SIMPLICITY OF $\mathrm{PSL}_{n}(F)$

KEITH CONRAD

1. Introduction

For a field F and integer $n \geq 2$, the projective special linear group $\mathrm{PSL}_{n}(F)$ is the quotient group of $\mathrm{SL}_{n}(F)$ by its center: $\mathrm{PSL}_{n}(F)=\mathrm{SL}_{n}(F) / Z\left(\mathrm{SL}_{n}(F)\right)$. In 1831, Galois claimed that $\mathrm{PSL}_{2}\left(\mathbf{F}_{p}\right)$ is a simple group for all primes $p>3$, although he didn't give a proof. He had to exclude $p=2$ and $p=3$ since $\operatorname{PSL}_{2}\left(\mathbf{F}_{2}\right) \cong S_{3}$ and $\operatorname{PSL}_{2}\left(\mathbf{F}_{3}\right) \cong A_{4}$, and these groups are not simple. It turns out that $\mathrm{PSL}_{n}(F)$ is a simple group for all $n \geq 2$ and all fields F except when $n=2$ and $F=\mathbf{F}_{2}$ and \mathbf{F}_{3}. The proof of this was developed over essentially 30 years, from 1870 to 1901:

- Jordan [4] for $n \geq 2$ and $F=\mathbf{F}_{p}$ except $(n, p)=(2,2)$ and $(2,3)$.
- Moore [5] for $n=2$ and F all finite fields of size greater than 3 .
- Dickson for $n>2$ and F finite [1], and for $n \geq 2$ and F infinite [2].

We will prove simplicity of $\mathrm{PSL}_{n}(F)$ using a criterion of Iwasawa [3] from 1941 that relates simple quotient groups and doubly transitive group actions. This criterion will be developed in Section 2, and applied to $\mathrm{PSL}_{2}(F)$ in $\operatorname{Section} 3$ and $\mathrm{PSL}_{n}(F)$ for $n>2$ in Section 4.

2. Doubly transitive actions and Iwasawa's criterion

An action of a group G on a set X is called transitive when, given two distinct x and y in X, there is a $g \in G$ such that $g(x)=y$. We call the action doubly transitive if each pair of distinct points in X can be carried to every other pair of distinct points in X by some element of G. That is, given two pairs $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ in $X \times X$, where $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$, there is a $g \in G$ such that $g\left(x_{1}\right)=y_{1}$ and $g\left(x_{2}\right)=y_{2}$. Although the x_{i} 's are distinct and the y_{j} 's are distinct, we do allow an x_{i} to be a y_{j}. For instance, if $x, x^{\prime}, x^{\prime \prime}$ are three distinct elements of X then there is a $g \in G$ such that $g(x)=x$ and $g\left(x^{\prime}\right)=x^{\prime \prime}$. (Here $x_{1}=y_{1}=x$ and $x_{2}=x^{\prime}, y_{2}=x^{\prime \prime}$.) Necessarily a doubly transitive action requires $|X| \geq 2$.

Example 2.1. The action of A_{4} on $\{1,2,3,4\}$ is doubly transitive.
Example 2.2. The action of D_{4} on $\{1,2,3,4\}$, as vertices of a square, is not doubly transitive since a pair of adjacent vertices can't be sent to a pair of nonadjacent vertices.

Example 2.3. For all fields F, the group $\operatorname{Aff}(F)$ acts on F by $\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right) x=a x+b$ and this action is doubly transitive.

Example 2.4. For all fields F, the group $\mathrm{GL}_{2}(F)$ acts on $F^{2}-\left\{\binom{0}{0}\right\}$ by the usual way matrices act on vectors, but this action is not doubly transitive since linearly dependent vectors can't be sent to linearly independent vectors by a matrix.

Theorem 2.5. If G acts doubly transitively on X then the stabilizer subgroup of each point in X is a maximal subgroup of G.

