DECOMPOSING $SL_2(\mathbf{R})$

KEITH CONRAD

1. Introduction

The group $SL_2(\mathbf{R})$ is not easy to visualize: it naturally lies in $M_2(\mathbf{R})$, which is 4-dimensional (the entries of a variable 2×2 real matrix are 4 free parameters). We will derive a product decomposition for $SL_2(\mathbf{R})$ and use it to get a concrete image of $SL_2(\mathbf{R})$. Inside $SL_2(\mathbf{R})$ are the following three subgroups:

$$K = \left\{ \left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right) \right\}, \quad A = \left\{ \left(\begin{array}{cc} r & 0 \\ 0 & 1/r \end{array} \right) : r > 0 \right\}, \quad N = \left\{ \left(\begin{array}{cc} 1 & x \\ 0 & 1 \end{array} \right) \right\}.$$

Theorem 1.1. We have a decomposition $SL_2(\mathbf{R}) = KAN$: every $g \in SL_2(\mathbf{R})$ has a unique representation as g = kan where $k \in K$, $a \in A$, and $n \in N$.

This formula $SL_2(\mathbf{R}) = KAN$ is called the *Iwasawa decomposition* of the group. Don't confuse the use of a in Theorem 1.1 as the label for a matrix in A with a as a real number in the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. The distinction should always be clear from the context. Since $SL_2(\mathbf{R})$ is defined by the single equation ad - bc = 1 inside of $M_2(\mathbf{R})$, it is a manifold of dimension 4 - 1 = 3. The subgroups K, A, and N are each 1-dimensional $(K \cong S^1, A \cong \mathbf{R}_{>0})$, and $N \cong \mathbf{R}$, and Theorem 1.1 shows they fully account for the 3 dimensions of $SL_2(\mathbf{R})$.

The subgroups in the Iwasawa decomposition are related to conjugacy classes. We will see that a matrix in $SL_2(\mathbf{R})$ is, up to sign, conjugate to a matrix in K, A, or N.

2. Iwasawa decomposition

To derive the Iwasawa decomposition of $SL_2(\mathbf{R})$ we will use an action of this group on bases in \mathbf{R}^2 .

For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $SL_2(\mathbf{R})$, apply it to the standard basis e_1, e_2 . The vectors

$$ge_1 = \begin{pmatrix} a \\ c \end{pmatrix}, \quad ge_2 = \begin{pmatrix} b \\ d \end{pmatrix}$$

are also a basis of \mathbf{R}^2 . We will pass from this new basis of \mathbf{R}^2 back to the standard basis e_1, e_2 of \mathbf{R}^2 by a sequence of transformations in $\mathrm{SL}_2(\mathbf{R})$ that amounts to something like the Gram–Schmidt process (which turns a basis of \mathbf{R}^n into an orthonormal basis of \mathbf{R}^n).

Let θ be the angle from the positive x-axis to ge_1 . Let ρ_{θ} be the counterclockwise rotation of the plane around the origin by θ , so $\rho_{-\theta}(ge_1)$ is on the positive x-axis. Because det g is positive, the ordered pair of vectors (ge_1, ge_2) has the same orientation as the ordered pair (e_1, e_2) , so $\rho_{-\theta}(ge_2)$ is in the upper (rather than lower) half-plane.

Since $\rho_{-\theta}(ge_1)$ is a positive scalar multiple of e_1 , we want to divide $\rho_{-\theta}(ge_1)$ by its length so it becomes e_1 . Its length is $r = ||\rho_{-\theta}(ge_1)|| = ||ge_1|| = \sqrt{a^2 + c^2}$. Applying $\binom{1/r \ 0}{0 \ 1/r}$ will have the desired effect $\rho_{-\theta}(ge_1) \mapsto e_1$, but this matrix doesn't have determinant 1. On the other hand, $\binom{1/r \ 0}{0 \ r}$ also has the desired effect on $\rho_{-\theta}(ge_1)$ and has determinant 1. So

apply the matrix $\binom{1/r}{0}$ to \mathbf{R}^2 . It sends $\rho_{-\theta}(ge_1)$ to $\binom{1/r}{0}$, $\rho_{-\theta}(ge_1) = e_1$. What does it do to $\rho_{-\theta}(ge_2)$? The vector $\binom{1/r}{0}$, $\rho_{-\theta}(ge_2)$ is in the upper half-plane (because $\binom{1/r}{0}$) has positive determinant) and along with e_1 it forms two edges of a parallelogram with area 1 (because $\binom{1/r}{0}$) has determinant ± 1). A parallelogram with area 1 having base e_1 must have height 1, so $\binom{1/r}{0}$, $\rho_{-\theta}(ge_2) = \binom{x}{1}$ for some x.

