REPRESENTATIONS OF $\operatorname{Aff}\left(\mathbf{F}_{q}\right)$ AND $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$

KEITH CONRAD

For each prime power q, we will construct all irreducible representations over \mathbf{C} of the groups $\operatorname{Aff}\left(\mathbf{F}_{q}\right)$ and $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$. To find all of them, there are three parts:

- build as many irreducible representations as the number of conjugacy classes,
- show a representation is irreducible by checking its character has inner product 1 with itself (1-dimensional representations are automatically irreducible),
- show irreducible representations are nonisomorphic by checking their characters are different.

1. Representations of $\operatorname{Aff}\left(\mathbf{F}_{q}\right)$

Let F be a field. In $\operatorname{Aff}(F)$, the group law is

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a a^{\prime} & a b^{\prime}+b \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 / a & -b / a \\
0 & 1
\end{array}\right) .
$$

Two subgroups of $\operatorname{Aff}(F)$ are

$$
\left\{\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right): a \neq 0\right\}, \quad\left\{\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right): b \in F\right\}
$$

which are isomorphic to F^{\times}and F as groups. Matrices in $\operatorname{Aff}(F)$ decompose into a product of elements in these subgroups as

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right) .
$$

The product in the other order doesn't work in the same way:

$$
\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a & a b \\
0 & 1
\end{array}\right) .
$$

Conjugation in $\operatorname{Aff}(F)$ is

$$
\left(\begin{array}{ll}
x & y \tag{1.1}\\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
x & y \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a & b x-y(a-1) \\
0 & 1
\end{array}\right)
$$

By (1.1), $\operatorname{Aff}(F)$ has trivial center unless $F=\mathbf{F}_{2}$, in which case $\operatorname{Aff}(F)$ is abelian. ${ }^{1}$
Here are the conjugacy classes in $\operatorname{Aff}(F)$:

- the identity matrix

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

- the set

$$
\left\{\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right): b \in F^{\times}\right\}
$$

[^0]- for each $a \in F$ with $a \neq 0$ and $a \neq 1$, the set

$$
\left\{\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right): b \in F\right\} .
$$

So in $\operatorname{Aff}\left(\mathbf{F}_{q}\right)$ there are a total of $1+1+(q-2)=q$ conjugacy classes and thus there are q irreducible representations of $\operatorname{Aff}\left(\mathbf{F}_{q}\right)$ over \mathbf{C}.

One-dimensional representations: Since the upper left entry in $\operatorname{Aff}\left(\mathbf{F}_{q}\right)$ behaves multiplicatively in the group law, for each homomorphism $\chi: \mathbf{F}_{q}^{\times} \rightarrow \mathbf{C}^{\times}$we get a onedimensional representation $\operatorname{Aff}\left(\mathbf{F}_{q}\right) \rightarrow \mathbf{C}^{\times}$by

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \mapsto \chi(a) .
$$

Since \mathbf{F}_{q}^{\times}is cyclic of order $q-1$, there are $q-1$ such χ, so we get $q-1$ one-dimensional representations of $\operatorname{Aff}\left(\mathbf{F}_{q}\right)$.

Remaining irreducible representation: From the count of conjugacy classes there is one more irreducible representation of $\operatorname{Aff}\left(\mathbf{F}_{q}\right)$. Letting d denote its degree, from $q-1+d^{2}=$ $\left|\operatorname{Aff}\left(\mathbf{F}_{q}\right)\right|=q(q-1)$ we get $d=q-1$, so we seek a $(q-1)$-dimensional representation.