A maximal subgroup is a proper subgroup contained in no other proper subgroup.
Proof. Pick $x \in X$ and let $H_{x}=\operatorname{Stab}_{x}$.
Step 1: For each $g \notin H_{x}, G=H_{x} \cup H_{x} g H_{x}$.
$\overline{\text { For } g^{\prime}} \in G$ such that $g^{\prime} \notin H_{x}$, we will show $g^{\prime} \in H_{x} g H_{x}$. Both $g x$ and $g^{\prime} x$ are not x, so by double transitivity with the pairs $(x, g x)$ and $\left(x, g^{\prime} x\right)$ there is some $g^{\prime \prime} \in G$ such that $g^{\prime \prime} x=x$ and $g^{\prime \prime}(g x)=g^{\prime} x$. The first equation implies $g^{\prime \prime} \in H_{x}$, so let's write $g^{\prime \prime}$ as h. Then $h(g x)=g^{\prime} x$, so $g^{\prime} \in h g H_{x} \subset H_{x} g H_{x}$.

Step 2: H_{x} is a maximal subgroup of G.
The group H_{x} is not all of G, since H_{x} fixes x while G carries x to each element of X and $|X| \geq 2$. Let K be a subgroup of G strictly containing H_{x} and pick $g \in K-H_{x}$. By step $1, G=H_{x} \cup H_{x} g H_{x}$. Both H_{x} and $H_{x} g H_{x}$ are in K, so $G \subset K$. Thus $K=G$.

The converse of Theorem 2.5 is false. If H is a maximal subgroup of G then left multiplication of G on G / H has H as a stabilizer subgroup, but this action is not doubly transitive if G has odd order because a finite group with a doubly transitive action has even order.

Theorem 2.6. Suppose G acts doubly transitively on a set X. Any normal subgroup $N \triangleleft G$ acts on X either trivially or transitively.

Proof. Suppose N does not act trivially: $n x \neq x$ for some $x \in X$ and some $n \neq 1$ in N. Pick arbitrary y and y^{\prime} in X with $y \neq y^{\prime}$. By double transitivity, there is $g \in G$ such that $g x=y$ and $g(n x)=y^{\prime}$. Then $y^{\prime}=\left(g n g^{-1}\right)(g x)=\left(g n g^{-1}\right)(y)$ and $g n g^{-1} \in N$, so N acts transitively on X.
Example 2.7. The action of A_{4} on $\{1,2,3,4\}$ is doubly transitive and the normal subgroup $\{(1),(12)(34),(13)(24),(14)(23)\} \triangleleft A_{4}$ acts transitively on $\{1,2,3,4\}$.
Example 2.8. For a field F, let $\operatorname{Aff}(F)$ act on F by $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) x=a x+b$. This is doubly transitive and the normal subgroup $N=\left\{\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right): b \in F\right\}$ acts transitively (by translations) on F.

Example 2.9. The action of D_{4} on the 4 vertices of a square is not doubly transitive. Consistent with Theorem 2.6, the normal subgroup $\left\{1, r^{2}\right\}$ of D_{4} acts on the vertices neither trivially nor transitively.

Here is the main group-theoretic result we will use to prove $\operatorname{PSL}_{n}(F)$ is simple.
Theorem 2.10 (Iwasawa). Let G act doubly transitively on a set X. Assume the following:
(1) For some $x \in X$ the group Stab_{x} has an abelian normal subgroup whose conjugate subgroups generate G.
(2) $[G, G]=G$.

Then G / K is a simple group, where K is the kernel of the action of G on X.
The kernel of an action is the kernel of the homomorphism $G \rightarrow \operatorname{Sym}(X)$; it's those g that act like the identity on X.

Proof. To show G / K is simple we will show the only normal subgroups of G lying between K and G are K and G. Let $K \subset N \subset G$ with $N \triangleleft G$. Let $H=\operatorname{Stab}_{x}$, so H is a maximal subgroup of G (Theorem 2.5). Since N is normal, $N H=\{n h: n \in N, h \in H\}$ is a subgroup of G, and it contains H, so by maximality either $N H=H$ or $N H=G$. By Theorem 2.6, N acts trivially or transitively on X.

