
DECOMPOSING SL2(R)

KEITH CONRAD

1. Introduction

The group SL2(R) is not easy to visualize: it naturally lies in M2(R), which is 4-
dimensional (the entries of a variable 2 × 2 real matrix are 4 free parameters). We will
derive a product decomposition for SL2(R) and use it to get a concrete image of SL2(R).

Inside SL2(R) are the following three subgroups:

K =

{(
cos θ − sin θ
sin θ cos θ

)}
, A =

{(
r 0
0 1/r

)
: r > 0

}
, N =

{(
1 x
0 1

)}
.

Theorem 1.1. We have a decomposition SL2(R) = KAN : every g ∈ SL2(R) has a unique
representation as g = kan where k ∈ K, a ∈ A, and n ∈ N .

This formula SL2(R) = KAN is called the Iwasawa decomposition of the group. Don’t
confuse the use of a in Theorem 1.1 as the label for a matrix in A with a as a real number
in the matrix ( a bc d ). The distinction should always be clear from the context. Since SL2(R)
is defined by the single equation ad− bc = 1 inside of M2(R), it is a manifold of dimension
4 − 1 = 3. The subgroups K, A, and N are each 1-dimensional (K ∼= S1, A ∼= R>0, and
N ∼= R), and Theorem 1.1 shows they fully account for the 3 dimensions of SL2(R).

The subgroups in the Iwasawa decomposition are related to conjugacy classes. We will
see that a matrix in SL2(R) is, up to sign, conjugate to a matrix in K, A, or N .

2. Iwasawa decomposition

To derive the Iwasawa decomposition of SL2(R) we will use an action of this group on
bases in R2.

For g = ( a bc d ) in SL2(R), apply it to the standard basis e1, e2. The vectors

ge1 =

(
a

c

)
, ge2 =

(
b

d

)
are also a basis of R2. We will pass from this new basis of R2 back to the standard basis
e1, e2 of R2 by a sequence of transformations in SL2(R) that amounts to something like the
Gram–Schmidt process (which turns a basis of Rn into an orthonormal basis of Rn).

Let θ be the angle from the positive x-axis to ge1. Let ρθ be the counterclockwise rotation
of the plane around the origin by θ, so ρ−θ(ge1) is on the positive x-axis. Because det g is
positive, the ordered pair of vectors (ge1, ge2) has the same orientation as the ordered pair
(e1, e2), so ρ−θ(ge2) is in the upper (rather than lower) half-plane.

Since ρ−θ(ge1) is a positive scalar multiple of e1, we want to divide ρ−θ(ge1) by its length

so it becomes e1. Its length is r = ||ρ−θ(ge1)|| = ||ge1|| =
√
a2 + c2. Applying (

1/r 0
0 1/r

)

will have the desired effect ρ−θ(ge1) 7→ e1, but this matrix doesn’t have determinant 1. On

the other hand, ( 1/r 0
0 r

) also has the desired effect on ρ−θ(ge1) and has determinant 1. So
1
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apply the matrix ( 1/r 0
0 r

) to R2. It sends ρ−θ(ge1) to ( 1/r 0
0 r

)ρ−θ(ge1) = e1. What does it

do to ρ−θ(ge2)? The vector ( 1/r 0
0 r

)ρ−θ(ge2) is in the upper half-plane (because ( 1/r 0
0 r

) has

positive determinant) and along with e1 it forms two edges of a parallelogram with area 1

(because ( 1/r 0
0 r

) has determinant ±1). A parallelogram with area 1 having base e1 must

have height 1, so ( 1/r 0
0 r

)ρ−θ(ge2) =
(
x
1

)
for some x.

Each horizontal shear transformation ( 1 t
0 1 ), which has determinant 1, fixes the x-axis and

acts as a stretching along each horizontal line. Applying the horizontal shear transformation
( 1 −x
0 1 ) to R2 takes

(
x
1

)
to
(
0
1

)
= e2 and fixes e1. We have finally returned to the standard

basis e1, e2 from the basis ge1, ge2 by a sequence of transformations in SL2(R). Our overall
composite transformation is (

1 −x
0 1

)(
1/r 0
0 r

)
ρ−θ,

so (
1 −x
0 1

)(
1/r 0
0 r

)
ρ−θg

sends e1 to e1 and e2 to e2. A linear transformation on R2 is determined by what it does
to a basis, so (

1 −x
0 1

)(
1/r 0
0 r

)
ρ−θg =

(
1 0
0 1

)
.

