DECOMPOSING $\mathrm{SL}_{2}(\mathbf{R})$

KEITH CONRAD

1. Introduction

The group $\mathrm{SL}_{2}(\mathbf{R})$ is not easy to visualize: it naturally lies in $\mathrm{M}_{2}(\mathbf{R})$, which is 4dimensional (the entries of a variable 2×2 real matrix are 4 free parameters). We will derive a product decomposition for $\mathrm{SL}_{2}(\mathbf{R})$ and use it to get a concrete image of $\mathrm{SL}_{2}(\mathbf{R})$.

Inside $\mathrm{SL}_{2}(\mathbf{R})$ are the following three subgroups:

$$
K=\left\{\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\right\}, \quad A=\left\{\left(\begin{array}{cc}
r & 0 \\
0 & 1 / r
\end{array}\right): r>0\right\}, \quad N=\left\{\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)\right\}
$$

Theorem 1.1. We have a decomposition $\mathrm{SL}_{2}(\mathbf{R})=K A N$: every $g \in \mathrm{SL}_{2}(\mathbf{R})$ has a unique representation as $g=k$ an where $k \in K, a \in A$, and $n \in N$.

This formula $\mathrm{SL}_{2}(\mathbf{R})=K A N$ is called the Iwasawa decomposition of the group. Don't confuse the use of a in Theorem 1.1 as the label for a matrix in A with a as a real number in the matrix $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$. The distinction should always be clear from the context. Since $\mathrm{SL}_{2}(\mathbf{R})$ is defined by the single equation $a d-b c=1$ inside of $\mathrm{M}_{2}(\mathbf{R})$, it is a manifold of dimension $4-1=3$. The subgroups K, A, and N are each 1 -dimensional ($K \cong S^{1}, A \cong \mathbf{R}_{>0}$, and $N \cong \mathbf{R}$), and Theorem 1.1 shows they fully account for the 3 dimensions of $\mathrm{SL}_{2}(\mathbf{R})$.

The subgroups in the Iwasawa decomposition are related to conjugacy classes. We will see that a matrix in $\mathrm{SL}_{2}(\mathbf{R})$ is, up to sign, conjugate to a matrix in K, A, or N.

2. IWASAWA DECOMPOSITION

To derive the Iwasawa decomposition of $\mathrm{SL}_{2}(\mathbf{R})$ we will use an action of this group on bases in \mathbf{R}^{2}.

For $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in $\mathrm{SL}_{2}(\mathbf{R})$, apply it to the standard basis e_{1}, e_{2}. The vectors

$$
g e_{1}=\binom{a}{c}, \quad g e_{2}=\binom{b}{d}
$$

are also a basis of \mathbf{R}^{2}. We will pass from this new basis of \mathbf{R}^{2} back to the standard basis e_{1}, e_{2} of \mathbf{R}^{2} by a sequence of transformations in $\mathrm{SL}_{2}(\mathbf{R})$ that amounts to something like the Gram-Schmidt process (which turns a basis of \mathbf{R}^{n} into an orthonormal basis of \mathbf{R}^{n}).

Let θ be the angle from the positive x-axis to $g e_{1}$. Let ρ_{θ} be the counterclockwise rotation of the plane around the origin by θ, so $\rho_{-\theta}\left(g e_{1}\right)$ is on the positive x-axis. Because $\operatorname{det} g$ is positive, the ordered pair of vectors $\left(g e_{1}, g e_{2}\right)$ has the same orientation as the ordered pair $\left(e_{1}, e_{2}\right)$, so $\rho_{-\theta}\left(g e_{2}\right)$ is in the upper (rather than lower) half-plane.

Since $\rho_{-\theta}\left(g e_{1}\right)$ is a positive scalar multiple of e_{1}, we want to divide $\rho_{-\theta}\left(g e_{1}\right)$ by its length so it becomes e_{1}. Its length is $r=\left\|\rho_{-\theta}\left(g e_{1}\right)\right\|=\left\|g e_{1}\right\|=\sqrt{a^{2}+c^{2}}$. Applying $\left(\begin{array}{cc}1 / r & 0 \\ 0 & 1 / r\end{array}\right)$ will have the desired effect $\rho_{-\theta}\left(g e_{1}\right) \mapsto e_{1}$, but this matrix doesn't have determinant 1 . On the other hand, $\left(\begin{array}{cc}1 / r & 0 \\ 0 & r\end{array}\right)$ also has the desired effect on $\rho_{-\theta}\left(g e_{1}\right)$ and has determinant 1 . So
apply the matrix $\left(\begin{array}{cc}1 / r & 0 \\ 0 & r\end{array}\right)$ to \mathbf{R}^{2}. It sends $\rho_{-\theta}\left(g e_{1}\right)$ to $\left(\begin{array}{cc}1 / r & 0 \\ 0 & r\end{array}\right) \rho_{-\theta}\left(g e_{1}\right)=e_{1}$. What does it do to $\rho_{-\theta}\left(g e_{2}\right)$? The vector $\left(\begin{array}{cc}1 / r & 0 \\ 0 & r\end{array}\right) \rho_{-\theta}\left(g e_{2}\right)$ is in the upper half-plane (because $\left(\begin{array}{cc}1 / r & 0 \\ 0 & r\end{array}\right)$ has positive determinant) and along with e_{1} it forms two edges of a parallelogram with area 1 (because $\left(\begin{array}{cc}1 / r & 0 \\ 0 & r\end{array}\right)$ has determinant ± 1). A parallelogram with area 1 having base e_{1} must have height 1 , so $\left(\begin{array}{cc}1 / r & 0 \\ 0 & r\end{array}\right) \rho_{-\theta}\left(g e_{2}\right)=\binom{x}{1}$ for some x.