If $N H=H$ then $N \subset H$, so N fixes x. Therefore N does not act transitively on X, so N must act trivially on X, which implies $N \subset K$. Since $K \subset N$ by hypothesis, we have $N=K$.

Now suppose $N H=G$. Let U be the abelian normal subgroup of H in the hypothesis: its conjugate subgroups generate G. Since $U \triangleleft H, N U \triangleleft N H=G$. Then for $g \in G$, $g U g^{-1} \subset g(N U) g^{-1}=N U$, which shows $N U$ contains all the conjugate subgroups of U. By hypothesis it follows that $N U=G$.

Thus $G / N=(N U) / N \cong U /(N \cap U)$. Since U is abelian, the isomorphism tells us that G / N is abelian, so $[G, G] \subset N$. Since $G=[G, G]$ by hypothesis, we have $N=G$.

Example 2.11. We can use Theorem 2.10 to show A_{5} is a simple group. Its natural action on $\{1,2,3,4,5\}$ is doubly transitive. Let $x=5$, so $\operatorname{Stab}_{x} \cong A_{4}$, which has the abelian normal subgroup

$$
\{(1),(12)(34),(13)(24),(14)(23)\} .
$$

The A_{5}-conjugates of this subgroup generate A_{5} since the $(2,2)$-cycles in A_{5} are all conjugate in A_{5} and they generate A_{5}. The commutator subgroup $\left[A_{5}, A_{5}\right]$ contains every (2,2)-cycle: if a, b, c, d are distinct then

$$
(a b)(c d)=(a b c)(a b d)(a b c)^{-1}(a b d)^{-1} .
$$

Therefore $\left[A_{5}, A_{5}\right]=A_{5}$, so A_{5} is simple.

3. Simplicity of $\mathrm{PSL}_{2}(F)$

Let F be a field. The group $\mathrm{SL}_{2}(F)$ acts on $F^{2}-\left\{\binom{0}{0}\right\}$, but this action is not doubly transitive since linearly dependent vectors can't be sent to linearly independent vectors by a matrix. (We saw this for $\mathrm{GL}_{2}(F)$ in Example 2.4, and the same argument applies for its subgroup $\mathrm{SL}_{2}(F)$.) Linearly dependent vectors in F^{2} lie along the same line through the origin, so let's consider the action of $\mathrm{SL}_{2}(F)$ on the linear subspaces of F^{2} : let $A \in \mathrm{SL}_{2}(F)$ send the line $L=F v$ to the line $A(L)=F(A v)$. (Equivalently, we let $\mathrm{SL}_{2}(F)$ act on $\mathbf{P}^{1}(F)$, the projective line over F.)
Theorem 3.1. The action of $\mathrm{SL}_{2}(F)$ on the linear subspaces of F^{2} is doubly transitive.
Proof. An obvious pair of distinct linear subspaces in F^{2} is $F\binom{1}{0}$ and $F\binom{0}{1}$. It suffices to show that, given two distinct linear subspaces $F v$ and $F w$ of F^{2}, there is an $A \in \mathrm{SL}_{2}(F)$ that sends $F\binom{1}{0}$ to $F v$ and $F\binom{0}{1}$ to $F w$, because we can then use $F\binom{1}{0}$ and $F\binom{0}{1}$ as an intermediate step to send a pair of distinct linear subspaces to every other pair of distinct linear subspaces.

