =

∫
R
f1(t)f2(x− t) dt

and the Fourier transform turns this convolution into pointwise multiplication:

f̂1 ∗ f2(y) = f̂1(y)f̂2(y).
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Example 2.1. A Gaussian is a function of the form ae−bx
2
, where b > 0. For example, the

Gaussian (1/
√

2π)e−(1/2)x
2

is important in probability theory. The Fourier transform of a
Gaussian is another Gaussian and the convolution of two Gaussians is another Gaussian:

(2.5)

∫
R
ae−bx

2
e−2πixy dx =

√
π

b
ae−π

2y2/b

and

f1(x) = e−b1x
2
, f2(x) = e−b2x

2
=⇒ (f1 ∗ f2)(x) =

√
π

b1 + b2
e−(b1b2/(b1+b2))x

2
.

The formula (2.5) says that a highly peaked Gaussian (large b) has a Fourier transform
that is a spread out Gaussian (small π2/b) and vice versa. More generally, a function and
its Fourier transform can’t both be highly localized; this is a mathematical incarnation of
Heisenberg’s uncertainty principle from physics.

When b = π, (2.5) tells us that ae−πx
2

is its own Fourier transform. Functions equal to

their Fourier transform are called self-dual, and e−πx
2

is the simplest nonzero example.

A link between Fourier series and Fourier integrals is the Poisson summation formula:
for a “nice” function f : R→ C that decays rapidly enough at ±∞,

(2.6)
∑
n∈Z

f(n) =
∑
n∈Z

f̂(n),

where f̂(y) =
∫
R f(x)e−2πixy dx. For example, when f(x) = e−bx

2
(with b > 0), the Poisson

summation formula says ∑
n∈Z

e−bn
2

=
∑
n∈Z

√
π

b
e−π

2n2/b.

To prove the Poisson summation formula, we use Fourier series. Periodize f(x) as

F (x) =
∑
n∈Z

f(x+ n).

Since F (x+ 1) = F (x), write F as a Fourier series: F (x) =
∑

n∈Z cne
2πinx. Then

cn =

∫ 1

0
F (x)e−2πinx dx

=

∫ 1

0

(∑
m∈Z

f(x+m)

)
e−2πinx dx

=
∑
m∈Z

∫ 1

0
f(x+m)e−2πinx dx

=
∑
m∈Z

∫ m+1

m
f(x)e−2πinx dx

=

∫
R
f(x)e−2πinx dx

= f̂(n).
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Therefore the expansion of F (x) into a Fourier series is equivalent to

(2.7)
∑
n∈Z

f(x+ n) =
∑
n∈Z

f̂(n)e2πinx,

which becomes the Poisson summation formula (2.6) by setting x = 0.
If we replace a sum over Z with a sum over a one-dimensional lattice L = aZ in R, where

a 6= 0, the Poisson summation formula becomes∑
λ∈L

f(λ) =
1

|a|
∑
µ∈L⊥

f̂(µ),

where L⊥ = (1/a)Z is the “dual lattice”:

L⊥ = {µ ∈ R : e2πiλµ = 1 for all λ ∈ L}.

For example, Z⊥ = Z.
There are several conventions for the definition of the Fourier transform as well as the

inner product and convolution of functions. Tables 2 and 3 collect a number of different 2π-
conventions. The first two columns of Tables 2 and 3 are definitions and the other columns
are theorems.

f̂(y) 〈f1, f2〉 f(x) 〈f̂1, f̂2〉∫
R f(x)e−2πixy dx

∫
R f1(x)f2(x) dx

∫
R f̂(y)e2πixy dy 〈f1, f2〉∫

R f(x)e−ixy dx
∫
R f1(x)f2(x) dx 1

2π

∫
R f̂(y)eixy dy 2π〈f1, f2〉

1√
2π

∫
R f(x)e−ixy dx 1√

2π

∫
R f1(x)f2(x) dx 1√

2π

∫
R f̂(y)eixy dy 〈f1, f2〉

Table 2.

f̂(y) (f1 ∗ f2)(x) f̂1 ∗ f2(y)∫
R f(x)e−2πixy dx

∫
R f1(y)f2(x− y) dy f̂1(y)f̂2(y)∫

R f(x)e−ixy dx
∫
R f1(y)f2(x− y) dy f̂1(y)f̂2(y)

1√
2π

∫
R f(x)e−ixy dx 1√

2π

∫
R f1(t)f2(x− t) dt f̂1(y)f̂2(y)

Table 3.

When the Fourier transform is defined using f̂(y) = 1√
2π

∫
R f(x)e−ixy dx, the function

e−πx
2

is no longer self-dual, but e−(1/2)x
2

is self-dual. You need to know how the Fourier
transform is defined to say that a particular function is self-dual.

Exercises.

1. Without dwelling on analytic subtleties, check from Fourier inversion that
̂̂
f(x) =

f(−x) (if the Fourier transform is defined suitably).
2. If f is a real-valued even function, show its Fourier transform is also real-valued and

even (assuming the Fourier transform of f is meaningful).
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3. For a function f : R → C and c ∈ R, let g(x) = f(x + c). Define the Fourier

transform of a function h by ĥ(y) =
∫
R h(x)e−2πixy dx. If f has a Fourier transform,

show g has Fourier transform ĝ(y) = e2πicyf̂(y).
4. The Poisson summation formula over R was obtained by setting x = 0 in (2.7).

Conversely, show that (2.7) for the function f follows from the Poisson summation
formula for the function g(t) = f(t+ x).

5. Assuming the Fourier inversion formula holds for a definition of the Fourier trans-
form as in Table 2, check that for all α and β in R× that if we set

(Ff)(y) = α

∫
R
f(x)e−iβxy dx

for all x then

f(x) =
β

2πα

∫
R

(Ff)(y)eiβxy dy.

(If β = 2πα2 then these two equations are symmetric in the roles of f and Ff except
for a sign in the exponential term.) Considering Ff to be the Fourier transform of

f , show e−(1/2)βx
2

is self-dual.

3. Finite Abelian Group Characters

We leave the real line and turn to the setting of finite abelian groups G. Our interest shifts
from the functions einx to characters: homomorphisms from G → S1. The construction of
characters of these groups begins with the case of cyclic groups.

Theorem 3.1. Let G be a finite cyclic group of size n with a chosen generator γ. There
are exactly n characters of G, each determined by sending γ to the different nth roots of
unity in C.

Proof. We mimic Example 1.3, where G is cyclic of size 4. Since γ generates G, a character
is determined by its value on γ and that value must be an nth root of unity (not necessarily
of exact order n, e.g., 1G(γ) = 1), so there are at most n characters. We now write down
n characters.

Let ζ be an nth root of unity in C. Set χ(γj) = ζj for j ∈ Z. This formula is well-defined
(if γj = γk for two different integer exponents j and k, we have j ≡ k mod n so ζj = ζk),
and χ is a homomorphism. Of course χ depends on ζ. As ζ changes, we get different
characters (their values at γ are changing), so in total we have n characters. �

To handle characters of non-cyclic groups, the following lemma is critical.

Lemma 3.2. Let G be a finite abelian group, H ⊂ G a proper subgroup, and χ : H → S1 a
character of H. For g ∈ G−H, there is an extension of χ to a character on 〈H, g〉.

Proof. We want to extend χ to a character χ̃ of 〈H, g〉.
What is a possible value for χ̃(g)? Since g 6∈ H, χ̃(g) is not initially defined. But some

nonzero power of g is in H (e.g., g|G| = 1 ∈ H), and on these powers χ is defined. Pick
d ≥ 1 minimal with gd ∈ H. That is, d is the order of g in G/H, so d = [〈H, g〉 : H]. If
there is a character χ̃ on 〈, H, g that extends χ on H then χ̃(g) must be an d-th root of
χ(gd) since we must have χ̃(g)d = χ̃(gd) = χ(gd). That is our clue: define χ̃(g) ∈ S1 to be
a solution to zd = χ(gd):

(3.1) χ̃(g)d = χ(gd).
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Once we have chosen χ̃(g) to satisfy (3.1), define χ̃ on 〈H, g〉 by

(3.2) χ̃(hgi) := χ(h)χ̃(g)i.

This formula covers all possible elements of 〈H, g〉, but is χ̃ well-defined? Perhaps H and
〈g〉 overlap nontrivially, so the expression of an element of 〈H, g〉 in the form hgi is not
unique. We have to show this doesn’t lead to an inconsistency in the value of χ̃ in (3.2).

Suppose hgi = h′gi
′
. Then gi−i

′ ∈ H, so i′ ≡ i mod d since d is the order of g in G/H.

Write i′ = i+ dd′, so h = h′ai
′−i = h′gdd

′
. The terms h, h′, and gd are in H, so

χ(h′)χ̃(g)i
′

= χ(h′)χ̃(g)iχ̃(g)dd
′

= χ(h′)χ̃(g)iχ(gd)d
′

since χ̃(g)d = χ(gd)

= χ(h′gdd
′
)χ̃(g)i

= χ(h)χ̃(g)i.

Therefore χ̃ : 〈H, g〉 → S1 is a well-defined function and it is easily checked to be a homo-
morphism. It restricts to χ on H. �

Theorem 3.3. For a finite abelian group G and subgroup H, each character of H can be
extended to a character of G.

Proof. Let χ : H → S1 be a character of H.
Since G is finite, it has a finite generating set {g1, . . . , gk} (e.g., {gi} could be a listing

of all the elements of G). Therefore we can build up a tower of subgroups from H to G by
adjoining the elements gi one at a time:

H ⊂ 〈H, g1〉 ⊂ 〈H, g1, g2〉 ⊂ · · · ⊂ 〈H, g1, . . . , gk〉 = G.

Each step along this tower has the form Hi ⊂ 〈Hi, gi〉, where H0 = H. By applying Lemma
3.2 at each step of the tower, χ can be extended as a character from H to H1 to H2, and
so on up to Hk = G. �

Let’s refine this to count the number of extensions of a character from H to G.

Theorem 3.4. For a finite abelian group G and subgroup H, each character of H can be
extended to a character of G in [G : H] ways.

Proof. We will induct on the index [G : H]. The result is clear when [G : H] = 1, i.e.,
H = G, so suppose [G : H] > 1 and the theorem is proved for characters on subgroups of
index smaller than [G : H].

Pick g ∈ G with g 6∈ H, so
H ⊂ 〈H, g〉 ⊂ G.

To extend a character χ : H → S1 to G, we at least need to be able to extend χ to a character
χ̃ on 〈H, g〉. Let’s count the number of ways to do that. Then we will use induction to
count the number of extension of each character from 〈H, g〉 all the way up to G.

