SL»(Z)

KEITH CONRAD

1. INTRODUCTION

The group SLo(Z), which lies discretely in SLo(R), has a role somewhat like that of Z
inside of R. It is the most basic example of a discrete nonabelian group. Two particular

elements in SLy(Z) are
0 -1 11
S‘<1 0)’ T‘(o 1)'

The matrix S has order 4 (S? = —I), while T has infinite order (7" = (} 7)) and ST =
(Y 7!) has order 6 ((ST)? = —I>).

Theorem 1.1. The matrices S and T' generate SLa(Z).

After proving this theorem and running through a few quick consequences, we will look
at subgroups of finite index in SLy(Z).

2. PROOF OF THEOREM 1.1

Let G = (S, T) be the subgroup of SLa(Z) generated by S and T. We will give two proofs
that G = SLa(Z), one algebraic and the other geometric.

For the algebraic proof, we start by writing down the effect of S and T™ on a general
matrix by multiplication from the left:

(2.1) s <i‘ g) - <—Z _Z>v ™ <z z) _ <a+cnc b+dnd>.

Now pick v = (¢ %) in SLy(Z). Suppose ¢ # 0. If |a| > |c|, divide a by ¢: a = ¢q +r with
0 <r <|c. By (2.1), T79 has upper left entry a — gc = r, which is smaller in absolute
value than the lower left entry ¢ in T~9y. Applying S switches these entries (with a sign
change), and we can apply the division algorithm in Z again if the lower left entry is nonzero
in order to find another power of T' to multiply by on the left so the lower left entry has
smaller absolute value than before. Eventually multiplication of 4 on the left by enough
copies of S and powers of T' gives a matrix in SLy(Z) with lower left entry 0. Such a matrix,
since it is integral with determinant 1, has the form (%! ™) for some m € Z and common
signs on the diagonal. This matrix is either T™ or —T' =", so there is some g € G such that
gy = +£T" for some n € Z. Since T" € G and S? = —I,, we have v = ¢~ !T™ € G, so we
are done.

In this algebraic proof, G acted on the set SLg(Z) by left multiplication. For the geometric
proof, we make GLJ (R) act on the upper half-plane h = {z+14y : y > 0} by linear fractional
transformations: for 7 € b, define

22) <Z Z)T‘: ar +b

et +d’
1
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The reason (2.2) lies in h follows from the imaginary part formula

(aT—l—b) _ (ad—bc)Im7

2.3
(2.3) ct+d leT + d|?

)

for 7 € C — {—d/c} and real a,b,c,d. By this formula, which the reader can check as an
exercise, if 7 € h and ad — bc > 0 then (ar +b)/(cT + d) € h. To show (2.2) defines a (left)
group action of GLj (R) on b, check that Iy = 7 and A(B7) = (AB)7 for all A and B in
GLJ (R). This action does not distinguish between matrices that differ by a sign (y and
—~ act on b in the same way), but this will not be a problem for the purpose of using this
action to prove G = SLy(Z) since —I, = S? € G.

The key geometric idea is that when SLo(Z) acts on a point in b, the orbit appears to
accumulate towards the z-axis. This is illustrated by the picture below, which shows points
in the SLa(Z)-orbit of 2i (including S(2i) = —1/(2¢) = i/2). It appears that the imaginary
parts of points in the orbit never exceed 2.

With that picture in mind, pick v € SLy(Z) and set 7 := v(2i). For g = (¢}%) in G, so
ad —be =1, (2.3) tells us

Im~

Write 7 as « + yi. Then in the denominator
let +d)? = (cx + d)* + (cy)?,

since y # 0 there are only finitely many integers ¢ and d with |c¢7 + d| less than a given
bound. Here 7 is not changing but ¢ and d are. Therefore Im(g7) has a mazimum possible

value as g runs over G (with 7 fixed), so there is some gy € G such that ’Im(gT) < Im(goT) ‘
for all g € G.

Since Sgp € G, the maximality property defining gg implies Im((Sgp)7) < Im(go7), so
(2.3) with (¢%) = S gives us

Im(go7)
072
Therefore |goT|> > 1, so |go7| > 1. Since Im(T™go7) = Im(go7) and T"gy € G, replacing
goT with T"go7 and running through the argument again shows [T"go7| > 1 for all n € Z.

Applying T (or T7!) to go7 adjusts its real part by 1 (or —1) without affecting the
imaginary part. Every real number is in an interval [n — 1/2,n + 1/2] (centered at some
integer n), and if n —1/2 < Re(go7) < n + 1/2 then —1/2 < Re(T"go7) < 1/2. Since
T "gg € G, the G-orbit of 7 = 7(2i) has an element in the set

(2.4) F={reb:|Re(r)] <1/2,|7| > 1}.
See the picture below. Note Im7 > /3/2 > 1/2 for all 7 € F.

Im(S5(go7)) = < Im(goT).
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For 7 in SLo(Z) we showed there is g € G such that g(v(2i)) = (¢77)(2¢) is in F. By (2.3),

2 3
5= (2 ) 512 = e = 1 m 2
so ¢ = 0 (since 2/4 = 1/2 < /3/2). Then ad = 1, so a = d = +1 and (g7)(2i) =
(a(2i)+b)/d = 2i+b. For Re((g7)(2i)) to be in [-1/2,1/2] forces b = 0, so gy = £12. Thus
v ==4g~'. Since —I, = S? € G, we get v € G. This finishes the proof of Theorem 1.1.
The region F above is called a fundamental domain for the action of SLy(Z) on h. It
is analogous to [0,1] as a fundamental domain for the translation action of Z on R: each
point in the space (h or R) has a point of its orbit (by SL2(Z) or Z) in the fundamental
domain (F or [0,1]) and all points in the fundamental domain lying in the same orbit are
on the boundary. In Appendix A we use F to compute the stabilizer of each point in b.
Below is a decomposition of h into translates «(F) as 7 runs over SLy(Z), with v = I
corresponding to F. It is based on [9, p. 78]. Animated SLg(Z)-orbits on this figure are at
https://roywilliams.github.io/play/js/sl2z/
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Different translates overlap only along boundary curves, and as we get closer to the x-
axis b is filled by infinitely many more of these translates. The fundamental domain and its
translates are called ideal triangles since they are each bounded by three sides and have two
endpoints in § but one “endpoint” not in §: the third endpoint is either a rational number
on the z-axis or (for the regions 7" (F) with n € Z) is ioco.

The description of F in (2.4) uses Euclidean geometry (the absolute value measures
Euclidean distances in ). Using the hyperbolic metric dg on h (see Appendix B), the
action of SLy(Z) and more generally SLa(R) by linear fractional transformations defines
isometries for the hyperbolic metric and we can give another description of F using dgs:

F=Are€b:dy(r,2i) <dg(r,7v(2)) for all v € SLa(Z)}.

That is, F is the points of hh whose distance (as measured by the hyperbolic metric) to 2i
is minimal compared to the distance to all points in the SLo(Z)-orbit of 2i. The boundary
of F is the points equidistant (for the hyperbolic metric) between 2i and one of its nearest
SLy(Z) translates T'(2i) = 2i+1, T~1(2i) = 2i—1, or S(2i) = i/2.! Part of what makes this
geometric description of F, called a Dirichlet polygon, attractive is that it also works for
discrete groups actings by isometries on Euclidean spaces. For example, when Z acts on R
by integer translations, for each a € R the numbers whose distance to a+Z = {a+n : n € Z}
is minimized at a are the interval [a — 1/2,a + 1/2], and this is a fundamental domain for
Z acting on R.