Consider the complex vector space V of functions $f: \mathbf{F}_{q} \rightarrow \mathbf{C}$. This is q-dimensional. Let each $g \in \operatorname{Aff}\left(\mathbf{F}_{q}\right)$ act on V as a linear change of variables using $g^{-1}:\left(\rho_{V}(g) f\right)(x)=f\left(g^{-1} x\right)$. We need g^{-1} rather than g in the formula to get $\rho_{V}(g h)=\rho_{V}(g) \rho_{V}(h)$. Explicitly,

$$
\left(\rho_{V}\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) f\right)(x)=f\left(\frac{1}{a} x-\frac{b}{a}\right) .
$$

The constant functions in V form a one-dimensional subspace on which $\operatorname{Aff}\left(\mathbf{F}_{q}\right)$ acts trivially. Another $\operatorname{Aff}\left(\mathbf{F}_{q}\right)$-stable subspace of V is

$$
W=\left\{f \in V: \sum_{x \in \mathbf{F}_{q}} f(x)=0\right\}
$$

and $\rho_{V}=\rho_{W} \oplus 1$, where ρ_{W} is the restriction of ρ_{V} to W. The dimension of W is $q-1$.
To show W is irreducible, we compute its character from that of $V: \chi_{V}=\chi_{W}+1$. A basis of V is the q delta-functions $\delta_{t}: \mathbf{F}_{q} \rightarrow \mathbf{C}$ for $t \in \mathbf{F}_{q}$, where $\delta_{t}(x)$ is 0 for $x \neq t$ and $\delta_{t}(t)=1$. Since $\rho_{V}\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right) \delta_{t}=\delta_{a t+b}$, the matrix for $\rho_{V}\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right)$ with respect to the delta-basis of V is a permutation matrix that describes how $t \mapsto a t+b$ permutes \mathbf{F}_{q}. Thus

$$
\chi_{V}\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=\mid\left\{t \in \mathbf{F}_{q}: a t+b=t \text { in } \mathbf{F}_{q}\right\} \left\lvert\,= \begin{cases}1, & \text { if } a \neq 1 \\
q, & \text { if } a=1 \text { and } b=0 \\
0, & \text { if } a=1 \text { and } b \neq 0\end{cases}\right.
$$

Therefore

$$
\chi_{W}\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=\chi_{V}\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)-1= \begin{cases}0, & \text { if } a \neq 1, \\
q-1, & \text { if } a=1 \text { and } b=0, \\
-1, & \text { if } a=1 \text { and } b \neq 0\end{cases}
$$

The inner product of χ_{W} with itself is

$$
\frac{1}{q(q-1)} \sum_{g} \chi_{W}(g) \overline{\chi_{W}(g)}=\frac{1}{q(q-1)}\left((q-1)^{2}+(q-1)(-1)^{2}\right)=\frac{(q-1)^{2}+(q-1)}{q(q-1)}=1,
$$

so W is irreducible. It is a new irreducible representation since it's not 1-dimensional, except if $q=2$, in which case ρ_{W} is nontrivial while the single one-dimensional representation constructed earlier $(q-1=1$ if $q=2)$ is trivial (note $\left.\operatorname{Aff}\left(\mathbf{F}_{2}\right) \cong \mathbf{F}_{2}\right)$.

2. Representations of $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$

For a field F, the group law in the Heisenberg group Heis (F) is

$$
\left(\begin{array}{ccc}
1 & a & b \tag{2.1}\\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & a^{\prime} & b^{\prime} \\
0 & 1 & c^{\prime} \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & a+a^{\prime} & b+b^{\prime}+a c^{\prime} \\
0 & 1 & c+c^{\prime} \\
0 & 0 & 1
\end{array}\right)
$$

with inverse formula

$$
\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & -a & -b+a c \\
0 & 1 & -c \\
0 & 0 & 1
\end{array}\right)
$$

Three subgroups of $\operatorname{Heis}(F)$ are

$$
\left\{\left(\begin{array}{ccc}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right): a \in F\right\},\left\{\left(\begin{array}{ccc}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right): b \in F\right\},\left\{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right): c \in F\right\}
$$

which are each isomorphic as groups to the additive group of F. Note the subset

$$
\left\{\left(\begin{array}{lll}
1 & a & 0 \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right): a, c \in F\right\}
$$

is not a subgroup of $\operatorname{Heis}(F)$ since it's not closed under multiplication.
Each matrix in $\operatorname{Heis}(F)$ is a product of matrices in the three subgroups above:

$$
\left(\begin{array}{ccc}
1 & a & b \tag{2.2}\\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