Let d be the smallest positive integer such that gd ∈ H. An extension of χ on H to
a character χ̃ on 〈H, g〉 is determined by χ̃(g), and this value has to satisfy the condition
χ̃(g)d = χ(gd). Each number in S1 has d different d-th roots in S1, so there are d potential
values for χ̃(g). The proof of Lemma 3.2 shows all of them really work.

The number of choices of χ̃ extending χ is the number of choices for χ̃(g), which is
d = [〈H, g〉 : H]. Since [G : 〈H, g〉] < [G : H], by induction on the index there are
[G : 〈H, g〉] extensions of each χ̃ to a character of G, so the number of extensions of a
character on H to a character on G is [G : 〈H, g〉][〈H, g〉 : H] = [G : H]. �
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Theorem 3.5. If g 6= 1 in a finite abelian group G then χ(g) 6= 1 for some character χ of
G. The number of characters of G is |G|.

Proof. The cyclic group 〈g〉 is nontrivial, say of size n, so n > 1. In S1 there is a cyclic
subgroup of order n, namely the group µn of n-th roots of unity. There is an isomorphism
〈g〉 ∼= µn, which can be viewed as a character of 〈g〉. By Theorem 3.3, this character of 〈g〉
extends to a character of G and does not send g to 1.

To show G has |G| characters, apply Theorem 3.4 with H the trivial subgroup. �

We have used two important features of S1 as the target group for characters: for each
d ≥ 1 the dth power map on S1 is d-to-1 (proof of Theorem 3.4) and for each n ≥ 1 there
is a cyclic subgroup of order n in S1 (proof of Theorem 3.5).

Corollary 3.6. If G is a finite abelian group and g1 6= g2 in G then there is a character of
G that takes different values at g1 and g2.

Proof. Apply Theorem 3.5 to g = g1g
−1
2 . �

Corollary 3.6 shows the characters of G “separate” the elements of G: different elements
of the group admit a character taking different values on them.

Corollary 3.7. If G is a finite abelian group and H ⊂ G is a subgroup and g ∈ G with
g 6∈ H then there is a character of G that is trivial on H and not equal to 1 at g.

Proof. We work in the group G/H, where g 6= 1. By Theorem 3.5 there is a character of
G/H that is not 1 at g. Composing this character with the reduction map G→ G/H yields
a character of G that is trivial on H and not equal to 1 at g. �

It is easy to find functions on G that separate elements without using characters. For
g ∈ G, define δg : G→ {0, 1} by

(3.3) δg(x) =

{
1, if x = g,

0, if x 6= g.

These functions separate elements of the group, but characters do this too and have better
algebraic properties: they are group homomorphisms.

Remark 3.8. Nowhere in the proof of Theorem 3.4 did we use the finiteness of G. What
mattered was finiteness of [G : H]. Infinite abelian groups like Z or Zn can contain finite-
index subgroups, so it’s worth noting that we really proved that for each abelian group G,
a character on a finite-index subgroup H extends in [G : H] ways to a character on G.
This result for finite-index subgroups of infinite G has applications to Hecke characters in
algebraic number theory.

Using Zorn’s lemma (the axiom of choice), not only the finiteness of |G| but also the
finiteness of [G : H] can be removed: a character of a subgroup H of an abelian group G
can be extended to a character of G (but the counting aspect with [G : H] is no longer
meaningful). In particular, Corollaries 3.6 and 3.7 are true for all abelian groups G.

Our definition of a character makes sense on nonabelian groups, but there will not be
enough such characters for Theorem 3.5 to hold if G is finite and nonabelian: a homomor-
phism χ : G → S1 must equal 1 on the commutator subgroup [G,G], which is a nontrivial
subgroup, so such homomorphisms can’t distinguish elements in [G,G] from each other. If
g 6∈ [G,G] then in the finite abelian group G/[G,G] the coset of g is nontrivial so there is a
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character G/[G,G]→ S1 that’s nontrivial on g. Composing this character with the reduc-
tion map G→ G/[G,G] produces a homomorphism G→ S1 that is nontrivial on g. There-
fore [G,G] =

⋂
χ kerχ, where the intersection runs over all homomorphisms χ : G → S1.

This gives a “natural” explanation of why the commutator subgroup is normal in terms of
kernels of homomorphisms: kernels are normal and the intersection of normal subgroups is
normal. We put the word natural in quotes because appealing to the group G/[G,G] in
part of the argument means we had to use the normality of [G,G] anyway. (Using Zorn’s
lemma as in Remark 3.8, the intersection formula for [G,G] applies to all groups, not just
finite groups.)

Definition 3.9. For a character χ on a finite abelian group G, the conjugate character is
the function χ : G→ S1 given by χ(g) := χ(g).

Since each complex number z with |z| = 1 has z = 1/z, χ(g) = χ(g)−1 = χ(g−1).

Definition 3.10. The dual group, or character group, of a finite abelian group G is the
set of homomorphisms G→ S1 with the group law of pointwise multiplication of functions:

(χψ)(g) = χ(g)ψ(g). The dual group of G is denoted Ĝ.

The trivial character of G is the identity in Ĝ and the inverse of a character is its conjugate

character. Note Ĝ is abelian since multiplication in C× is commutative.
Theorem 3.5 says in part that

(3.4) |G| = |Ĝ|.

In fact, the groups G and Ĝ are isomorphic. First let’s check this on cyclic groups.

Theorem 3.11. If G is cyclic then G ∼= Ĝ as groups.

Proof. We will show Ĝ is cyclic. Then since G and Ĝ have the same size they are isomorphic.
Let n = |G| and γ be a generator of G. Set χ : G→ S1 by χ(γj) = e2πij/n for all j. For

other characters ψ ∈ Ĝ, we have ψ(γ) = e2πik/n for some integer k, so ψ(γ) = χ(γ)k. Then

ψ(γj) = ψ(γ)j = χ(γ)jk = χ(γj)k,

which shows ψ = χk. Therefore χ generates Ĝ. �

Lemma 3.12. If A and B are finite abelian groups, there is an isomorphism Â×B ∼= Â×B̂.

Proof. Let χ be a character on A × B. Identify the subgroups A × {1} and {1} × B of
A×B with A and B in the obvious way. Let χA and χB be the restrictions of χ to A and
B respectively, i.e., χA(a) = χ(a, 1) and χB(b) = χ(1, b). Then χA and χB are characters
of A and B and χ(a, b) = χ((a, 1)(1, b)) = χ(a, 1)χ(1, b) = χA(a)χB(b). So we get a map

(3.5) Â×B → Â× B̂
by sending χ to (χA, χB). It is left to the reader to check (3.5) is a group homomorphism.
Its kernel is trivial since if χA and χB are trivial characters then χ(a, b) = χA(a)χB(b) = 1,
so χ is trivial. Both sides of (3.5) have the same size by (3.4), so (3.5) is an isomorphism. �

Theorem 3.13. If G is a finite abelian group then G is isomorphic to Ĝ.

Proof. The case when G is cyclic was Theorem 3.11. Lemma 3.12 extends easily to several
factors in a direct product:

(3.6) (H1 × · · · ×Hr)
̂ ∼= Ĥ1 × · · · × Ĥr.
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When Hi is cyclic, Ĥi
∼= Hi, so (3.6) tells us that that dual group of H1 × · · · × Hr is

isomorphic to H1 × · · · ×Hr. Every finite abelian group is isomorphic to a direct product
of cyclic groups, so the dual group of a finite abelian group is isomorphic to itself. �

Although G and Ĝ are isomorphic groups, there is not a natural isomorphism between

them, even when G is cyclic. For instance, to prove G ∼= Ĝ when G is cyclic we had to
choose a generator. If we change the generator, then the isomorphism changes.1

The double-dual group
̂̂
G is the dual group of Ĝ. Since G and Ĝ are isomorphic, G and̂̂

G are isomorphic. However, while there isn’t a natural isomorphism from G to Ĝ, there is

a natural isomorphism from G to
̂̂
G. The point is that there is a natural way to map G to

its double-dual group: associate to each g ∈ G the function “evaluate at g,” which is the

function Ĝ→ S1 given by χ 7→ χ(g). Here g is fixed and χ varies. This is a character of Ĝ,
since (χ1χ2)(g) = χ1(g)χ2(g) by definition.

Theorem 3.14. Let G be a finite abelian group. The homomorphism G → ̂̂
G associating

to g ∈ G the function “evaluate at g” is an isomorphism.

Proof. Since a finite abelian group and its dual group have the same size, a group and its
double-dual group have the same size, so it suffices to show this homomorphism is injective.

If g ∈ G is in the kernel then every element of Ĝ is 1 at g, so g = 1 by Theorem 3.5. �

Theorem 3.14 is called Pontryagin duality. This label actually applies to a more general
result about characters of locally compact abelian groups. Finite abelian groups are a
special case, where difficult analytic techniques can be replaced by counting arguments.
The isomorphism between G and its double-dual group given by Pontryagin duality lets us

think about every finite abelian group G as a dual group (namely the dual group of Ĝ).
The isomorphism in Pontryagin duality is natural: it does not depend on ad hoc choices

(unlike the isomorphism between a finite abelian group and its dual group).
To illustrate Pontryagin duality, consider the following theorem.

Theorem 3.15. Let G be a finite abelian group and m ∈ Z.

a) For g ∈ G, gm = 1 if and only if χ(g) = 1 for every χ ∈ Ĝ that is an mth power in

Ĝ.
b) For g ∈ G, g is an mth power in G if and only if χ(g) = 1 for every χ ∈ Ĝ satisfying
χm = 1G.

Proof. a) If gm = 1 and χ = ψm for some ψ ∈ Ĝ then

χ(g) = ψm(g) = ψ(g)m = ψ(gm) = ψ(1) = 1.

Conversely, suppose χ(g) = 1 whenever χ = ψm for some ψ ∈ Ĝ. Then for all ψ ∈ Ĝ we
have 1 = ψm(g) = ψ(gm), so gm = 1 by Theorem 3.5.

b) If g = xm for some x ∈ G then for every χ ∈ Ĝ such that χm = 1G we have

χ(g) = χ(x)m = χm(x) = 1.