Each horizontal shear transformation $\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$, which has determinant 1, fixes the x-axis and acts as a stretching along each horizontal line. Applying the horizontal shear transformation $\begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix}$ to \mathbf{R}^2 takes $\begin{pmatrix} x \\ 1 \end{pmatrix}$ to $\begin{pmatrix} 0 \\ 1 \end{pmatrix} = e_2$ and fixes e_1 . We have finally returned to the standard basis e_1, e_2 from the basis ge_1, ge_2 by a sequence of transformations in $SL_2(\mathbf{R})$. Our overall composite transformation is

$$\left(\begin{array}{cc} 1 & -x \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1/r & 0 \\ 0 & r \end{array}\right) \rho_{-\theta},$$

SO

$$\left(\begin{array}{cc} 1 & -x \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1/r & 0 \\ 0 & r \end{array}\right) \rho_{-\theta} g$$

sends e_1 to e_1 and e_2 to e_2 . A linear transformation on \mathbb{R}^2 is determined by what it does to a basis, so

$$\left(\begin{array}{cc} 1 & -x \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1/r & 0 \\ 0 & r \end{array}\right) \rho_{-\theta} g = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right).$$

Solving for g,

$$g = \rho_{\theta} \begin{pmatrix} 1/r & 0 \\ 0 & r \end{pmatrix}^{-1} \begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix}^{-1}$$
$$= \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} r & 0 \\ 0 & 1/r \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$
$$\in KAN.$$

Such an expression for g as a product kan with $k \in K$, $a \in A$, and $n \in N$ is called the Iwasawa decomposition of g.

To check this decomposition is unique, for each angle θ , r > 0, and $x \in \mathbf{R}$, set

$$g = \left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right) \left(\begin{array}{cc} r & 0 \\ 0 & 1/r \end{array} \right) \left(\begin{array}{cc} 1 & x \\ 0 & 1 \end{array} \right) = \left(\begin{array}{cc} r\cos\theta & xr\cos\theta - (1/r)\sin\theta \\ r\sin\theta & xr\sin\theta + (1/r)\cos\theta \end{array} \right).$$

If this is $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{R})$ then

(2.1)
$$r = \sqrt{a^2 + c^2} > 0, \cos \theta = \frac{a}{r}, \sin \theta = \frac{c}{r}$$

and

$$x = \begin{cases} \frac{b + (1/r)\sin\theta}{r\cos\theta}, & \text{if } \cos\theta \neq 0, \\ \frac{d - (1/r)\cos\theta}{r\sin\theta}, & \text{if } \sin\theta \neq 0. \end{cases}$$

Substituting the formulas for $\cos \theta$ and $\sin \theta$ into the formula for x, and using ad - bc = 1, we obtain the uniform formula

$$(2.2) x = \frac{ab + cd}{a^2 + c^2}.$$

All the parameters in the matrices making up the Iwasawa decomposition of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ are determined in (2.1) and (2.2), so the Iwasawa decomposition is unique. This completes

the proof of Theorem 1.1. In an appendix we derive the Iwasawa decomposition using a different action of $SL_2(\mathbf{R})$, on the upper half-plane.

The Iwasawa decomposition for $\operatorname{SL}_2(\mathbf{R})$ extends to higher dimensions: $\operatorname{SL}_n(\mathbf{R}) = KAN$ where $K = \operatorname{SO}_n(\mathbf{R}) = \{T \in \operatorname{GL}_n(\mathbf{R}) : TT^\top = I_n, \det T = 1\}$, A is the group of diagonal matrices with positive diagonal entries (and determinant 1) and N is the group of upper-triangular matrices with 1's along the main diagonal. While A and N are both isomorphic to \mathbf{R} when n = 2, N becomes nonabelian for n > 2. The group K is compact, the group $A \cong (\mathbf{R}_{>0})^{n-1} \cong \mathbf{R}^{n-1}$ is abelian, and N is a nilpotent group. This explains the notation A and N, for abelian and nilpotent.

Since

(2.3)
$$\begin{pmatrix} r & 0 \\ 0 & 1/r \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & r^2x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} r & 0 \\ 0 & 1/r \end{pmatrix},$$

we can move each element of A past an element of N (on either side) at the cost of changing the element of N. Therefore AN = NA is a subgroup of $SL_2(\mathbf{R})$. Explicitly,

(2.4)
$$AN = \left\{ \left(\begin{array}{cc} y & x \\ 0 & 1/y \end{array} \right) : y > 0, x \in \mathbf{R} \right\}.$$

The Iwasawa decomposition KAN = K(AN) for $SL_2(\mathbf{R})$ is the analogue of the polar decomposition $S^1 \times \mathbf{R}_{>0}$ for \mathbf{C}^{\times} .

In the Iwasawa decomposition, neither K nor AN (nor A or N) is normal in $SL_2(\mathbf{R})$. For example, the conjugate of an element of K by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is usually not in K and the conjugate of an element of AN by $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ is usually not in AN. Because of the non-normality, it is not easy to describe the group operation in $SL_2(\mathbf{R})$ in terms of its Iwasawa decomposition. This decomposition is important for other purposes, such as the following.

Corollary 2.1. As a topological space, $SL_2(\mathbf{R})$ is homeomorphic to the inside of a solid torus.

Proof. Let $f: K \times A \times N \to \mathrm{SL}_2(\mathbf{R})$ by f(k,a,n) = kan. This is continuous, and by Theorem 1.1 it is surjective. We can write down an inverse function using the computations at the end of the proof of Theorem 1.1. For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $\mathrm{SL}_2(\mathbf{R})$, define $r(g) = \sqrt{a^2 + c^2}$ and

$$k(g) = \begin{pmatrix} a/r(g) & -c/r(g) \\ c/r(g) & a/r(g) \end{pmatrix}, \quad a(g) = \begin{pmatrix} r(g) & 0 \\ 0 & 1/r(g) \end{pmatrix},$$
$$n(g) = \begin{pmatrix} 1 & (ab + cd)/(a^2 + c^2) \\ 0 & 1 \end{pmatrix}.$$

The function $g \mapsto (k(g), a(g), n(g))$ from $\mathrm{SL}_2(\mathbf{R})$ to $K \times A \times N$ is continuous and is an inverse to f.

