DECOMPOSING SL;y(R)

KEITH CONRAD

1. INTRODUCTION

The group SLy(R) is not easy to visualize: it naturally lies in My(R), which is 4-
dimensional (the entries of a variable 2 x 2 real matrix are 4 free parameters). We will
derive a product decomposition for SLy(R) and use it to get a concrete image of SLa(R).

Inside SLy(R) are the following three subgroups:

eof( ) w {5 4ol v {3 D)

Theorem 1.1. We have a decomposition SLa(R) = K AN : every g € SL2(R) has a unique
representation as g = kan where k € K, a € A, andn € N.

This formula SLy(R) = KAN is called the Twasawa decomposition of the group. Don’t
confuse the use of ¢ in Theorem 1.1 as the label for a matrix in A with a as a real number
in the matrix (¢ %). The distinction should always be clear from the context. Since SLy(R)
is defined by the single equation ad — bec = 1 inside of Ma(R), it is a manifold of dimension
4 —1 = 3. The subgroups K, A, and N are each 1-dimensional (K = S', A = R.q, and
N = R), and Theorem 1.1 shows they fully account for the 3 dimensions of SLa(R).

The subgroups in the Iwasawa decomposition are related to conjugacy classes. We will
see that a matrix in SLy(R) is, up to sign, conjugate to a matrix in K, A, or N.

2. IWASAWA DECOMPOSITION

To derive the Iwasawa decomposition of SLy(R) we will use an action of this group on
bases in R2.

For g = (2%) in SLy(R), apply it to the standard basis e, ea. The vectors

=) me ()

are also a basis of R?. We will pass from this new basis of R? back to the standard basis
e1, e of R? by a sequence of transformations in SLo (R) that amounts to something like the
Gram-Schmidt process (which turns a basis of R™ into an orthonormal basis of R").

Let 0 be the angle from the positive z-axis to ge;. Let pg be the counterclockwise rotation
of the plane around the origin by 6, so p_g(ge1) is on the positive x-axis. Because det g is
positive, the ordered pair of vectors (gei, ge2) has the same orientation as the ordered pair
(e1,€2), so p_g(ge2) is in the upper (rather than lower) half-plane.

Since p_g(ge1) is a positive scalar multiple of e;, we want to divide p_g(ge;1) by its length

. . o o o . 1/7‘ 0
so it becomes e;. Its length is 7 = ||p_g(ge1)|| = l|ge1|| = Va? +c2. Applying (7 1/r)
will have the desired effect p_g(geq1) — e1, but this matrix doesn’t have determinant 1. On

the other hand, (1ér 2) also has the desired effect on p_g(gei) and has determinant 1. So
1
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apply the matrix (lér 2) to R2. It sends p_g(ge1) to (lér S)p_g(gel) = e1. What does it
do to p_p(ge2)? The vector (167’ S)p,g(geg) is in the upper half-plane (because (1[/)7" S) has
positive determinant) and along with e; it forms two edges of a parallelogram with area 1

(because (1[/)7" S) has determinant +1). A parallelogram with area 1 having base e; must

have height 1, so (1(/)’" 2)[)_9(962) = (}) for some =.

Each horizontal shear transformation (§ !), which has determinant 1, fixes the z-axis and

acts as a stretching along each horizontal line. Applying the horizontal shear transformation
(§77) to R? takes () to ((1]) = ey and fixes e;. We have finally returned to the standard
basis e1, e2 from the basis ge, ges by a sequence of transformations in SLa(R). Our overall

composite transformation is
1 —x 1/r 0
0 1 0o r )P

(3 2) (% )

sends e; to e; and e to es. A linear transformation on R? is determined by what it does

to a basis, so
1 —x 1/r 0 (10
0 1 o r )P \o 1)

B r 0\ (1 —z\ "
=P 0 » 0 1

_ cosf) —sinf r 0 1 =z

N sinf  cosé 0 1/r 0 1

€ KAN.