Example 2.1. We will carry out the algebraic proof of Theorem 1.1 to express A = (7 23)
in terms of S and T.
Since 17 = 7 -2 + 3, we want to subtract 7 -2 from 17:

o, (35
T A‘(? 12>'

Now we want to switch the roles of 3 and 7. Multiply by S:

o, [—T —12
stra= (7 ).

Dividing —7 by 3, we have —7 = 3-(—3) +2, so we want to add 3-3 to —7. Multiply by T°:

3ap—2,4_ (2 3
psraa (2 )

Once again, multiply by S to switch the entries of the first column (up to sign):

3ap—24_ (—3 9D
swssraa- (3 9.

Since —3 = 2(—2) + 1, we compute
1 1
203 a—2 4 _
T=5T°ST A—<2 3>.
Mutliply by S:

ST2ST3ST—2A — (_f _‘D .

lWe can replace 2¢ by yi for y > 1 and the same description of F works.
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Since —2 = 1(—2) + 0, multiply by 7:

T2ST?ST3ST2A = ((1) _i) )
Multiply by S:
1 -1

ST?*ST?*STST2A = <_0 .

) =T = S°T.
Solving for A,

(2.5) <177 ?g) = A=T2S7 738728 P28 (G2 T) = T2 ST 3ST2ST2ST

since S71 = —§.

Remark 2.2. Readers familiar with continued fractions will like to know that multiplication
by the matrices S and T is closely related to continued fractions for rational numbers, with
the caveat that the continued fraction algorithm should use nearest integers from above
rather than from below. To illustrate, the matrix (% %) is in SL2(Z), and to obtain an

expression for it in terms of S and T, we look at the ratio in the first column, 17/7:
17 _, 4, 1, 1
T T T T4 T 2-1/4
Using the entries 3, 2, and 4 as exponents for 7',
3 2 4a 17 -5
T°ST=ST*S = (7 o>

whose first column is what we are after. To get the right second column, we solve (
(177 :g)M for M, which is (} %) = T2, so

17 29\ (17 =5\ o 5 cm2cm o
<7 12) = (7 _2>T — TSST2STAST?,
This is a different expression for (17 2J) than the one we found in (2.5).

Corollary 2.3. The group SLa(Z) is generated by two matrices of finite order.

Proof. We have SLy(Z) = (S,T) = (S, ST), where S = (9 7} ) has order 4 and ST = (9 )
has order 6. (As a transformation on h, ST has order 3 since (ST)3 = —I, which acts
trivially on b.) O

Corollary 2.4. Every homomorphism SLa(Z) — C* has image in the 12th roots of unity.
Proof. By the previous corollary, SLo(Z) is generated by an element S of order 4 and an

element ST of order 6. Therefore a homomorphism SLg(Z) — C* has image in the subgroup
generated by pg and pg, which is pi9. d

Example 2.5. To show Corollary 2.4 is not an empty result, here is an example of a
homomorphism x: SLg(Z) — C* whose image is all the 12th roots of unity:

<a Z) _ e%((1—c2)(bd+3(c—1)d+c+3)+c(a+d—3))
c

For instance, x(S) = —i and x(T) = €27/12 = —2(71%@) We are pulling y out of nowhere;
it is not obvious it is a homomorphism! It occurs naturally in the theory of modular forms:
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for 7 € b, the function A(7) = 7 [L>:(1— e2™inT)24 gatisfies A(y7) = (er + d)2A(7)
for all v = (%) in SLy(Z) and its 12th root f(r) = e2m7/12 [T,51(1 — €*™77)? satisfies
fyr) = x(y)(er +d) f(r) for all v € SLa(Z): x is a multiplying factor here.

Corollary 2.6. The group SLa(Z) is generated by T = (3 1) and U = (19).

Proof. Both T and U are in SLy(Z), so (T,U) C SLy(Z). Conversely, since S = T-1UT~1,
(T,U) > (S,T) = SLy(Z). O

Theorem 2.7. Elements of finite order in SLy(Z) have order 1,2,3,4, or 6.

Proof. The following examples show each of the indicated orders occur: Is has order 1, — I
has order 2. S = (9 }) has order 4, ST = ({ 7}') has order 6, and (ST)* = (7} 7 ) has
order 3.

Suppose A € SLa(Z) has finite order n, so A" — Iy = O. We want to show n is 1, 2,
3,4, or 6. Since A is a 2 x 2 matrix with determinant 1, its characteristic polynomial is
X? —tX + 1, where t is the trace of A. Therefore the Cayley-Hamilton theorem tells us
A? —tA+4 I, = O. Since A is annihilated by both X™ —1 and X? —¢tX + 1, it is annihilated
by ged(X™ — 1, X2 —tX 4 1). This gcd has a limited number of choices since the integer ¢
is limited: ¢ is the sum of the eigenvalues of A, which have to be roots of unity since A has
finite order, so |t| < 2.

Case 1: t = 2. Since X" — 1 has distinct roots and X? — 2X + 1 = (X — 1)2, we have
ged(X™ —1,X2 —-2X +1)is X — 1. Thus A — I = O, so A = I, which has order 1.

Case 2: t = —2. Since X" — 1 has distinct roots and X2 +2X + 1 = (X + 1)2, we have
ged(X™ — 1,X%2 —2X +1) = X + 1 if n is even and the ged is 1 if n is odd. Since A is
annihilated by the gecd, the ged must be X + 1, so A+ Iy = O and thus A = —1I5, so A has
order 2.

Case 3: t = 1. Since X2 — X + 1 is a factor of X® +1 = (X +1)(X%2 — X + 1), we have
A3 = —1,, s0 A% = I,. Since A2 — A+ I, = O we can’t have A? = I3, so A has order 6.

Case 4: t = —1. Since X2+ X +1 is a factor of X? —1 = (X — 1)(X?+ X + 1), we have
A3 = I,. Since A2+ A+ I, = O we can’t have A = I, so A has order 3.

Case 5: t = 0. In this case, A = —I,, so A* = I and A has order 4. O

Remark 2.8. Obviously I is the only matrix in SLg(Z) of order 1. The proof above
shows —Iy is the only matrix in SLy(Z) of order 2. In fact, —I5 is the only matrix in
SLy(R) of order 2. (Many matrices in GLy(Z) have order 2, such as (75 7).) Up to

conjugation in SLy(Z), a matrix of order 3 is conjugate to (9 ~1) or (71 ), a matrix of

order 4 is conjugate to (_ §) or ({7}), and a matrix of order 6 is conjugate to (1 )

10
or (_91). A description of representatives for all the conjugacy classes in SLz(Z) is at

https://mathoverflow.net/questions/236151/.

There are many analogies between Z and F)[z]|, where F), = Z/pZ for prime p: both are
Euclidean domains with finite unit groups, formulas for |(Z/(m))*| and |(F,[z]/(f(x)))*]
are similar, and so on. The analogy fails for SLy(Z) and SLy(Fp[z]): Nagao [4] showed in
1959 that SLo(Fp[x]) is not finitely generated. This is a special case of a finite generatedness
criterion of Behr [2]. The groups SL,,(Z) and SL,,(F,[z]) are finitely generated for n > 3.