Topologically, $K \cong S^1$, $A \cong \mathbf{R}_{>0} \cong \mathbf{R}$, and $N \cong \mathbf{R}$. Therefore topologically, $\mathrm{SL}_2(\mathbf{R}) \cong S^1 \times \mathbf{R}^2$. The plane \mathbf{R}^2 is homeomorphic to the open unit disc D by $v \mapsto v/\sqrt{1+||v||^2}$ (with inverse $w \mapsto w/\sqrt{1-||w||^2}$), where $||\cdot||$ is the usual length function on \mathbf{R}^2 , so as a topological space $\mathrm{SL}_2(\mathbf{R})$ is homeomorphic to $S^1 \times D$, which is the inside of a solid torus.

As an alternate ending, on the decomposition $K \times A \times N \cong S^1 \times \mathbf{R}_{>0} \times \mathbf{R}$ treat the product $\mathbf{R}_{>0} \times \mathbf{R}$ as the right half plane $\{x+iy: x>0\}$ and identify it with the open unit disc D by the Cayley transformation $z \mapsto (z-1)/(z+1)$. (Vertical lines in the half-plane are sent to circles inside D that are tangent to the unit circle at 1.)

Although the proof of Corollary 2.1 shows $SL_2(\mathbf{R})$ and $S^1 \times \mathbf{R}^2$ are homeomorphic as topological spaces, they are not isomorphic as groups. Equivalently, the homeomorphism $K \times A \times N \to SL_2(\mathbf{R})$ in Corollary 2.1 is not a group homomorphism.

The Iwasawa decomposition of a matrix in K, A, or N is the obvious one. For a lower triangular matrix $\begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix}$, which is in none of these subgroups, the inverse map in the proof of Corollary 2.1 gives us the decomposition

$$\left(\begin{array}{cc} 1/\sqrt{1+y^2} & -y/\sqrt{1+y^2} \\ y/\sqrt{1+y^2} & 1/\sqrt{1+y^2} \end{array} \right) \left(\begin{array}{cc} \sqrt{1+y^2} & 0 \\ 0 & 1/\sqrt{1+y^2} \end{array} \right) \left(\begin{array}{cc} 1 & y/(1+y^2) \\ 0 & 1 \end{array} \right).$$

Remark 2.2. The inside of a solid torus has a circle as a strong deformation retract, so the fundamental group of $SL_2(\mathbf{R})$ is isomorphic to that of a circle: $\pi_1(SL_2(\mathbf{R})) \cong \pi_1(S^1) \cong \mathbf{Z}$. From the connection between covering spaces and subgroups of the fundamental group, $SL_2(\mathbf{R})$ admits a unique covering space of degree d for each positive integer d and the universal covering space of $SL_2(\mathbf{R})$ is the inside of a solid cylinder $\mathbf{R} \times D$ (homeomorphic to \mathbf{R}^3). The degree-2 cover of $SL(2,\mathbf{R})$ is an important group called the metaplectic group.

We can write down an explicit example of a noncontractible loop in $SL_2(\mathbf{R})$: the subgroup K, or rather the obvious map $S^1 \to K$. To prove this loop is noncontractible in $SL_2(\mathbf{R})$ we use the Iwasawa decomposition to write down a strong deformation retract from $SL_2(\mathbf{R})$ to K. Let $h: SL_2(\mathbf{R}) \times [0,1] \to K$ by

$$h(kan,t) = ka^t n^t = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} r^t & 0 \\ 0 & 1/r^t \end{pmatrix} \begin{pmatrix} 1 & tx \\ 0 & 1 \end{pmatrix}.$$

This is continuous with h(kan, 0) = k, h(kan, 1) = kan, and h(k, t) = k. Therefore $\pi_1(\operatorname{SL}_2(\mathbf{R})) \cong \pi_1(K) \cong \mathbf{Z}$, so K has to be a noncontractible loop in $\operatorname{SL}_2(\mathbf{R})$ since K is noncontractible in K.

That the Iwasawa decomposition gives us a picture of $SL_2(\mathbf{R})$ is a striking geometric application. Here is an algebraic application (whose punchline is the corollary).

Theorem 2.3. The only continuous homomorphism $SL_2(\mathbf{R}) \to \mathbf{R}$ is the trivial homomorphism.

Proof. Let $f : \operatorname{SL}_2(\mathbf{R}) \to \mathbf{R}$ be a continuous homomorphism. Then

$$f(kan) = f(k) + f(a) + f(n).$$

We will show f is trivial on K, A, and N, and thus f is trivial on $KAN = SL_2(\mathbf{R})$.

Since $K \cong S^1$, the elements of finite order in K are dense. Since \mathbf{R} has no elements of finite order except 0, f is trivial on a dense subset of K and thus is trivial on K by continuity. (As an alternate argument, since K is a compact group so is f(K), and the only compact subgroup of \mathbf{R} is $\{0\}$.)