Conversely, assume χ(g) = 1 for all χ such that χm = 1G. Such χ are identically 1 on the
subgroup Gm of mth powers in G. Conversely, every character of G that is trivial on the

1If G is trivial or of order 2, then it has a unique generator, so in that case we could say the isomorphism

G ∼= Ĝ is canonical.
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subgroup Gm has mth power 1G (why?). Therefore χ(g) = 1 for all χ in Ĝ that are trivial
on Gm, so g ∈ Gm by Corollary 3.7. �

Since Theorem 3.15 is a theorem about all finite abelian groups, by Pontryagin duality

we can swap the roles of G and Ĝ in the theorem. Part a is equivalent to

χm = 1G ⇐⇒ χ(g) = 1 for every g ∈ G such that g = xm for some x ∈ G
and part b is equivalent to

χ is an mth power in Ĝ⇐⇒ χ(g) = 1 for all g ∈ G such that gm = 1.

Exercises.

1. Let’s find the characters of the additive group (Z/(m))r, an r-fold direct product.
(a) For k ∈ Z/(m), let χk : Z/(m)→ S1 by

χk(j) = e2πijk/m,

so χk(1) = e2πik/m. Show χ0, χ1, . . . , χm−1 are all the characters of Z/(m) and
χkχl = χk+l.

(b) Let r ≥ 1. For r-tuples a, b in (Z/(m))r, let

a · b = a1b1 + · · ·+ arbr ∈ Z/(m)

be the usual dot product. For k ∈ (Z/(m))r, let χk(j) = e2πi(j·k)/m. Show the
functions χk are all the characters of (Z/(m))r and χkχl = χk+l.

2. Show the following are equivalent properties of a character χ: χ(g) = ±1 for all g,
χ(g) = χ(g) for all g, and χ2 = 1G.

3. Describe the error in the following bogus proof of Theorem 3.4. Let m = [G : H]
and pick a set of coset representatives g1, . . . , gm for G/H. Given a character χ on
H, define χ̃ on G by first picking the m (= [G : H]) values χ̃(gi) for 1 ≤ i ≤ m and
then writing each g ∈ G in the (unique) form gih and defining χ̃(g) = χ̃(gi)χ(h).
This defines χ̂ on G, and since we had to make m choices there are m characters.

4. Let G be a finite abelian group of order n and g ∈ G have order m. Show∏
χ∈Ĝ

(1− χ(g)T ) = (1− Tm)n/m.

5. For finite nonabelian G, show the characters of G (that is, homomorphisms G→ S1)
separate elements modulo [G,G]: χ(g1) = χ(g2) for all χ if and only if g1 = g2 in
G/[G,G].

6. This exercise will give an interpretation of characters as eigenvectors. For a finite
abelian group G and g ∈ G, let Tg : L(G)→ L(G) by (Tgf)(x) = f(gx).

(a) Show the Tg’s are commuting linear transformations and each character of G
is an eigenvector of each Tg.

(b) If f is a simultaneous eigenvector of all the Tg’s, show f(1) 6= 0 (if f(1) = 0
conclude f is identically zero, but the zero vector is not an eigenvector) and then
after rescaling f so f(1) = 1 deduce that f is a character of G. Thus the characters
of G are the simultaneous eigenvectors of the Tg’s, suitably normalized.

(c) Show the Tg’s are each diagonalizable. Deduce from this and parts (a) and

(b) that Ĝ is a basis of L(G), so |Ĝ| = dimL(G) = |G|. (This gives a different proof

that G and Ĝ have the same size.)
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7. For a subgroup H of a finite abelian group G, let

H⊥ = {χ ∈ Ĝ : χ = 1 on H}.

These are the characters of G that are trivial on H. For example, G⊥ = {1G} and

{1}⊥ = Ĝ. Note H⊥ ⊂ Ĝ and H⊥ depends on H and G.

Show H⊥ is a subgroup of Ĝ, it is isomorphic to Ĝ/H, and Ĝ/(H⊥) ∼= Ĥ. In
particular, |H|⊥ = [G : H].

8. Let G be finite abelian and H ⊂ G be a subgroup.
(a) Viewing H⊥⊥ = (H⊥)⊥ in G using Pontryagin duality, show H⊥⊥ = H.

(Hint: The inclusion in one direction is easy. Count sizes for the other inclusion.)
(b) Show for each m dividing |G| that

|{H ⊂ G : |H| = m}| = |{H ⊂ G : [G : H] = m}|

by associating H to H⊥ and using a (fixed) isomorphism of G with Ĝ.
(c) For a finite abelian group G, part b says the number of subgroups of G with

index 2 is equal to the number of elements of G with order 2. Use this idea to count
the number of subgroups of (Z/(m))× with index 2. (The answer depends on the
number of odd prime factors of m and the highest power of 2 dividing m.)

(d) Show, for a prime p, that the number of subspaces of (Z/(p))n with dimension
d equals the number of subspaces with dimension n− d.

9. For a finite abelian group G, let G[n] = {g ∈ G : gn = 1} and Gn = {gn : g ∈ G}.
Both are subgroups of G. Prove G[n]⊥ = (Ĝ)n and (Gn)⊥ = Ĝ[n] in Ĝ.

4. Finite Fourier series

We will introduce the analogue of Fourier series on finite abelian groups.
Let G be a finite abelian group. Set

L(G) = {f : G→ C},

the C-valued functions on G. This is a C-vector space of functions. Every f ∈ L(G) can
be expressed as a linear combination of the delta-functions δg from (3.3):

(4.1) f =
∑
g∈G

f(g)δg.

Indeed, evaluate both sides at each x ∈ G and we get the same value. The functions δg
span L(G) by (4.1) and they are linearly independent: if

∑
g agδg = 0 then evaluating the

sum at x ∈ G shows ax = 0. Thus the functions δg are a basis of L(G), so dimL(G) = |G|.
The next theorem is the first step leading to an expression for each δg as a linear combi-

nation of characters of G, which will lead to a Fourier series expansion of f . It is the first
time we add character values.

Theorem 4.1. Let G be a finite abelian group. Then∑
g∈G

χ(g) =

{
|G|, if χ = 1G,

0, if χ 6= 1G,

∑
χ∈Ĝ

χ(g) =

{
|G|, if g = 1,

0, if g 6= 1.

Proof. Let S =
∑

g∈G χ(g). If χ is trivial on G then S = |G|. If χ is not trivial on G, say

χ(g0) 6= 1. Then χ(g0)S =
∑

g∈G χ(gg0) =
∑

g∈G χ(g) = S, so S = 0.
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The second formula in the theorem can be viewed as an instance of the first formula via
Pontryagin duality: the second sum is a sum of the character “evaluate at g” over the group

Ĝ, and this character on Ĝ is nontrivial when g 6= 1 by Pontryagin duality. �

Theorem 4.1 says the sum of a nontrivial character over a group vanishes and the sum
of all characters of a group evaluated at a nontrivial element vanishes, so the sum of the
elements in each row and column of a character table of G is zero except the row for the
trivial character and the column for the identity element. Check this in Table 1.

Corollary 4.2. For characters χ1 and χ2 in Ĝ and g1 and g2 in G,∑
g∈G

χ1(g)χ2(g) =

{
|G|, if χ1 = χ2,

0, if χ1 6= χ2,

∑
χ∈Ĝ

χ(g1)χ(g2) =

{
|G|, if g1 = g2,

0, if g1 6= g2.

Proof. In the first equation of Theorem 4.1 let χ = χ1χ2. In the second equation of Theorem
4.1 let g = g1g

−1
2 . (Alternatively, after proving the first equation for all G we observe that

the second equation is a special case of the first by Pontryagin duality.) �

The equations in Corollary 4.2 are called the orthogonality relations. They say that
the character table of G has orthogonal rows and orthogonal columns when we define
orthogonality of two n-tuples of complex numbers as vanishing of their Hermitian inner
product: in Cn: 〈(z1, . . . , zn), (w1, . . . , wn)〉 :=

∑n
k=1 zkwk.

Example 4.3. Let G = (Z/(m))×. For a ∈ (Z/(m))× and p a prime not dividing m,

1

ϕ(m)

∑
χ mod m

χ(a)χ(p) =

{
1, if p ≡ a mod m,

0, if p 6≡ a mod m,

where the sum runs over the characters of (Z/(m))×. (Since p is prime, p not dividing m
forces p to be in (Z/(m))×.) This identity was used by Dirichlet in his proof that there are
infinitely many primes p ≡ a mod m.

By the second equation in Corollary 4.2 we can express the delta-functions in terms of
characters: ∑

χ∈Ĝ

χ(g)χ(x) = |G|δg(x) =⇒ δg(x) =
1

|G|
∑
χ∈Ĝ

χ(g)χ(x).

Substituting this formula for δg into (4.1) gives

f(x) =
∑
g∈G

f(g)

 1

|G|
∑
χ∈Ĝ

χ(g)χ(x)


=

∑
χ∈Ĝ

∑
g∈G

1

|G|
f(g)χ(g)χ(x)

=
∑
χ∈Ĝ

cχχ(x),(4.2)

where

(4.3) cχ =
1

|G|
∑
g∈G

f(g)χ(g).
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The expansion (4.2) is the Fourier series for f .
Equation (4.3) is similar to the formula for the coefficient cn of einx in (2.1): an integral

over [0, 2π] divided by 2π is replaced by a sum over G divided by |G| and f(x)e−inx is
replaced by f(g)χ(g). The number e−inx is the conjugate of einx, which is also the relation

between χ(g) and χ(g). Equation (4.2) shows Ĝ is a spanning set for L(G). Since |Ĝ| =

|G| = dimL(G), Ĝ is a basis for L(G).

Definition 4.4. If f ∈ L(G) then its Fourier transform f̂ ∈ L(Ĝ) is given by

f̂(χ) =
∑
g∈G

f(g)χ(g).

By (4.2) and (4.3),

(4.4) f(x) =
1

|G|
∑
χ∈Ĝ

f̂(χ)χ(x).

Equation (4.4), called the Fourier inversion formula, lets us recover f from f̂ .

Remark 4.5. Classically the Fourier transform of a function R → C is another function
R → C. The finite Fourier transform, however, is defined on the dual group instead of on
the original group. We can also interpret the classical Fourier transform to be a function of

characters. For y ∈ R let χy(x) = eixy. Then χy : R→ S1 is a character and f̂(y) could be

viewed as f̂(χy) =
∫
R f(x)χy(x) dx, so f̂ is a function of characters rather than of numbers.

Example 4.6. Let f = δg. Then f̂(χ) = χ(g) = χ(g−1). Notice f vanishes at all but one

element of G while f̂ is nonzero on all of Ĝ.

Example 4.7. Let f = ψ be a character of G. Then f̂(χ) =
∑

g ψ(g)χ(g) = |G|δψ(χ), so

f̂ = |G|δψ. Here f is nonzero on all of G and f̂ is nonzero at only one element of Ĝ.