Such an expression for g as a product kan with k € K, a € A, and n € N is called the
Iwasawa decomposition of g.
To check this decomposition is unique, for each angle 8, r > 0, and x € R, set

[ cosf —sinf r 0 1 =\ [ rcosf xrcosf— (1/r)siné
9=\ sin®  cosd 0 1/r 0 1) \ rsinf axrsinf+ (1/r)cos@ )
If this is (24) € SLo(R) then
(2.1) r=+va%+c2>0, cosfh = g, sinf = E,
r r

and

Solving for g,

T cosf )

d=(/r)cosb = ¢ ging £ 0.

rsin

{b+(1/r) sin if cosf # 0,
Tr=

Substituting the formulas for cosf and sin € into the formula for z, and using ad — bc = 1,
we obtain the uniform formula

ab+ cd
a?+c2’
All the parameters in the matrices making up the Iwasawa decomposition of (¢ 3) are
determined in (2.1) and (2.2), so the Iwasawa decomposition is unique. This completes

(2.2) x =
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the proof of Theorem 1.1. In an appendix we derive the Iwasawa decomposition using a
different action of SLy(R), on the upper half-plane.

The Iwasawa decomposition for SLa(R) extends to higher dimensions: SL,(R) = KAN
where K = SO, (R) = {T € GL,(R) : TTT = I,,, det T = 1}, A is the group of diagonal
matrices with positive diagonal entries (and determinant 1) and N is the group of upper-
triangular matrices with 1’s along the main diagonal. While A and N are both isomorphic
to R when n = 2, N becomes nonabelian for n > 2. The group K is compact, the group
A= (Rso)" ' =2 R" ! is abelian, and N is a nilpotent group.! This explains the notation
A and N, for abelian and nilpotent.

Returning to the case of 2 x 2 matrices, since

& (o ) (o T)=00 ) ()

we can move each element of A past an element of N (on either side) at the cost of changing
the element of N. Therefore AN = N A is a subgroup of SLa(R). Explicitly,

(2.4) AN:{(% 1:;y>:y>0,a:€R}.

The Iwasawa decomposition KAN = K(AN) for SLy(R) is the analogue of the polar
decomposition S' x R+q for C*.

In the Iwasawa decomposition, neither K nor AN (nor A or N) is normal in SLy(R). For
example, the conjugate of an element of K by (1) is usually not in K and the conjugate
of an element of AN by (9 7} ) is usually not in AN. Because of the non-normality, it is
not easy to describe the group operation in SLy(R) in terms of its Iwasawa decomposition.
This decomposition is important for other purposes, such as the following.

Corollary 2.1. As a topological space, SLa(R) is homeomorphic to the inside of a solid
torus.

Proof. Let f: K x A x N — SLy(R) by f(k,a,n) = kan. This is continuous, and by
Theorem 1.1 it is surjective. We can write down an inverse function using the computations
at the end of the proof of Theorem 1.1. For g = (2%) in SLy(R), define r(g) = va® + ¢2
and

a/r(g) —c/r(g) ) ( rig) 0 >
k = ) = Y
o= o ) c0=("8 g
1 (ab+cd)/(a® + c?

o= (4 el
The function g — (k(g),a(g),n(g)) from SLa(R) to K x A x N is continuous and is an
inverse to f.

Topologically, K = S1, A =2 R-¢ = R, and N = R. Therefore topologically, SLa(R) =

S' x R%. The plane R? is homeomorphic to the open unit disc D by v — v/+/1 + |[v][?

1The word nilpotent has different meanings in group theory and matrix theory. A group G is called
nilpotent if there is a finite tower of subgroups {e} = No C Ny C N2 C --- C N, = G for some r where
N; <N and N;4+1/N; C Z(G/N;) for all i. That the subgroup N of GL,(R) is nilpotent is shown on pages 27
and 28 of https://kconrad.math.uconn.edu/blurbs/grouptheory/subgpseriesl.pdf, where N is written
as UT,(R). A square matrix is called nilpotent if it has a power equal to O, so invertible square matrices
are never nilpotent in the matrix sense. Thus a subgroup of GL,(R) might be nilpotent in the sense of
group theory, but its elements are not nilpotent in the sense of matrix theory.


https://kconrad.math.uconn.edu/blurbs/grouptheory/subgpseries1.pdf
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(with inverse w ~— w/y/1 — ||w|[?), where || - || is the usual length function on R?, so as a
topological space SLa(R) is homeomorphic to S' x D, which is the inside of a solid torus.