Each horizontal shear transformation $\left(\begin{array}{ll}1 & t \\ 0 & 1 \\ 0\end{array}\right)$, which has determinant 1, fixes the x-axis and acts as a stretching along each horizontal line. Applying the horizontal shear transformation $\left(\begin{array}{cc}1 & -x \\ 0 & 1\end{array}\right)$ to \mathbf{R}^{2} takes $\binom{x}{1}$ to $\binom{0}{1}=e_{2}$ and fixes e_{1}. We have finally returned to the standard basis e_{1}, e_{2} from the basis $g e_{1}, g e_{2}$ by a sequence of transformations in $\mathrm{SL}_{2}(\mathbf{R})$. Our overall composite transformation is

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & -x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 / r & 0 \\
0 & r
\end{array}\right) \rho_{-\theta}, \\
& \left(\begin{array}{cc}
1 & -x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 / r & 0 \\
0 & r
\end{array}\right) \rho_{-\theta} g
\end{aligned}
$$

so
sends e_{1} to e_{1} and e_{2} to e_{2}. A linear transformation on \mathbf{R}^{2} is determined by what it does to a basis, so

$$
\left(\begin{array}{cc}
1 & -x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 / r & 0 \\
0 & r
\end{array}\right) \rho_{-\theta} g=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Solving for g,

$$
\begin{aligned}
g & =\rho_{\theta}\left(\begin{array}{cc}
1 / r & 0 \\
0 & r
\end{array}\right)^{-1}\left(\begin{array}{cc}
1 & -x \\
0 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
r & 0 \\
0 & 1 / r
\end{array}\right)\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) \\
& \in K A N .
\end{aligned}
$$

Such an expression for g as a product $k a n$ with $k \in K, a \in A$, and $n \in N$ is called the Iwasawa decomposition of g.

To check this decomposition is unique, for each angle $\theta, r>0$, and $x \in \mathbf{R}$, set

$$
g=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
r & 0 \\
0 & 1 / r
\end{array}\right)\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
r \cos \theta & \text { xr } \cos \theta-(1 / r) \sin \theta \\
r \sin \theta & \text { xr } \sin \theta+(1 / r) \cos \theta
\end{array}\right) .
$$

If this is $\left(\begin{array}{ll}a & b \\ c & b\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{R})$ then

$$
\begin{equation*}
r=\sqrt{a^{2}+c^{2}}>0, \quad \cos \theta=\frac{a}{r}, \quad \sin \theta=\frac{c}{r}, \tag{2.1}
\end{equation*}
$$

and

$$
x= \begin{cases}\frac{b+(1 / r) \sin \theta}{r \cos \theta}, & \text { if } \cos \theta \neq 0 \\ \frac{d-(1 / r \cos \theta}{r \sin \theta}, & \text { if } \sin \theta \neq 0\end{cases}
$$

Substituting the formulas for $\cos \theta$ and $\sin \theta$ into the formula for x, and using $a d-b c=1$, we obtain the uniform formula

$$
\begin{equation*}
x=\frac{a b+c d}{a^{2}+c^{2}} . \tag{2.2}
\end{equation*}
$$

All the parameters in the matrices making up the Iwasawa decomposition of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ are determined in (2.1) and (2.2), so the Iwasawa decomposition is unique. This completes
the proof of Theorem 1.1. In an appendix we derive the Iwasawa decomposition using a different action of $\mathrm{SL}_{2}(\mathbf{R})$, on the upper half-plane.

The Iwasawa decomposition for $\mathrm{SL}_{2}(\mathbf{R})$ extends to higher dimensions: $\mathrm{SL}_{n}(\mathbf{R})=K A N$ where $K=\operatorname{SO}_{n}(\mathbf{R})=\left\{T \in \mathrm{GL}_{n}(\mathbf{R}): T T^{\top}=I_{n}\right.$, $\left.\operatorname{det} T=1\right\}, A$ is the group of diagonal matrices with positive diagonal entries (and determinant 1) and N is the group of uppertriangular matrices with 1's along the main diagonal. While A and N are both isomorphic to \mathbf{R} when $n=2, N$ becomes nonabelian for $n>2$. The group K is compact, the group $A \cong\left(\mathbf{R}_{>0}\right)^{n-1} \cong \mathbf{R}^{n-1}$ is abelian, and N is a nilpotent group. ${ }^{1}$ This explains the notation A and N, for abelian and nilpotent.

Returning to the case of 2×2 matrices, since

$$
\left(\begin{array}{cc}
r & 0 \tag{2.3}\\
0 & 1 / r
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & r^{2} x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
r & 0 \\
0 & 1 / r
\end{array}\right)
$$

we can move each element of A past an element of N (on either side) at the cost of changing the element of N. Therefore $A N=N A$ is a subgroup of $\mathrm{SL}_{2}(\mathbf{R})$. Explicitly,

$$
A N=\left\{\left(\begin{array}{cc}
y & x \tag{2.4}\\
0 & 1 / y
\end{array}\right): y>0, x \in \mathbf{R}\right\} .
$$

The Iwasawa decomposition $K A N=K(A N)$ for $\mathrm{SL}_{2}(\mathbf{R})$ is the analogue of the polar decomposition $S^{1} \times \mathbf{R}_{>0}$ for \mathbf{C}^{\times}.

In the Iwasawa decomposition, neither K nor $A N$ (nor A or N) is normal in $\mathrm{SL}_{2}(\mathbf{R})$. For example, the conjugate of an element of K by $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is usually not in K and the conjugate of an element of $A N$ by $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ is usually not in $A N$. Because of the non-normality, it is not easy to describe the group operation in $\mathrm{SL}_{2}(\mathbf{R})$ in terms of its Iwasawa decomposition. This decomposition is important for other purposes, such as the following.
Corollary 2.1. As a topological space, $\mathrm{SL}_{2}(\mathbf{R})$ is homeomorphic to the inside of a solid torus.

Proof. Let $f: K \times A \times N \rightarrow \mathrm{SL}_{2}(\mathbf{R})$ by $f(k, a, n)=k a n$. This is continuous, and by Theorem 1.1 it is surjective. We can write down an inverse function using the computations at the end of the proof of Theorem 1.1. For $g=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ in $\mathrm{SL}_{2}(\mathbf{R})$, define $r(g)=\sqrt{a^{2}+c^{2}}$ and

$$
\begin{gathered}
k(g)=\left(\begin{array}{cc}
a / r(g) & -c / r(g) \\
c / r(g) & a / r(g)
\end{array}\right), \quad a(g)=\left(\begin{array}{cc}
r(g) & 0 \\
0 & 1 / r(g)
\end{array}\right), \\
n(g)=\left(\begin{array}{cc}
1 & (a b+c d) /\left(a^{2}+c^{2}\right) \\
0 & 1
\end{array}\right) .
\end{gathered}
$$

The function $g \mapsto(k(g), a(g), n(g))$ from $\mathrm{SL}_{2}(\mathbf{R})$ to $K \times A \times N$ is continuous and is an inverse to f.