Solving for g,

g = ρθ

(
1/r 0
0 r

)−1(
1 −x
0 1

)−1
=

(
cos θ − sin θ
sin θ cos θ

)(
r 0
0 1/r

)(
1 x
0 1

)
∈ KAN.

Such an expression for g as a product kan with k ∈ K, a ∈ A, and n ∈ N is called the
Iwasawa decomposition of g.

To check this decomposition is unique, for each angle θ, r > 0, and x ∈ R, set

g =

(
cos θ − sin θ
sin θ cos θ

)(
r 0
0 1/r

)(
1 x
0 1

)
=

(
r cos θ xr cos θ − (1/r) sin θ
r sin θ xr sin θ + (1/r) cos θ

)
.

If this is ( a bc d ) ∈ SL2(R) then

(2.1) r =
√
a2 + c2 > 0, cos θ =

a

r
, sin θ =

c

r
,

and

x =

{
b+(1/r) sin θ

r cos θ , if cos θ 6= 0,
d−(1/r) cos θ

r sin θ , if sin θ 6= 0.

Substituting the formulas for cos θ and sin θ into the formula for x, and using ad− bc = 1,
we obtain the uniform formula

(2.2) x =
ab+ cd

a2 + c2
.

All the parameters in the matrices making up the Iwasawa decomposition of ( a bc d ) are
determined in (2.1) and (2.2), so the Iwasawa decomposition is unique. This completes
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the proof of Theorem 1.1. In an appendix we derive the Iwasawa decomposition using a
different action of SL2(R), on the upper half-plane.

The Iwasawa decomposition for SL2(R) extends to higher dimensions: SLn(R) = KAN
where K = SOn(R) = {T ∈ GLn(R) : TT> = In, detT = 1}, A is the group of diagonal
matrices with positive diagonal entries (and determinant 1) and N is the group of upper-
triangular matrices with 1’s along the main diagonal. While A and N are both isomorphic
to R when n = 2, N becomes nonabelian for n > 2. The group K is compact, the group
A ∼= (R>0)

n−1 ∼= Rn−1 is abelian, and N is a nilpotent group.1 This explains the notation
A and N , for abelian and nilpotent.

Returning to the case of 2× 2 matrices, since

(2.3)

(
r 0
0 1/r

)(
1 x
0 1

)
=

(
1 r2x
0 1

)(
r 0
0 1/r

)
,

we can move each element of A past an element of N (on either side) at the cost of changing
the element of N . Therefore AN = NA is a subgroup of SL2(R). Explicitly,

(2.4) AN =

{(
y x
0 1/y

)
: y > 0, x ∈ R

}
.

The Iwasawa decomposition KAN = K(AN) for SL2(R) is the analogue of the polar
decomposition S1 ×R>0 for C×.

In the Iwasawa decomposition, neither K nor AN (nor A or N) is normal in SL2(R). For
example, the conjugate of an element of K by ( 1 1

0 1 ) is usually not in K and the conjugate
of an element of AN by ( 0 −1

1 0 ) is usually not in AN . Because of the non-normality, it is
not easy to describe the group operation in SL2(R) in terms of its Iwasawa decomposition.
This decomposition is important for other purposes, such as the following.

Corollary 2.1. As a topological space, SL2(R) is homeomorphic to the inside of a solid
torus.

Proof. Let f : K × A × N → SL2(R) by f(k, a, n) = kan. This is continuous, and by
Theorem 1.1 it is surjective. We can write down an inverse function using the computations
at the end of the proof of Theorem 1.1. For g = ( a bc d ) in SL2(R), define r(g) =

√
a2 + c2

and

k(g) =

(
a/r(g) −c/r(g)
c/r(g) a/r(g)

)
, a(g) =

(
r(g) 0

0 1/r(g)

)
,

n(g) =

(
1 (ab+ cd)/(a2 + c2)
0 1

)
.