Now we look at f on A and N. Since $A \cong \mathbf{R}_{>0} \cong \mathbf{R}$ by $\begin{pmatrix} r & 0 \\ 0 & 1/r \end{pmatrix} \mapsto \log r$ and $N \cong \mathbf{R}$ by $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mapsto x$, both algebraically and topologically, describing the continuous homomorphisms from A and N to \mathbf{R} is the same as describing the continuous homomorphisms from \mathbf{R} to \mathbf{R} . All continuous homomorphisms $\mathbf{R} \to \mathbf{R}$ have the form $x \mapsto tx$ for some real number t (see where 1 goes, call that t, and then appeal to the denseness of \mathbf{Q} in \mathbf{R}). Therefore

$$f\begin{pmatrix} r & 0\\ 0 & 1/r \end{pmatrix} = t \log r, \quad f\begin{pmatrix} 1 & x\\ 0 & 1 \end{pmatrix} = t'x$$

for some t and t'. Applying f to both sides of (2.3),

$$t\log r + t'x = t'r^2x + t\log r,$$

so $t'x = t'r^2x$ for all r > 0 and $x \in \mathbf{R}$. Thus t' = 0 (e.g., take x = 1 and r = 2 to see this.) This shows f is trivial on N.

It remains to show f is trivial on A. For this we appeal to the conjugation relation

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} r & 0 \\ 0 & 1/r \end{array}\right) \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)^{-1} = \left(\begin{array}{cc} 1/r & 0 \\ 0 & r \end{array}\right) = \left(\begin{array}{cc} r & 0 \\ 0 & 1/r \end{array}\right)^{-1}$$

Applying f, we get $f({r \atop 0} {1/r}) = -f({r \atop 0} {1/r})$, so $f({r \atop 0} {1/r}) = 0$.

Corollary 2.4. Every continuous homomorphism $SL_2(\mathbf{R}) \to GL_n(\mathbf{R})$ has image in $SL_n(\mathbf{R})$.

Proof. Let $f: SL_2(\mathbf{R}) \to GL_n(\mathbf{R})$ be a continuous homomorphism. Composing f with the determinant $GL_n(\mathbf{R}) \to \mathbf{R}^{\times}$ gives a continuous homomorphism $\det \circ f \colon SL_2(\mathbf{R}) \to \mathbf{R}^{\times}$. Since $SL_2(\mathbf{R})$ is connected (Corollary 2.1), its image under det $\circ f$ is a connected subgroup of \mathbf{R}^{\times} , so it lies in $\mathbf{R}_{>0}$. As $\mathbf{R}_{>0} \cong \mathbf{R}$ both topologically and algebraically, det $\circ f$ is trivial by Theorem 2.3. Thus $\det(f(g)) = 1$ for all $g \in SL_2(\mathbf{R})$, so $f(SL_2(\mathbf{R})) \subset SL_n(\mathbf{R})$.

Example 2.5. We will construct a continuous homomorphism $GL_2(\mathbf{R}) \to GL_3(\mathbf{R})$ and see its restriction to $SL_2(\mathbf{R})$ has values in $SL_3(\mathbf{R})$.

Let $V = \mathbf{R}x^2 + \mathbf{R}xy + \mathbf{R}y^2$ be the vector space of homogeneous polynomials in x and y of degree 2: quadratic forms on \mathbb{R}^2 . This space is 3-dimensional, with basis x^2, xy, y^2 . For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $GL_2(\mathbf{R})$ and Q(x,y) in V, set (gQ)(x,y) = Q(ax + cy, bx + dy). If we think of quadratic forms and matrices acting on column vectors from the left, then $(gQ)\binom{x}{y} = Q(g^{\top}\binom{x}{y})$. Check that $g_1(g_2Q) = (g_1g_2)Q$, so $\operatorname{GL}_2(\mathbf{R})$ acts on V from the left. For instance, let $Q(x,y) = x^2 + y^2$, $g_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, and $g_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Then $g_1g_2 = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$, so

$$(g_2Q)(x,y) = Q(y,x+y) = y^2 + (x+y)^2 = x^2 + 2xy + 2y^2,$$

 $(q_1(q_2Q))(x,y) = (q_2Q)(x,x+y) = x^2 + 2x(x+y) + 2(x+y)^2 = 5x^2 + 6xy + 2y^2,$ and

$$((g_1g_2)Q)(x,y) = Q(x+y,2x+y) = (x+y)^2 + (2x+y)^2 = 5x^2 + 6xy + 2y^2,$$

which illustrates that $g_1(g_2Q) = (g_1g_2)Q.^1$

The left action of $GL_2(\mathbf{R})$ on V above is a linear change of variables on V given by the entries of 2×2 matrices. Since g(Q+Q')=g(Q)+g(Q') and g(sQ)=sg(Q) for $s \in \mathbf{R}$, the action of g on V is a linear transformation (necessarily invertible, since the action of g^{-1} on V is its inverse). Using the basis x^2 , xy, y^2 of V, we can compute a matrix representation of g on V: we have

$$g(x^2) = (ax + cy)^2 = a^2x^2 + 2acxy + c^2y^2,$$

$$g(xy) = (ax + cy)(bx + dy) = abx^2 + (ad + bc)xy + cdy^2,$$

and

$$g(y^2) = (bx + dy)^2 = b^2x^2 + 2bdxy + d^2y^2,$$

so the matrix of g with respect to the basis x^2, xy, y^2 is

$$\begin{pmatrix} a^2 & ab & b^2 \\ 2ac & ad + bc & 2bd \\ c^2 & cd & d^2 \end{pmatrix}.$$

¹If (g*Q)(x,y) = Q(ax+by, cx+dy), or equivalently $(g*Q)\binom{x}{y} = Q(g\binom{x}{y})$, then $g_1*(g_2*Q) = (g_2g_1)*Q$.