Topologically, $K \cong S^{1}, A \cong \mathbf{R}_{>0} \cong \mathbf{R}$, and $N \cong \mathbf{R}$. Therefore topologically, $\mathrm{SL}_{2}(\mathbf{R}) \cong$ $S^{1} \times \mathbf{R}^{2}$. The plane \mathbf{R}^{2} is homeomorphic to the open unit disc D by $v \mapsto v / \sqrt{1+\|v\|^{2}}$

[^0](with inverse $w \mapsto w / \sqrt{1-\|w\|^{2}}$), where $\|\cdot\|$ is the usual length function on \mathbf{R}^{2}, so as a topological space $\mathrm{SL}_{2}(\mathbf{R})$ is homeomorphic to $S^{1} \times D$, which is the inside of a solid torus.

As an alternate ending, on the decomposition $K \times A \times N \cong S^{1} \times \mathbf{R}_{>0} \times \mathbf{R}$ treat the product $\mathbf{R}_{>0} \times \mathbf{R}$ as the right half plane $\{x+i y: x>0\}$ and identify it with the open unit disc D by the Cayley transformation $z \mapsto(z-1) /(z+1)$. (Vertical lines in the half-plane are sent to circles inside D that are tangent to the unit circle at 1.)

Although the proof of Corollary 2.1 shows $\mathrm{SL}_{2}(\mathbf{R})$ and $S^{1} \times \mathbf{R}^{2}$ are homeomorphic as topological spaces, they are not isomorphic as groups. Equivalently, the homeomorphism $K \times A \times N \rightarrow \mathrm{SL}_{2}(\mathbf{R})$ in Corollary 2.1 is not a group homomorphism.

The Iwasawa decomposition of a matrix in K, A, or N is the obvious one. For a lower triangular matrix $\left(\begin{array}{ll}1 & 0 \\ y & 1\end{array}\right)$, which is in none of these subgroups, the inverse map in the proof of Corollary 2.1 gives us the decomposition

$$
\left(\begin{array}{cc}
1 / \sqrt{1+y^{2}} & -y / \sqrt{1+y^{2}} \\
y / \sqrt{1+y^{2}} & 1 / \sqrt{1+y^{2}}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{1+y^{2}} & 0 \\
0 & 1 / \sqrt{1+y^{2}}
\end{array}\right)\left(\begin{array}{cc}
1 & y /\left(1+y^{2}\right) \\
0 & 1
\end{array}\right) .
$$

Remark 2.2. The inside of a solid torus has a circle as a strong deformation retract, so the fundamental group of $\mathrm{SL}_{2}(\mathbf{R})$ is isomorphic to that of a circle: $\pi_{1}\left(\mathrm{SL}_{2}(\mathbf{R})\right) \cong \pi_{1}\left(S^{1}\right) \cong \mathbf{Z}$. From the connection between covering spaces and subgroups of the fundamental group, $\mathrm{SL}_{2}(\mathbf{R})$ admits a unique covering space of degree d for each positive integer d and the universal covering space of $\mathrm{SL}_{2}(\mathbf{R})$ is the inside of a solid cylinder $\mathbf{R} \times D$ (homeomorphic to $\left.\mathbf{R}^{3}\right)$. The degree- 2 cover of $\operatorname{SL}(2, \mathbf{R})$ is an important group called the metaplectic group.

We can write down an explicit example of a noncontractible loop in $\mathrm{SL}_{2}(\mathbf{R})$: the subgroup K, or rather the obvious map $S^{1} \rightarrow K$. To prove this loop is noncontractible in $\mathrm{SL}_{2}(\mathbf{R})$ we use the Iwasawa decomposition to write down a strong deformation retract from $\mathrm{SL}_{2}(\mathbf{R})$ to K. Let $h: \mathrm{SL}_{2}(\mathbf{R}) \times[0,1] \rightarrow K$ by

$$
h(k a n, t)=k a^{t} n^{t}=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
r^{t} & 0 \\
0 & 1 / r^{t}
\end{array}\right)\left(\begin{array}{cc}
1 & t x \\
0 & 1
\end{array}\right) .
$$

This is continuous with $h(k a n, 0)=k, h(k a n, 1)=k a n$, and $h(k, t)=k$. Therefore $\pi_{1}\left(\mathrm{SL}_{2}(\mathbf{R})\right) \cong \pi_{1}(K) \cong \mathbf{Z}$, so K has to be a noncontractible loop in $\mathrm{SL}_{2}(\mathbf{R})$ since K is noncontractible in K.

That the Iwasawa decomposition gives us a picture of $\mathrm{SL}_{2}(\mathbf{R})$ is a striking geometric application. Here is an algebraic application (whose punchline is the corollary).

Theorem 2.3. The only continuous homomorphism $\mathrm{SL}_{2}(\mathbf{R}) \rightarrow \mathbf{R}$ is the trivial homomorphism.

Proof. Let $f: \mathrm{SL}_{2}(\mathbf{R}) \rightarrow \mathbf{R}$ be a continuous homomorphism. Then

$$
f(k a n)=f(k)+f(a)+f(n) .
$$

We will show f is trivial on K, A, and N, and thus f is trivial on $K A N=\operatorname{SL}_{2}(\mathbf{R})$.
Since $K \cong S^{1}$, the elements of finite order in K are dense. Since \mathbf{R} has no elements of finite order except $0, f$ is trivial on a dense subset of K and thus is trivial on K by continuity. (As an alternate argument, since K is a compact group so is $f(K)$, and the only compact subgroup of \mathbf{R} is $\{0\}$.)