If we multiply these three matrices in the reverse order,

$$
\left(\begin{array}{lll}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & a & b+a c \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) .
$$

Conjugation in $\operatorname{Heis}(F)$ is described by the formula

$$
\left(\begin{array}{ccc}
1 & x & y \tag{2.3}\\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & a & b-a z+c x \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) .
$$

In particular, the center of $\operatorname{Heis}(F)$ is

$$
\left\{\left(\begin{array}{lll}
1 & 0 & b \tag{2.4}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right): b \in F\right\} .
$$

Using the conjugation formula (2.3), we get the conjugacy classes in $\operatorname{Heis}(F)$:

- for each $b \in F$, the single matrix

$$
\left\{\left(\begin{array}{lll}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right\}
$$

- for each pair $(a, c) \in F^{2}-\{(0,0)\}$, the set

$$
\left\{\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right): b \in F\right\}
$$

When $F=\mathbf{F}_{q}$, there are $q+\left(q^{2}-1\right)=q^{2}+q-1$ conjugacy classes in $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$, so this group has $q^{2}+q-1$ irreducible representations over \mathbf{C}.

One-dimensional representations: Fix a nontrivial homomorphism $\psi: \mathbf{F}_{q} \rightarrow \mathbf{C}^{\times}$. An example is $\psi(a)=e^{2 \pi i \operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{p}}(a)}$, where \mathbf{F}_{q} has characteristic p and $\operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{p}}: \mathbf{F}_{q} \rightarrow \mathbf{F}_{p}$ is the trace map. (If $q=p$ then $\psi: \mathbf{F}_{p} \rightarrow \mathbf{C}^{\times}$by $\psi(a)=e^{2 \pi i a / p}$.) Since the a and c terms of a matrix in $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$ each combine additively under multiplication in $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$, for each $(x, y) \in \mathbf{F}_{q}^{2}$ there is a 1-dimensional representation $\psi_{x, y}: \operatorname{Heis}\left(\mathbf{F}_{q}\right) \rightarrow \mathbf{C}^{\times}$given by

$$
\psi_{x, y}\left(\begin{array}{ccc}
1 & a & b \tag{2.5}\\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)=\psi(x a+y c)
$$

Check as an exercise that from $\psi: \mathbf{F}_{q} \rightarrow \mathbf{C}^{\times}$being nontrivial, if $\psi_{x, y}=\psi_{x^{\prime}, y^{\prime}}$ then $(x, y)=$ $\left(x^{\prime}, y^{\prime}\right)$ in \mathbf{F}_{q}^{2}, so $\left\{\psi_{x, y}:(x, y) \in \mathbf{F}_{q}^{2}\right\}$ is q^{2} irreducible representations of degree 1. (Hint: first show that if $x \neq 0$ or $y \neq 0$ then $\psi_{x, y}$ is nontrivial, i.e., is not identically 1.)

Remaining irreducible representations: The number of remaining irreducible representations is $\left(q^{2}+q-1\right)-q^{2}=q-1$. Their degrees $\left\{d_{i}\right\}$ satisfy $q^{2}+\sum d_{i}^{2}=\left|\operatorname{Heis}\left(\mathbf{F}_{q}\right)\right|=q^{3}$, so $\sum d_{i}^{2}=q^{3}-q^{2}=(q-1) q^{2}$. We will find $q-1$ irreducible representations of degree q.