Let $v=\binom{a}{c}$ and $w=\binom{b}{d}$. Since $F v \neq F w$, the vectors v and w are linearly independent, so $D:=a d-b c$ is nonzero. Let $A=\left(\begin{array}{ll}a & b / D \\ c & d / D\end{array}\right)$, which has determinant $a(d / D)-(b / D) c=$ $D / D=1$, so $A \in \mathrm{SL}_{2}(F)$. Since $A\binom{1}{0}=\binom{a}{c}=v$ and $A\binom{0}{1}=\binom{b / D}{d / D}=(1 / D) w, A$ sends $F\binom{1}{0}$ to $F v$ and $F\binom{0}{1}$ to $F(1 / D) w=F w$.

We will apply Iwasawa's criterion (Theorem 2.10) to $\mathrm{SL}_{2}(F)$ acting on the set of linear subspaces of F^{2}. This action is doubly transitive by Theorem 3.1. It remains to check

- the kernel K of this action is the center of $\mathrm{SL}_{2}(F)$, so $\mathrm{SL}_{2}(F) / K=\mathrm{PSL}_{2}(F)$,
- the stabilizer subgroup of $\binom{1}{0}$ contains an abelian normal subgroup whose conjugate subgroups generate $\mathrm{SL}_{2}(F)$,
- $\left[\mathrm{SL}_{2}(F), \mathrm{SL}_{2}(F)\right]=\mathrm{SL}_{2}(F)$.

It is only in the third part that we will require $|F|>3$. (At some point we need to avoid $F=\mathbf{F}_{2}$ and $F=\mathbf{F}_{3}$, because $\operatorname{PSL}_{2}\left(\mathbf{F}_{2}\right)$ and $\operatorname{PSL}_{2}\left(\mathbf{F}_{3}\right)$ are not simple.)
Theorem 3.2. The kernel of the action of $\mathrm{SL}_{2}(F)$ on the linear subspaces of F^{2} is the center of $\mathrm{SL}_{2}(F)$.
Proof. A matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(F)$ is in the kernel K of the action when it sends each linear subspace of F^{2} back to itself. If the matrix preserves the lines $F\binom{1}{0}$ and $F\binom{0}{1}$ then $c=0$ and $b=0$, so $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right)$. The determinant is 1 , so $d=1 / a$. If $\left(\begin{array}{ll}a & 0 \\ 0 & 1 / a\end{array}\right)$ preserves the line $F\binom{1}{1}$ then $a=1 / a$, so $a= \pm 1$. This means $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)= \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Conversely, the matrices $\pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ both act trivially on the linear subspaces of F^{2}, so $K=\left\{ \pm\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)\right\}$.

If a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is in the center of $\mathrm{SL}_{2}(F)$ then it commutes with $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$, which implies $a=d$ and $b=c$ (check!). Therefore $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$. Since this has determinant 1 , $a^{2}=1$, so $a= \pm 1$. Conversely, $\pm\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$ commutes with all matrices.

Let $x=F\binom{1}{0}$. Its stabilizer subgroup in $\mathrm{SL}_{2}(F)$ is

$$
\begin{aligned}
\operatorname{Stab}_{F\binom{1}{0}} & =\left\{A \in \mathrm{SL}_{2}(F): A\binom{1}{0} \in F\binom{1}{0}\right\} \\
& =\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \in \mathrm{SL}_{2}(F)\right\} \\
& =\left\{\left(\begin{array}{cc}
a & b \\
0 & 1 / a
\end{array}\right): a \in F^{\times}, b \in F\right\} .
\end{aligned}
$$

This subgroup has a normal subgroup

$$
U=\left\{\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)\right\}=\left\{\left(\begin{array}{cc}
1 & \lambda \\
0 & 1
\end{array}\right): \lambda \in F\right\}
$$

which is abelian since $\left(\begin{array}{ll}1 & \lambda \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & \mu \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & \lambda+\mu \\ 0 & 1\end{array}\right)$.
Theorem 3.3. The subgroup U and its conjugates generate $\mathrm{SL}_{2}(F)$. More precisely, each matrix of the form $\left(\begin{array}{cc}1 & 0 \\ 1 & 1\end{array}\right)$ is conjugate to a matrix of the form $\left(\begin{array}{c}1 \\ 0 \\ 0\end{array}\right)$, and every element of $\mathrm{SL}_{2}(F)$ is the product of at most 4 elements of the form $\left(\begin{array}{cc}1 & * \\ 0 & 1\end{array}\right)$ or $\left(\begin{array}{ll}1 & 0 \\ * & 1\end{array}\right)$.