The function g 7→ (k(g), a(g), n(g)) from SL2(R) to K × A × N is continuous and is an
inverse to f .

Topologically, K ∼= S1, A ∼= R>0
∼= R, and N ∼= R. Therefore topologically, SL2(R) ∼=

S1 × R2. The plane R2 is homeomorphic to the open unit disc D by v 7→ v/
√

1 + ||v||2

1The word nilpotent has different meanings in group theory and matrix theory. A group G is called
nilpotent if there is a finite tower of subgroups {e} = N0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ Nr = G for some r where
NiCN and Ni+1/Ni ⊂ Z(G/Ni) for all i. That the subgroup N of GLn(R) is nilpotent is shown on pages 27
and 28 of https://kconrad.math.uconn.edu/blurbs/grouptheory/subgpseries1.pdf, where N is written
as UTn(R). A square matrix is called nilpotent if it has a power equal to O, so invertible square matrices
are never nilpotent in the matrix sense. Thus a subgroup of GLn(R) might be nilpotent in the sense of
group theory, but its elements are not nilpotent in the sense of matrix theory.

https://kconrad.math.uconn.edu/blurbs/grouptheory/subgpseries1.pdf
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(with inverse w 7→ w/
√

1− ||w||2), where || · || is the usual length function on R2, so as a
topological space SL2(R) is homeomorphic to S1 ×D, which is the inside of a solid torus.

As an alternate ending, on the decomposition K × A × N ∼= S1 × R>0 × R treat the
product R>0×R as the right half plane {x+ iy : x > 0} and identify it with the open unit
disc D by the Cayley transformation z 7→ (z − 1)/(z + 1). (Vertical lines in the half-plane
are sent to circles inside D that are tangent to the unit circle at 1.) �

Although the proof of Corollary 2.1 shows SL2(R) and S1 × R2 are homeomorphic as
topological spaces, they are not isomorphic as groups. Equivalently, the homeomorphism
K ×A×N → SL2(R) in Corollary 2.1 is not a group homomorphism.

The Iwasawa decomposition of a matrix in K, A, or N is the obvious one. For a lower
triangular matrix ( 1 0

y 1 ), which is in none of these subgroups, the inverse map in the proof
of Corollary 2.1 gives us the decomposition(

1/
√

1 + y2 −y/
√

1 + y2

y/
√

1 + y2 1/
√

1 + y2

)( √
1 + y2 0

0 1/
√

1 + y2

)(
1 y/(1 + y2)
0 1

)
.

Remark 2.2. The inside of a solid torus has a circle as a strong deformation retract, so the
fundamental group of SL2(R) is isomorphic to that of a circle: π1(SL2(R)) ∼= π1(S

1) ∼= Z.
From the connection between covering spaces and subgroups of the fundamental group,
SL2(R) admits a unique covering space of degree d for each positive integer d and the
universal covering space of SL2(R) is the inside of a solid cylinder R ×D (homeomorphic
to R3). The degree-2 cover of SL(2,R) is an important group called the metaplectic group.

We can write down an explicit example of a noncontractible loop in SL2(R): the subgroup
K, or rather the obvious map S1 → K. To prove this loop is noncontractible in SL2(R) we
use the Iwasawa decomposition to write down a strong deformation retract from SL2(R) to
K. Let h : SL2(R)× [0, 1]→ K by

h(kan, t) = katnt =

(
cos θ − sin θ
sin θ cos θ

)(
rt 0
0 1/rt

)(
1 tx
0 1

)
.

This is continuous with h(kan, 0) = k, h(kan, 1) = kan, and h(k, t) = k. Therefore
π1(SL2(R)) ∼= π1(K) ∼= Z, so K has to be a noncontractible loop in SL2(R) since K is
noncontractible in K.

That the Iwasawa decomposition gives us a picture of SL2(R) is a striking geometric
application. Here is an algebraic application (whose punchline is the corollary).

Theorem 2.3. The only continuous homomorphism SL2(R)→ R is the trivial homomor-
phism.

Proof. Let f : SL2(R)→ R be a continuous homomorphism. Then

f(kan) = f(k) + f(a) + f(n).