As an alternate ending, on the decomposition K x A x N = S x R+ x R treat the
product R~ x R as the right half plane {x + iy : z > 0} and identify it with the open unit
disc D by the Cayley transformation z — (z — 1)/(z + 1). (Vertical lines in the half-plane
are sent to circles inside D that are tangent to the unit circle at 1.) O

Although the proof of Corollary 2.1 shows SLy(R) and S x R? are homeomorphic as
topological spaces, they are not isomorphic as groups. Equivalently, the homeomorphism
K x Ax N — SLy(R) in Corollary 2.1 is not a group homomorphism.

The Iwasawa decomposition of a matrix in K, A, or N is the obvious one. For a lower
triangular matrix (11/ (1)), which is in none of these subgroups, the inverse map in the proof
of Corollary 2.1 gives us the decomposition

UVity: —y/Vi+y? [ VI+y? 0 Loy/(L+y")
v e ) O e ) (o 7))

Remark 2.2. The inside of a solid torus has a circle as a strong deformation retract, so the
fundamental group of SLy(R) is isomorphic to that of a circle: m (SLa(R)) = m(S!) = Z.
From the connection between covering spaces and subgroups of the fundamental group,
SLy(R) admits a unique covering space of degree d for each positive integer d and the
universal covering space of SLa(R) is the inside of a solid cylinder R x D (homeomorphic
to R3). The degree-2 cover of SL(2, R) is an important group called the metaplectic group.

We can write down an explicit example of a noncontractible loop in SLa(R): the subgroup
K, or rather the obvious map S' — K. To prove this loop is noncontractible in SLy(R) we

use the Iwasawa decomposition to write down a strong deformation retract from SLy(R) to
K. Let h: SLa(R) x [0,1] — K by

.t ¢+ [ cosf —sind rt 0 1 tx
h(kan,t) = ka'n _<sin«9 cosH)(O 1/Tt><0 1).

This is continuous with h(kan,0) = k, h(kan,1) = kan, and h(k,t) = k. Therefore
m1(SLe(R)) = m(K) =2 Z, so K has to be a noncontractible loop in SLy(R) since K is
noncontractible in K.

That the Iwasawa decomposition gives us a picture of SLa(R) is a striking geometric
application. Here is an algebraic application (whose punchline is the corollary).

Theorem 2.3. The only continuous homomorphism SLa(R) — R is the trivial homomor-
phism.

Proof. Let f: SLa(R) — R be a continuous homomorphism. Then

f(kan) = f(k) + f(a) + f(n).
We will show f is trivial on K, A, and N, and thus f is trivial on KAN = SLo(R).

Since K =2 S!, the elements of finite order in K are dense. Since R has no elements
of finite order except 0, f is trivial on a dense subset of K and thus is trivial on K by
continuity. (As an alternate argument, since K is a compact group so is f(K), and the only
compact subgroup of R is {0}.)

Now we look at f on A and N. Since A 2 R>¢ = R by (g 1(/)r) — logr and N = R by
(%) + z, both algebraically and topologically, describing the continuous homomorphisms
from A and N to R is the same as describing the continuous homomorphisms from R to
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R. All continuous homomorphisms R — R have the form x + tx for some real number ¢
(see where 1 goes, call that ¢, and then appeal to the denseness of Q in R). Therefore

f<6 19T>:tlogr, f(é Qf):t’m

for some t and ¢'. Applying f to both sides of (2.3),
tlogr +t'z = t'r’z + tlogr,

so t'z = t'r%x for all r > 0 and z € R. Thus #' = 0 (e.g., take z = 1 and r = 2 to see this.)
This shows f is trivial on N.
It remains to show f is trivial on A. For this we appeal to the conjugation relation

0 -1 ro 0 0o -1\ /1 0\ (r 0\
1 0 0 1/r 1 0 “Lo )7 \o 1
Applyingfawegetf(gl(/)r):_f(gl(/)r)vsof(gl(/)r):O' O

Corollary 2.4. Every continuous homomorphism SLa(R) — GL,(R) has image in SL,,(R).