This is the analogue for $\mathrm{SL}_{2}(F)$ of the 3 -cycles generating A_{n}.
Proof. The matrix $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ is in $\mathrm{SL}_{2}(F)$ and $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & \lambda \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right){ }^{-1}=\left(\begin{array}{cc}1 & 0 \\ -\lambda & 1\end{array}\right)$, so $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ conjugates $U=\left\{\left(\begin{array}{cc}1 & * \\ 0 & 1\end{array}\right)\right\}$ to the group of lower triangular matrices $\left\{\left(\begin{array}{ll}1 & 0 \\ * & 1\end{array}\right)\right\}$.

Pick $\left(\begin{array}{ll}a & b \\ c & b\end{array}\right)$ in $\mathrm{SL}_{2}(F)$. To show it is a product of matrices of type $\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right)$ or $\left(\begin{array}{ll}1 & 0 \\ * & 1\end{array}\right)$, first suppose $b \neq 0$. Then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
(d-1) / b & 1
\end{array}\right)\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
(a-1) / b & 1
\end{array}\right) .
$$

If $c \neq 0$ then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
1 & (a-1) / c \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right)\left(\begin{array}{cc}
1 & (d-1) / c \\
0 & 1
\end{array}\right) .
$$

If $b=0$ and $c=0$ then the matrix is $\left(\begin{array}{cc}a & 0 \\ 0 & 1 / a\end{array}\right)$, and

$$
\left(\begin{array}{cc}
a & 0 \\
0 & 1 / a
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
(1-a) / a & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
a-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 / a \\
0 & 1
\end{array}\right) .
$$

So far F has been a general field. Now we reach a result that requires $|F| \geq 4$.
Theorem 3.4. If $|F| \geq 4$ then $\left[\mathrm{SL}_{2}(F), \mathrm{SL}_{2}(F)\right]=\mathrm{SL}_{2}(F)$.
Proof. We compute an explicit commutator:

$$
\left(\begin{array}{cc}
a & 0 \\
0 & 1 / a
\end{array}\right)\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & 1 / a
\end{array}\right)^{-1}\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & b\left(a^{2}-1\right) \\
0 & 1
\end{array}\right)
$$

Since $|F| \geq 4$, there is an $a \neq 0,1$, or -1 in F, so $a^{2} \neq 1$. Using this value of a and letting b run over F shows $\left[\mathrm{SL}_{2}(F), \mathrm{SL}_{2}(F)\right]$ contains U. Since the commutator subgroup is normal, it contains every subgroup conjugate to U, so $\left[\mathrm{SL}_{2}(F), \mathrm{SL}_{2}(F)\right]=\mathrm{SL}_{2}(F)$ by Theorem 3.3.

Theorem 3.4 is false when $|F|=2$ or $3: \mathrm{SL}_{2}\left(\mathbf{F}_{2}\right)=\mathrm{GL}_{2}\left(\mathbf{F}_{2}\right)$ is isomorphic to S_{3} and $\left[S_{3}, S_{3}\right]=A_{3} . \operatorname{In} \mathrm{SL}_{2}\left(\mathbf{F}_{3}\right)$ there is a unique 2-Sylow subgroup, so it is normal, and its index is 3 , so the quotient by it is abelian. Therefore the commutator subgroup of $\mathrm{SL}_{2}\left(\mathbf{F}_{3}\right)$ lies inside the 2-Sylow subgroup (in fact, the commutator subgroup is the 2-Sylow subgroup).