We will show f is trivial on K, A, and N , and thus f is trivial on KAN = SL2(R).
Since K ∼= S1, the elements of finite order in K are dense. Since R has no elements

of finite order except 0, f is trivial on a dense subset of K and thus is trivial on K by
continuity. (As an alternate argument, since K is a compact group so is f(K), and the only
compact subgroup of R is {0}.)

Now we look at f on A and N . Since A ∼= R>0
∼= R by ( r 0

0 1/r ) 7→ log r and N ∼= R by

( 1 x
0 1 ) 7→ x, both algebraically and topologically, describing the continuous homomorphisms

from A and N to R is the same as describing the continuous homomorphisms from R to
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R. All continuous homomorphisms R → R have the form x 7→ tx for some real number t
(see where 1 goes, call that t, and then appeal to the denseness of Q in R). Therefore

f

(
r 0
0 1/r

)
= t log r, f

(
1 x
0 1

)
= t′x

for some t and t′. Applying f to both sides of (2.3),

t log r + t′x = t′r2x+ t log r,

so t′x = t′r2x for all r > 0 and x ∈ R. Thus t′ = 0 (e.g., take x = 1 and r = 2 to see this.)
This shows f is trivial on N .

It remains to show f is trivial on A. For this we appeal to the conjugation relation(
0 −1
1 0

)(
r 0
0 1/r

)(
0 −1
1 0

)−1
=

(
1/r 0
0 r

)
=

(
r 0
0 1/r

)−1
Applying f , we get f( r 0

0 1/r ) = −f( r 0
0 1/r ), so f( r 0

0 1/r ) = 0. �

Corollary 2.4. Every continuous homomorphism SL2(R)→ GLn(R) has image in SLn(R).

Proof. Let f : SL2(R)→ GLn(R) be a continuous homomorphism. Composing f with the
determinant GLn(R) → R× gives a continuous homomorphism det ◦f : SL2(R) → R×.
Since SL2(R) is connected (Corollary 2.1), its image under det ◦f is a connected subgroup
of R×, so it lies in R>0. As R>0

∼= R both topologically and algebraically, det ◦f is trivial
by Theorem 2.3. Thus det(f(g)) = 1 for all g ∈ SL2(R), so f(SL2(R)) ⊂ SLn(R). �

Example 2.5. We will construct a continuous homomorphism GL2(R)→ GL3(R) and see
its restriction to SL2(R) has values in SL3(R).

Let V = Rx2 + Rxy + Ry2 be the vector space of homogeneous polynomials in x and
y of degree 2: quadratic forms on R2. This space is 3-dimensional, with basis x2, xy, y2.
For g = ( a bc d ) in GL2(R) and Q(x, y) in V , set (gQ)(x, y) = Q(ax + cy, bx + dy). If
we think of quadratic forms and matrices acting on column vectors from the left, then
(gQ)

(
x
y

)
= Q(g>

(
x
y

)
). Check that g1(g2Q) = (g1g2)Q, so GL2(R) acts on V from the left.

For instance, let Q(x, y) = x2 + y2, g1 = ( 1 1
0 1 ), and g2 = ( 0 1

1 1 ). Then g1g2 = ( 1 2
1 1 ), so

(g2Q)(x, y) = Q(y, x+ y) = y2 + (x+ y)2 = x2 + 2xy + 2y2,

(g1(g2Q))(x, y) = (g2Q)(x, x+ y) = x2 + 2x(x+ y) + 2(x+ y)2 = 5x2 + 6xy + 2y2,

and

((g1g2)Q)(x, y) = Q(x+ y, 2x+ y) = (x+ y)2 + (2x+ y)2 = 5x2 + 6xy + 2y2,

which illustrates that g1(g2Q) = (g1g2)Q.2

The left action of GL2(R) on V above is a linear change of variables on V given by the
entries of 2× 2 matrices. Since g(Q+Q′) = g(Q) + g(Q′) and g(sQ) = sg(Q) for s ∈ R, the
action of g on V is a linear transformation (necessarily invertible, since the action of g−1 on
V is its inverse). Using the basis x2, xy, y2 of V , we can compute a matrix representation
of g on V : we have