Let V, as before, be the q-dimensional vector space of functions $f: \mathbf{F}_{q} \rightarrow \mathbf{C}$. We will define three actions of \mathbf{F}_{q} on V, and composing them in a suitable order will give an action of the group $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$ on V. Fix a nontrivial homomorphism $\psi: \mathbf{F}_{q} \rightarrow \mathbf{C}^{\times}$. For $a, b, c \in \mathbf{F}_{q}$, define the linear maps $\sigma_{a}: V \rightarrow V, \tau_{b}: V \rightarrow V$, and $\varphi_{c}: V \rightarrow V$ by

$$
\left(\sigma_{a} f\right)(x)=f(x+a), \quad\left(\tau_{b} f\right)(x)=\psi(b) f(x), \quad\left(\varphi_{c} f\right)(x)=\psi(c x) f(x)
$$

For $t \in \mathbf{F}_{q}$, note τ_{t} multiplies each function in V by the number $\psi(t)$ while φ_{t} multiplies each function in V by the function $\psi(t x)$.

Check $\sigma_{a} \circ \sigma_{a^{\prime}}=\sigma_{a+a^{\prime}}, \tau_{b} \circ \tau_{b^{\prime}}=\tau_{b+b^{\prime}}$, and $\varphi_{c} \circ \varphi_{c^{\prime}}=\varphi_{c+c^{\prime}}$ as functions $V \rightarrow V$, so $a \mapsto \sigma_{a}, b \mapsto \tau_{b}, c \mapsto \varphi_{c}$ are actions of \mathbf{F}_{q} on V by linear maps. Check τ_{b} commutes with both σ_{a} and φ_{c}, while σ_{a} and φ_{c} commute with each other up to scaling by a root of unity:

$$
\begin{equation*}
\sigma_{a} \circ \tau_{b}=\tau_{b} \circ \sigma_{a}, \quad \varphi_{c} \circ \tau_{b}=\tau_{b} \circ \varphi_{c}, \quad \sigma_{a} \circ \varphi_{c}=\psi(a c) \varphi_{c} \circ \sigma_{a}=\tau_{a c} \circ \varphi_{c} \circ \sigma_{a} . \tag{2.6}
\end{equation*}
$$

Using (2.6), the 3 -fold composites $\sigma_{a} \circ \tau_{b} \circ \varphi_{c}$ compose as follows:

$$
\begin{aligned}
\left(\sigma_{a} \circ \tau_{b} \circ \varphi_{c}\right) \circ\left(\sigma_{a^{\prime}} \circ \tau_{b^{\prime}} \circ \varphi_{c^{\prime}}\right) & =\sigma_{a} \circ \tau_{b} \circ\left(\varphi_{c} \circ \sigma_{a^{\prime}}\right) \circ \tau_{b^{\prime}} \circ \varphi_{c^{\prime}} \\
& =\sigma_{a} \circ \tau_{b} \circ\left(\tau_{-a^{\prime} c} \circ \sigma_{a^{\prime}} \circ \varphi_{c}\right) \circ \tau_{b^{\prime}} \circ \varphi_{c^{\prime}} \\
& =\sigma_{a} \circ \tau_{b-a^{\prime} c} \circ \sigma_{a^{\prime}} \circ \tau_{b^{\prime}} \circ \varphi_{c} \circ \varphi_{c^{\prime}} \\
& =\sigma_{a} \circ \sigma_{a^{\prime}} \circ \tau_{b-a^{\prime} c} \circ \tau_{b^{\prime}} \circ \varphi_{c} \circ \varphi_{c^{\prime}} \\
& =\sigma_{a+a^{\prime}} \circ \tau_{b+b^{\prime}-a^{\prime} c} \circ \varphi_{c+c^{\prime}}
\end{aligned}
$$