Now we look at f on A and N. Since $A \cong \mathbf{R}_{>0} \cong \mathbf{R}$ by $\left(\begin{array}{cc}r & 0 \\ 0 & 1 / r\end{array}\right) \mapsto \log r$ and $N \cong \mathbf{R}$ by $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) \mapsto x$, both algebraically and topologically, describing the continuous homomorphisms from A and N to \mathbf{R} is the same as describing the continuous homomorphisms from \mathbf{R} to
R. All continuous homomorphisms $\mathbf{R} \rightarrow \mathbf{R}$ have the form $x \mapsto t x$ for some real number t (see where 1 goes, call that t, and then appeal to the denseness of \mathbf{Q} in \mathbf{R}). Therefore

$$
f\left(\begin{array}{cc}
r & 0 \\
0 & 1 / r
\end{array}\right)=t \log r, \quad f\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)=t^{\prime} x
$$

for some t and t^{\prime}. Applying f to both sides of (2.3),

$$
t \log r+t^{\prime} x=t^{\prime} r^{2} x+t \log r
$$

so $t^{\prime} x=t^{\prime} r^{2} x$ for all $r>0$ and $x \in \mathbf{R}$. Thus $t^{\prime}=0$ (e.g., take $x=1$ and $r=2$ to see this.) This shows f is trivial on N.

It remains to show f is trivial on A. For this we appeal to the conjugation relation

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
r & 0 \\
0 & 1 / r
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 / r & 0 \\
0 & r
\end{array}\right)=\left(\begin{array}{cc}
r & 0 \\
0 & 1 / r
\end{array}\right)^{-1}
$$

Applying f, we get $f\left(\begin{array}{cc}r & 0 \\ 0 & 1 / r\end{array}\right)=-f\left(\begin{array}{cc}r & 0 \\ 0 & 1 / r\end{array}\right)$, so $f\left(\begin{array}{cc}r & 0 \\ 0 & 1 / r\end{array}\right)=0$.
Corollary 2.4. Every continuous homomorphism $\mathrm{SL}_{2}(\mathbf{R}) \rightarrow \mathrm{GL}_{n}(\mathbf{R})$ has image in $\mathrm{SL}_{n}(\mathbf{R})$.
Proof. Let $f: \mathrm{SL}_{2}(\mathbf{R}) \rightarrow \mathrm{GL}_{n}(\mathbf{R})$ be a continuous homomorphism. Composing f with the determinant $\mathrm{GL}_{n}(\mathbf{R}) \rightarrow \mathbf{R}^{\times}$gives a continuous homomorphism det of: $\mathrm{SL}_{2}(\mathbf{R}) \rightarrow \mathbf{R}^{\times}$. Since $\mathrm{SL}_{2}(\mathbf{R})$ is connected (Corollary 2.1), its image under det of is a connected subgroup of \mathbf{R}^{\times}, so it lies in $\mathbf{R}_{>0}$. As $\mathbf{R}_{>0} \cong \mathbf{R}$ both topologically and algebraically, det of is trivial by Theorem 2.3. Thus $\operatorname{det}(f(g))=1$ for all $g \in \mathrm{SL}_{2}(\mathbf{R})$, so $f\left(\mathrm{SL}_{2}(\mathbf{R})\right) \subset \mathrm{SL}_{n}(\mathbf{R})$.

Example 2.5. We will construct a continuous homomorphism $\mathrm{GL}_{2}(\mathbf{R}) \rightarrow \mathrm{GL}_{3}(\mathbf{R})$ and see its restriction to $\mathrm{SL}_{2}(\mathbf{R})$ has values in $\mathrm{SL}_{3}(\mathbf{R})$.

Let $V=\mathbf{R} x^{2}+\mathbf{R} x y+\mathbf{R} y^{2}$ be the vector space of homogeneous polynomials in x and y of degree 2: quadratic forms on \mathbf{R}^{2}. This space is 3-dimensional, with basis $x^{2}, x y, y^{2}$. For $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in $\mathrm{GL}_{2}(\mathbf{R})$ and $Q(x, y)$ in V, set $(g Q)(x, y)=Q(a x+c y, b x+d y)$. If we think of quadratic forms and matrices acting on column vectors from the left, then $(g Q)\binom{x}{y}=Q\left(g^{\top}\binom{x}{y}\right)$. Check that $g_{1}\left(g_{2} Q\right)=\left(g_{1} g_{2}\right) Q$, so $\mathrm{GL}_{2}(\mathbf{R})$ acts on V from the left.

For instance, let $Q(x, y)=x^{2}+y^{2}, g_{1}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, and $g_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$. Then $g_{1} g_{2}=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$, so

$$
\begin{gathered}
\left(g_{2} Q\right)(x, y)=Q(y, x+y)=y^{2}+(x+y)^{2}=x^{2}+2 x y+2 y^{2} \\
\left(g_{1}\left(g_{2} Q\right)\right)(x, y)=\left(g_{2} Q\right)(x, x+y)=x^{2}+2 x(x+y)+2(x+y)^{2}=5 x^{2}+6 x y+2 y^{2}
\end{gathered}
$$

and

$$
\left(\left(g_{1} g_{2}\right) Q\right)(x, y)=Q(x+y, 2 x+y)=(x+y)^{2}+(2 x+y)^{2}=5 x^{2}+6 x y+2 y^{2}
$$

which illustrates that $g_{1}\left(g_{2} Q\right)=\left(g_{1} g_{2}\right) Q .{ }^{2}$
The left action of $\mathrm{GL}_{2}(\mathbf{R})$ on V above is a linear change of variables on V given by the entries of 2×2 matrices. Since $g\left(Q+Q^{\prime}\right)=g(Q)+g\left(Q^{\prime}\right)$ and $g(s Q)=s g(Q)$ for $s \in \mathbf{R}$, the action of g on V is a linear transformation (necessarily invertible, since the action of g^{-1} on V is its inverse). Using the basis $x^{2}, x y, y^{2}$ of V, we can compute a matrix representation of g on V : we have

$$
\begin{gathered}
g\left(x^{2}\right)=(a x+c y)^{2}=a^{2} x^{2}+2 a c x y+c^{2} y^{2} \\
g(x y)=(a x+c y)(b x+d y)=a b x^{2}+(a d+b c) x y+c d y^{2}
\end{gathered}
$$

[^1]and
$$
g\left(y^{2}\right)=(b x+d y)^{2}=b^{2} x^{2}+2 b d x y+d^{2} y^{2}
$$
so the matrix of g with respect to the basis $x^{2}, x y, y^{2}$ is
\[

\left($$
\begin{array}{ccc}
a^{2} & a b & b^{2} \\
2 a c & a d+b c & 2 b d \\
c^{2} & c d & d^{2}
\end{array}
$$\right)
\]

Call this matrix $f(g)$, so $f: \mathrm{GL}_{2}(\mathbf{R}) \rightarrow \mathrm{GL}_{3}(\mathbf{R})$ is a homomorphism and the formula for $f(g)$ shows f is continuous. By a calculation, $\operatorname{det}(f(g))=(a d-b c)^{3}=(\operatorname{det} g)^{3}$, so when g has determinant 1 so does $f(g)$.