Call this matrix f(g), so $f: GL_2(\mathbf{R}) \to GL_3(\mathbf{R})$ is a homomorphism and the formula for f(g) shows f is continuous. By a calculation, $\det(f(g)) = (ad - bc)^3 = (\det g)^3$, so when g has determinant 1 so does f(g).

Example 2.5 can be generalized. For each integer $n \geq 1$, the space $V_n = \bigoplus_{i=0}^n \mathbf{R} x^{n-i} y^i$ of homogeneous 2-variable polynomials of degree n has dimension n+1 and $\mathrm{GL}_2(\mathbf{R})$ acts on this space by linear changes of variables. The restriction of this action to $\mathrm{SL}_2(\mathbf{R})$ on V_n accounts for essentially all "interesting" actions of $\mathrm{SL}_2(\mathbf{R})$ on finite-dimensional vector spaces.

Theorem 2.6. The homomorphism $SL_2(\mathbf{R}[x,y]) \to SL_2(\mathbf{R}[x,y]/(x^2+y^2-1))$, where matrix entries are reduced componentwise modulo $x^2 + y^2 - 1$, is not surjective.

Proof. Let \overline{x} and \overline{y} be the cosets of x and y in $\mathbf{R}[x,y]/(x^2+y^2-1)$, so $\overline{x}^2+\overline{y}^2=1$. One matrix in $\mathrm{SL}_2(\mathbf{R}[x,y]/(x^2+y^2-1))$ is

$$\begin{pmatrix}
\overline{x} & -\overline{y} \\
\overline{y} & \overline{x}
\end{pmatrix}.$$

We will prove by contradiction that there is no matrix A(x, y) in $SL_2(\mathbf{R}[x, y])$ that becomes the matrix (2.5) when the entries of A(x, y) are reduced modulo $x^2 + y^2 - 1$.

For each matrix

$$A(x,y) = \begin{pmatrix} a(x,y) & b(x,y) \\ c(x,y) & d(x,y) \end{pmatrix}$$

in $SL_2(\mathbf{R}[x,y])$, we have $\det A(x,y) = a(x,y)d(x,y) - b(x,y)c(x,y) = 1$ in $\mathbf{R}[x,y]$, so for all real numbers u and v we have $A(u,v) \in SL_2(\mathbf{R})$.

Suppose A(x,y) reduces to the matrix (2.5) in $\operatorname{SL}_2(\mathbf{R}[x,y]/(x^2+y^2-1))$. Then when $u^2+v^2=1$ in \mathbf{R} we have $A(u,v)=(\frac{u-v}{v-u})$. Define the homotopy $h_A\colon S^1\times [0,1]\to \operatorname{SL}_2(\mathbf{R})$ by $h_A(u,v,t)=A(tu,tv)$. Then $h_A(u,v,0)$ is a constant map while $h_A(u,v,1)=A(u,v)=(\frac{u-v}{v-u})$ is a loop in $\operatorname{SL}_2(\mathbf{R})$ that generates $\pi_1(\operatorname{SL}_2(\mathbf{R}))$ (see Remark 2.2). Then h_A gives us a way to continuously shrink a generator of $\pi_1(\operatorname{SL}_2(\mathbf{R}))$ to a constant map. This is impossible since $\pi_1(\operatorname{SL}_2(\mathbf{R}))$ is nontrivial, so no matrix in $\operatorname{SL}_2(\mathbf{R}[x,y])$ reduces to (2.5) modulo x^2+y^2-1 .

Corollary 2.7. The homomorphism $SL_2(\mathbf{Z}[x,y]) \to SL_2(\mathbf{Z}[x,y]/(x^2+y^2-1))$, where matrix entries are reduced componentwise modulo $x^2 + y^2 - 1$, is not surjective.

Proof. The matrix $(\frac{\overline{x}}{\overline{y}}, \frac{\overline{y}}{\overline{x}})$ is in $SL_2(\mathbf{Z}[x, y]/(x^2 + y^2 - 1))$, and if some matrix A(x, y) in $\mathbf{Z}[x, y]$ reduces to it then we can use A(x, y) in the proof of Theorem 2.6.

3. Conjugacy Classes

The conjugacy class of a matrix in $SL_2(\mathbf{R})$ is nearly determined by its eigenvalues, but we have to be a little bit careful so we don't confuse conjugacy in $SL_2(\mathbf{R})$ with conjugacy in the larger group $GL_2(\mathbf{R})$. For example, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and its inverse $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ are conjugate in $GL_2(\mathbf{R})$ by $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, whose determinant is -1. These two matrices are not conjugate in $SL_2(\mathbf{R})$, since each $SL_2(\mathbf{R})$ -conjugate of $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has a positive upper right entry, by an explicit calculation.

Theorem 3.1. Let $T \in SL_2(\mathbf{R})$. If $(\operatorname{Tr} T)^2 > 4$ then T is conjugate to a unique matrix of the form $\begin{pmatrix} \lambda & 0 \\ 0 & 1/\lambda \end{pmatrix}$ with $|\lambda| > 1$. If $(\operatorname{Tr} T)^2 = 4$ then T is conjugate to exactly one of $\pm I_2$,

 $^{{}^2\}mathrm{For}\;(u,v)\in S^1,\,\mathrm{the\;matrix}\;A(tu,tv)\;\mathrm{is}\;not\left(\begin{smallmatrix}tu&-tv\\tv&tu\end{smallmatrix}\right)\;\mathrm{if}\;0\leq t<1\;\mathrm{since}\;\det(\begin{smallmatrix}tu&-tv\\tv&tu\end{smallmatrix})=t^2\neq 1.$

 $\pm \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, or $\pm \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$. If $(\operatorname{Tr} T)^2 < 4$ then T is conjugate to a unique matrix of the form $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ other than $\pm I_2$.