3. CONGRUENCE SUBGROUPS OF SLy(Z)

For an “arithmetically” defined group such as SLa(Z) (a discrete group of integral ma-
trices), its most important subgroups are those of finite index. The most basic way to find
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finite-index subgroups of SLa(Z) is through the finite groups SL2(Z/(N)). For each integer
N > 2, the natural reduction map SLa(Z) — SL2(Z/(N)) is a homomorphism with kernel

T'(N) = ker(SLa(Z) — SLo(Z/(N))) = {(2‘ Z) = <(1) (1)> mod N}.

Of course this subgroup is defined for N = 1 too, and I'(1) = SLy(Z). Each I'(/V) has
finite index in SLg(Z), since SL2(Z)/T'(N) embeds into the finite group SL2(Z/(N)), so
each subgroup of SLy(Z) containing some I'(N) has finite index.

Theorem 3.1. The group I'(2) = {A € SLy(Z) : A = (}9) mod 2} is generated by the
matrices —Io, T?, and U?, where

5 (1 2 > (10
r=(o1) (1)

Proof. All the matrices —Iy, T?, and U? are in I'(2), so (=1, T?,U%) C T'(2).

To get the reverse inclusion, we adapt the algebraic proof that SLa(Z) = (S, T, except
instead of the usual division theorem in Z we will use the modified division theorem in Z:
if a,b € Z with b # 0 then a = bq + r where |r| < (1/2)|b| (perhaps r < 0).

Pick A = (¢%) € T'(2), so a and d are odd while b and ¢ are even. If A has lower left
entry 0 then A = £(}7) for some m € Z. Since A is in I'(2), m must be even. Writing
m =2k, A==£( %) =2T%* € (-1, T?).

If the lower left entry of A is not 0 then we will multiply A by a suitable power of T2
or U? on the left to reduce the value of max(|al, |c|). Since a and ¢ have opposite parity,
a # +c, so |a| # |c| and therefore max(|al, |c|) is either |a| or |¢| but not both.

If |a| > |c| and ¢ # 0, write a = (2¢)q + r where |r| < (1/2)|2¢| = |¢|. Then T-21A =
(o 102 h) = (1" 3), with max(|r], c]) = |¢| < |a| = max(|al, |c]).

If |a| < |c|, then (since a # 0, as a is odd) write ¢ = (2a)q+ r where |r| < (1/2)|2a| = |a].
Now U204 = (b, 9)(41) = (2 4_byy), with max(lal,|r]) = la] < |e| = max(al, |e]).

Applying these two alternating steps, for some g € (T2, U?) the lower left entry of gA is
0, so by the argument above gA € (—I5,T?). Thus A =g~ ' -gA € (=1, T?,U?). O

Theorem 3.2. For all integers N > 1, the natural map SLa(Z) — SLa(Z/(N)) is onto.

Proof. The case N =1 is obvious, so let N > 2. Pick (¢%) in SLy(Z/(N)). By replacing a
with a + N in case a = 0, which doesn’t change a mod N, we can assume a # 0 in Z. Since
ad —bc =1 mod N, ged(a,b, N) = 1 by contradiction: if ged(a,b, N) > 1 then some prime
p divides a, b, and N, so reducing the congruence ad — bc = 1 mod N modulo p implies
0 = 1 mod p, which is impossible.

Using ged(a,b, N) = 1 and a # 0, we will find & = bmod N such that (a,b') = 1.2
Writing b’ = b + kN, we seek k € Z such that (a,b+ kN) = 1. Let k be the product of
primes dividing a that don’t divide b. (This is a finite product since a # 0, and if all primes
dividing a do divide b then set k = 1, which includes the case a = +1.) In particular,
(b,k) = 1 and each prime dividing a has to divide b or k. We’ll show (a,b+ kN) = 1 by
contradiction. If that ged is not 1, some prime p divides a and b+ kN. Since p | a, either
plborp |k Ifp|kthenp| (b+EkEN)= p]|b but (byk) =1. Thus p | b and p 1 k.
Thenp | (b+kN)=p| kN =p| N, so p | ged(a,b, N), but ged(a,b, N) = 1. That proves
(a,b+ EkN) =1. Setting ¥’ = b+ kN, we have & = bmod N and (a,b’) = 1.

2Most proofs I have seen of this involve the Chinese remainder theorem. The proof here doesn’t.
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Since ad — bc =1 mod N, we can write ad — b'c = 1+ Nm with m € Z. Every matrix of
the form (.9 d+bgl/N) with z,y € Z is congruent mod N to (¢%) and it has determinant
a(d+yN) =V(c+zN) = (ad —bc) + (ay — V'z)N = 1+ (m + ay — b/z)N. We want to
pick z and y in Z that make this determinant equal to 1, meaning ay — b’z = —m. Since
(a,b') = 1, every integer is a Z-linear combination of a and V', so there are z and y in Z such
that ay — b’z = —m, and with such = and y we are done: A = (_ %y df?;N) is in SLo(Z)
and A= (%5%) mod N. O

Example 3.3. Let A = (18 4}), so det A = =20 = 1 mod 21. We will find a matrix in
SL2(Z) that reduces to A in SLy(Z/(21)).

The top two entries, 18 and 14, are not relatively prime, but if we change 14 to 14421 = 35
then they are relatively prime and (1 %) has determinant —104 = 1 — 105 = 1+ 21m with
m = —5. A solution to 18y — 352z = —m =51is y = 10 and = = 5,

18 14\ _ 18 35 _ (18 35 191
4 2)=\4+5.21 2410-21) = \109 212) ™°

and the last matrix is in SLa(Z).

The mod N reduction homomorphism GL2(Z) — GL2(Z/(N)) is usually not onto. All
matrices in GLa(Z) have determinant +1 while (Z/(V))* has units v # +1 mod N when
N > 6, s0 (49) in GLa(Z/(N)) can’t be the reduction of a matrix in GLy(Z) since the
determinants won’t match mod V.

Corollary 3.4. For all integers N > 1, SLy(Z)/T'(N) = SLa(Z/(N)).

Proof. The reduction map SLa(Z) — SL2(Z/(N)) is onto by Theorem 3.2, with kernel
['(N). O

Corollary 3.5. The finite group SLo(Z/(N)) is generated by 2 elements of order N.

Proof. Since SLy(Z) is generated by T' = ({ 1) and U = (}9) (Corollary 2.6), reducing
modulo N shows SLy(Z/(N)) is generated by the reductions of 7" and U, which each have
order N. O

Corollary 3.6. In SLy(Z), the subgroup (S, T?) has index 3.

Proof. We start by showing I'(2) C (S, T2). By Theorem 3.1, it is enough to show the three
generators —Io, T2, and U? of I'(2) are in (S, T?): —Iy = S?, T? = T?, and U? = ST25~1,

To compute the index of (S,7?) in SLg(Z), it is equivalent to work modulo I'(2) and
compute the index of the subgroup generated by S and T? in SLy(Z)/T'(2) = SLa(Z/(2)).
Since T2 € T'(2), S ¢ I'(2), and S? = —I, € T'(2), the group (S, 7?)/T'(2) has order 2, hence
its index in SLg(Z/(2)) is 6/2 = 3. O

If we replace (S, T?) with (S,T™) for m > 2 then there is no analogue of Corollary 3.6:
(S,T™) does not have finite index in SLg(Z) for m > 2! A proof of this, shown to me
by V. Pasol, is based on the action of SLg(Z) on the primitive vectors (relatively prime
coordinates) in Z2. This action of SLy(Z) has one orbit, so if (S,7™) has finite index in
SLy(Z) then the action of (S, 7™) on primitive vectors in Z? would have finitely many orbits
(the number of orbits would be at most its index in SLy(Z)), but it turns out there are
infinitely many (S, T"")-orbits if m > 2, so (S,T™) must have infinite index in SLy(Z).