Proof. Let f: SLa(R) — GL,,(R) be a continuous homomorphism. Composing f with the
determinant GL,(R) — R* gives a continuous homomorphism detof: SLy(R) — R*.
Since SLa(R) is connected (Corollary 2.1), its image under det of is a connected subgroup
of R*, so it lies in R~g. As R~g = R both topologically and algebraically, det o f is trivial
by Theorem 2.3. Thus det(f(g)) =1 for all g € SL2(R), so f(SL2(R)) C SL,(R). O

Example 2.5. We will construct a continuous homomorphism GL2(R) — GL3(R) and see
its restriction to SL2(R) has values in SL3(R).

Let V = Rz? + Ray + Ry? be the vector space of homogeneous polynomials in « and
y of degree 2: quadratic forms on R?. This space is 3-dimensional, with basis 2, zy, 3.
For g = (2%) in GLy(R) and Q(z,y) in V, set (9Q)(z,y) = Qax + cy,bx + dy). If
we think of quadratic forms and matrices acting on column vectors from the left, then
(gQ)(z) =Q(g" (;)) Check that g1(g2Q) = (g192)@, so GLa(R) acts on V from the left.

For instance, let Q(z,y) = 2% +y% g1 = ({ 1), and g2 = ({1). Then g1go = (} %), so
(92Q)(z,y) = Qy.x +y) = y* + (x +y)* = 2? + 2zy + 29,
(91(92Q))(2,y) = (2Q)(w,x + y) = 2* + 2z (2 + y) + 2(x + y)* = 5® + 6y + 2y,
and
((9192)Q)(x,y) = Q(z +y,2z +y) = (z+y)* + (2z + y)* = 52” + 6zy + 2¢°,

which illustrates that ¢1(g2Q) = (9192)Q.>
The left action of GLa(R) on V' above is a linear change of variables on V' given by the
entries of 2 X 2 matrices. Since g(Q + Q') = g(Q) + ¢(Q’) and g(sQ) = sg(Q) for s € R, the
action of g on V is a linear transformation (necessarily invertible, since the action of g~! on
V is its inverse). Using the basis 22, zy,y? of V, we can compute a matrix representation
of g on V: we have
g(z?) = (az + cy)? = a®z? + 2acxy + Ay?,

g(zy) = (az + cy)(bx + dy) = abx® + (ad + be)xy + cdy?,

?If (9 Q)(x,y) = Q(az+by, cz+dy), or equivalently (¢+Q)(2) = Q(g(})), then g1+ (g2% Q) = (9291) * Q.
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and
9(y2) = (b + dy)? = b22® + 2bdry + 4,
so the matrix of g with respect to the basis x2, zy, y? is

a? ab b2
2ac ad+ be 2bd
2 cd d?

Call this matrix f(g), so f: GL2(R) — GL3(R) is a homomorphism and the formula for
f(g) shows f is continuous. By a calculation, det(f(g)) = (ad — bc)® = (det g)3, so when ¢
has determinant 1 so does f(g).

Example 2.5 can be generalized. For each integer n > 1, the space V,, = @', Rax" iy
of homogeneous 2-variable polynomials of degree n has dimension n + 1 and GL2(R) acts
on this space by linear changes of variables. The restriction of this action to SLy(R) on
Vy, accounts for essentially all “interesting” actions of SLa(R) on finite-dimensional vector
spaces.

Theorem 2.6. The homomorphism SLa(R[z,y]) — SLa(R[z,y]/ (22 +y?—1)), where matriz
entries are reduced componentwise modulo x* 4+ y? — 1, is not surjective.

Proof. Let T and ¥ be the cosets of = and y in R[z,y]/(2? +y* — 1), so 2 + 7> = 1. One
matrix in SLe(R[z, y]/(2? +y? — 1)) is

(2.5) <z'g).

We will prove by contradiction that there is no matrix A(x,y) in SLo(R[z,y]) that becomes
the matrix (2.5) when the entries of A(z,y) are reduced modulo x2 + y? — 1.

For each matrix
_ [ alz,y) blz,y)
Ale.y) = ( (z,y) dlz,y) )

in SLa(R[x,y]), we have det A(z,y) = a(z,y)d(x,y) —b(x,y)c(z,y) = 1 in Rz, y], so for all
real numbers u and v we have A(u,v) € SLa(R).