Example 2.5 can be generalized. For each integer $n \geq 1$, the space $V_{n}=\bigoplus_{i=0}^{n} \mathbf{R} x^{n-i} y^{i}$ of homogeneous 2-variable polynomials of degree n has dimension $n+1$ and $\mathrm{GL}_{2}(\mathbf{R})$ acts on this space by linear changes of variables. The restriction of this action to $\mathrm{SL}_{2}(\mathbf{R})$ on V_{n} accounts for essentially all "interesting" actions of $\mathrm{SL}_{2}(\mathbf{R})$ on finite-dimensional vector spaces.

Theorem 2.6. The homomorphism $\mathrm{SL}_{2}(\mathbf{R}[x, y]) \rightarrow \mathrm{SL}_{2}\left(\mathbf{R}[x, y] /\left(x^{2}+y^{2}-1\right)\right)$, where matrix entries are reduced componentwise modulo $x^{2}+y^{2}-1$, is not surjective.
Proof. Let \bar{x} and \bar{y} be the cosets of x and y in $\mathbf{R}[x, y] /\left(x^{2}+y^{2}-1\right)$, so $\bar{x}^{2}+\bar{y}^{2}=1$. One matrix in $\mathrm{SL}_{2}\left(\mathbf{R}[x, y] /\left(x^{2}+y^{2}-1\right)\right)$ is

$$
\left(\begin{array}{rr}
\bar{x} & -\bar{y} \tag{2.5}\\
\bar{y} & \bar{x}
\end{array}\right) .
$$

We will prove by contradiction that there is no matrix $A(x, y)$ in $\mathrm{SL}_{2}(\mathbf{R}[x, y])$ that becomes the matrix (2.5) when the entries of $A(x, y)$ are reduced modulo $x^{2}+y^{2}-1$.

For each matrix

$$
A(x, y)=\left(\begin{array}{ll}
a(x, y) & b(x, y) \\
c(x, y) & d(x, y)
\end{array}\right)
$$

in $\mathrm{SL}_{2}(\mathbf{R}[x, y])$, we have $\operatorname{det} A(x, y)=a(x, y) d(x, y)-b(x, y) c(x, y)=1$ in $\mathbf{R}[x, y]$, so for all real numbers u and v we have $A(u, v) \in \mathrm{SL}_{2}(\mathbf{R})$.

Suppose $A(x, y)$ reduces to the matrix (2.5) in $\mathrm{SL}_{2}\left(\mathbf{R}[x, y] /\left(x^{2}+y^{2}-1\right)\right)$. Then when $u^{2}+v^{2}=1$ in \mathbf{R} we have $A(u, v)=\left(\begin{array}{cc}u \\ v & -v \\ u\end{array}\right)$. Define the homotopy $h_{A}: S^{1} \times[0,1] \rightarrow \mathrm{SL}_{2}(\mathbf{R})$ by $h_{A}(u, v, t)=A(t u, t v) .^{3}$ Then $h_{A}(u, v, 0)$ is a constant map while $h_{A}(u, v, 1)=A(u, v)=$ $\left(\begin{array}{cc}u \\ v & -v \\ u\end{array}\right)$ is a loop in $\mathrm{SL}_{2}(\mathbf{R})$ that generates $\pi_{1}\left(\mathrm{SL}_{2}(\mathbf{R})\right)$ (see Remark 2.2). Then h_{A} gives us a way to continuously shrink a generator of $\pi_{1}\left(\mathrm{SL}_{2}(\mathbf{R})\right)$ to a constant map. This is impossible since $\pi_{1}\left(\mathrm{SL}_{2}(\mathbf{R})\right)$ is nontrivial, so no matrix in $\mathrm{SL}_{2}(\mathbf{R}[x, y])$ reduces to (2.5) modulo $x^{2}+y^{2}-1$.

Corollary 2.7. The homomorphism $\mathrm{SL}_{2}(\mathbf{Z}[x, y]) \rightarrow \mathrm{SL}_{2}\left(\mathbf{Z}[x, y] /\left(x^{2}+y^{2}-1\right)\right)$, where matrix entries are reduced componentwise modulo $x^{2}+y^{2}-1$, is not surjective.
Proof. The matrix $\left(\frac{\bar{x}}{\bar{y}}-\bar{y}\right)$ is in $\mathrm{SL}_{2}\left(\mathbf{Z}[x, y] /\left(x^{2}+y^{2}-1\right)\right)$, and if some matrix $A(x, y)$ in $\mathbf{Z}[x, y]$ reduces to it then we can use $A(x, y)$ in the proof of Theorem 2.6.

[^2]
3. Conjugacy Classes

The conjugacy class of a matrix in $\mathrm{SL}_{2}(\mathbf{R})$ is nearly determined by its eigenvalues, but we have to be a little bit careful so we don't confuse conjugacy in $\mathrm{SL}_{2}(\mathbf{R})$ with conjugacy in the larger group $\mathrm{GL}_{2}(\mathbf{R})$. For example, $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and its inverse $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$ are conjugate in $\mathrm{GL}_{2}(\mathbf{R})$ by $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, whose determinant is -1 . These two matrices are not conjugate in $\mathrm{SL}_{2}(\mathbf{R})$, since each $\mathrm{SL}_{2}(\mathbf{R})$-conjugate of $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has a positive upper right entry, by an explicit calculation.

Theorem 3.1. Let $T \in \mathrm{SL}_{2}(\mathbf{R})$. If $(\operatorname{Tr} T)^{2}>4$ then T is conjugate to a unique matrix of the form $\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right)$ with $|\lambda|>1$. If $(\operatorname{Tr} T)^{2}=4$ then T is conjugate to exactly one of $\pm I_{2}$, $\pm\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, or $\pm\left(\begin{array}{rr}-1 & 1 \\ 0 & -1\end{array}\right)$. If $(\operatorname{Tr} T)^{2}<4$ then T is conjugate to a unique matrix of the form $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ other than $\pm I_{2}$.
Proof. For $T \in \mathrm{SL}_{2}(\mathbf{R})$, its eigenvalues are roots of its characteristic polynomial, which is $X^{2}-t X+1$, where $t=\operatorname{Tr}(T)$. The nature of the eigenvalues of T are determined by the discriminant of this polynomial, $t^{2}-4$: two distinct real eigenvalues if $t^{2}>4$, a repeated eigenvalue if $t^{2}=4$, and two complex conjugate eigenvalues if $t^{2}<4$. We will find a representative for the conjugacy class of T based on the sign of $t^{2}-4$. Of course matrices with different t 's are not conjugate.