A subgroup of SLa(Z) that contains some I'(N) is called a congruence subgroup. The
meaning of the terminology is that such a subgroup can be described by a finite set of
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congruence conditions (namely being congruent modulo N to a set of representatives for a
subgroup of SLy(Z/(N))).

Example 3.7. The proof of Corollary 3.6 shows (S,T?) is a congruence subgroup since
I'(2) C (S,T?). The image of (S,T?) in SLy(Z)/T'(2) = SLa(Z/(2)) is {I2,S}, so we can
describe (S, T?) by congruence conditions modulo 2:

(5,T?) = {A € SLo(Z) : A = (é ‘f) or <(1) é) mod 2}.

Theorem 3.8. The commutator subgroup SLa(Z)" is a congruence subgroup with index 12.

Proof. Since SLo(Z) = (S,T) = (S,ST) where S? = (ST)3 = —I5, the abelianization
SLo(Z)/ SLa(Z)' is generated by g = S and h = ST where g* = 1, h® = 1, and ¢ = h3.
Since SLo(Z)/SL2(Z)’ is abelian, S* =5°T% 50§ =T ", Then S* = I, implies T~ = T,
so T has order dividing 12. Thus SLa(Z)/SLa(Z)" = (S,T) = (T), so [SLa(Z) : SLo(Z)'] | 12.

Next we will show in two ways that SLa(Z) has a cyclic quotient group of order 12. That
implies [SLa(Z) : SL2(Z)'] > 12, so the index is 12. From the construction of the quotient
group, we will see that I'(12) C SLy(Z)'.

Method 1. If the reader is willing to believe the incredible homomorphism y in Example
2.5 exists, then SLa(Z)/ ker x = pi2 is abelian of order 12, so SLa(Z)" = ker x by our index
bounds. Since I'(12) C ker x by a direct computation, SLy(Z)" is a congruence subgroup.

Method 2. The natural reduction map SLa(Z) — SLa(Z/(N)) is surjective for all N > 2
by Theorem 3.2. By the Chinese remainder theorem,

SLa(Z/(12)) = SLa(Z/(3)) x SL2(Z/(4)),

and combining this with Corollary 3.4 when N = 12 gives us a surjective group homomor-
phism

(3.1) SLa(Z) —» SLa(Z/(3)) x SLa(Z/(4))

with kernel I'(12). We will show SL2(Z/(3)) has a quotient group of order 3 (necessarily
cyclic) and SLy(Z/(4)) has a cyclic quotient group of order 4. Combining this with (3.1)
gives us a surjective group homomorphism

SLy(Z) — SL(Z/(3)) x SL2(Z/(4)) -~ Z/(3) x Z/(4)

with a cyclic target group of order 12 and I'(12) is contained in the kernel.
To show there is a surjective homomomorphism SLy(Z/(3)) — Z/(3), here are two meth-

ods. First, SLo(Z/(3)) has order 24, so PSLo(Z/(3)) := SLo(Z/(3))/{£I>} has order 12. It

has more than one subgroup of order 3, such as (1)) and (({?)). There are 5 groups of

order 12 up to isomorphism and any with more than one subgroup of order 3 is isomorphic
to Ag,® so PSL2(Z/(3)) = A4. In Ay, the subgroup V := {(1), (12)(34), (13)(24), (14)(23)} is
normal since these are the only elements with 2-power order. The composition SLy(Z/(3)) —
PSL2(Z/(3)) = Ay — Ay4/V = Z/(3) then gives us what we need. For a second method,
by an explicit calculation SL2(Z/(3)) has 8 elements with 2-power order, so this is a 2-
Sylow subgroup of SL(Z/(3)) and must be normal. Thus SLy(Z/(3))/{2-Sylow} has order
24/8 = 3. (The 2-Sylow subgroup is isomorphic to Qg and ((}1)) is a complementary
subgroup of order 3, so SLa(Z/(3)) = Qs < Z/(3).)

3See Table 1 or 2 in https://kconrad.math.uconn.edu/blurbs/grouptheory/groupl2.pdf.
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To show there is a surjective homomomorphism SLo(Z/(4)) — Z/(4), check SLa(Z/(4))
has order 48. In this group, let z = (33) and y = (39). Then zy = yz = (3 ?). The three
matrices z, y, and z all have order 2, so the subgroup H = (x,y) = {I2,z,y, xy} has order
4. The matrix z = (1) in SLy(Z/(4)) has order 3 and normalizes H since zzz7' = y,
zyz~! = xy, and zzyz~! = 2. So N = (z,y,2) = (2,H) = {'h : i € Z,h € H} is a
subgroup of SLy(Z/(4)) with order 12 and index 4.

The subgroup N is normal in SLy(Z/(4)). To prove that, it suffices to check gNg=! C N
when ¢ is (§1) and (}9) since these two matrices generate SLa(Z/(4)) by the proof of
Corollary 3.5. If g = (4 1) then gzg™ =z, gyg~' = 2y, and gzg~! = (33) = 2%z, while if
g=(19) then gzg~' = xy, gyg~' =y, and gzg~' = (1 }) = 2*y.

The quotient group SLa(Z/(4))/N has order 48/12 = 4. Let’s show the quotient group
is cyclic. The subgroup (({ 1)) of SLa(Z/(4)) is cyclic of order 4 and intersects H trivially.
By an explicit calculation, all 8 elements of N — H have order 3, so ((}1)) intersects
N trivially. Thus SLy(Z/(4))/N = ((§1)) = Z/(4). (Since (({ 1)) is a complementary
subgroup to N in SLa(Z/(4)), SLa(Z/(4)) = N x Z/(4). There are 5 groups of order 12 up
to isomorphism and the only one with more than one subgroup of order 3 is A4, so N = Ay.

Thus SLo(Z/(4)) = Ay x Z/(4).) O

Remark 3.9. The commutator subgroup SLy(Z)" turns out to be generated by the two
commutators [S,T] = (_} 75 ) and [S,T71] = (11).

For n > 2, a subgroup of SL,(Z) is called a congruence subgroup if for some N € Z™ it
contains the kernel of the natural reduction map SL,,(Z) — SL,,(Z/(N)) (which is onto, by a
longer proof than Theorem 3.2). As in the case n = 2, every congruence subgroup of SL,,(Z)
has finite index. We will see in Section 4 that SLy(Z) has finite-index subgroups that are
not congruence subgroups. It is a theorem of Bass, Lazard, and Serre (1964) and Mennicke
(1965) that for n > 2, all finite-index subgroups of SL,(Z) are congruence subgroups.* So
in this regard the first group SLy(Z) in the series of groups SL,,(Z) is misleading as to the
behavior of the groups for higher n. (Compare to: A, is simple for n > 5, PSLy(Z/(p)) is
simple for prime p > 5,...)

Among finite-index subgroups in SLs(Z), the congruence subgroups are particularly im-
portant in number theory because of the modular forms associated to them. The theta-
function of a binary quadratic form and the L-function of an elliptic curve are both natural
sources of modular forms for congruence subgroups of SLy(Z). All finite-index subgroups
of SLg(Z) are important in geometry since the orbit space of h under such a group is (after
adding a finite set of “missing points”) a smooth projective curve over the complex numbers.