This is almost like the way matrices in $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$ multiply in (2.1), and it would match matrix multiplication if $\tau_{b+b^{\prime}-a^{\prime} c}$ were $\tau_{b+b^{\prime}+a c^{\prime}}$. Matrices in $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$ decompose in (2.2) using reverse alphabetical order, which suggests looking at $\varphi_{c} \circ \tau_{b} \circ \sigma_{a}$ instead. By calculations as above,

$$
\begin{aligned}
\left(\varphi_{c} \circ \tau_{b} \circ \sigma_{a}\right) \circ\left(\varphi_{c^{\prime}} \circ \tau_{b^{\prime}} \circ \sigma_{a^{\prime}}\right) & =\varphi_{c} \circ \tau_{b} \circ\left(\sigma_{a} \circ \varphi_{c^{\prime}}\right) \circ \tau_{b^{\prime}} \circ \sigma_{a^{\prime}} \\
& =\varphi_{c} \circ \tau_{b} \circ\left(\tau_{a c^{\prime}} \circ \varphi_{c^{\prime}} \circ \sigma_{a}\right) \circ \tau_{b^{\prime}} \circ \sigma_{a^{\prime}} \\
& =\varphi_{c} \circ \tau_{b+a c^{\prime}} \circ \varphi_{c^{\prime}} \circ \tau_{b^{\prime}} \circ \sigma_{a} \circ \sigma_{a^{\prime}} \\
& =\varphi_{c} \circ \varphi_{c^{\prime}} \circ \tau_{b+a c^{\prime}} \circ \tau_{b^{\prime}} \circ \sigma_{a} \circ \sigma_{a^{\prime}} \\
& =\varphi_{c+c^{\prime}} \circ \tau_{b+b^{\prime}+a c^{\prime}} \circ \sigma_{a+a^{\prime}} .
\end{aligned}
$$

This is exactly how matrices in $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$ multiply, so we can define a q-dimensional representation ρ_{ψ} of $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$ on V by

$$
g=\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \mapsto \rho_{\psi}(g):=\varphi_{c} \circ \tau_{b} \circ \sigma_{a} .
$$

As a formula, for $f \in V$

$$
\left(\rho_{\psi}(g) f\right)(x)=\left(\varphi_{c} \tau_{b} \sigma_{a} f\right)(x)=\psi(c x)\left(\tau_{b} \sigma_{a} f\right)(x)=\psi(c x) \psi(b) f(x+a)=\psi(c x+b) f(x+a) .
$$

Let's compute the character of ρ_{ψ}. Using the basis $\left\{\delta_{t}: t \in \mathbf{F}_{q}\right\}$ of V, we have
$g=\left(\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right) \Longrightarrow\left(\rho_{\psi}(g) \delta_{t}\right)(x)=\psi(c x+b) \delta_{t}(x+a)= \begin{cases}\psi(c(t-a)+b), & \text { if } x=t-a, \\ 0, & \text { if } x \neq t-a,\end{cases}$
so

$$
\rho_{\psi}(g) \delta_{t}=\psi(c(t-a)+b) \delta_{t-a} .
$$

- If $a \neq 0$, then the matrix of $\rho_{\psi}(g)$ with respect to the delta-basis has 0 's on the main diagonal, so $\left(\operatorname{Tr} \rho_{\psi}\right)(g)=0$.
- If $a=0$, then the matrix of $\rho_{\psi}(g)$ with respect to the delta-basis has diagonal entries $\psi(c t+b)$, so $\left(\operatorname{Tr} \rho_{\psi}\right)(g)=\sum_{t \in \mathbf{F}_{q}} \psi(c t+b)$. If $c \neq 0$ then this sum equals $\sum_{x \in \mathbf{F}_{q}} \psi(x)$, which is 0 since ψ is nontrivial, and if $c=0$ then this sum is $q \psi(b)$.
Thus the character χ_{ψ} of ρ_{ψ} is

$$
\chi_{\psi}\left(\begin{array}{lll}
1 & a & b \tag{2.7}\\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)= \begin{cases}q \psi(b), & \text { if } a=c=0 \\
0, & \text { otherwise }\end{cases}
$$

so for each nontrivial homomorphism $\psi: \mathbf{F}_{q} \rightarrow \mathbf{C}^{\times}$, the inner product of χ_{ψ} with itself is

$$
\frac{1}{q^{3}} \sum_{g} \chi_{\psi}(g) \overline{\chi_{\psi}(g)}=\frac{1}{q^{3}} \sum_{b \in \mathbf{F}_{q}} q \psi(b) \overline{q \psi(b)}=\frac{1}{q} \sum_{b \in \mathbf{F}_{q}} 1=1 .
$$