Suppose A(z,y) reduces to the matrix (2.5) in SLa(R[x,y]/(2? + y? — 1)). Then when
u?+v? =1 in R we have A(u,v) = (¥ ~?). Define the homotopy h4: S* x [0,1] — SL2(R)
by ha(u,v,t) = A(tu,tv).® Then hy(u,v,0) is a constant map while ha(u,v,1) = A(u,v) =
(¥~2) is a loop in SLy(R) that generates m;(SL2(R)) (see Remark 2.2). Then ha gives
us a way to continuously shrink a generator of 71 (SL2(R)) to a constant map. This is
impossible since m(SL2(R)) is nontrivial, so no matrix in SLa(R[z,y]) reduces to (2.5)

modulo z2 + 3% — 1. O

Corollary 2.7. The homomorphism SLa(Z[z,y]) — SLa(Z[x,y]/(x*+y>—1)), where matriz
entries are reduced componentwise modulo x* + y? — 1, is not surjective.

Proof. The matrix (X Y) is in SLa(Z[z,y]/(2% + y*> — 1)), and if some matrix A(z,y) in

T
7 T
Z[z,y] reduces to it then we can use A(x,y) in the proof of Theorem 2.6. O

3For (u,v) € S*, the matrix A(tu, tv) is not (©* ~1) if 0 < ¢ < 1 since det( " ~1v) = > #£ 1.

tv  tu tv  tu
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3. CoNJUGACY CLASSES

The conjugacy class of a matrix in SLa(R) is nearly determined by its eigenvalues, but we
have to be a little bit careful so we don’t confuse conjugacy in SLa(R) with conjugacy in the
larger group GL2(R). For example, (} 1) and its inverse (} 7}') are conjugate in GLy(R)
by (3 _9), whose determinant is —1. These two matrices are not conjugate in SLo(R), since

each SLa(R)-conjugate of (1) has a positive upper right entry, by an explicit calculation.

Theorem 3.1. Let T € SLa(R). If (Tr T)? > 4 then T is conjugate to a unique matriz of
the form (} 1(/))\) with |\| > 1. If (TrT)? = 4 then T is conjugate to exactly one of +Is,
+(§1), or +( _01 711 ). If (TrT)? < 4 then T is conjugate to a unique matriz of the form
(cost =sinby oiher than +1s.

sinf  cos@

Proof. For T' € SLa(R), its eigenvalues are roots of its characteristic polynomial, which is
X? —tX + 1, where t = Tr(T). The nature of the eigenvalues of T are determined by the
discriminant of this polynomial, t2 — 4: two distinct real eigenvalues if t> > 4, a repeated
eigenvalue if t> = 4, and two complex conjugate eigenvalues if t> < 4. We will find a
representative for the conjugacy class of T’ based on the sign of t2 — 4. Of course matrices
with different ¢’s are not conjugate.

In what follows, if v and w are vectors in R? whose specific coordinates are not important
to make explicit, we will write ([v] [w]) for the matrix (¢ Y). This matrix is invertible when
v and w are linearly independent.

Suppose t?> > 4. Then T has distinct real eigenvalues A and 1/)\. Let v and v’ be
eigenvectors in R? for these eigenvalues: Tv = Av and Tv' = (1/A\)v’. In coordinates from
the basis v and v/, T is represented by () 1(/)/\), so T is conjugate to ( 1?)\) by the 2 x 2
matrix ([v] [v']). Scaling v’ keeps it as an eigenvector of T', and by a suitable nonzero scaling

the matrix ([v] [¢']) has determinant 1. Therefore T is conjugate to () 1%) in SLy(R). We

did not specify an ordering of the eigenvalues, so () 1(/))\) and (1(/)’\ ?\) have to be conjugate
to each other in SLy(R). Explicitly, (9 =)(3J 1% )(§ )t = (16)‘ 7). Conjugate matrices
pn 0

have the same eigenvalues, so () 1(/))\) is conjugate to ({1, ) only when 1 equals A or 1/A.

We can therefore pin down a representative for the conjugacy class of T in SLy(R) as ( 1% )
with [A| > 1.