Most finite-index subgroups of SLy(Z) are not congruence subgroups, in a quantifiable
sense: among subgroups of index n in SLg(Z), the proportion of congruence subgroups
tends to 0 as n — oo.

4. NON-CONGRUENCE SUBGROUPS OF SLy(Z)

The existence of non-congruence subgroups of SLg(Z) (subgroups of finite index not
containing some I'(N)) was first announced by Klein in 1879. The first examples in print
appeared in 1887 by Fricke and Pick, independently. Their construction of the subgroups
used generators to define them. We will describe a construction of such subgroups using

4A more general theorem in this direction was proved by Bass, Milnor, and Serre (1967): for a number
field K, with ring of integers O, all finite-index subgroups of SL,(Ok) (n > 3) are congruence subgroups
if and only if K has at least one real embedding.
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kernels. It will be a nice application of the Jordan—-Holder theorem, as codified in the
following lemma.

Lemma 4.1. Let S be a finite simple group. If G, ..., Gy, are nontrivial finite groups such
that none have S as a composition factor then S is not a composition factor of G1 X+ X Gyy,.
In particular, S is not a quotient group of G1 X -+ X Gy,.

Proof. The direct product G := G X --- x G, has a normal series
{(e;...,e)} <Gy x{e} x - x{e}a9G1 xGax{e} x---x{e}<-- <G x Gy X+ xGp,

whose factors are isomorphic to Gy, ..., Gy,. This normal series can be refined to a compo-
sition series, whose simple factors are the composition factors for the G;’s. By the Jordan-
Hoélder theorem, the factors in every composition series for G must be one of these simple
factors, so a simple group S that is not a composition factor for the G;’s is not a composition
factor for G1 x --- x G, = G.

If G has a quotient group isomorphic to S then it has a normal series {e} < N <G with
G/N = S. This normal series for G can be extended to a composition series of G with S
as the top factor, so S is a composition factor of G, which is a contradiction. U

Theorem 4.2. For n > 6, the alternating group A, is not a quotient of SLa(Z/(N)) for
each N > 2.

Proof. Write N = pi'---pjm, s0 Z/(N) = [[;, Z/(p;") by the Chinese remainder theorem.
Then

SLa(Z/(N)) = [ [ SL2(Z/(0})),
=1

so by Lemma 4.1 it suffices to show A,, for n > 6 is not a composition factor of SLa(Z/(p"))
for each prime power p".

To write down a composition series for SLy(Z/(p")), we start with the reduction map
SLa(Z/(p")) — SLa(Z/(p)), which is onto. Let K be its kernel, so we have the normal series

[y mod p'} < K <SLa(Z/(p")).

whose factors (up to isomorphism) are K and SLa2(Z/(p)). Therefore the composition factors
for SLa(Z/(p")) are the composition factors for K and for SLa(Z/(p)).

What are the composition factors for K? The group K = {A € SLy(Z/(p")) : A =
I mod p} is a p-group: if A = I mod p then AP" = I, mod pF*1 for all k > 0 (by induction),
so AP = I3 mod p". Therefore all elements of K have p-power order, and a finite group
whose elements have p-power order is a p-group (Cauchy!), so K is a p-group. (The exact
order of K can be computed, but that’s not important for us.) The composition factors of
a finite p-group, such as K, are all cyclic of order p.

We now turn to SLa(Z/(p)). For p > 5, a composition series for SLo(Z/(p)) is {I2} <
{£I>} < SLa(Z/(p)), since PSLa(Z/(p)) = SL2(Z/(p))/{xI2} is simple for p > 5. Thus
the composition factors for SLa(Z/(p)) when p > 5 are Z/(2) and PSLy(Z/(p)). What
about for p < 57 Since SL2(Z/(2)) = GL2(Z/(2)) = S3 and SLa(Z/(3))/{xl2} = A4, the
composition factors of SLa(Z/(2)) and SL2(Z/(3)) are cyclic (of order 2 or 3).

Thus for all prime powers p”", SLa(Z/(p")) has only one nonabelian composition factor
when p > 5, namely PSLy(Z/(p)). If p < 3 then all composition factors of SLa(Z/(p"))
are cyclic. So if A, for n > 6 were a composition factor of some SLa(Z/(p")), A, would
have to be isomorphic to PSLa(Z/(p)) for some prime p > 5. The problem with this is that
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an alternating group and a projective special linear group hardly ever have the same size.
The group PSLy(Z/(p)) has order (p? — 1)p/2, so we ask: when can (p? — 1)p/2 = n!/2, or
equivalently

(p—Dpp+1)=nl?

(The punctuation there is: factorial, question mark.) If n < p then n! is not divisible
by p and we have a contradiction. If n = p then dividing both sides by (p — 1)p gives
p+1=(p—2)!, whose only solution is p =5 (and n = 5). If n = p+ 1 then dividing both
sides by (p — 1)p(p+ 1) gives 1 = (p — 2)! so p = 3 (but we need p > 5). If n > p+ 2 then
there is too much remaining on the right side when we divide through by (p — 1)p(p + 1).
Since we only found a solution when p = n =5 (and indeed PSL2(Z/(5)) = As), for n > 6
the group A, is not a quotient group of SLa(Z/(N)) for all N > 2. O

The bound n > 6 in Theorem 4.2 is optimal: A5 = PSLo(Z/(5)), A4 = PSLy(Z/(3)), and
As is isomorphic to the quotient of SLa(Z/(3)) by its normal 2-Sylow subgroup.

While Theorem 4.2 says most A,’s do not arise as the quotient of the finite groups
SL2(Z/(N)), we will show most A,’s do arise as the quotient of SLa(Z).

Theorem 4.3. Forn > 9, A,, is a quotient of SLa(Z).

Proof. We will actually get A,, as a quotient group of PSLa(Z) = SLy(Z)/{£I>}, but that
also makes it a quotient group of SLy(Z) by composing with the natural reduction map
SLo(Z) — PSLo(Z).

There are two things that make this result hold: A, (for n > 9) is generated by two
elements of order 2 and 3, and PSLy(Z) is also freely generated by two elements of order 2
and 3. We will explain, in order, what these mean.

In 1901, G. A. Miller proved that for n > 9, the group A, is generated by an element of
order 2 and an element of order 3. His proof gave generators whose construction depends
on a choice of a prime between n/2 and n when n > 12, and for smaller n he left it as an
exercise for the reader to find elements of order 2 and 3 generating A,. In 1971, Dey and
Wiegold (unaware of Miller’s work) gave an explicit pair of generators of order 2 and 3 for
A, without needing an auxiliary prime.

