NORMAL SUBGROUPS OF Aff(F)

KEITH CONRAD

For each field F we will find all the normal subgroups of

$$Aff(F) = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in F^{\times}, b \in F \right\}.$$

The group law in Aff(F) is

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a' & b' \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} aa' & ab' + b \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1/a & -b/a \\ 0 & 1 \end{pmatrix}.$$

By (1), projection $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mapsto a$ is a homomorphism from Aff(F) to F^{\times} , so for each subgroup H of F^{\times} we have the subgroup

(2)
$$\begin{pmatrix} H & F \\ 0 & 1 \end{pmatrix} = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in H, b \in F \right\}$$

of Aff(F). Since $H \triangleleft F^{\times}$ (as F^{\times} is abelian), the group (2) is a normal subgroup of Aff(F): the inverse image of a normal subgroup under a surjective group homomorphism is a normal sugbroup. Denote the group (2) as N_H .

Theorem 1. Every nontrivial normal subgroup of Aff(F) is N_H for a subgroup H of F^{\times} .

Proof. Let N be a nontrivial normal subgroup of Aff(F). It is a union of conjugacy classes and larger than the identity, so let's see what the conjugacy class of each non-identity matrix is. Conjugation in Aff(F) is

$$\left(\begin{array}{cc} x & y \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} a & b \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} x & y \\ 0 & 1 \end{array}\right)^{-1} = \left(\begin{array}{cc} a & (1-a)y + bx \\ 0 & 1 \end{array}\right),$$

and if $a \neq 1$ then $\{(1-a)y + b : y \in F\} = F$. Thus conjugating by matrices with x = 1 gives us

(3)
$$a \neq 1 \Longrightarrow \text{conjugacy class of } \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \text{ is } \begin{pmatrix} a & F \\ 0 & 1 \end{pmatrix}.$$

Setting a = 1,

$$\left(\begin{array}{cc} x & y \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} x & y \\ 0 & 1 \end{array}\right)^{-1} = \left(\begin{array}{cc} 1 & bx \\ 0 & 1 \end{array}\right),$$

so if $b \neq 0$ and we let x run over F^{\times} we get

(4)
$$b \neq 0 \Longrightarrow \text{conjugacy class of } \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \text{ is } \begin{pmatrix} 1 & F^{\times} \\ 0 & 1 \end{pmatrix}.$$

To prove $N = N_H$ for some subgroup H of F^{\times} , observe that if $N = N_H$ then H is the set of upper-left entries in the matrices of N. Therefore define

$$H = \left\{ a \in F^{\times} : \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in N \text{ for some } b \in F \right\}.$$

Then H is a subgroup of F^{\times} : $1 \in H$ because $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in N$ and (1) shows that if $a, a' \in H$ then aa' and 1/a are also in H. We will prove $N = N_H$.

Showing the containment $N \subset N_H$ is just a matter of unwinding definitions: if $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in N$ then $a \in H$, so $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in N_H$ by the meaning of N_H . Thus $N \subset N_H$.

To prove $N_H \subset N$ we will show $a \in H \Longrightarrow \begin{pmatrix} a & F \\ 0 & 1 \end{pmatrix} \subset N$. Then if $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in N_H$ we have $a \in H$, so $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in \begin{pmatrix} a & F \\ 0 & 1 \end{pmatrix} \subset N$, and thus $N_H \subset N$.

Case 1: $H \neq \{1\}$.

Pick $a \in H - \{1\}$. To show $\begin{pmatrix} a & F \\ 0 & 1 \end{pmatrix} \subset N$, by the definition of H we have $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in N$ for some $b \in F$. The conjugacy class of $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ is in N by normality, so $\begin{pmatrix} a & F \\ 0 & 1 \end{pmatrix} \subset N$ by (3).

Next we show $\begin{pmatrix} 1 & F \\ 0 & 1 \end{pmatrix} \subset N$. Pick an $a \neq 1$ in H, so $\begin{pmatrix} a & F \\ 0 & 1 \end{pmatrix} \subset N$. Since $1/a \in H$ and $1/a \neq 1$, $\begin{pmatrix} 1/a & F \\ 0 & 1 \end{pmatrix} \subset N$ too. In particular, N contains $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1/a & 1/a \\ 0 & 1 \end{pmatrix}$, so N contains the product

$$\left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1/a & 1/a \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right).$$

The conjugacy class of $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is $\begin{pmatrix} 1 & F^{\times} \\ 0 & 1 \end{pmatrix}$ by (4), so $\begin{pmatrix} 1 & F^{\times} \\ 0 & 1 \end{pmatrix} \subset N$. The identity $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is in N too, so $\begin{pmatrix} 1 & F \\ 0 & 1 \end{pmatrix} \subset N$.

<u>Case 2</u>: $H = \{1\}$.

In this case, $N \subset N_{\{1\}} = \begin{pmatrix} 1 & F \\ 0 & 1 \end{pmatrix}$. To prove the reverse containment, since N is nontrivial there is some $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ in N with $b \in F^{\times}$. Then the conjugacy class of $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ is in N, so $\begin{pmatrix} 1 & F^{\times} \\ 0 & 1 \end{pmatrix} \subset N$. Also the identity $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is in N, so N contains $\begin{pmatrix} 1 & F \\ 0 & 1 \end{pmatrix} = N_{\{1\}}$.