g(x2) = (ax+ cy)2 = a2x2 + 2acxy + c2y2,

g(xy) = (ax+ cy)(bx+ dy) = abx2 + (ad+ bc)xy + cdy2,

2If (g∗Q)(x, y) = Q(ax+by, cx+dy), or equivalently (g∗Q)
(
x
y

)
= Q(g

(
x
y

)
), then g1 ∗(g2 ∗Q) = (g2g1)∗Q.
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and

g(y2) = (bx+ dy)2 = b2x2 + 2bdxy + d2y2,

so the matrix of g with respect to the basis x2, xy, y2 is a2 ab b2

2ac ad+ bc 2bd
c2 cd d2

 .

Call this matrix f(g), so f : GL2(R) → GL3(R) is a homomorphism and the formula for
f(g) shows f is continuous. By a calculation, det(f(g)) = (ad− bc)3 = (det g)3, so when g
has determinant 1 so does f(g).

Example 2.5 can be generalized. For each integer n ≥ 1, the space Vn =
⊕n

i=0Rx
n−iyi

of homogeneous 2-variable polynomials of degree n has dimension n + 1 and GL2(R) acts
on this space by linear changes of variables. The restriction of this action to SL2(R) on
Vn accounts for essentially all “interesting” actions of SL2(R) on finite-dimensional vector
spaces.

Theorem 2.6. The homomorphism SL2(R[x, y])→ SL2(R[x, y]/(x2+y2−1)), where matrix
entries are reduced componentwise modulo x2 + y2 − 1, is not surjective.

Proof. Let x and y be the cosets of x and y in R[x, y]/(x2 + y2 − 1), so x2 + y2 = 1. One
matrix in SL2(R[x, y]/(x2 + y2 − 1)) is

(2.5)

(
x −y
y x

)
.

We will prove by contradiction that there is no matrix A(x, y) in SL2(R[x, y]) that becomes
the matrix (2.5) when the entries of A(x, y) are reduced modulo x2 + y2 − 1.

For each matrix

A(x, y) =

(
a(x, y) b(x, y)
c(x, y) d(x, y)

)
in SL2(R[x, y]), we have detA(x, y) = a(x, y)d(x, y)− b(x, y)c(x, y) = 1 in R[x, y], so for all
real numbers u and v we have A(u, v) ∈ SL2(R).

Suppose A(x, y) reduces to the matrix (2.5) in SL2(R[x, y]/(x2 + y2 − 1)). Then when
u2 + v2 = 1 in R we have A(u, v) = ( u −vv u ). Define the homotopy hA : S1× [0, 1]→ SL2(R)
by hA(u, v, t) = A(tu, tv).3 Then hA(u, v, 0) is a constant map while hA(u, v, 1) = A(u, v) =
( u −vv u ) is a loop in SL2(R) that generates π1(SL2(R)) (see Remark 2.2). Then hA gives
us a way to continuously shrink a generator of π1(SL2(R)) to a constant map. This is
impossible since π1(SL2(R)) is nontrivial, so no matrix in SL2(R[x, y]) reduces to (2.5)
modulo x2 + y2 − 1. �

Corollary 2.7. The homomorphism SL2(Z[x, y])→ SL2(Z[x, y]/(x2+y2−1)), where matrix
entries are reduced componentwise modulo x2 + y2 − 1, is not surjective.

Proof. The matrix ( x −yy x ) is in SL2(Z[x, y]/(x2 + y2 − 1)), and if some matrix A(x, y) in

Z[x, y] reduces to it then we can use A(x, y) in the proof of Theorem 2.6. �

3For (u, v) ∈ S1, the matrix A(tu, tv) is not ( tu −tv
tv tu ) if 0 ≤ t < 1 since det( tu −tv

tv tu ) = t2 6= 1.
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3. Conjugacy Classes

The conjugacy class of a matrix in SL2(R) is nearly determined by its eigenvalues, but we
have to be a little bit careful so we don’t confuse conjugacy in SL2(R) with conjugacy in the
larger group GL2(R). For example, ( 1 1

0 1 ) and its inverse ( 1 −1
0 1 ) are conjugate in GL2(R)

by ( 1 0
0 −1 ), whose determinant is −1. These two matrices are not conjugate in SL2(R), since

each SL2(R)-conjugate of ( 1 1
0 1 ) has a positive upper right entry, by an explicit calculation.