To see the group PSLy(Z) is generated by elements of order 2 and 3, we work with the
cosets of S and ST. Set z = S = ((1) _01) and y = ST = ((1) _11) Then 22 = —Iy = I, and
y3 = —Iy = I in PSLy(Z). Because S and ST generate SLa(Z), every element of PSLy(Z)
can be written as a word in x and y. Taking into account that x has order 2 and y has
order 3, we can write each product of x’s and y’s in the “reduced” form

ylowyzlx . yln—lxyzn7

where the exponents i; are regarded in Z/(3) and all these exponents are nonzero modulo 3
except perhaps ig and i,. It turns out such a representation is unique; that’s the meaning
of saying = and y freely generate PSLo(Z): there are no relations on x and y in the group
except for those that are logical consequences of 2> = 1 and y®> = 1. (For a proof, see
Appendix C.) Because of the unique expression of each element of PSLy(Z) as a word in x
and y, each assignment to  and y of elements of order 2 and 3 in another group uniquely
extends to a homomorphism from PSLs(Z) to that group. Therefore, choosing a generating
pair of order 2 and 3 for A, and sending x and y to them, leads to a homomorphism from
PSLy(Z) onto A,. O
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Example 4.4. The group Ag turns out to be generated by

(14)(29)(37)(56) and (123)(456)(789),

so one surjective homomorphism from SLy(Z) to Ag is the composite SL2(Z) — PSLy(Z) —

Ag where the first map is reduction mod 4/, and the second is determined by S +—
(14)(29)(37)(56) and ST — (123)(456)(789).

Remark 4.5. The group A, is generated by elements of order dividing 2 and 3 for all n > 3
except for n = 6, 7, and 8. Since the behavior is uniform once n > 9, we stated Theorem
4.3 in the simpler way excluding small n.

By Theorem 4.3, for all n > 9 there is a surjective homomorphism SLy(Z) — A,. The
(mysterious) kernel of such a homomorphism is a subgroup of SLs(Z) with finite index.
The kernel can’t contain some I'(IV), since otherwise A, would be realizable as a quotient
group of SLy(Z/(N)), which is impossible by Theorem 4.2, so the kernel is a (finite-index)
non-congruence subgroup of SLg(Z). This description of the subgroup as a kernel does
not provide an easily accessible set of generators for it, but it does provide a recipe for
determining whether an individual matrix is in the subgroup. Here is the procedure. For
n > 9, pick two elements = and y in A,, of respective orders 2 and 3 such that A, = (x,y).
For a matrix in SLy(Z), write it (up to an overall sign) as a product of S and ST. Turn
that word in S and ST into a word in « and y. The matrices whose corresponding word in
x and y is trivial in A,, form a non-congruence subgroup of SLy(Z).

Most of the nonabelian finite simple groups, not just the alternating groups A,, for n > 9,
turn out to be generated by a pair of elements with order 2 and 3, and thus most nonabelian
finite simple groups are quotient groups of SLa(Z) by the same argument used for most A,,’s.
(Exceptions to this occur among some simple matrix groups defined in characteristics 2 and
3, such as the infinite family of Suzuki groups, whose orders are not divisible by 3.) A
nonabelian finite simple group that is not isomorphic to PSLy(Z/(p)) for p > 5 is not
a quotient group of SLo(Z/(N)) for N > 2 by the same Jordan-Holder argument given
before for alternating groups. So there is a tremendous number of ways to construct non-
congruence subgroups of SLy(Z), because most finite simple groups are quotients of SLo(Z)
but are not quotients of some SLy(Z/(N)).

Amusingly, for n > 5 the group SL,(Z) is generated by a pair of elements of order 2 and
3: it is called (2, 3)-generated. This was proved for n > 28 in 1994 [10], n > 13 in 1994 [7],
5 < n < 7in 2007 [12], and finally 8 < n < 12 in 2008 [13], so SL,,(Z) when n > 5 is a
quotient group of SLo(Z)! The groups SL,(Z) for n = 2, 3,4 are not (2, 3)-generated: the
case n = 2 is due to the only element of order 2 in SLy(Z) being —I5, so all (2, 3)-generated
subgroups of SLy(Z) are abelian, the case n = 4 was proved in 1901 [3] from its quotient
group SL4(F3) = Ag not being (2, 3)-generated, and the case n = 3 was proved in 2000
[11].> The groups GL,(Z) and PGL,(Z) also turn out to be (2,3)-generated if and only if
n > 5, and PSL,(Z) for n > 2 is (2, 3)-generated if and only if n # 3 or 4; the final details
were worked out in 2020 [14].

SFor a finite field Fy and n > 3, SL,(Fy) is (2,3)-generated except for SLs(F4) and SL4(F3) [5]. The
group SL2(F4) for odd ¢ is not (2, 3)-generated since its only element of order 2 is —I> and thus all (2, 3)-
generated subgroups of SLz(F,) are abelian.
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APPENDIX A. STABILIZERS IN SLs(Z)

For z € b, let Stab, = {g € SL2(Z) : g(z) = 2z} be its stabilizer subgroup in SLy(Z).
Since +15 both act trivially on b, they are in Stab,. In this appendix we will compute Stab,
for all z, and it will turn out usually to be £ but sometimes it is larger.

f
w 14w
B e
-1 0 1

Example A.1. We show Stab; = (S), which is cyclic of order 4.°

For a matrix (2 %) in SLy(Z) to fix ¢ is equivalent to ai+b = (ci+d)i = —c+di, soa =d
and b= —c, or d = a and ¢ = —b. Then 1 = ad — bc = a® + b>. Since a and b are integers,
(a,b) = (£1,0) or (0,+1),s0 (24) = (_4?Y)is £I, or £5. Conversely, these four matrices
all fix 7, so Stab; = {£I, £S5} = (5).

Example A.2. Let w = ™/3 = (—1 + /3i)/2, which is the nontrivial cube root of unity
in h. Let’s show Stab,, = (ST), which is cyclic of order 6.

To have (2%) € SLy(Z) fix w is equivalent to aw + b = (cw + d)w = cw? + dw. Since
Ww=-1-w,aw+b=(d—cw—-c,sob=—-canda=d—c=d+b Thus c= —b and
d=a—b,s01=ad—bc = ala—b)+b* = a®?—ab+b?. Writing this as 1 = (a—b/2)2+(3/4)b?,
the only possible values of b are 0, 1, and —1, and by taking cases we get (a,b) = £(1,0),
+(0,1), or £(1,1), 50 (¢5) = (4 ,°,) has 6 possible values that turn out to be the powers

cd
of ST = (?7]). Since ST fixes w (check!), its powers fix w and thus Stab,, = (ST').

Theorem A.3. When SLa(Z) acts on h by linear fractional transformations, the stabilizer
of a point z € b can be described as follows.

(1) If z is in the SLa(Z)-orbit of i then Stab, = Z/(4).

(2) If z is in the SLa(Z)-orbit of w then Stab, = Z/(6).

(3) If z is not in the SLa(Z)-orbit of i or w then Stab, = {£I>}.

Proof. Points in the same orbit of a group action have conjugate stabilizer subgroups, and
conjugate subgroups are isomorphic, so the first two parts of the theorem follow from the
calculations in Examples A.1 and A.2

It remains to show the third part: if z € b is not in the SLo(Z)-orbit of ¢ or w then the
only g € SLo(Z) such that g(z) = z are £I5. We will prove the contrapositive: if Stab,
contains a matrix that is not £/ then z is in the SLa(Z)-orbit of i or w.

Step 1: If (28)z =z and (24) # I, then c# 0 and d+a is 0, 1, or —1.

The condition (¢ Z)z = z is equivalent to az + b = c2z? + dz, so

(A1) 2+ (d—a)z—b=0.

We'll show ¢ # 0 by contradiction. Suppose ¢ =0, so b = (d —a)z. From 1 = ad — bc = ad,
we get @ = d = +1 since a and d are integers. Thus b = 0, so (¢%) = (§9) = £I,.