Proof. For $T \in \mathrm{SL}_2(\mathbf{R})$, its eigenvalues are roots of its characteristic polynomial, which is $X^2 - tX + 1$, where $t = \mathrm{Tr}(T)$. The nature of the eigenvalues of T are determined by the discriminant of this polynomial, $t^2 - 4$: two distinct real eigenvalues if $t^2 > 4$, a repeated eigenvalue if $t^2 = 4$, and two complex conjugate eigenvalues if $t^2 < 4$. We will find a representative for the conjugacy class of T based on the sign of $t^2 - 4$. Of course matrices with different t's are not conjugate.

In what follows, if v and w are vectors in \mathbf{R}^2 whose specific coordinates are not important to make explicit, we will write ($\begin{bmatrix} v \end{bmatrix} \begin{bmatrix} w \end{bmatrix}$) for the matrix ($\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}$). This matrix is invertible when v and w are linearly independent.

Suppose $t^2 > 4$. Then T has distinct real eigenvalues λ and $1/\lambda$. Let v and v' be eigenvectors in \mathbf{R}^2 for these eigenvalues: $Tv = \lambda v$ and $Tv' = (1/\lambda)v'$. In coordinates from the basis v and v', T is represented by $\begin{pmatrix} \lambda & 0 \\ 0 & 1/\lambda \end{pmatrix}$, so T is conjugate to $\begin{pmatrix} \lambda & 0 \\ 0 & 1/\lambda \end{pmatrix}$ by the 2×2 matrix ($[v] \ [v']$). Scaling v' keeps it as an eigenvector of T, and by a suitable nonzero scaling the matrix ($[v] \ [v']$) has determinant 1. Therefore T is conjugate to $\begin{pmatrix} \lambda & 0 \\ 0 & 1/\lambda \end{pmatrix}$ in $\mathrm{SL}_2(\mathbf{R})$. We did not specify an ordering of the eigenvalues, so $\begin{pmatrix} \lambda & 0 \\ 0 & 1/\lambda \end{pmatrix}$ and $\begin{pmatrix} 1/\lambda & 0 \\ 0 & \lambda \end{pmatrix}$ have to be conjugate to each other in $\mathrm{SL}_2(\mathbf{R})$. Explicitly, $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} \lambda & 0 \\ 0 & 1/\lambda \end{pmatrix}\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1/\lambda & 0 \\ 0 & \lambda \end{pmatrix}$. Conjugate matrices have the same eigenvalues, so $\begin{pmatrix} \lambda & 0 \\ 0 & 1/\lambda \end{pmatrix}$ is conjugate to $\begin{pmatrix} \mu & 0 \\ 0 & 1/\mu \end{pmatrix}$ only when μ equals λ or $1/\lambda$. We can therefore pin down a representative for the conjugacy class of T in $\mathrm{SL}_2(\mathbf{R})$ as $\begin{pmatrix} \lambda & 0 \\ 0 & 1/\lambda \end{pmatrix}$ with $|\lambda| > 1$.

Now suppose $t^2=4$. The roots of X^2-tX+1 are both 1 (if t=2) or both -1 (if t=-2). Let $\lambda=\pm 1$ be the eigenvalue for T. Extend v to a basis $\{v,v'\}$ of \mathbf{R}^2 . Scaling v', we may assume the matrix ([v] [v']) has determinant 1. Conjugating T by this matrix expresses it in the basis v and v' as $\begin{pmatrix} \lambda & x \\ 0 & y \end{pmatrix}$. Since the determinant is 1, $y=1/\lambda=\lambda=\pm 1$. Therefore T is conjugate in $\mathrm{SL}_2(\mathbf{R})$ to a matrix of the form $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} -1 & x \\ 0 & -1 \end{pmatrix}$. If x=0 these matrices are $\pm I_2$, which are in their own conjugacy class. The formulas

$$\left(\begin{array}{cc} r & 0 \\ 0 & 1/r \end{array}\right) \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} r & 0 \\ 0 & 1/r \end{array}\right)^{-1} = \left(\begin{array}{cc} 1 & r^2 \\ 0 & 1 \end{array}\right)$$

and

$$\left(\begin{array}{cc} r & 0 \\ 0 & 1/r \end{array}\right) \left(\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} r & 0 \\ 0 & 1/r \end{array}\right)^{-1} = \left(\begin{array}{cc} 1 & -r^2 \\ 0 & 1 \end{array}\right)$$

show $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ is conjugate to either $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, depending on the sign of x. Similarly $\begin{pmatrix} -1 & x \\ 0 & -1 \end{pmatrix}$ is conjugate to either $\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$ or $\begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}$.

The four matrices $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$, and $\begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}$ are nonconjugate in $SL_2(\mathbf{R})$, e.g., an $SL_2(\mathbf{R})$ -conjugate of $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ looks like $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ with x a perfect square. Other cases are left to the reader.