Theorem 3.1. Let T ∈ SL2(R). If (TrT )2 > 4 then T is conjugate to a unique matrix of

the form ( λ 0
0 1/λ ) with |λ| > 1. If (TrT )2 = 4 then T is conjugate to exactly one of ±I2,

±( 1 1
0 1 ), or ±(−1 1

0 −1 ). If (TrT )2 < 4 then T is conjugate to a unique matrix of the form

( cos θ − sin θ
sin θ cos θ

) other than ±I2.

Proof. For T ∈ SL2(R), its eigenvalues are roots of its characteristic polynomial, which is
X2 − tX + 1, where t = Tr(T ). The nature of the eigenvalues of T are determined by the
discriminant of this polynomial, t2 − 4: two distinct real eigenvalues if t2 > 4, a repeated
eigenvalue if t2 = 4, and two complex conjugate eigenvalues if t2 < 4. We will find a
representative for the conjugacy class of T based on the sign of t2 − 4. Of course matrices
with different t’s are not conjugate.

In what follows, if v and w are vectors in R2 whose specific coordinates are not important
to make explicit, we will write ([v] [w]) for the matrix ( a bc d ). This matrix is invertible when
v and w are linearly independent.

Suppose t2 > 4. Then T has distinct real eigenvalues λ and 1/λ. Let v and v′ be
eigenvectors in R2 for these eigenvalues: Tv = λv and Tv′ = (1/λ)v′. In coordinates from

the basis v and v′, T is represented by ( λ 0
0 1/λ ), so T is conjugate to ( λ 0

0 1/λ ) by the 2 × 2

matrix ([v] [v′]). Scaling v′ keeps it as an eigenvector of T , and by a suitable nonzero scaling

the matrix ([v] [v′]) has determinant 1. Therefore T is conjugate to ( λ 0
0 1/λ ) in SL2(R). We

did not specify an ordering of the eigenvalues, so ( λ 0
0 1/λ ) and ( 1/λ 0

0 λ
) have to be conjugate

to each other in SL2(R). Explicitly, ( 0 −1
1 0 )( λ 0

0 1/λ )( 0 −1
1 0 )−1 = ( 1/λ 0

0 λ
). Conjugate matrices

have the same eigenvalues, so ( λ 0
0 1/λ ) is conjugate to (

µ 0
0 1/µ ) only when µ equals λ or 1/λ.

We can therefore pin down a representative for the conjugacy class of T in SL2(R) as ( λ 0
0 1/λ )

with |λ| > 1.
Now suppose t2 = 4. The roots of X2 − tX + 1 are both 1 (if t = 2) or both −1 (if

t = −2). Let λ = ±1 be the eigenvalue for T . Extend v to a basis {v, v′} of R2. Scaling
v′, we may assume the matrix ([v] [v′]) has determinant 1. Conjugating T by this matrix
expresses it in the basis v and v′ as ( λ x0 y ). Since the determinant is 1, y = 1/λ = λ = ±1.

Therefore T is conjugate in SL2(R) to a matrix of the form ( 1 x
0 1 ) or (−1 x

0 −1 ). If x = 0 these
matrices are ±I2, which are in their own conjugacy class. The formulas(

r 0
0 1/r

)(
1 1
0 1

)(
r 0
0 1/r

)−1
=

(
1 r2

0 1

)
and (

r 0
0 1/r

)(
1 −1
0 1

)(
r 0
0 1/r

)−1
=

(
1 −r2
0 1

)
show ( 1 x

0 1 ) is conjugate to either ( 1 1
0 1 ) or ( 1 −1

0 1 ), depending on the sign of x. Similarly

(−1 x
0 −1 ) is conjugate to either (−1 1

0 −1 ) or (−1 −10 −1 ).