Now suppose t> = 4. The roots of X? —tX + 1 are both 1 (if ¢ = 2) or both —1 (if
t = —2). Let A = £1 be the eigenvalue for 7. Extend v to a basis {v,v'} of R?. Scaling
v/, we may assume the matrix ([v] [v']) has determinant 1. Conjugating T by this matrix
expresses it in the basis v and v’ as ({) » ). Since the determinant is 1, y = 1/A = A = 1.
Therefore T is conjugate in SLy(R) to a matrix of the form (§ %) or (73 _%). If z = 0 these
matrices are +1o, which are in their own conjugacy class. The formulas

)G =)
)G )G =67

show (§ %) is conjugate to either (1) or (§
(o )i 1) -

and

—

), depending on the sign of z. Similarly

o =

is conjugate to either (
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and (7} _}) are nonconjugate in SLy(R), e.g.,
¥) with « a perfect square. Other cases are left

)

The four matrices ( %) (55, (5 4
an SLa(R)-conjugate of (3 1) looks like (
to the reader.

Finally, suppose t* < 4. Now T has complex conjugate eigenvalues that, by the quadratic
formula for X2 —¢X +1, are of absolute value 1 and are not 41 (since t # +2). We can write
the eigenvalues as e with sin# # 0. Pick an eigenvector v in C? such that Tv = v,
Since € is not real, v ¢ R2. Let T be the vector with coordinates that are complex
conjugate to those of v, so 70 = e~*. Then v + v and i(v — D) are in R?, with

)
1z
01

T(v+7v) = (cosf)(v+7)+ (sin)i(v — )
and
T(v—71)=—(sinf)(v +7v) + (cosb)i(v — ).

Therefore conjugating 7' by the (invertible) real matrix ([v + ?] [i(v — ¥)]) turns T' into
(cost —sinf) We don’t know the determinant of ([v + 7] [i(v — 7)]), but scaling v by a real

sinf cos6
number (and T by the same amount, to keep it conjugate) can give this conjugating matrix

determinant 1. If the determinant is 1 then T is conjugate to (¢ —sin0) in ST, (R).

sinf cos6

If the determinant is —1, then reverse the order of the columns in the conjugating marix
cos 6 sin@) — (COS(*Q) —sin(—0)

—sinf cosf/ T \sgin(—0) cos(—0)

SLy(R). Two matrices (_S%9 50y and (9 7 eosp) in K can be conjugate only when

¢ = 60 mod 27Z, by looking at eigenvalues, and a direct calculation shows the SLa(R)-
conjugate of (9 510Y never equals (Z?If((:z)) 73;2%:33) unless sinf = 0, but we are in a

case when sin 6 # 0. g

to give it determinant 1 and then T is conjugate to ( ) in

When T € SLy(R) satisfies Tr(T)% > 4 we say T is hyperbolic, when (TrT)? = 4 we say T
is parabolic, and when (TrT)? < 4 we say T is elliptic. This terminology is borrowed from
the shape of a plane conic az? + bxy + cy?> = 1 in terms of its discriminant d = b — 4ac:
it is a hyperbola when d > 0, a parabola when d = 0, and an ellipse when d < 0. Up to
sign, the hyperbolic conjugacy classes in SLa(R) are represented by matrices in A (besides
I5), the elliptic conjugacy classes are represented by matrices in K (besides +13), and the
parabolic conjugacy classes are represented by matrices in N.

APPENDIX A. ACTING ON THE UPPER HALF-PLANE

We will use an action of SLo(R) on the upper half-plane h = {z + iy : y > 0} to obtain
the Iwasawa decomposition of SLs(R) in a more efficient manner than the first proof that
used an action on bases of R?.

For (%) € GL2(R) and a non-real complex number z, set

a b az+b
(A.1) <c d)(z)—cz+d€C—R.

By a calculation left to the reader, ¢1(g2(2)) = (9192)(2) for g1 and g2 in GL2(R), and

. (az + b) _ (ad—be) Tm(z)

cz+d lcz + dJ?

Therefore when ad — be > 0, z and (az +b)/(cz + d) have the same sign for their imaginary
parts. In particular, if ¢ € SLa(R) and z is in the upper half-plane then so is g(z), so (A.1)
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is an action of the group SLa(R) on the set . This action has one orbit since we can get
anywhere in b from ¢ using SLy(R):

(A.2) < \(/)@ f?\g > (i) = z + iy.