Finally, suppose $t^2 < 4$. Now T has complex conjugate eigenvalues that, by the quadratic formula for $X^2 - tX + 1$, are of absolute value 1 and are not ± 1 (since $t \neq \pm 2$). We can write the eigenvalues as $e^{\pm i\theta}$, with $\sin \theta \neq 0$. Pick an eigenvector v in \mathbf{C}^2 such that $Tv = e^{i\theta}v$. Since $e^{i\theta}$ is not real, $v \notin \mathbf{R}^2$. Let \overline{v} be the vector with coordinates that are complex conjugate to those of v, so $T\overline{v} = e^{-i\theta}\overline{v}$. Then $v + \overline{v}$ and $i(v - \overline{v})$ are in \mathbf{R}^2 , with

$$T(v + \overline{v}) = (\cos \theta)(v + \overline{v}) + (\sin \theta)i(v - \overline{v})$$

and

$$T(v - \overline{v}) = -(\sin \theta)(v + \overline{v}) + (\cos \theta)i(v - \overline{v}).$$

Therefore conjugating T by the (invertible) real matrix $([v + \overline{v}] [i(v - \overline{v})])$ turns T into $(\frac{\cos \theta - \sin \theta}{\sin \theta})$. We don't know the determinant of $([v + \overline{v}] [i(v - \overline{v})])$, but scaling v by a real number (and \overline{v} by the same amount, to keep it conjugate) can give this conjugating matrix determinant ± 1 . If the determinant is 1 then T is conjugate to $(\frac{\cos \theta - \sin \theta}{\sin \theta})$ in $SL_2(\mathbf{R})$. If the determinant is -1, then reverse the order of the columns in the conjugating marix to give it determinant 1 and then T is conjugate to $(\frac{\cos \theta}{\sin \theta} \frac{\sin \theta}{\cos \theta}) = (\frac{\cos(-\theta) - \sin(-\theta)}{\sin(-\theta)})$ in $SL_2(\mathbf{R})$. Two matrices $(\frac{\cos \theta}{\sin \theta} \frac{\sin \theta}{\cos \theta})$ and $(\frac{\cos \varphi}{-\sin \varphi} \frac{\sin \varphi}{\cos \varphi})$ in K can be conjugate only when $\varphi = \pm \theta \mod 2\pi \mathbf{Z}$, by looking at eigenvalues, and a direct calculation shows the $SL_2(\mathbf{R})$ -conjugate of $(\frac{\cos \theta}{-\sin \theta} \frac{\sin \theta}{\cos \theta})$ never equals $(\frac{\cos(-\theta) - \sin(-\theta)}{\sin(-\theta)})$ unless $\sin \theta = 0$, but we are in a case when $\sin \theta \neq 0$.

When $T \in \mathrm{SL}_2(\mathbf{R})$ satisfies $\mathrm{Tr}(T)^2 > 4$ we say T is hyperbolic, when $(\mathrm{Tr}\,T)^2 = 4$ we say T is parabolic, and when $(\mathrm{Tr}\,T)^2 < 4$ we say T is elliptic. This terminology is borrowed from the shape of a plane conic $ax^2 + bxy + cy^2 = 1$ in terms of its discriminant $d = b^2 - 4ac$: it is a hyperbola when d > 0, a parabola when d = 0, and an ellipse when d < 0. Up to sign, the hyperbolic conjugacy classes in $\mathrm{SL}_2(\mathbf{R})$ are represented by matrices in A (besides I_2), the elliptic conjugacy classes are represented by matrices in K (besides $\pm I_2$), and the parabolic conjugacy classes are represented by matrices in N.

APPENDIX A. ACTING ON THE UPPER HALF-PLANE

We will use an action of $SL_2(\mathbf{R})$ on the upper half-plane $\mathfrak{h} = \{x + iy : y > 0\}$ to obtain the Iwasawa decomposition of $SL_2(\mathbf{R})$ in a more efficient manner than the first proof that used an action on bases of \mathbf{R}^2 .

For $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbf{R})$ and a non-real complex number z, set

(A.1)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az+b}{cz+d} \in \mathbf{C} - \mathbf{R}.$$

By a calculation left to the reader, $g_1(g_2(z)) = (g_1g_2)(z)$ for g_1 and g_2 in $GL_2(\mathbf{R})$, and

$$\operatorname{Im}\left(\frac{az+b}{cz+d}\right) = \frac{(ad-bc)\operatorname{Im}(z)}{|cz+d|^2}.$$

Therefore when ad - bc > 0, z and (az + b)/(cz + d) have the same sign for their imaginary parts. In particular, if $g \in SL_2(\mathbf{R})$ and z is in the upper half-plane then so is g(z), so (A.1) is an action of the group $SL_2(\mathbf{R})$ on the set \mathfrak{h} . This action has one orbit since we can get anywhere in \mathfrak{h} from i using $SL_2(\mathbf{R})$:

(A.2)
$$\left(\begin{array}{cc} \sqrt{y} & x/\sqrt{y} \\ 0 & 1/\sqrt{y} \end{array} \right)(i) = x + iy.$$

Notice that the matrix used here to send i to x + iy is in the subgroup AN (see (2.4)).