8 KEITH CONRAD

The four matrices ( 1 1
0 1 ) ( 1 −1

0 1 ), (−1 1
0 −1 ), and (−1 −10 −1 ) are nonconjugate in SL2(R), e.g.,

an SL2(R)-conjugate of ( 1 1
0 1 ) looks like ( 1 x

0 1 ) with x a perfect square. Other cases are left
to the reader.

Finally, suppose t2 < 4. Now T has complex conjugate eigenvalues that, by the quadratic
formula for X2−tX+1, are of absolute value 1 and are not ±1 (since t 6= ±2). We can write
the eigenvalues as e±iθ, with sin θ 6= 0. Pick an eigenvector v in C2 such that Tv = eiθv.
Since eiθ is not real, v 6∈ R2. Let v be the vector with coordinates that are complex
conjugate to those of v, so Tv = e−iθv. Then v + v and i(v − v) are in R2, with

T (v + v) = (cos θ)(v + v) + (sin θ)i(v − v)

and

T (v − v) = −(sin θ)(v + v) + (cos θ)i(v − v).

Therefore conjugating T by the (invertible) real matrix ([v + v] [i(v − v)]) turns T into
( cos θ − sin θ
sin θ cos θ

). We don’t know the determinant of ([v + v] [i(v − v)]), but scaling v by a real
number (and v by the same amount, to keep it conjugate) can give this conjugating matrix
determinant ±1. If the determinant is 1 then T is conjugate to ( cos θ − sin θ

sin θ cos θ
) in SL2(R).

If the determinant is −1, then reverse the order of the columns in the conjugating marix

to give it determinant 1 and then T is conjugate to ( cos θ sin θ
− sin θ cos θ ) = (

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ) ) in

SL2(R). Two matrices ( cos θ sin θ
− sin θ cos θ ) and ( cosϕ sinϕ

− sinϕ cosϕ ) in K can be conjugate only when

ϕ = ±θ mod 2πZ, by looking at eigenvalues, and a direct calculation shows the SL2(R)-

conjugate of ( cos θ sin θ
− sin θ cos θ ) never equals (

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ) ) unless sin θ = 0, but we are in a

case when sin θ 6= 0. �

When T ∈ SL2(R) satisfies Tr(T )2 > 4 we say T is hyperbolic, when (TrT )2 = 4 we say T
is parabolic, and when (TrT )2 < 4 we say T is elliptic. This terminology is borrowed from
the shape of a plane conic ax2 + bxy + cy2 = 1 in terms of its discriminant d = b2 − 4ac:
it is a hyperbola when d > 0, a parabola when d = 0, and an ellipse when d < 0. Up to
sign, the hyperbolic conjugacy classes in SL2(R) are represented by matrices in A (besides
I2), the elliptic conjugacy classes are represented by matrices in K (besides ±I2), and the
parabolic conjugacy classes are represented by matrices in N .

Appendix A. Acting on the Upper Half-Plane

We will use an action of SL2(R) on the upper half-plane h = {x + iy : y > 0} to obtain
the Iwasawa decomposition of SL2(R) in a more efficient manner than the first proof that
used an action on bases of R2.

For ( a bc d ) ∈ GL2(R) and a non-real complex number z, set

(A.1)

(
a b
c d

)
(z) =

az + b

cz + d
∈ C−R.

By a calculation left to the reader, g1(g2(z)) = (g1g2)(z) for g1 and g2 in GL2(R), and

Im

(
az + b

cz + d

)
=

(ad− bc) Im(z)

|cz + d|2
.

Therefore when ad− bc > 0, z and (az+ b)/(cz+ d) have the same sign for their imaginary
parts. In particular, if g ∈ SL2(R) and z is in the upper half-plane then so is g(z), so (A.1)
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is an action of the group SL2(R) on the set h. This action has one orbit since we can get
anywhere in h from i using SL2(R):

(A.2)

( √
y x/

√
y

0 1/
√
y

)
(i) = x+ iy.

Notice that the matrix used here to send i to x+ iy is in the subgroup AN (see (2.4)).
Let’s determine the stabilizer of i. Saying ( a bc d )(i) = i is equivalent to (ai+b)/(ci+d) = i,

so ai+ b = di− c. Therefore d = a and b = −c, so ( a bc d ) = ( a −cc a ) with a2 + c2 = 1. We can
therefore write a = cos θ and c = sin θ, which shows the stabilizer of i is the set of matrices
( cos θ − sin θ
sin θ cos θ

). This is the subgroup K (so h can be viewed as the coset space SL2(R)/K on
which SL2(R) acts by left multiplication).