In what follows, if v and w are vectors in \mathbf{R}^{2} whose specific coordinates are not important to make explicit, we will write ($[v][w]$) for the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. This matrix is invertible when v and w are linearly independent.

Suppose $t^{2}>4$. Then T has distinct real eigenvalues λ and $1 / \lambda$. Let v and v^{\prime} be eigenvectors in \mathbf{R}^{2} for these eigenvalues: $T v=\lambda v$ and $T v^{\prime}=(1 / \lambda) v^{\prime}$. In coordinates from the basis v and v^{\prime}, T is represented by $\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1 / \lambda\end{array}\right)$, so T is conjugate to $\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1 / \lambda\end{array}\right)$ by the 2×2 matrix $\left([v]\left[v^{\prime}\right]\right)$. Scaling v^{\prime} keeps it as an eigenvector of T, and by a suitable nonzero scaling the matrix $\left([v]\left[v^{\prime}\right]\right)$ has determinant 1 . Therefore T is conjugate to $\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right)$ in $\mathrm{SL}_{2}(\mathbf{R})$. We did not specify an ordering of the eigenvalues, so $\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1 / \lambda\end{array}\right)$ and $\left(\begin{array}{cc}1 / \lambda & 0 \\ 0 & \lambda\end{array}\right)$ have to be conjugate to each other in $\mathrm{SL}_{2}(\mathbf{R})$. Explicitly, $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1 / \lambda\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)^{-1}=\left(\begin{array}{cc}1 / \lambda & 0 \\ 0 & \lambda\end{array}\right)$. Conjugate matrices have the same eigenvalues, so $\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1 / \lambda\end{array}\right)$ is conjugate to $\left(\begin{array}{cc}\mu & 0 \\ 0 & 1 / \mu\end{array}\right)$ only when μ equals λ or $1 / \lambda$. We can therefore pin down a representative for the conjugacy class of T in $\mathrm{SL}_{2}(\mathbf{R})$ as $\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1 / \lambda\end{array}\right)$ with $|\lambda|>1$.

Now suppose $t^{2}=4$. The roots of $X^{2}-t X+1$ are both 1 (if $t=2$) or both -1 (if $t=-2)$. Let $\lambda= \pm 1$ be the eigenvalue for T. Extend v to a basis $\left\{v, v^{\prime}\right\}$ of \mathbf{R}^{2}. Scaling v^{\prime}, we may assume the matrix ($[v]\left[v^{\prime}\right]$) has determinant 1 . Conjugating T by this matrix expresses it in the basis v and v^{\prime} as $\left(\begin{array}{ll}\lambda & x \\ 0 & y\end{array}\right)$. Since the determinant is $1, y=1 / \lambda=\lambda= \pm 1$. Therefore T is conjugate in $\mathrm{SL}_{2}(\mathbf{R})$ to a matrix of the form $\left(\begin{array}{cc}1 & x \\ 0 & 1\end{array}\right)$ or $\left(\begin{array}{cc}-1 & x \\ 0 & -1\end{array}\right)$. If $x=0$ these matrices are $\pm I_{2}$, which are in their own conjugacy class. The formulas

$$
\left(\begin{array}{cc}
r & 0 \\
0 & 1 / r
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
r & 0 \\
0 & 1 / r
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & r^{2} \\
0 & 1
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
r & 0 \\
0 & 1 / r
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
r & 0 \\
0 & 1 / r
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & -r^{2} \\
0 & 1
\end{array}\right)
$$

show $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$ is conjugate to either $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ or $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$, depending on the sign of x. Similarly $\left(\begin{array}{cc}-1 & x \\ 0 & -1\end{array}\right)$ is conjugate to either $\left(\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right)$ or $\left(\begin{array}{cc}-1 & -1 \\ 0 & -1\end{array}\right)$.

The four matrices $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right),\left(\begin{array}{rr}-1 & 1 \\ 0 & -1\end{array}\right)$, and $\left(\begin{array}{rr}-1 & -1 \\ 0 & -1\end{array}\right)$ are nonconjugate in $\mathrm{SL}_{2}(\mathbf{R})$, e.g., an $\mathrm{SL}_{2}(\mathbf{R})$-conjugate of $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ looks like $\left(\begin{array}{c}1 \\ 1 \\ 0\end{array} 1\right)$ with x a perfect square. Other cases are left to the reader.

Finally, suppose $t^{2}<4$. Now T has complex conjugate eigenvalues that, by the quadratic formula for $X^{2}-t X+1$, are of absolute value 1 and are not ± 1 (since $t \neq \pm 2$). We can write the eigenvalues as $e^{ \pm i \theta}$, with $\sin \theta \neq 0$. Pick an eigenvector v in \mathbf{C}^{2} such that $T v=e^{i \theta} v$. Since $e^{i \theta}$ is not real, $v \notin \mathbf{R}^{2}$. Let \bar{v} be the vector with coordinates that are complex conjugate to those of v, so $T \bar{v}=e^{-i \theta} \bar{v}$. Then $v+\bar{v}$ and $i(v-\bar{v})$ are in \mathbf{R}^{2}, with