The Fourier transform on R interchanges highly spread and highly peaked Gaussians.
Examples 4.6 and 4.7 suggest a similar phenomenon in the finite case. The next theorem is
a general result in that direction (a finite version of Heisenberg uncertainty). It is the only
time (outside Appendix B) when we will use inequalities with characters of finite abelian
groups.

Theorem 4.8. Let f : G→ C be a function on a finite abelian group G that is not identically
zero. Then

(4.5) | supp f | · | supp f̂ | ≥ |G|,
where supp denotes the support of a function (the set of points where the function is
nonzero).

Proof. We expand f into a Fourier series and make estimates. Since

f(x) =
∑
χ∈Ĝ

1

|G|
f̂(χ)χ(x),

we have

(4.6) |f(x)| ≤
∑
χ∈Ĝ

1

|G|
|f̂(χ)| ≤ | supp f̂ |

|G|
max
χ∈Ĝ
|f̂(χ)|.
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By the definition of f̂(χ),

(4.7) |f̂(χ)| ≤
∑
g∈G
|f(g)|.

Let m = maxg∈G |f(g)|, so m > 0 since f is not identically zero. Then (4.7) implies

|f̂(χ)| ≤ m| supp f |, and feeding this into (4.6) yields

|f(x)| ≤ m| supp f || supp f̂ |
|G|

.

Maximizing over all x ∈ G implies m ≤ m| supp f || supp f̂ |/|G|. Divide both sides by m
and the desired inequality drops out. �

In Examples 4.6 and 4.7, inequality (4.5) is an equality, so Theorem 4.8 is sharp.
Since L(G) is spanned by the characters of G and the delta-functions, linear identities

in L(G) can be verified by checking them on characters or delta-functions. For example,
define a Hermitian inner product on L(G) by the rule

(4.8) 〈f1, f2〉G =
1

|G|
∑
g∈G

f1(g)f2(g) ∈ C.

We will prove Plancherel’s theorem for G:

〈f1, f2〉G =
1

|G|
〈f̂1, f̂2〉Ĝ

for all f1 and f2 in L(G). (Compare to (2.4).) To check this identity, which is linear in
both f1 and f2, it suffices to check it when f1 and f2 are characters. By Corollary 4.2, for
characters χ1 and χ2 of G we have

〈χ1, χ2〉G =

{
1, if χ1 = χ2,

0, if χ1 6= χ2.

Since χ̂ = |G|δχ (Example 4.7),

1

|G|
〈χ̂1, χ̂2〉Ĝ = |G|〈δχ1 , δχ2〉Ĝ =

∑
χ∈Ĝ

δχ1(χ)δχ2(χ) =

{
1, if χ1 = χ2,

0, if χ1 6= χ2.

This verifies Plancherel’s theorem for G. The special case where f1 = f2 = f is a single
function from G to C gives us Parseval’s formula for G:

(4.9)
∑
g∈G
|f(g)|2 =

1

|G|
∑
χ∈Ĝ

|f̂(χ)|2.

Let’s look at Fourier transforms for functions on a cyclic group. By writing a cyclic
group in the form Z/(m), we can make an isomorphism with the dual group explicit: every

character of Z/(m) has the form χk : j 7→ e2πijk/m for a unique k ∈ Z/(m) (Exercise 3.1).
The Fourier transform of a function f : Z/(m)→ C can be viewed as a function on Z/(m):

(4.10) f̂(k) :=
∑

j∈Z/(m)

f(j)χk(j) =
∑

j∈Z/(m)

f(j)e−2πijk/m.

This is like viewing the Fourier transform of a function on R as a function on R.
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Example 4.9. Let f : Z/(8) → C be a function with period 2 having values 1 and 2. See
Table 4. The Fourier transform of f vanishes except at 0 and 4, which are the multiples of
the frequency of f (how often the period repeats).

n 0 1 2 3 4 5 6 7
f(n) 1 2 1 2 1 2 1 2

f̂(n) 12 0 0 0 −4 0 0 0
Table 4.

Example 4.10. Let f : Z/(8)→ C have the periodic values 5, 3, 1, and 1. Both f and its
Fourier transform are in Table 5. Now f has frequency 2 (its period repeats twice) and the
Fourier transform vanishes except at 0, 2, 4, and 6, which are multiples of the frequency.

n 0 1 2 3 4 5 6 7
f(n) 5 3 1 1 5 3 1 1

f̂(n) 20 0 8 + 4i 0 4 0 8− 4i 0
Table 5.

Example 4.11. Consider a function f : Z/(45) → C with the four successive repeating
values 1, 8, 19, 17 starting with f(0) = 1. It is not a periodic function on Z/(45) since 4
does not divide 45, but the sequence 1, 8, 19, 17 repeats nearly 11 times. (The value of

f(44) is 1.) A calculation of |f̂(n)|, the absolute value of the Fourier transform of f , reveals

sharp peaks at n = 0, 11, 22, 23, and 34. See a plot of |f̂(n)| below.

0 11 22 23 34

The red peaks are cut off because the lowest red bar would be around three times as tall as

the highest black bar. Peaks in |f̂(n)| occur approximately at multiples of the approximate
frequency!
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As Examples 4.9 and 4.10 suggest, the Fourier transform of a periodic function on Z/(m)
knows the frequency of the original function by the positions where the Fourier transform
has nonzero values (Exercise 4.4). For nearly periodic functions on Z/(m), the approximate
frequency is reflected in where the Fourier transform takes on its largest values. This idea
is used in Shor’s quantum algorithm for integer factorization [2], [3, Chap. 17], where it is
convenient to redefine the Fourier transform (4.10) by dividing the sum by

√
m, which has

the effect of making the Fourier transform a unitary operator on the functions Z/(m)→ C.
See Exercise 4.11.

Exercises.

1. Let G be a finite abelian group, H be a subgroup of G, and K be a subgroup of Ĝ.
Show∑

h∈H
χ(h) =

{
|H|, if χ is trivial on H,

0, otherwise,

∑
χ∈K

χ(g) =

{
|K|, if χ(g) = 1 for all χ ∈ K,
0, otherwise.

2. Let f : Z/(8) → C take the four values a, b, c, and d twice in this order. Compute

f̂(n) explicitly and determine some values for a, b, c, and d such that f̂(n) is nonzero

for n = 0, 2, and 6, but f̂(4) = 0.
3. For a subgroup H of a finite abelian group G, let δH be the function that is 1 on

H and 0 off of H. Show the Fourier transform of δH is δ̂H = |H|δH⊥ . How do the
supports of δH and its Fourier transform compare with the inequality (4.5)?

4. Let H be a subgroup of a finite abelian group G.

(a) Suppose f : G→ C is constant on H-cosets (it is H-periodic). For χ ∈ Ĝ with

χ 6∈ H⊥, show f̂(χ) = 0. Thus the Fourier transform of an H-periodic function on
G is supported on H⊥.

(b) If f : Z/(m)→ C has period d where d | m, show f̂ : Z/(m)→ C is supported
on the multiples of m/d. (See Examples 4.9 and 4.10.)

5. Find the analogue of Exercise 2.3 for functions on a finite abelian group.
6. Let f : G→ C.

a) Show f(g) ∈ R for all g if and only if f̂(χ) = f̂(χ) for all χ.

b) Show f̂(χ) ∈ R for all χ if and only if f(g) = f(g−1) for all g.
7. Let G be a finite abelian group and H be a subgroup. For a function f : G → C,

Poisson summation on G says

1

|H|
∑
h∈H

f(h) =
1

|G|
∑
χ∈H⊥

f̂(χ),

where H⊥ is as in Exercise 3.7. Prove this formula in two ways:
a) Copy the classical proof sketched in Section 2 (start with the function F (x) =∑
h∈H f(xh), which is H-periodic so it defines a function on G/H) to obtain

(4.11)
1

|H|
∑
h∈H

f(xh) =
1

|G|
∑
χ∈H⊥

f̂(χ)χ(x)

for all x ∈ G and then set x = 1.
b) By linearity in f of both sides of the desired identity, verify Poisson summation

directly on the delta-functions of G. (Corollary 3.7 and Example 4.6 will be useful.)
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8. Let Tg : L(G)→ L(G) be as in Exercise 3.6.

(a) Show T̂gf = χ(g)f̂ for all f ∈ L(G).
(b) Show for all f1 and f2 in L(G) that 〈Tgf1, Tgf2〉G = 〈f1, f2〉G.

9. Let f ∈ L(G), so f̂ is in L(Ĝ) and
̂̂
f is in L(

̂̂
G).

(a) Viewing
̂̂
G as G by Pontryagin duality, show

̂̂
f(g) = |G|f(g−1).

(b) For a subgroup H in G, define the H-average of f and the H-cutoff of f to
be the following functions on G:

AvgH(f)(g) =
1

|H|
∑
h∈H

f(gh), CutH(f)(g) =

{
f(g), if g ∈ H,
0, if g 6∈ H.

Check the identity ̂AvgH(f) = CutH⊥(f̂) of functions on Ĝ and then take the
Fourier transform of both sides to get an identity of functions on G, which will be
(4.11) as x varies. (This shows that Poisson summation is essentially equivalent
to the fact that the Fourier transform exchanges the operators AvgH on L(G) and

CutH⊥ on L(Ĝ), or equivalently CutH on L(G) and AvgH⊥ on L(Ĝ).)
10. Let G be a finite abelian group. For f1 and f2 in L(G), define their convolution

f1 ∗ f2 : G→ C by

(f1 ∗ f2)(g) =
∑
h∈G

f1(h)f2(gh
−1).

(a) Show δg ∗ δh = δgh, so L(G) under convolution is a commutative C-algebra
isomorphic to the group ring C[G].

(b) Show f̂1 ∗ f2(χ) = f̂1(χ)f̂2(χ), so the Fourier transform turns convolution into
pointwise multiplication.

(c) Show δg ∗ f = Tg−1(f) and χ ∗ f = f̂(χ)χ in two ways: by a direct calculation
or by computing the Fourier transform of both sides and using (b).

(d) For each χ ∈ Ĝ, the function hχ : L(G) → C given by hχ(f) = f̂(χ) is a
C-algebra homomorphism by (b). Does every C-algebra homomorphism from L(G)
to C arise in this way?

11. On every finite abelian group G, rescale the definition of the Fourier transform by
dividing by

√
|G|:

f̂(χ) :=
1√
|G|

∑
g∈G

f(g)χ(g).

Verify the following new versions of Fourier inversion and Plancherel’s theorem:

f(g) = 1√
|G|

∑
χ f̂(χ)χ(g) and 〈f1, f2〉G = 〈f̂1, f̂2〉Ĝ.