Theorem 3.5. If $|F| \geq 4$ then the group $\mathrm{PSL}_{2}(F)$ is simple.
Proof. By the previous four theorems the action of $\mathrm{SL}_{2}(F)$ on the linear subspaces of F^{2} satisfies the hypotheses of Iwasawa's theorem, and its kernel is the center of $\mathrm{SL}_{2}(F)$.

4. Simplicity of $\mathrm{PSL}_{n}(F)$ For $n>2$

To prove $\mathrm{PSL}_{n}(F)$ is simple for all F when $n>2$, we will study the action of $\mathrm{SL}_{n}(F)$ on the linear subspaces of F^{n}, which is the projective space $\mathbf{P}^{n-1}(F)$.

Theorem 4.1. The action of $\mathrm{SL}_{n}(F)$ on $\mathbf{P}^{n-1}(F)$ is doubly transitive with kernel equal to the center of the group and the stabilizer of some point has an abelian normal subgroup.

Proof. For nonzero v in F^{n}, write the linear subspace $F v$ as $[v]$. Pick $\left[v_{1}\right] \neq\left[v_{2}\right]$ and $\left[w_{1}\right] \neq\left[w_{2}\right]$ in $\mathbf{P}^{n-1}(F)$. We seek an $A \in \mathrm{SL}_{n}(F)$ such that $A\left[v_{1}\right]=\left[w_{1}\right]$ and $A\left[v_{2}\right]=\left[w_{2}\right]$.

Extend v_{1}, v_{2} and w_{1}, w_{2} to bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{n} of F^{n}. Let $L: F^{n} \rightarrow F^{n}$ be the linear map where $L v_{i}=w_{i}$ for all i, so $\operatorname{det} L \neq 0$ and on $\mathbf{P}^{n-1}(F)$ we have $L\left[v_{i}\right]=\left[w_{i}\right]$ for all i. In particular, $L\left[v_{1}\right]=\left[w_{1}\right]$ and $L\left[v_{2}\right]=\left[w_{2}\right]$. Alas, det L may not be 1 . For $c \in F^{\times}$, let $L_{c}: F^{n} \rightarrow F^{n}$ be the linear map where $L_{c} v_{i}=w_{i}$ for $i \neq n$ and $L_{c} v_{n}=c w_{n}$, so $L=L_{1}$. Then L_{c} sends $\left[v_{i}\right]$ to $\left[w_{i}\right]$ for all i and $\operatorname{det} L_{c}=c \operatorname{det} L$, so $L_{c} \in \operatorname{SL}_{n}(F)$ for $c=1 / \operatorname{det} L$.

If $A \in \mathrm{SL}_{n}(F)$ is in the kernel of this action then $A[v]=[v]$ for all nonzero $v \in F^{n}$, so $A v=\lambda_{v} v$, where $\lambda_{v} \in F^{\times}$: every nonzero element of F^{n} is an eigenvector of A. The only matrices for which all vectors are eigenvectors are scalar diagonal matrices. To prove this, use the equation $A v=\lambda_{v} v$ when $v=e_{i}, v=e_{j}$, and $v=e_{i}+e_{j}$ for the standard basis e_{1}, \ldots, e_{n} of F^{n}. The equation $A\left(e_{i}+e_{j}\right)=A e_{i}+A e_{j}$ implies $\lambda_{e_{i}+e_{j}} e_{i}+\lambda_{e_{i}+e_{j}} e_{j}=$ $\lambda_{e_{i}} e_{i}+\lambda_{e_{j}} e_{j}$, so $\lambda_{e_{i}}=\lambda_{e_{i}+e_{j}}=\lambda_{e_{j}}$. Let λ be the common value of $\lambda_{e_{i}}$ over all i, so $A v=\lambda v$ when v runs through the basis. By linearity, $A v=\lambda v$ for all $v \in F^{n}$, so A is a scalar diagonal matrix with determinant 1 . It is left to the reader to check that the center of $\mathrm{SL}_{n}(F)$ is also the scalar diagonal matrices with determinant 1.