Notice that the matrix used here to send i to = + iy is in the subgroup AN (see (2.4)).
Let’s determine the stabilizer of i. Saying (¢ %)(i) = i is equivalent to (ai+b)/(ci+d) =i,
s0 ai+b = di — c. Therefore d =a and b= —¢, so (¢ ) = (¢ %) with a® + ¢* = 1. We can
therefore write a = cos 8 and ¢ = sin @, which shows the stabilizer of 7 is the set of matrices
(Zfﬁg *sgég ). This is the subgroup K (so b can be viewed as the coset space SLa(R)/K on
which SLs(R) acts by left multiplication).
Now we are ready to derive the Iwasawa decomposition. For g € SLa(R), write g(i) =

x + iy € h. Using (A.2),

(A3) g(i):xﬂ‘y:(\/f f;£>(z):<é “f)(\é@ 1/?/@>(z’)€NA(z').

Since g acts on ¢ in the same way as an element of N A, and the stabilizer of i is K, g € NAK.
Thus SLy(R) = NAK. Applying inversion to this decomposition, SLy(R) = KAN. That
settles the existence of the Iwasawa decomposition.

To prove uniqueness, assume nak = n’a’k’. Applying both sides to i, k and k' fix ¢ so
na(i) = n'd'(i). For n = ({%) and a = (§ 1(/)r), na = (6:16?:), so na(i) = x + r%. In
particular, knowing na(i) tells us the parameters determining n and a. Hence n = n’ and
a=d,sok=F.

The upper half-plane action of SLa(R) leads in a second way to the formulas (2.1) and
(2.2) for the matrix entries in the factors of the Iwasawa decomposition for g = (¢%) €
SL2(R). (We have just proved anew the existence and uniqueness of this decomposition.)

Write, as in Section 2,

cosf —sind r 0 Lz
(A.4) g—’m”—<sin9 Cos9><0 1/?“)(0 1>'

We want to determine the entries of these matrices in terms of the entries of g. We will
work with g~! = n~'a~'k~! since the SLy(R)-action on b leads to the decomposition NAK
rather than K AN:

i d =b\,, di-b  abted 1
I (Z)_(_C a (1)_—ci+a_ a2+c2+a2—|—c2l'

Writing this as u + iv, from (A.3) (with g~! in place of g and u + iv in place of x + iy) we

“ n1:<(1) 1;):((1) —(ab—l—cdi/(a2+02)>
and

n:<(1) (ab—i—cd){(aQ—FcQ))’ a:<\/a20W 1/\/;;?)_
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Since g = kan,
k= gn—la~! = < a/vVa?+c2 —c/va?+ c? >
c/Va?t+c2  a/Val+c )’
The formulas for the entries of k, a, and n match those in (2.1) and (2.2).

It is interesting to compare the role of the group K in the geometry of R? and . As a
transformation of R?, an element of K is a rotation around the origin. This is an isometry
of R? using the Euclidean metric, and the K-orbit of a nonzero vector in R? is the circle
that passes through that vector and is centered at the origin. As a transformation of b,
an element of K is a rotation around i relative to the hyperbolic metric on h. This is a
hyperbolic isometry of h, and the K-orbit of a point in b is the circle through that point
that is centered at ¢ relative to the hyperbolic metric.

The conjugacy class of a matrix 7' € SLy(R) was determined in Theorem 3.1 in terms of
(Tr T')% — 4, which is the discriminant of the characteristic polynomial of 7. The sign of this
quantity tells us whether 7" has real or non-real eigenvectors. The difference (Tr T')%2—4 is also
relevant to the action of T on the upper half-plane, with fixed points replacing eigenvectors.
When T = (25), the fixed-point condition T'(z) = z is equivalent to az + b = (cz + d)z,
which says cz? + (d — a)z — b = 0. The discriminant of this equation, which tells us the
number of real roots, is

(d—a)* 4 4bc = d*> — 2da + a® + 4(ad — 1) = (a +d)* —4 = (Tr T)? — 4.
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