Check that this new Fourier transform sends convolution on L(G) (Exercise 4.10)

to multiplication only if we redefine convolution using division by
√
|G|:

(f1 ∗ f2)(g) :=
1√
|G|

∑
h∈G

f1(h)f2(gh
−1).
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5. Structure of finite abelian groups

We will now put characters to work by using them to prove each finite abelian group is
a direct product of cyclic groups. This result was used in the proof of Theorem 3.13, that

G ∼= Ĝ, but that work will not be used here, so no circular reasoning occurs.
The following theorem shows that every cyclic subgroup of maximal size in a finite abelian

group can be split off as a direct factor. Characters get used in an essential way in the proof.

Theorem 5.1. Let G be a finite abelian group and let g ∈ G have maximal order in G.
There is a subgroup H ⊂ G such that G ∼= H × 〈g〉.

Proof. Let n be the order of g. The subgroup 〈g〉 of G is cyclic of order n. In S1 there
is a cyclic subgroup of order n, namely µn. Since cyclic groups of the same order are
isomorphic, there is an isomorphism 〈g〉 → µn, so g is mapped to a root of unity of order
n. This isomorphism can be viewed as a character of 〈g〉. Extend this to a character of G
(Theorem 3.3), so we have a character χ : G → S1 such that χ(g) has order n. The image
χ(G) contains µn, and it turns out to be no larger.

Claim: χ(G) = µn.
Since χ(G) is a finite subgroup of S1, it is cyclic (all finite subgroups of S1 are cyclic).

Therefore χ(G) = 〈χ(γ)〉 for some γ ∈ G. Since χ(G) contains µn, χ(G) = µnn′ where
n′ ≥ 1. Thus χ(γ) has order nn′. Let γ have order d in G, so γd = 1 in G and thus
χ(γ)d = 1 in S1. That implies nn′ | d, so nn′ ≤ d. Since n is the maximal order of the
elements in G, d ≤ n. The relations nn′ ≤ d and d ≤ n imply n′ = 1, so χ(G) = µn. This
proves the claim.

Set H = kerχ. Then H∩〈g〉 = {1} since χ is one-to-one on 〈g〉 by construction. For each
x ∈ G, χ(x) ∈ χ(G) = µn = χ(〈g〉), so χ(x) = χ(gj) for some j. Therefore h := xg−j is in
H and x = hgj . This proves that the multiplication map H ×〈g〉 → G where (h, gj) 7→ hgj

is surjective. It is a homomorphism and its kernel is trivial, so G ∼= H × 〈g〉. �

Theorem 5.2. Every finite abelian group G is isomorphic to a product of cyclic groups:

G ∼= Z/(n1)× Z/(n2)× · · · × Z/(nk).

Proof. Induct on |G|. The result is clear when |G| = 1. When |G| > 1, let n be the maximal
order of the elements of G, so G ∼= H×Z/(n) by Theorem 5.1. Since |H| < |G|, by induction
H is isomorphic to a direct product of cyclic groups, so G is also isomorphic to a direct
product of cyclic groups. �

Theorem 5.2 can be refined: G is a direct product of cyclic groups with the extra feature
that n1 | n2 | · · · | nk. To prove this, use the fact that the order of each element of a finite
abelian group G divides the maximal order of the elements of G (Theorem A.3).

Exercises.

1. What is the structure (as a direct product of cyclic groups) of the finite abelian
groups whose nontrivial characters all have order 2?

2. Mimic the proof of Theorem 5.1 to decompose (Z/(20))× (of size 8) and (Z/(45))×

(of size 24) into a direct product of cyclic groups.
3. Show by an explicit counterexample that the following is false: if two subgroups H

and K of a finite abelian group G are isomorphic then there is an automorphism of
G that restricts to an isomorphism from H to K.
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4. For a finite abelian group G, show the maximum order of the elements of G and
the number |G| have the same prime factors. (Hint: If g has order n and there is
an element h of prime order p where p - n, what is the order of gh?)

This is false in general for nonabelian G, as shown in the table below where g(n)
(called Landau’s function) is the maximal order of the elements of Sn. For n ≥ 3 in
the table, some prime factor of n! does not divide g(n).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
g(n) 1 2 3 4 6 6 12 15 20 30 30 60 60 84 105

Table 6. Maximal order of elements of Sn

5. Let G be a finite abelian group and F be a field containing a full set of |G|th roots

of unity. (So x|G| = 1 has |G| solutions in F .) Define characters of G to be group

homomorphisms χ : G→ F× and write the set of all such characters as Ĝ.
a) Construct a character table for Z/(4) and (Z/(2))2 when F is the field Z/(5).
b) Prove every lemma, theorem, and corollary from Section 3 for the new meaning

of Ĝ. There is no longer complex conjugation on character values, but the
inverse of χ is still the function g 7→ χ(g−1) = χ(g)−1. (Hint: For each d
dividing |G|, xd = 1 has d distinct solutions in F×, which form a cyclic group.)

c) Prove Theorem 4.1 and Corollary 4.2 for F -valued characters of G.
d) Set L(G,F ) to be the functions G → F . This is an F -vector space in the

same way that L(G) is a complex vector space. For each function f ∈ L(G,F ),

define its Fourier transform f̂ ∈ L(Ĝ, F ) by f̂(χ) =
∑

g∈G f(g)χ(g−1). Prove

the Fourier inversion formula and Plancherel’s theorem in this context. (Note:
If the field F has characteristic p then 1/|G| in the Fourier inversion formula
makes sense in F since p doesn’t divide |G| – why?)

e) Check everything you have done goes through if the assumption that x|G| = 1
has a full set of solutions in F is weakened to xm = 1 having a full set of
solutions in F , where m is the maximal order of the elements of G. For example,
if G = (Z/(2))d then m = 2 and we can use F = Z/(3).

6. Existence of solutions to a Mordell equation mod p

For k ∈ Z, an equation of the form y2 = x3 +k is called a Mordell equation. When k 6= 0,
it is a hard theorem that such an equation has only finitely many integral solutions (x, y),
which could include having no integral solutions.2 For example, the integral solutions of
y2 = x3−4 are (2,±2) and (5,±11), and the equation y2 = x3−5 has no integral solutions.
Using characters, we will show the congruence y2 ≡ x3 + k mod p modulo a prime p always
has a solution.

For a character χ on (Z/(p))×, extend χ to Z/(p) by setting χ(0) = 0. Then χ(ab) =
χ(a)χ(b) for all a, b ∈ Z/(p).

Lemma 6.1. If p is prime and d | (p− 1), there is a character χ of (Z/(p))× with order d,
and for each a ∈ Z/pZ,

|{x ∈ Z/(p) : xd ≡ a mod p}| = 1 + χ(a) + χ(a)2 + · · ·+ χ(a)d−1.

2 When k = 0, the equation is y2 = x3 and has infinitely many integral solutions (x, y) = (a2, a3) for a ∈ Z.
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Proof. The group (Z/(p))× is cyclic of order p − 1,3 so |{x ∈ Z/(p) : xd ≡ 1 mod p}| = d
since d | (p− 1). Thus

(6.1) |{x ∈ Z/(p) : xd ≡ a mod p}| =


d, if a 6≡ 0 mod p and a is a dth power mod p,

1, if a ≡ 0 mod p,

0, if a is not a dth power mod p.

The character group of (Z/(p))× is cyclic of order p − 1 by Theorem 3.11, so (Z/(p))×

has a character of order d. Call such a character χ. For each a ∈ Z/(p), we’ll show that
1 + χ(a) + χ(a)2 + · · ·+ χ(a)d−1 has the same values as in (6.1).

• If a is a nonzero dth power mod p, say a ≡ bd mod p, then χ(a) = χ(bd) = χ(b)d = 1
since χd is identically 1 on (Z/(p))×, so 1 + χ(a) + χ(a)2 + · · ·+ χ(a)d−1 = d.
• If a ≡ 0 mod p then χ(a) = 0, so 1 + χ(a) + χ(a)2 + · · ·+ χ(a)d−1 = 1.
• Lastly, if a is in (Z/(p))× and is not a dth power, we’ll show χ(a) 6= 1, so by summing

a finite geometric series,

1 + χ(a) + χ(a)2 + · · ·+ χ(a)d−1 =
χ(a)d − 1

χ(a)− 1
=

1− 1

χ(a)− 1
= 0,

which would complete the proof.
Let g be a generator of (Z/(p))× and write a = gk for k ∈ Z.
Step 1: χ(g) has order d. Since χ has order d, χ(g)d = 1, so χ(g) has order

dividing d. Since χ((Z/(p))×) = 〈χ(g)〉, if χ(g) has order less than d then χ as a
character has order less than d, which χ doesn’t. Thus χ(g) has order d.

Step 2: χ(a) 6= 1. If χ(a) = 1 then χ(g)k = 1, so d | k by Step 1. Then a = gk is
a dth power, which isn’t the case, so χ(a) 6= 1. �

Theorem 6.2. For each prime p and k ∈ Z, the congruence y2 ≡ x3 +k mod p has at least
two solutions (x, y) in Z/(p).

Proof. We’ll consider separately the cases 3 - (p− 1) and 3 | (p− 1).
Case 1: 3 - (p− 1).
Since (3, p− 1) = 1, cubing is a bijection Z/(p)→ Z/(p) (on (Z/(p))× it is injective and

thus surjective since the group is finite), so for each y ∈ Z/(p) there is a unique x ∈ Z/(p)
such that y2 − k ≡ x3 mod p. Thus the number of solutions of y2 ≡ x3 + k mod p is p, and
p ≥ 2.

Case 2: 3 | (p− 1).
If k ≡ 0 mod p, then the congruence is y2 ≡ x3 mod p, which has the p solutions (a2, a3)

for a ∈ Z/(p) (and in fact no further solutions mod p). So now we can assume k 6≡ 0 mod p.
Since 3 | (p − 1), there is a character χ on (Z/(p))× with order 3, and the inverse χ2 of

χ is the complex conjugate χ. Since p is odd, there is a quadratic character ψ on (Z/(p))×

(it’s the Legendre symbol). To count solutions to y2 ≡ x3 +k mod p we will count solutions
(a, b) to the simpler equation b ≡ a+ k mod p and then count how often a is a cube mod p
and b is a square mod p.