Let's determine the stabilizer of i. Saying $\binom{a \ b}{c \ d}(i) = i$ is equivalent to (ai+b)/(ci+d) = i, so ai+b=di-c. Therefore d=a and b=-c, so $\binom{a \ b}{c \ d}=\binom{a -c}{c \ a}$ with $a^2+c^2=1$. We can therefore write $a=\cos\theta$ and $c=\sin\theta$, which shows the stabilizer of i is the set of matrices $\binom{\cos\theta-\sin\theta}{\cos\theta}$. This is the subgroup K (so \mathfrak{h} can be viewed as the coset space $\mathrm{SL}_2(\mathbf{R})/K$ on which $\mathrm{SL}_2(\mathbf{R})$ acts by left multiplication).

Now we are ready to derive the Iwasawa decomposition. For $g \in SL_2(\mathbf{R})$, write $g(i) = x + iy \in \mathfrak{h}$. Using (A.2),

$$(A.3) g(i) = x + iy = \begin{pmatrix} \sqrt{y} & x/\sqrt{y} \\ 0 & 1/\sqrt{y} \end{pmatrix} (i) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{y} & 0 \\ 0 & 1/\sqrt{y} \end{pmatrix} (i) \in NA(i).$$

Since g acts on i in the same way as an element of NA, and the stabilizer of i is $K, g \in NAK$. Thus $SL_2(\mathbf{R}) = NAK$. Applying inversion to this decomposition, $SL_2(\mathbf{R}) = KAN$. That settles the existence of the Iwasawa decomposition.

To prove uniqueness, assume nak = n'a'k'. Applying both sides to i, k and k' fix i so na(i) = n'a'(i). For $n = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ and $a = \begin{pmatrix} r & 0 \\ 0 & 1/r \end{pmatrix}$, $na = \begin{pmatrix} r & x/r \\ 0 & 1/r \end{pmatrix}$, so $na(i) = x + r^2i$. In particular, knowing na(i) tells us the parameters determining n and a. Hence n = n' and a = a', so k = k'.

The upper half-plane action of $SL_2(\mathbf{R})$ leads in a second way to the formulas (2.1) and (2.2) for the matrix entries in the factors of the Iwasawa decomposition for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{R})$. (We have just proved anew the existence and uniqueness of this decomposition.) Write, as in Section 2,

(A.4)
$$g = kan = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} r & 0 \\ 0 & 1/r \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}.$$

We want to determine the entries of these matrices in terms of the entries of g. We will work with $g^{-1} = n^{-1}a^{-1}k^{-1}$ since the $SL_2(\mathbf{R})$ -action on \mathfrak{h} leads to the decomposition NAK rather than KAN:

$$g^{-1}(i) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}(i) = \frac{di - b}{-ci + a} = -\frac{ab + cd}{a^2 + c^2} + \frac{1}{a^2 + c^2}i.$$

Writing this as u + iv, from (A.3) (with g^{-1} in place of g and u + iv in place of x + iy) we get

$$n^{-1} = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -(ab+cd)/(a^2+c^2) \\ 0 & 1 \end{pmatrix}$$

and

$$a^{-1} = \left(\begin{array}{cc} \sqrt{v} & 0 \\ 0 & 1/\sqrt{v} \end{array} \right) = \left(\begin{array}{cc} 1/\sqrt{a^2+c^2} & 0 \\ 0 & \sqrt{a^2+c^2} \end{array} \right),$$

so

$$n = \begin{pmatrix} 1 & (ab+cd)/(a^2+c^2) \\ 0 & 1 \end{pmatrix}, \quad a = \begin{pmatrix} \sqrt{a^2+c^2} & 0 \\ 0 & 1/\sqrt{a^2+c^2} \end{pmatrix}.$$

Since g = kan,

$$k = gn^{-1}a^{-1} = \begin{pmatrix} a/\sqrt{a^2 + c^2} & -c/\sqrt{a^2 + c^2} \\ c/\sqrt{a^2 + c^2} & a/\sqrt{a^2 + c^2} \end{pmatrix}.$$

The formulas for the entries of k, a, and n match those in (2.1) and (2.2).

It is interesting to compare the role of the group K in the geometry of \mathbb{R}^2 and \mathfrak{h} . As a transformation of \mathbb{R}^2 , an element of K is a rotation around the origin. This is an isometry of \mathbb{R}^2 using the Euclidean metric, and the K-orbit of a nonzero vector in \mathbb{R}^2 is the circle that passes through that vector and is centered at the origin. As a transformation of \mathfrak{h} , an element of K is a rotation around i relative to the hyperbolic metric on \mathfrak{h} . This is a hyperbolic isometry of \mathfrak{h} , and the K-orbit of a point in \mathfrak{h} is the circle through that point that is centered at i relative to the hyperbolic metric.

The conjugacy class of a matrix $T \in \operatorname{SL}_2(\mathbf{R})$ was determined in Theorem 3.1 in terms of $(\operatorname{Tr} T)^2 - 4$, which is the discriminant of the characteristic polynomial of T. The sign of this quantity tells us whether T has real or non-real eigenvectors. The difference $(\operatorname{Tr} T)^2 - 4$ is also relevant to the action of T on the upper half-plane, with fixed points replacing eigenvectors. When $T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, the fixed-point condition T(z) = z is equivalent to az + b = (cz + d)z, which says $cz^2 + (d-a)z - b = 0$. The discriminant of this equation, which tells us the number of real roots, is

$$(d-a)^2 + 4bc = d^2 - 2da + a^2 + 4(ad-1) = (a+d)^2 - 4 = (\operatorname{Tr} T)^2 - 4.$$