6When SLa(R.) acts on b, the stabilizer subgroup of i is SO2(R.) C SL2(R). See the appendix of https://
kconrad.math.uconn.edu/blurbs/grouptheory/SL(2,R) .pdf. All points of h are in the same SLa(R)-orbit,
so their stabilizer subgroups in SL2(R) are conjugate to SO2(R). Here the group acting is smaller: SLo(Z).


https://kconrad.math.uconn.edu/blurbs/grouptheory/SL(2,R).pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/SL(2,R).pdf
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That contradicts (¢ %) # +15 so ¢ # 0. For (A.1) to have a root z in b, the discriminant
(d — a)? + 4bc is negative. Since bc = ad — 1,
(A2) (d—a)?®+4bc=d*—2ad+a®+4(ad—1) =d* + 2ad + a® — 4 = (d+ a)® — 4.
Therefore (d + a)? < 4, so |d + a| < 2, which implies the integer d + a is 1, 0, or —1.

Step 2: If (24)z = z with ¢ # 0 and d + a = 0 then z is in the SLa(Z)-orbit of 4.

Since ¢ # 0, by Step 1 we have c22 + (d — a)z — b = 0 and the quadratic polynomial on
the left side has discriminant (d 4+ a)? — 4 = —4 by (A.2), so by the quadratic formula

—(d—a)*Vv—-4 2a+2i axi
2c 2 e

Since (2 4)z = (2% Z%)2, we can change signs on the matrix entries so that ¢ > 0, and then
z=(a-+1i)/csince z € b.

To show z is in the SLa(Z)-orbit of 7, let 2’ be the point in the SLy(Z)-orbit of z that’s
in F. We'll show 2’ = 4. Since Stab,/ is conjugate to Stab,, Stab,, contains a matrix (‘;,’ Z/,)
where the trace d’ + a’ is 0, and necessarily ¢’ # 0 by Step 1. Using the same calculations
as in the previous paragraph starting from (‘Cl,' Z’, )2 = 2/, we have 2/ = (d’ +1)/¢ where
without loss of generality we took ¢/ > 0. Since 2z’ € F, the condition Im 2’ > v/3/2 is the
same as ¢ < 2/v/3 ~ 1.15, so ¢ = 1. Then Re(2') = a//¢’ = a' is in [~1/2,1/2], s0 a’ = 0
since a’ is an integer. Thus 2’ = i.

Step 3: If (¢5)z = z with ¢ # 0 and d + a = +1 then z is in the SLy(Z)-orbit of w.

Since (¢ %)z =(—¢ :Z )z, by changing the signs of all the matrix entries if necessary then

we can suppose d+a = 1. By Step 1, cz?+ (d — a)z — b = 0 where the quadratic polynomial
on the left side has discriminant (d + a)? —4 = —3 by (A.2), so

 —(d—a)+V=-3 2a—1+3i

N 2c N 2c )
If we have the + sign then z = (2a — 1 +v/3i)/(2c) = (a + w)/c. Then from z € b we get
¢ > 0. If instead we have the — sign then z = (2a — 1 — v/3i)/(2¢) = (a — (1 + w))/c =
((1 —a) +w)/(—c), where the denominator —c must be positive since z € b.

As in Step 2, there is a number 2’ in the SLa(Z)-orbit of z that lies in F. Then Stab.,,
contains a matrix (‘é,/ Z’,) with trace 1 and (by Step 1) ¢ # 0. Calculations as in the
previous paragraph show 2’ = (A + w)/C for integers A and C such that C' > 0. Since
2 € F,Imz >+/3/2 and |Re(2')| < 1/2. The first inequality tells us v/3/(2C) > v/3/2, so
C < 1. Thus C =1, so the condition Re(z’) € [-1/2,1/2] becomes —1/2 < A —1/2 < 1/2,
s00<A<1 Hence 2z =worz =14w=T(w), so z is in the SLy(Z)-orbit of w. O

Theorem A.4. A number z € § is in the SLa(Z)-orbit of i if and only if z = (a +1i)/c
where a and ¢ are integers such that ¢ > 0 and c | (a®>+1), and z is in the SLa(Z)-orbit of w
if and only if z = (a + w)/c where a and c are integers such that ¢ >0 and ¢ | (a* —a +1).

Proof. In Step 2 of the proof of Theorem A.3, where d + a = 0, we have 1 = ad — bc =
a(—a) —bec = —a? — be, so a? + 1 = ¢(—b). That suggests the following: if z = (a +i)/c for
some a,c € Z such that ¢ > 0 and ¢ | (a® + 1), then define the integer b by the condition
a’? +1 = ¢(—b) and define d = —a. Then ad — bc = —a® + (a®> + 1) = 1 and

<a b) _az+b  ala+i)/c+b  a*+ai+be  a*+ai—-1-a* a+i

c d)” cz+d clat+i)/c+d actci+de ci T



16 KEITH CONRAD

So Stab, contains the matrix (29%) in SLy(Z) with trace 0. By Step 2 of the proof of
Theorem A.3, z is in the SLa(Z)-orbit of i.

Conversely, suppose z is in the SLy(Z)-orbit of i, so z = (4 B)i = (4i + B)/(Ci + D)
where (4 B) € SLy(Z). Then

_ (B4 A)(D—Ci) AC+BD+ (AD — BCO)i _ AC + BD +i

(D + Ci)(D — Ci) D? + C? - C?+D?

This is (a+14)/c fora = AC+BD and ¢ = C?+ D2, so ¢ > 0. From a+i = (B+ Ai)(D—C1),
taking the norm of both sides in Z[i] shows a® + 1 = (B% + A2%)(D? + C?) = (B% + A?)c, so
c|(a®+1).

In Step 3 of the proof of Theorem A.3, if d + a = 1 then we have 1 = ad — bc =
a(l —a) —bc =a—a?—be, so a®> —a+ 1 = ¢(—b). Therefore if z = (a + w)/c for some
a,c € Z such that ¢ > 0 and ¢ | (a®> — a + 1), then define the integer b by the condition
a’ —a+1=c(—b) and define d =1 — a. Then ad —bc=a(l —a) +a?> —a+1=1 and

a b\ _alat+w)/c+b ad*4aw+be  d®+aw-14+a—a® a(l+w)-—1
c d)” clat+w)/c+d actcwtdec c(1+w) (1 +w)

9

which is (a 4+ w)/c since —1/(1 + w) = w. We have shown Stab. contains a matrix (¢ %) in

SL2(Z) with trace 1. By Step 3 of the proof of Theorem A.3, z is in the SLy(Z)-orbit of w.

Now suppose, conversely, that z is in the SLg(Z)-orbit of w. Then z = (é Bw =

(Aw + B)/(Cw + D) for some (& B) € SLy(Z). Therefore
(B+ Aw)(D+Cw) (BD+AC)+ADw+ BCw (AC—-BC+BD)+w

(D + Cw)(D + Cw) D2 — DC + C2 ~ C?2-(CD+ D?

This has the form (a + w)/c where a = AC — BC + BD and ¢ = C? — CD + D?, so
¢ > 0. From a +w = (B + Aw)(D + Cw), taking norms of both sides in Z[w] gives us
a?—a+1=(B*-BA+ A%)(D*-DC+C? = (B2~ BA+ A?)c,s0c| (> —a+1). O

APPENDIX B. THE HYPERBOLIC PLANE

The hyperbolic plane is the upper half-plane h with a definition of lines (also called
geodesics) and distances that differ from the usual meaning of these notions in the Euclidean
plane R2.