By Lemma 6.1, the number of ways a is a cube mod p is 1+χ(a)+χ(a)2 = 1+χ(a)+χ(a),
and the number of ways b is a square mod p is 1 + ψ(b). Let Np(k) be the number of mod

3See https://kconrad.math.uconn.edu/blurbs/grouptheory/cyclicmodp.pdf for many proofs of this.

https://kconrad.math.uconn.edu/blurbs/grouptheory/cyclicmodp.pdf
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p solutions to y2 ≡ x3 + k mod p, so

Np(k) =
∑
(a,b)

(1 + χ(a) + χ(a))(1 + ψ(b)),

where we sum over all (a, b) mod p for which b ≡ a+ k mod p (either a or b determines the
other mod p). Expanding out the product, we get a sum of 6 terms over all the pairs (a, b)
where b ≡ a+ k mod p:

Np(k) =
∑
(a,b)

(1 + χ(a) + χ(a) + ψ(b) + χ(a)ψ(b) + χ(a)ψ(b)).

Split this up into 6 sums. The first sum is p since the number of possible (a, b) is p (both
a and b determine each other mod p and each is free to take on any value). The second,
third, and fourth sums are 0 since the sum of a nontrivial multiplicative character over
Z/(p) is 0 (a term where a = 0 or b = 0 can be dropped since χ(0) = 0 and ψ(0) = 0).
We’re left with the sums of χ(a)ψ(b) and χ(a)ψ(b), and at this point let’s write b directly
in terms of a (and k) so we can write the sums as running over all a mod p:

Np(k) = p+
∑
a

χ(a)ψ(a+ k) +
∑
a

χ(a)ψ(a+ k).

Since k 6≡ 0 mod p, we can make the change of variables a 7→ ka in both sums and pull out
the character values at k:

Np(k) = p+ χ(k)ψ(k)
∑
a

χ(a)ψ(a+ 1) + χ(k)ψ(k)
∑
a

χ(a)ψ(a+ 1).

Replace a mod p with −a mod p in the sums:

Np(k) = p+ χ(−k)ψ(k)
∑
a

χ(a)ψ(1− a) + χ(−k)ψ(k)
∑
a

χ(a)ψ(1− a).

Set S =
∑

a χ(a)ψ(1− a), so S =
∑

a χ(a)ψ(1− a) since ψ-values are ±1, and

Np(k) = p+ χ(−k)ψ(k)S + χ(−k)ψ(k)S = p+ 2Re(χ(−k)ψ(k)S).

For each complex number z, |Re(z)| ≤
√
|z|, so |Np(k) − p| ≤ 2

√
|S|. Since χ and ψ

are nontrivial multiplicative characters mod p and χψ is nontrivial, |S| =
√
p.4 Thus

|Np(k)−p| ≤ 2
√
p, so Np(k) ≥ p−2

√
p. The function f(t) = t−2

√
t is increasing for t > 1,

the least prime p ≡ 1 mod 3 is 7, and 7− 2
√

7 ≈ 1.7, so Np(k) ≥ 2 when 3 | (p− 1). �

Exercises.

1. For prime p and n ∈ Z+, set d = (n, p−1). For r ∈ Z, let ϕr : (Z/(p))× → (Z/(p))×

by ϕr(x) = xr.
a) Show ϕn and ϕd have the same image and kernel. (Hint: d is a Z-linear

combination of n and p− 1.)
b) For nonzero a in Z/(p), use (a) to show the equations xn = a and xd = a have

the same number of solutions in Z/(p).
c) Find all solutions of x4 = 3 and of x2 = 3 in Z/(11). (There are two solutions

in each case.)

4See Corollary 2.4 in https://kconrad.math.uconn.edu/blurbs/gradnumthy/Gauss-Jacobi-sums.pdf.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/Gauss-Jacobi-sums.pdf
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d) For nonzero a in Z/(p), show xn + yn = a and xd + yd = a have the same
number of solutions in Z/(p).

2. Let p be prime, a be nonzero in Z/(p), and d be a positive factor of p− 1. We want
to estimate the number of solutions of xd + yd = a in Z/(p).

a) For a polynomial f(x) with coefficients in Z/(p), let N(f(x) = a) be the
number of solutions of f(x) = a in Z/(p). By Lemma 6.1, (Z/(p))× has a character
χ of order d and we set χ(0) = 0. Show

N(xd + yd = a) =
∑

b,c∈Z/(p)
b+c=a

N(xd = b)N(yd = c)

=
∑

b∈Z/(p)

(
1 +

d−1∑
i=1

χ(b)i

)1 +
d−1∑
j=1

χ(a− b)j
 .

b) Expand the product in (a) and rearrange terms to show

N(xd + yd = a) = p+
∑

1≤i,j≤d−1

∑
b∈Z/(p)

χ(b)iχ(a− b)j

= p+
∑

1≤i,j≤d−1
χ(a)i+j

∑
b∈Z/(p)

χ(b)iχ(1− b)j .

c) For characters ψ and ψ′ on (Z/(p))×, set J(ψ,ψ′) =
∑

b∈Z/(p) ψ(b)ψ′(1− b) (it

is called a Jacobi sum), so by (b),

N(xd + yd = a) = p+
∑

1≤i,j≤d−1
χ(a)i+jJ(χi, χj).

For a nontrivial character ψ on (Z/(p))×, J(ψ,ψ) = −ψ(−1).5 Use that to show

N(xd + yd = a) = p+ 1−N(xd = −1) +
∑

1≤i,j≤d−1
i+j 6=d

χ(a)i+j
∑

b∈Z/(p)

χ(b)iχ(1− b)j .

d) When ψ, ψ′, and ψψ′ are all nontrivial, |J(ψ,ψ′)| = √p.6 Use that and (c) to
show

|N(xd + yd = a)− (p+ 1)| ≤ d+ (d− 1)(d− 2)
√
p

e) Use part (d) and Exercise 6.1(d) to show for n ∈ Z+ and sufficiently large
p (depending only on n) that each equation xn + yn = a for a ∈ (Z/(p))× has a
solution in Z/(p) where x and y are both nonzero.

7. Dual Homomorphisms

The set Hom(G1, G2) of all homomorphisms from the abelian group G1 to the abelian
group G2 forms an abelian group under pointwise multiplication

Theorem 7.1. Let G1 and G2 be finite abelian groups. For a homomorphism f : G1 → G2,

set f∗ : Ĝ2 → Ĝ1 by f∗(χ) = χ◦f . Then f∗ is a group homomorphism and the map sending
f to f∗ gives a group isomorphism

Hom(G1, G2) ∼= Hom(Ĝ2, Ĝ1).

5See Theorem 2.5 in https://kconrad.math.uconn.edu/blurbs/gradnumthy/Gauss-Jacobi-sums.pdf.
6See Corollary 2.4 in https://kconrad.math.uconn.edu/blurbs/gradnumthy/Gauss-Jacobi-sums.pdf.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/Gauss-Jacobi-sums.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/Gauss-Jacobi-sums.pdf
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Proof. If f : G1 → G2 is a homomorphism and χ ∈ Ĝ2, then for g and g′ in G1 we have

χ(f(gg′)) = χ(f(g)f(g′)) = χ(f(g))χ(f(g′)),

so f∗(χ) := χ ◦ f lies in Ĝ1. Thus we get the map Hom(G1, G2) → Hom(Ĝ2, Ĝ1) as
advertised. Check (ff ′)∗ = f∗(f ′)∗, so f 7→ f∗ is a homomorphism.

Repeating this idea leads to a group homomorphism Hom(Ĝ2, Ĝ1) → Hom(
̂̂
G1,

̂̂
G2). By

Pontryagin duality it is a homomorphism Hom(Ĝ2, Ĝ1)→ Hom(G1, G2) and the composite

Hom(G1, G2)→ Hom(Ĝ2, Ĝ1)→ Hom(G1, G2)

turns out to be (after unwinding definitions, left to the reader) the identity function. There-

fore our original map Hom(G1, G2)→ Hom(Ĝ2, Ĝ1) is a group isomorphism. �

The homomorphism f∗ : Ĝ2 → Ĝ1 is called the dual homomorphism to f .

Exercises.

1. For a homomorphism f : G1 → G2, show (ker f)⊥ = im f∗ in Ĝ1 and (im f)⊥ =

ker f∗ in Ĝ2.

2. Show the isomorphism Hom(G,G) ∼= Hom(Ĝ, Ĝ) in Theorem 7.1 coming from the

identity map on G associates g 7→ gm in Hom(G,G) with χ 7→ χm in Hom(Ĝ, Ĝ).

8. Abelian group determinants

Consider a square n× n matrix where each row is a cyclic shift of the previous row:

(8.1)


X0 X1 X2 . . . Xn−1
Xn−1 X0 X1 . . . Xn−2
Xn−2 Xn−1 X0 . . . Xn−3

...
...

...
. . .

...
X1 X2 X3 . . . X0

 .

Its determinant is called a circulant. When n is 2 and 3, the circulants are∣∣∣∣ X0 X1

X1 X0

∣∣∣∣ = X2
0 −X2

1 and

∣∣∣∣∣∣
X0 X1 X2

X2 X0 X1

X1 X2 X0

∣∣∣∣∣∣ = X3
0 +X3

1 +X3
2 − 3X0X1X2.

These factor as

(X0 +X1)(X0 −X1) and (X0 +X1 +X2)(X0 + ωX1 + ω2X2)(X0 + ω2X1 + ωX2),

where ω = e2πi/3.
If we think about the variables Xi as being indexed by Z/(n) then the (i, j) entry of (8.1)

is Xj−i. More generally, for a finite group G, index a set of variables Xg by G and form the
matrix indexed by G×G where the (g, h) entry is Xgh−1 . (The circulant is the determinant

of the matrix (Xj−i) = (Xi−j)
>.) The determinant is called the group determinant of G:

(8.2) ∆(G) = det(Xgh−1).

This is a homogeneous polynomial of degree |G| with integer coefficients. A circulant is the
group determinant of a cyclic group.

Circulants of order 2 and 3 are products of linear factors with roots of unity as coefficients.
Dedekind and Burnside each proved the same property for the group determinant of every
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finite abelian group, but Dedekind’s approach revealed more structure in the factors: the
roots of unity in a given linear factor are the values of one of the characters of the group!

Theorem 8.1 (Dedekind). If G is a finite abelian group then its group determinant factors
into linear factors over the complex numbers:

det(Xgh−1) =
∏
χ∈Ĝ

∑
g∈G

χ(g)Xg

 .

Proof. We will realize (Xgh−1) as the matrix for a linear transformation and then find its
diagonalization to compute its determinant.