$$
T(v+\bar{v})=(\cos \theta)(v+\bar{v})+(\sin \theta) i(v-\bar{v})
$$

and

$$
T(v-\bar{v})=-(\sin \theta)(v+\bar{v})+(\cos \theta) i(v-\bar{v}) .
$$

Therefore conjugating T by the (invertible) real matrix ($[v+\bar{v}][i(v-\bar{v})]$) turns T into $\left(\begin{array}{c}\cos \theta-\sin \theta \\ \sin \theta \\ \cos \theta\end{array}\right)$. We don't know the determinant of $([v+\bar{v}][i(v-\bar{v})])$, but scaling v by a real number (and \bar{v} by the same amount, to keep it conjugate) can give this conjugating matrix determinant ± 1. If the determinant is 1 then T is conjugate to $\left(\begin{array}{c}\cos \theta \theta-\sin \theta \\ \sin \theta \\ \cos \theta\end{array}\right)$ in $\mathrm{SL}_{2}(\mathbf{R})$. If the determinant is -1 , then reverse the order of the columns in the conjugating marix to give it determinant 1 and then T is conjugate to $\binom{\cos \theta \sin \theta}{-\sin \theta \cos \theta}=\left(\begin{array}{c}\cos (-\theta) \\ \sin (-\theta)\end{array}-\sin (-\theta)\right.$ cos(- $(-\theta)$) in $\mathrm{SL}_{2}(\mathbf{R})$. Two matrices $\binom{\cos \theta \sin \theta}{-\sin \theta \cos \theta}$ and $\binom{\cos \varphi \sin \varphi}{-\sin \varphi \cos \varphi}$ in K can be conjugate only when $\varphi= \pm \theta \bmod 2 \pi \mathbf{Z}$, by looking at eigenvalues, and a direct calculation shows the $\mathrm{SL}_{2}(\mathbf{R})-$ conjugate of $\left(\begin{array}{c}\cos \theta \sin \theta \\ -\sin \theta \\ \cos \theta\end{array}\right)$ never equals $\left(\begin{array}{cc}\cos (-\theta) & -\sin (-\theta) \\ \sin (-\theta) & \cos (-\theta)\end{array}\right)$ unless $\sin \theta=0$, but we are in a case when $\sin \theta \neq 0$.

When $T \in \mathrm{SL}_{2}(\mathbf{R})$ satisfies $\operatorname{Tr}(T)^{2}>4$ we say T is hyperbolic, when $(\operatorname{Tr} T)^{2}=4$ we say T is parabolic, and when $(\operatorname{Tr} T)^{2}<4$ we say T is elliptic. This terminology is borrowed from the shape of a plane conic $a x^{2}+b x y+c y^{2}=1$ in terms of its discriminant $d=b^{2}-4 a c$: it is a hyperbola when $d>0$, a parabola when $d=0$, and an ellipse when $d<0$. Up to sign, the hyperbolic conjugacy classes in $\mathrm{SL}_{2}(\mathbf{R})$ are represented by matrices in A (besides I_{2}), the elliptic conjugacy classes are represented by matrices in K (besides $\pm I_{2}$), and the parabolic conjugacy classes are represented by matrices in N.

Appendix A. Acting on the Upper Half-Plane

We will use an action of $\mathrm{SL}_{2}(\mathbf{R})$ on the upper half-plane $\mathfrak{h}=\{x+i y: y>0\}$ to obtain the Iwasawa decomposition of $\mathrm{SL}_{2}(\mathbf{R})$ in a more efficient manner than the first proof that used an action on bases of \mathbf{R}^{2}.

For $\left(\begin{array}{lll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbf{R})$ and a non-real complex number z, set

$$
\left(\begin{array}{ll}
a & b \tag{A.1}\\
c & d
\end{array}\right)(z)=\frac{a z+b}{c z+d} \in \mathbf{C}-\mathbf{R} .
$$

By a calculation left to the reader, $g_{1}\left(g_{2}(z)\right)=\left(g_{1} g_{2}\right)(z)$ for g_{1} and g_{2} in $\mathrm{GL}_{2}(\mathbf{R})$, and

$$
\operatorname{Im}\left(\frac{a z+b}{c z+d}\right)=\frac{(a d-b c) \operatorname{Im}(z)}{|c z+d|^{2}} .
$$

Therefore when $a d-b c>0, z$ and $(a z+b) /(c z+d)$ have the same sign for their imaginary parts. In particular, if $g \in \mathrm{SL}_{2}(\mathbf{R})$ and z is in the upper half-plane then so is $g(z)$, so (A.1)
is an action of the group $\mathrm{SL}_{2}(\mathbf{R})$ on the set \mathfrak{h}. This action has one orbit since we can get anywhere in \mathfrak{h} from i using $\mathrm{SL}_{2}(\mathbf{R})$:

$$
\left(\begin{array}{cc}
\sqrt{y} & x / \sqrt{y} \tag{A.2}\\
0 & 1 / \sqrt{y}
\end{array}\right)(i)=x+i y .
$$

Notice that the matrix used here to send i to $x+i y$ is in the subgroup $A N$ (see (2.4)).
Let's determine the stabilizer of i. Saying $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)(i)=i$ is equivalent to $(a i+b) /(c i+d)=i$, so $a i+b=d i-c$. Therefore $d=a$ and $b=-c$, so $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a & -c \\ c & a\end{array}\right)$ with $a^{2}+c^{2}=1$. We can therefore write $a=\cos \theta$ and $c=\sin \theta$, which shows the stabilizer of i is the set of matrices $\left(\begin{array}{c}\cos \theta-\sin \theta \\ \sin \theta \\ \cos \theta\end{array}\right)$. This is the subgroup K (so \mathfrak{h} can be viewed as the coset space $\mathrm{SL}_{2}(\mathbf{R}) / K$ on which $\mathrm{SL}_{2}(\mathbf{R})$ acts by left multiplication).

Now we are ready to derive the Iwasawa decomposition. For $g \in \mathrm{SL}_{2}(\mathbf{R})$, write $g(i)=$ $x+i y \in \mathfrak{h}$. Using (A.2),

$$
g(i)=x+i y=\left(\begin{array}{cc}
\sqrt{y} & x / \sqrt{y} \tag{A.3}\\
0 & 1 / \sqrt{y}
\end{array}\right)(i)=\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\sqrt{y} & 0 \\
0 & 1 / \sqrt{y}
\end{array}\right)(i) \in N A(i) .
$$

Since g acts on i in the same way as an element of $N A$, and the stabilizer of i is $K, g \in N A K$. Thus $\mathrm{SL}_{2}(\mathbf{R})=N A K$. Applying inversion to this decomposition, $\mathrm{SL}_{2}(\mathbf{R})=K A N$. That settles the existence of the Iwasawa decomposition.