Lines in b are the vertical lines in h or the semicircles in h that meet the z-axis in a
90-degree angle (the z-axis is the diameter of the semicircle). In the picture below, if P and
Q have the same z-coordinate then the line PQ through P and Q is the part of the usual
Euclidean (vertical) line through P and @ that is in h. If P and @ do not have the same
x-coordinate then PQ is the unique Euclidean semicircle through P and Q with diameter
on the x-axis.

On the right side of the picture two lines drawn through a point R not on PQ don’t
intersect PQ. This contradicts the parallel postulate of Euclidean geometry, which says a
point not on a line L has exactly one line through it that doesn’t meet L. The parallel
postulate is true in R? but it is false in .
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The hyperbolic distance between P and Q in b is defined using integration along PQ:
@ /(dx/dt)? + (dy/dt)?
intpq) — [ LTI T
P y(t)

where the integral is taken along the hyperbolic line PQ in b using a smooth parametrization
(z(t),y(t)) of the part of PQ) with endpoints P and Q.

Example B.1. To compute the distance between yp¢ and y;¢ on the imaginary axis in b,
parametrize the vertical line between them as (z(t),y(t)) = (0, (1 —t)yo+ty1) for 0 < ¢t < 1.

Then
/02 —
dr (yoi, y1t) / + (1 — %) dt =

(1 —t)yo + ty:

For example, dg(yi,i) = |logy| and the midpoint between ypi and yi17 when yo # y; is
/Yoy1i, which is (always) different from the Euclidean midpoint between ygpi and y;i.

= |logy1 — log yo| = |log(y1/yo)l-

The action of SLa(R) on h by linear fractional transformations preserves hyperbolic dis-
tances: for each A € SLy(R), dg(A(P), A(Q)) = du(P, Q) for all P and @ in h. A function
h — b that preserves distances is called an isometry, and SLy(R) acting by linear frac-
tional transformations is the group of all orientation-preserving isometries of the hyperbolic
plane.” An example of an isometry of h that reverses orientation is 7 — —7, or equivalently
x + yi — —x + yi. Every orientation-reversing isometry of b is 7 — —7 composed with the
action by a matrix in SLa(R).

APPENDIX C. GENERATORS AND RELATIONS FOR PSLy(Z)

By Corollary 2.3, SLy(Z) is generated by S = (971) and ST = (9 7}), which have
respective orders 4 and 6. Set R = ST, so every element of SLo(Z) is a product of S’s and
R’s. Since S? = R3 = — I, every product of S’s and R’s can be brought to the form

(—I)*R®SR"S ... Rin-1 SR,
where a € Z/(2) and i; # 0 mod 3 for 0 < j < n; that is, the outer R-powers R and R
might be +15 but the inner R-powers are not. (If n = 0 this product is (—I2)*R%.) We
can’t consider the exponents i; to be in Z/(3) because R does not have order 3. However,

if we pass to PSLg(Z) = SLo(Z)/{£I5} then z := S has order 2, y := R has order 3 and
every element of PSLa(Z) has the form

(C.1) yoxyte . ynlay'n iy € Z/(3), i Z0mod 3 for 0 < j < n.

Note the condition on the exponents. It means the powers of y on the inside of the product
are all nontrivial, but we do allow trivial y-powers for the outer terms. (Thus x = y%x3°,
for instance.)

Theorem C.1. Fach element of PSLa(Z) can be written in the form (C.1) in exactly one

way.

Since z has order 2 and y has order 3 in PSLs(Z), that (C.1) provides a unique represen-
tation for elements of PSLa(Z) is described by saying PSLy(Z) is a free product of Z/(2)
and Z/(3).

7Stric‘cly speaking, since A and —A act in the same way, the group of orientation-preserving isometries
is SL2(R)/{+2}.



18 KEITH CONRAD

Proof. Our argument is taken from [6, p. 12]. (There is a similar proof in [8, Prop. V.4.0].)
To start, suppose we can write the identity element of PSLo(Z) in this way:

1= yioxyhx .. ,yinflxyin,
If n = 0, so the product on the right is 3, this representation works using ig = 0 and not
for other ig in Z/(3). If n = 1, the right side is y'zy’ for i,j € Z/(3). A computation shows
the only such product equal to the identity in PSLy(Z) is that with ¢, j = 0 mod 3. To show
a representation of 1 as (C.1) is impossible for n > 2, assume there is such a representation

and let n be minimal. Multiply both sides of the above equation on the left by y~% and on
the right by y*:

(02) 1= :Eyill‘ .. .yinflxyin*i’l'o,
The inner exponents i1, ...,%,_1 are all nonzero modulo 3. We will show by contradiction
that the last exponent is nonzero modulo 3 as well. If 7,, + i = 0 mod 3 then we get
1= myilx .- -yi"*lx,
so multiplying both sides on the left and right by = = 2~ gives
1= yilx-- -yinfl.

By the minimality of n, we must have n — 1 = 0, so n = 1. But n > 2. Therefore
in +i0 # 0 mod 3. So in (C.2), we have written 1 as a product of xy’s and xy?’s. Now let’s
looks at what xy and xy? actually are, as matrices (up to sign):

_ Q2 _ _ (11 2 _ _ (10
SR=5T=-T = <0 1>, SR* = -TST = <1 1>.

If, in PSLy(Z), we have a product of zy’s and xy?’s equal to 1 then that means in SLo(Z)
there is a product of SR’s and SR?’s equal to (}9). Since the matrices (1) and (19)
have three positive entries and the other entry is 0, products of these matrices have entries
that are also nonnegative, and in fact the sum of all the matrix entries will always increase
under further multiplications. In particular, it is impossible for a product of finitely many
copies of SR and SR? to equal +(§9), whose entries add up to 2. This completes the
proof that in PSLy(Z) the identity element can be written in the form (C.1) only in the
trivial way: n =0 and ig = 0.
Now consider a general equality

. . . . ) 9 - %
yZO.’Eyll.’IJ . yln—lxyln — yzoxyllx Ce yszl xylm.

where the inner exponents (not g, in, i, or i,,) are nonzero modulo 3. We want to show
m =n and i; = z; for all j. Bring the left side over to the right side using inversion:

o , Ly y .
1= (y’mxy“l' e yz'"'*1 xyln) l(yzol'ylll' e yszl xylm)
L e y y
— y Z"x y n—-1 ., - 1y le 1y ’Loyl()xyllw. . .yszlxylm
L R y y
=y any n—-1, ., Ty “(EyZO Zoxyllx e yzm—lxylm
The outer exponents —i,, and 4/, are nonzero modulo 3. The inner exponents are the same

as the inner exponents before, up to sign, except for i(, — ip. So all inner exponents are
nonzero except perhaps i(, —ig. From what we know about representations of 1 as a product
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of 2’s and y’s, some inner exponent has to be 0. Therefore iy = i(, in Z/(3), which means
zylo—ior =22 =1. So

—in —in

L=y "ay
Using induction on max(m,n), we obtain m = n and i; = i’; for all j. O

o .y .y
-1... xyzl le “ e yszlxylm_

For another algebraic proof that PSLy(Z) is generated by x and y with 22 = 1, 3% = 1,
and no other relations, see [1]. (Warning: on the first page of [1], the definition of 5(z)
should be 1 — 1/z and not —1/z.)
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