Let V = C[G] be the group ring of G. For each v ∈ V , define the linear map Lv : V → V
to be (left) multiplication by v: Lv(x) = vx. We will compute the matrix for Lv with
respect to the basis G of V . Writing v =

∑
g∈G agg we have for each h ∈ G

Lv(h) =
∑
g∈G

aggh =
∑
g∈G

agh−1g,

so the matrix for Lv with respect to the basis G is (agh−1).
Another basis for C[G] is the set of formal sums

∑
g∈G χ(g)g, one for each character χ

of G: the number of such sums has the right size to be a basis, and for a linear relation

∑
χ

cχ

∑
g∈G

χ(g)g

 = 0

in C[G] we get
∑

χ cχχ(g) = 0 for all g (the coefficient of each g is 0), so every cχ is 0 by
Fourier inversion.

This new basis of C[G], indexed by the characters, consists of eigenvectors for Lv:

Lv

(∑
h∈G

χ(h)h

)
=

∑
g∈G

agg

(∑
h∈G

χ(h)h

)

=
∑
k∈G

∑
gh=k

agχ(h)

 k

=
∑
k∈G

∑
g∈G

agχ(g−1)χ(k)

 k

=

∑
g∈G

agχ(g−1)

(∑
k∈G

χ(k)k

)
.

Since det(Lv) is the product of the eigenvalues of Lv for an eigenbasis,

det(agh−1) =
∏
χ∈Ĝ

∑
g∈G

agχ(g)

 .
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If we interchange the roles of χ and χ in this product then we obtain

det(agh−1) =
∏
χ∈Ĝ

∑
g∈G

agχ(g)

 .

Thus the multivariable polynomials det(Xgh−1) and
∏
χ∈Ĝ

∑
g∈G χ(g)Xg are equal on all of

Cn, so they must be the same polynomial. �

Example 8.2. Taking G = Z/(n) and ζn = e2πi/n,∣∣∣∣∣∣∣∣∣
X0 X1 . . . Xn−1
Xn−1 X0 . . . Xn−2

...
...

. . .
...

X1 X2 . . . X0

∣∣∣∣∣∣∣∣∣ =

n−1∏
j=0

(
n−1∑
k=0

ζjkn Xk

)

=
n−1∏
j=0

(X0 + ζjnX1 + · · ·+ ζ(n−1)jn Xn−1).

Applications of the factorization of the group determinant for abelian (not necessarily
cyclic) groups can be found in [4, §5.5].

If G is a nonabelian group then its group determinant has an irreducible factor with
degree greater than 1. Studying irreducible factors of the group determinant for nonabelian
G led Frobenius to discover representation theory and the correct extension of the notion
of a character to (finite) nonabelian groups.

Exercises.

1. Check the factorization of the group determinant for Z/(4).
2. Compute and factor the group determinant of Z/(2)× Z/(2).
3. If G is nonabelian, show the polynomial ∆(G) in (8.2) is divisible by

∑
g∈GXg, and

more generally by
∑
χ(g)Xg for each homomorphism χ : G→ S1.

9. Eigenspace decomposition

In high school math we first learn about even and odd functions R→ R: an even function
satisfies f(−x) = f(x) for all x and an odd function satisfies f(−x) = −f(x) for all x. For
example, x2 and cosx are even while x3 and sinx are odd. Every function R → R is
expressible as a sum of an even and odd function:

(9.1) f(x) =
f(x) + f(−x)

2
+
f(x)− f(−x)

2
,

where the first term on the right is even and the second term on the right is odd. Moreover,
that expression as a sum of even and odd functions is unique: if f(x) = E(x) + O(x)
where E and even and O is odd, then f(−x) = E(−x) + O(−x) = E(x) − O(x), so
f(x) + f(−x) = 2E(x) and f(x) − f(−x) = 2O(x). Therefore E(x) = (f(x) + f(−x))/2
and O(x) = (f(x)− f(−x))/2. The formulas for the even and odd parts of f are based on
averaging and anti-averaging f(x) and f(−x).

This type of decomposition occurs in other settings where there is an additive mapping
that iterates twice to the identity map (like f(x) 7→ f(−x) above, where f(−(−x)) = f(x)).
Here are two more examples.
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(1) Complex conjugation (where z = z) leads to an “even/odd” decomposition of each
complex number z as the unique sum of a real number (where w = w) and a purely
imaginary number (where w = −w): for z = a+ bi, z = a− bi and

z =
z + z

2
+
z − z

2
= a+ bi.

(2) The matrix transpose (where M>> = M) leads to the unique expression of each
square matrix over a field not of characteristic 2 as a sum of matrices that are
symmetric (M> = M) and skew-symmetric (M> = −M):

A =
A+A>

2
+
A−A>

2
.

(3) The swap operator on real or complex-valued functions of two variables (f(x, y) 7→
f(y, x)) leads to the unique expression of each such function as a sum of functions
that are symmetric (F (y, x) = F (x, y)) and anti-symmetric (F (y, x) = −F (x, y)):

f(x, y) =
f(x, y) + f(y, x)

2
+
f(x, y)− f(y, x)

2
.

We will now see an analogue of this for finite abelian groups acting on complex vector
spaces. For a group G and complex vector space V , a linear action of G on V 7 is an action
G× V → V where v 7→ gv is linear for each g ∈ G: g(v + w) = gv + gw and g(cv) = c(gv)
for all g ∈ G, v and w in V , and c ∈ C.

Example 9.1. When V is the space of all functions C→ C, the group µn of nth roots of
unity acts on V by interior scaling: for r ∈ µn and f ∈ V , let the function r · f be given by

(r · f)(z) = f(rz).

For instance, ((−1) · f)(z) = f(−z).
This is a linear action of µn on V : r · (f1 +f2) = r ·f1 +r ·f2 for all r ∈ µn and f1, f2 ∈ V ,

and r · (cf) = c(r · f) for all r ∈ µn, c ∈ C, and f ∈ V .

Example 9.2. When V is the space of all functions C→ C, the group µn of nth roots of
unity acts on V by exterior scaling: for r ∈ µn and f ∈ V , let the function rf be given by

(r · f)(z) = rf(z).

For instance, ((−1) · f)(z) = −f(z).
This is a linear action of µn on V that is not the same as the action in the previous

example (when n ≥ 2).

Theorem 9.3. Let G be a finite abelian group and V be a complex vector space on which
G acts linearly. For a character χ of G, set V (χ) = {v ∈ V : gv = χ(g)v for all g ∈ G}.
This is a subspace of G and

V =
⊕
χ∈Ĝ

V (χ).

We call V (χ) the χ-eigenspace of V : it’s the elements of V on which the effect of each g
in G is given by multiplication by the number χ(g). So V (χ) is a common eigenspace of all
g ∈ G, where their eigenvalues are the numbers χ(g) associated to a single character of G.
For instance, V (1G) = {v ∈ V : gv = v for all g ∈ G} is the set of fixed points for all g.

7This is called a representation of G on V .
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Proof. It’s left to the reader to check each V (χ) is a subspace of V . To show V is the direct
sum of all V (χ), first we’ll show V =

∑
χ V (χ) and then we’ll show the sum is direct.

For v ∈ V , here is its piece in V (χ): set

(9.2) vχ =
1

|G|
∑
g∈G

χ(g)gv.

We’ll show vχ ∈ V (χ) for all χ and v =
∑

χ vχ, so V =
∑

χ V (χ).

Showing vχ ∈ V (χ) means showing hvχ = χ(h)vχ for each h ∈ G. From the definition of
vχ and linearity of the action of G on V , for each h ∈ G we have

hvχ =
1

|G|
∑
g∈G

χ(g)(hg)v

=
1

|G|
∑
g∈G

χ(h−1g)gv

=
1

|G|
∑
g∈G

χ(h−1)χ(g)gv

=
χ(h)

|G|
∑
g∈G

χ(g)gv

= χ(h)vχ.

The vχ’s sum up to v:∑
χ

vχ =
∑
χ

1

|G|
∑
g∈G

χ(g)gv =
1

|G|
∑
g∈G

∑
χ

χ(g)gv =
1

|G|
∑
g∈G

(∑
χ

χ(g)

)
gv.

The inner sum is 0 unless χ is trivial, at which the inner sum is |Ĝ|, which equals |G|, so∑
χ vχ = (1/|G|)|G|v = v. Thus V =

∑
χ V (χ).

To show the sum of the subspaces V (χ) is a direct sum means showing that if
∑

χwχ = 0

for wχ ∈ V (χ), then each wχ is 0. Pick g ∈ G and ψ ∈ Ĝ. Let g act on both sides of the
equation 0 =

∑
χwχ, so 0 =

∑
χ gwχ =

∑
χ χ(g)wχ since wχ ∈ V (χ). Multiplying through

this equation by ψ(g), 0 =
∑

χ χ(g)ψ(g)wχ. Sum both sides over all g in G:

0 =
∑
g

∑
χ

χ(g)ψ(g)wχ =
∑
χ

(∑
g

χ(g)ψ(g)

)
wχ.

The coefficient of wχ on the right is 0 unless χ = ψ, when the coefficient is |G|. Therefore

0 = |G|wψ. Since |G| 6= 0 in C, we get wψ = 0 and this holds for each ψ in Ĝ. That proves
the decomposition V =

∑
χ V (χ) is a direct sum decomposition. �

Example 9.4. Let |G| = 2, with G = {1, ε} and Ĝ = {1G, χ}. Then χ(1) = 1 and
χ(ε) = −1, so (9.2) in this case says each v ∈ V is v1G + vχ, where v1G = (v + εv)/2 and
vχ = (v− εv)/2, which satisy εv1G = v1G and εvχ = −vχ. This decomposition of v into two
parts is just like the even/odd decompositions at the start of this section.

Example 9.5. Consider the interior scaling action of µn on functions C→ C in Example
9.1. The characters of µn are the power functions χj(r) = rj for j = 0, . . . , n − 1 and
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V (χj) = {f ∈ V : f(rz) = rjf(z) for all z ∈ C}. Each f : C→ C is a sum
∑n−1

j=0 fj where

fj(rz) = rjf(z) for all z ∈ C and by (9.2)

(9.3) fj(z) =
1

n

∑
r∈µn

χj(r)(r · f)(z) =
1

n

∑
r∈µn

r−jf(rz).

When n = 2 this says f(z) = f0(z) + f1(z) where f0(z) = (f(z)− f(−z))/2 is even and
f1(z) = (f(z)− f(−z))/2 is odd.

When n = 4 this says f(z) = f0(z) + f1(z) + f2(z) + f3(z) where f0(iz) = f0(z), f1(iz) =
if1(z), f2(iz) = −f2(z), and f3(z) = −if3(z). Here are formulas for each of these functions,
as special cases of (9.3):

f0(z) =
f(z) + f(iz) + f(−z) + f(−iz)

4
,

f1(z) =
f(z)− if(iz)− f(−z) + if(−iz)

4
,

f2(z) =
f(z)− f(iz) + f(−z)− f(−iz)

4
,

f3(z) =
f(z) + if(iz)− f(−z)− if(−iz)

4
.