Now we are ready to derive the Iwasawa decomposition. For g ∈ SL2(R), write g(i) =
x+ iy ∈ h. Using (A.2),

(A.3) g(i) = x+ iy =

( √
y x/

√
y

0 1/
√
y

)
(i) =

(
1 x
0 1

)( √
y 0

0 1/
√
y

)
(i) ∈ NA(i).

Since g acts on i in the same way as an element of NA, and the stabilizer of i is K, g ∈ NAK.
Thus SL2(R) = NAK. Applying inversion to this decomposition, SL2(R) = KAN . That
settles the existence of the Iwasawa decomposition.

To prove uniqueness, assume nak = n′a′k′. Applying both sides to i, k and k′ fix i so

na(i) = n′a′(i). For n = ( 1 x
0 1 ) and a = ( r 0

0 1/r ), na = (
r x/r
0 1/r

), so na(i) = x + r2i. In

particular, knowing na(i) tells us the parameters determining n and a. Hence n = n′ and
a = a′, so k = k′.

The upper half-plane action of SL2(R) leads in a second way to the formulas (2.1) and
(2.2) for the matrix entries in the factors of the Iwasawa decomposition for g = ( a bc d ) ∈
SL2(R). (We have just proved anew the existence and uniqueness of this decomposition.)
Write, as in Section 2,

(A.4) g = kan =

(
cos θ − sin θ
sin θ cos θ

)(
r 0
0 1/r

)(
1 x
0 1

)
.

We want to determine the entries of these matrices in terms of the entries of g. We will
work with g−1 = n−1a−1k−1 since the SL2(R)-action on h leads to the decomposition NAK
rather than KAN :

g−1(i) =

(
d −b
−c a

)
(i) =

di− b
−ci+ a

= −ab+ cd

a2 + c2
+

1

a2 + c2
i.

Writing this as u+ iv, from (A.3) (with g−1 in place of g and u+ iv in place of x+ iy) we
get

n−1 =

(
1 u
0 1

)
=

(
1 −(ab+ cd)/(a2 + c2)
0 1

)
and

a−1 =

( √
v 0

0 1/
√
v

)
=

(
1/
√
a2 + c2 0

0
√
a2 + c2

)
,

so

n =

(
1 (ab+ cd)/(a2 + c2)
0 1

)
, a =

( √
a2 + c2 0

0 1/
√
a2 + c2

)
.
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Since g = kan,

k = gn−1a−1 =

(
a/
√
a2 + c2 −c/

√
a2 + c2

c/
√
a2 + c2 a/

√
a2 + c2

)
.

The formulas for the entries of k, a, and n match those in (2.1) and (2.2).
It is interesting to compare the role of the group K in the geometry of R2 and h. As a

transformation of R2, an element of K is a rotation around the origin. This is an isometry
of R2 using the Euclidean metric, and the K-orbit of a nonzero vector in R2 is the circle
that passes through that vector and is centered at the origin. As a transformation of h,
an element of K is a rotation around i relative to the hyperbolic metric on h. This is a
hyperbolic isometry of h, and the K-orbit of a point in h is the circle through that point
that is centered at i relative to the hyperbolic metric.

The conjugacy class of a matrix T ∈ SL2(R) was determined in Theorem 3.1 in terms of
(TrT )2−4, which is the discriminant of the characteristic polynomial of T . The sign of this
quantity tells us whether T has real or non-real eigenvectors. The difference (TrT )2−4 is also
relevant to the action of T on the upper half-plane, with fixed points replacing eigenvectors.
When T = ( a bc d ), the fixed-point condition T (z) = z is equivalent to az + b = (cz + d)z,

which says cz2 + (d − a)z − b = 0. The discriminant of this equation, which tells us the
number of real roots, is

(d− a)2 + 4bc = d2 − 2da+ a2 + 4(ad− 1) = (a+ d)2 − 4 = (TrT )2 − 4.
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