There are $q-1$ nontrivial homomorphisms $\psi: \mathbf{F}_{q} \rightarrow \mathbf{C}^{\times}$, and to each is a q-dimensional irreducible representation ρ_{ψ} of $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$. To prove ρ_{ψ} 's for different nontrivial ψ are nonisomorphic, we show their characters χ_{ψ} are distinct. This is a consequence of the formula

$$
\chi_{\psi}\left(\begin{array}{lll}
1 & 0 & b \tag{2.8}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=q \psi(b)
$$

which is a special case of (2.7). It shows we can recover each nontrivial ψ from the character χ_{ψ} of the q-dimensional representation ρ_{ψ} of $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$. (Alternatively, check for different nontrivial homomorphisms $\psi_{1}, \psi_{2}: \mathbf{F}_{q} \rightarrow \mathbf{C}^{\times}$that the inner product of the characters of $\rho_{\psi_{1}}$ and $\rho_{\psi_{2}}$ is 0 , so for different nontrivial ψ 's the representations ρ_{ψ} are nonisomorphic.)

The center of $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$, by (2.4), is

$$
Z_{q}:=\left\{\left(\begin{array}{ccc}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right): b \in \mathbf{F}_{q}\right\} \cong \mathbf{F}_{q},
$$

so (2.8) tells us that each q-dimensional irreducible character χ_{ψ} of $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$ is determined by its restriction to Z_{q}, since χ_{ψ} on Z_{q} is enough information to determine ψ on \mathbf{F}_{q}, which is all we need to compute χ_{ψ} on $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$ in (2.7). In terms of representations rather than characters, the definition of ρ_{ψ} shows that ρ_{ψ} on Z_{q} is described by

$$
\rho_{\psi}\left(\begin{array}{ccc}
1 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\tau_{b}: f \mapsto \psi(b) f
$$

for all functions $f \in V$, so ρ_{ψ} restricted to Z_{q} is enough information to recover ψ on \mathbf{F}_{q}.
Each q-dimensional irreducible representation ρ_{ψ} of $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$ is nontrivial on Z_{q}. The other irreducible representations of $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$ are 1-dimensional, and they are trivial on Z_{q} by (2.5). ${ }^{2}$ Thus the irreducible representations of $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$ that are nontrivial on Z_{q} are in bijection with the nontrivial characters of Z_{q} by $\rho_{\psi} \mapsto \psi$; this is an analogue of the Stone-von Neumann theorem in mathematical physics about representations of Heis(R). ${ }^{3}$

More on the irreducible representations of $\operatorname{Aff}\left(\mathbf{F}_{q}\right)$ and $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$ is in [1, Chap. 16-18].

References

[1] A. Terras, "Fourier Analysis on Finite Groups and Applications," Cambridge Univ. Press, 1999.

[^1]
[^0]: ${ }^{1}$ Use $x=y=1$ to see a matrix in the center of $\operatorname{Aff}(F)$ has $a=1$. If $F \neq \mathbf{F}_{2}$, so $F^{\times} \neq\{1\}$, then use $y=0$ and $x \neq 1$ to see a matrix in the center of $\operatorname{Aff}(F)$ has $b=0$.

[^1]: ${ }^{2}$ The commutator subgroup of $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$ is its center, so that's another reason 1-dimensional representations of $\operatorname{Heis}\left(\mathbf{F}_{q}\right)$ are trivial on the center.
 ${ }^{3}$ See https://www-users.cse.umn.edu/~garrett/m/repns/notes_2014-15/svn_theorem.pdf.