Example 9.6. For the exterior scaling action of µn on functions C → C in Example 9.2,
where µn has characters χj(r) = rj for j = 0, . . . , n− 1, the χj-eigenspace

V (χj) = {f ∈ V : rf(z) = rjf(z) for all z ∈ C}

vanishes for nontrivial χj : when 1 ≤ j ≤ n − 1 and r is a nontrivial nth root of unity,
r 6= rj , so the only way rf(z) = rjf(z) is if f(z) = 0. Easily V = V (1) = {f ∈ V : rf(z) =
rf(z) for all z ∈ C}.

As an example, take n = 2 and R : C→ C by R(z) = −z, so R has order 2. (If we view
C as R2 then this is a 180-degree rotation of the plane.) The group G = {I,R} of order 2
acts linearly on C and the whole space “looks odd” under the effect of R: when χ is the
nontrivial character of G, C(1) = C and C(χ) = {0}.

Exercises.

1. Let V = {aX + bX2 : a, b ∈ C}, on which G = Z/(4) acts by interior scaling:
(r · f)(X) = f(rX). Let χj(r) = rj for 0 ≤ j ≤ 3 and show V (χ0) = V (χ3) = {0}
while V (χ1) = CX and V (χ2) = CX2.

2. This exercise builds on Exercise 1.1, which is about characters of Z/(2)× Z/(2).
a) When Z/(2) × Z/(2) acts linearly on a complex vector space V , compute vχ

for each v ∈ V and character χ of Z/(2)× Z/(2).
b) Let V = C(X) be the rational functions over C and define two linear mappings

σ : V → V and τ : V → V by σ(f(X)) = f(−X) and τ(f(X)) = f(1/X). Each has
order 2 and στ = τσ is the linear map f(X) 7→ f(−1/X). The group G = 〈σ, τ〉 =
{1, σ, τ, στ} is isomorphic to Z/(2) × Z/(2), so the action of G on C(X) can be
regarded as a linear action of Z/(2)× Z/(2) on C(X).

For each f(X) ∈ C(X), compute formulas for fχ where χ runs through the
characters of G and check directly that the effect of g on fχ(X) is χ(g)f(X) for
each g ∈ G.
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Appendix A. All orders and maximal order

We will use characters of finite abelian groups to prove that in a finite abelian group G,
the order of each element of G divides the maximal order of the elements of G. Although
this result can proved in a shorter way without characters, the point here is to see characters
used.

Lemma A.1. For positive d and m with d | m, the natural reduction (Z/(m))× → (Z/(d))×

is onto: when (a, d) = 1, there is b such that b ≡ a mod d and (b,m) = 1.

Proof. Let d̃ be the product of the prime powers in m whose primes divide d, so m = d̃n

with (d̃, n) = 1. (For example, if m = 90 and d = 6 then d̃ = 18 and n = 5.) Then d | d̃.
By the Chinese remainder theorem we can find b ∈ Z satisfying

b ≡ a mod d̃, b ≡ 1 mod n.

Then b ≡ a mod d and b is relatively prime to m since it is relatively prime to d (a factor

of d̃) and to n. �

Lemma A.2. Let G be a finite abelian group. If x ∈ G has order m and y ∈ G has order
n then there is a character χ : G→ S1 such that χ(x) has order m and χ(y) has order n.

Proof. The subgroup 〈x〉 is cyclic of order m, so there is an isomorphism χ : 〈x〉 ∼= µm. In
particular, χ(x) has order m. Following the proof of Lemma 3.2, we can extend χ to a
character on 〈x, y〉 (and then all the way up to G) by sending y to a solution z ∈ S1 of the
equation zd = χ(yd), where d ≥ 1 is minimal such that yd ∈ 〈x〉. We will show z can be
picked to have order n in S1.

Since yn = 1 ∈ 〈x〉, d divides n. Then yd has order n/d, so χ(yd) has order n/d

because χ is one-to-one on 〈x〉. Write χ(yd) = e2πi`/(n/d) = e2πi`d/n, where (`, n/d) = 1.
By Lemma A.1, there is an `′ ≡ ` mod n/d such that (`′, n) = 1. Since `′d ≡ `d mod n,

χ(yd) = e2πi`
′d/n. Set z = e2πi`

′/n, which has order n. Since zk = χ(yd), we can set
χ(y) = z. �

Lemma A.2 does not extend to more than two arbitrary elements in G. For instance,
if G = µ2 × µ2 then no character on G sends all three non-identity elements in G to −1.
(Why?)

Theorem A.3. Let G be a finite abelian group. The order of each element in G divides
the maximal order of the elements of G.

Proof. We will show that when G has elements of orders m and n, there is an element of
G of order [m,n]. Then if m is the maximal order among all the elements of G, and n is
the order of some element of G, [m,n] is the order of some element so [m,n] ≤ m. That
inequality can only occur when [m,n] = m, so n | m, which is what we want to show.

By Lemma A.2, there is a character χ on G such that χ(g) has order m and χ(h) has

order n. Write χ(g) = e2πia/m and χ(h) = e2πib/n, where (a,m) = 1 and (b, n) = 1.

The roots of unity e2πi/m and e2πi/n are in χ(G). For instance, letting aa′ ≡ 1 mod m,

χ(ga
′
) = χ(g)a

′
= e2πiaa

′/m = e2πi/m. The argument for e2πi/n is similar. Write mu+ nv =
(m,n) for some integers u and v, so the equation mn = [m,n](m,n) can be rewritten as

1

[m,n]
=

(m,n)

mn
=
mu+ nv

mn
= u

1

n
+ v

1

m
.
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Thus

e2πi/[m,n] = (e2πi/n)u(e2πi/m)v ∈ χ(G),

say e2πi/[m,n] = χ(t). The order of t in G is divisible by the order of χ(t) in S1, so t has
order divisible by [m,n]. Thus, raising t to a suitable power, we obtain an element of G
with order [m,n]. �

Appendix B. Functions of Two Variables

When analyzing a function of several variables, it is a common theme to decompose it
into a sum of products of functions of one variable. For instance, to solve a PDE like the
heat equation ∂tu − c∂2xu = 0, first separable solutions of the form u(x, t) = g(x)h(t) are
classified. It is too much to hope that a general solution is separable, but in nice situations
there are theorems guaranteeing that a general solution can be written as an infinite series
of separable solutions: u(x, t) =

∑
n≥1 gn(x)hn(t). This is where expansions in Fourier

series first appeared in mathematics.
Using characters, and in particular Parseval’s formula, we will give an example of a

function of two variables that is provably not a sum of products of functions of one variable.

Lemma B.1. Fix a positive integer N . For vectors (z1, . . . , zN ) and (w1, . . . , wN ) in CN ,∣∣∣∣∣∣
N∑

j,k=1

e−2πijk/Nzjwk

∣∣∣∣∣∣ ≤ √N
 N∑
j=1

|zj |2
1/2(

N∑
k=1

|wk|2
)1/2

.

Proof. Write the double sum as an iterated single sum:

N∑
j,k=1

e−2πijk/Nzjwk =
N∑
j=1

(
N∑
k=1

e−2πijk/Nwk

)
zj =

N∑
j=1

f̂(j)zj ,

where f : Z/(N) → C by f(k) = wk. The right side brings in the Fourier transform of f ,

where we think about f̂ as a function on Z/(N) by identifying Z/(N) with its own dual
group as in Exercise 3.1.

Using the Cauchy–Schwarz inequality,∣∣∣∣∣∣
N∑
j=1

f̂(j)zj

∣∣∣∣∣∣ ≤
 N∑
j=1

|f̂(j)|2
1/2 N∑

j=1

|zj |2
1/2

.

By Parseval’s formula on Z/(N),
∑N

j=1 |f̂(j)|2 = N
∑N

k=1 |f(k)|2 = N
∑N

k=1 |wk|2. �

Theorem B.2. It is impossible to write

e2πixk =
∑
n≥1

gn(x)hn(k),

where x ∈ [0, 1], k ∈ Z, the functions gn : [0, 1]→ C and hn : Z→ C are each bounded, and∑
n≥1 ||gn||sup||hn||sup <∞, where || · ||sup is the sup-norm on bounded functions.

Proof. Assume there is a series expansion

e2πixk =
∑
n≥1

gn(x)hn(k)
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for all x ∈ [0, 1] and k ∈ Z, where c :=
∑

n≥1 ||gn||sup||hn||sup < ∞. Then the series is

absolutely convergent for all x and k. Pick N ≥ 1 and x1, . . . , xN ∈ [0, 1]. Then

N∑
j,k=1

e−2πijk/Ne2πixjk =
N∑

j,k=1

e−2πijk/N

∑
n≥1

gn(xj)hn(k)

 =
∑
n≥1

N∑
j,k=1

e−2πijk/Ngn(xj)hn(k).

Then ∣∣∣∣∣∣
N∑

j,k=1

e−2πijk/Ne2πixjk

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
n≥1

N∑
j,k=1

e−2πijk/Ngn(xj)hn(k)

∣∣∣∣∣∣
≤

∑
n≥1

∣∣∣∣∣∣
N∑

j,k=1

e−2πijk/Ngn(xj)hn(k)

∣∣∣∣∣∣
≤

∑
n≥1

√
N

 N∑
j=1

|gn(xj)|2
1/2(

N∑
k=1

|h(k)|2
)1/2

by Lemma B.1. Since
∑N

j=1 |gn(xj)|2 ≤ N ||gn||2sup and
∑N

k=1 |hn(k)|2 ≤ N ||hn||2sup,∣∣∣∣∣∣
N∑

j,k=1

e−2πijk/Ne2πixjk

∣∣∣∣∣∣ ≤
∑
n≥1

√
N
√
N ||gn||sup

√
N ||hn||sup ≤ N3/2c.

Now set xj = j/N :

N∑
j,k=1

e−2πijk/Ne2πixjk =
N∑

j,k=1

e−2πijk/Ne2πijk/N = N2,

so N2 ≤ N3/2c for all N ≥ 1. This is false when N is large enough (N > c2). �

This theorem says we can’t write e2πixk =
∑

n≥1 gn(x)hn(k) where the functions gn and hn
are bounded and the series converges absolutely (since convergence of

∑
n≥1 ||gn||sup||hn||sup

implies absolute convergence). Could there be such a series representation of e2πixk that is
conditionally convergent?
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