To prove uniqueness, assume nak $=n^{\prime} a^{\prime} k^{\prime}$. Applying both sides to i, k and k^{\prime} fix i so $n a(i)=n^{\prime} a^{\prime}(i)$. For $n=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$ and $a=\left(\begin{array}{cc}r & 0 \\ 0 & 1 / r\end{array}\right)$, $n a=\left(\begin{array}{cc}r & x / r \\ 0 & 1 / r\end{array}\right)$, so $n a(i)=x+r^{2} i$. In particular, knowing na(i) tells us the parameters determining n and a. Hence $n=n^{\prime}$ and $a=a^{\prime}$, so $k=k^{\prime}$.

The upper half-plane action of $\mathrm{SL}_{2}(\mathbf{R})$ leads in a second way to the formulas (2.1) and (2.2) for the matrix entries in the factors of the Iwasawa decomposition for $g=\left(\begin{array}{c}a \\ c \\ c \\ d\end{array}\right) \in$ $\mathrm{SL}_{2}(\mathbf{R})$. (We have just proved anew the existence and uniqueness of this decomposition.) Write, as in Section 2,

$$
g=k a n=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \tag{A.4}\\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
r & 0 \\
0 & 1 / r
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) .
$$

We want to determine the entries of these matrices in terms of the entries of g. We will work with $g^{-1}=n^{-1} a^{-1} k^{-1}$ since the $\mathrm{SL}_{2}(\mathbf{R})$-action on \mathfrak{h} leads to the decomposition NAK rather than $K A N$:

$$
g^{-1}(i)=\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)(i)=\frac{d i-b}{-c i+a}=-\frac{a b+c d}{a^{2}+c^{2}}+\frac{1}{a^{2}+c^{2}} i .
$$

Writing this as $u+i v$, from (A.3) (with g^{-1} in place of g and $u+i v$ in place of $x+i y$) we get

$$
n^{-1}=\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & -(a b+c d) /\left(a^{2}+c^{2}\right) \\
0 & 1
\end{array}\right)
$$

and

$$
a^{-1}=\left(\begin{array}{cc}
\sqrt{v} & 0 \\
0 & 1 / \sqrt{v}
\end{array}\right)=\left(\begin{array}{cc}
1 / \sqrt{a^{2}+c^{2}} & 0 \\
0 & \sqrt{a^{2}+c^{2}}
\end{array}\right)
$$

so

$$
n=\left(\begin{array}{cc}
1 & (a b+c d) /\left(a^{2}+c^{2}\right) \\
0 & 1
\end{array}\right), \quad a=\left(\begin{array}{cc}
\sqrt{a^{2}+c^{2}} & 0 \\
0 & 1 / \sqrt{a^{2}+c^{2}}
\end{array}\right) .
$$

Since $g=k a n$,

$$
k=g n^{-1} a^{-1}=\left(\begin{array}{cc}
a / \sqrt{a^{2}+c^{2}} & -c / \sqrt{a^{2}+c^{2}} \\
c / \sqrt{a^{2}+c^{2}} & a / \sqrt{a^{2}+c^{2}}
\end{array}\right) .
$$

The formulas for the entries of k, a, and n match those in (2.1) and (2.2).
It is interesting to compare the role of the group K in the geometry of \mathbf{R}^{2} and \mathfrak{h}. As a transformation of \mathbf{R}^{2}, an element of K is a rotation around the origin. This is an isometry of \mathbf{R}^{2} using the Euclidean metric, and the K-orbit of a nonzero vector in \mathbf{R}^{2} is the circle that passes through that vector and is centered at the origin. As a transformation of \mathfrak{h}, an element of K is a rotation around i relative to the hyperbolic metric on \mathfrak{h}. This is a hyperbolic isometry of \mathfrak{h}, and the K-orbit of a point in \mathfrak{h} is the circle through that point that is centered at i relative to the hyperbolic metric.

The conjugacy class of a matrix $T \in \mathrm{SL}_{2}(\mathbf{R})$ was determined in Theorem 3.1 in terms of $(\operatorname{Tr} T)^{2}-4$, which is the discriminant of the characteristic polynomial of T. The sign of this quantity tells us whether T has real or non-real eigenvectors. The difference $(\operatorname{Tr} T)^{2}-4$ is also relevant to the action of T on the upper half-plane, with fixed points replacing eigenvectors. When $T=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$, the fixed-point condition $T(z)=z$ is equivalent to $a z+b=(c z+d) z$, which says $c z^{2}+(d-a) z-b=0$. The discriminant of this equation, which tells us the number of real roots, is

$$
(d-a)^{2}+4 b c=d^{2}-2 d a+a^{2}+4(a d-1)=(a+d)^{2}-4=(\operatorname{Tr} T)^{2}-4 .
$$

[^0]: ${ }^{1}$ The word nilpotent has different meanings in group theory and matrix theory. A group G is called nilpotent if there is a finite tower of subgroups $\{e\}=N_{0} \subset N_{1} \subset N_{2} \subset \cdots \subset N_{r}=G$ for some r where $N_{i} \triangleleft N$ and $N_{i+1} / N_{i} \subset Z\left(G / N_{i}\right)$ for all i. That the subgroup N of $\mathrm{GL}_{n}(\mathbf{R})$ is nilpotent is shown on pages 27 and 28 of https://kconrad.math.uconn.edu/blurbs/grouptheory/subgpseries1.pdf, where N is written as $\mathrm{UT}_{n}(\mathbf{R})$. A square matrix is called nilpotent if it has a power equal to O, so invertible square matrices are never nilpotent in the matrix sense. Thus a subgroup of $\mathrm{GL}_{n}(\mathbf{R})$ might be nilpotent in the sense of group theory, but its elements are not nilpotent in the sense of matrix theory.

[^1]: ${ }^{2}$ If $(g * Q)(x, y)=Q(a x+b y, c x+d y)$, or equivalently $(g * Q)\binom{x}{y}=Q\left(g\binom{x}{y}\right)$, then $g_{1} *\left(g_{2} * Q\right)=\left(g_{2} g_{1}\right) * Q$.

[^2]: ${ }^{3}$ For $(u, v) \in S^{1}$, the matrix $A(t u, t v)$ is not $\left(\begin{array}{cc}t u & -t v \\ t v & t u\end{array}\right)$ if $0 \leq t<1$ since $\operatorname{det}\left(\begin{array}{c}t u \\ t v\end{array} \begin{array}{c}t v \\ t u\end{array}\right)=t^{2} \neq 1$.