To show the stabilizer of some point in $\mathbf{P}^{n-1}(F)$ has an abelian normal subgroup, we look at the stabilizer H of the point

$$
\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \in \mathbf{P}^{n-1}(F),
$$

which is the group of $n \times n$ determinant 1 matrices

$$
\left(\begin{array}{cc}
a & * \\
\mathbf{0} & M
\end{array}\right)
$$

where $a \in F^{\times}, M \in \mathrm{GL}_{n-1}(F)$, and $*$ is a row vector of length $n-1$. For this to be in $\mathrm{SL}_{n}(F)$ means $a=1 / \operatorname{det} M$. The projection $H \rightarrow \mathrm{GL}_{n-1}(F)$ sending $\left(\begin{array}{c}a \\ 0 \\ 0\end{array}\right)$ *) onto M has abelian kernel

$$
U:=\left\{\left(\begin{array}{cc}
1 & * \tag{4.1}\\
\mathbf{0} & I_{n-1}
\end{array}\right)\right\} \cong F^{n-1} .
$$

To conclude by Iwasawa's theorem that $\mathrm{PSL}_{n}(F)$ is simple, it remains to show

- the subgroups of $\mathrm{SL}_{n}(F)$ that are conjugate to U generate $\mathrm{SL}_{n}(F)$,
- $\left[\mathrm{SL}_{n}(F), \mathrm{SL}_{n}(F)\right]=\mathrm{SL}_{n}(F)$.

This will follow from a study of the elementary matrices $I_{n}+\lambda E_{i j}$ where $i \neq j$ and $\lambda \in F^{\times}$. An example of such a matrix when $n=3$ is

$$
I_{3}+\lambda E_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \lambda \\
0 & 0 & 1
\end{array}\right)
$$

The matrix $I_{n}+\lambda E_{i j}$ has 1's on the main diagonal and a λ in the (i, j) position. Therefore its determinant is 1 , so such matrices are in $\mathrm{SL}_{n}(F)$. The most basic example of such an elementary matrix in U is

$$
I_{n}+E_{12}=\left(\begin{array}{ccc}
1 & 1 & \mathbf{0} \tag{4.2}\\
0 & 1 & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & I_{n-2}
\end{array}\right)
$$

Here are the two properties we will need about the elementary matrices $I_{n}+\lambda E_{i j}$:
(1) For $n>2$, each $I_{n}+\lambda E_{i j}$ is conjugate in $\mathrm{SL}_{n}(F)$ to $I_{n}+E_{12}$.
(2) For $n>2$, the matrices $I_{n}+\lambda E_{i j}$ generate $\mathrm{SL}_{n}(F)$.

These properties imply the conjugates of $I_{n}+E_{12}$ generate $\mathrm{SL}_{n}(F)$. Since $I_{n}+E_{12} \in U$, the subgroups of $\mathrm{SL}_{n}(F)$ that are conjugate to U generate $\mathrm{SL}_{n}(F)$, so the next theorem would complete the proof that $\operatorname{PSL}_{n}(F)$ is simple for $n>2$.

Theorem 4.2. For $n>2,\left[\mathrm{SL}_{n}(F), \mathrm{SL}_{n}(F)\right]=\mathrm{SL}_{n}(F)$.
Proof. We will show $I_{n}+E_{12}$ is a commutator in $\mathrm{SL}_{n}(F)$. Then, since the commutator subgroup is normal, the above two properties of elementary matrices imply that $\left[\mathrm{SL}_{n}(F), \mathrm{SL}_{n}(F)\right]$ contains every $I_{n}+\lambda E_{i j}$, and therefore $\left[\mathrm{SL}_{n}(F), \mathrm{SL}_{n}(F)\right]=\mathrm{SL}_{n}(F)$.

Set

$$
g=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { and } h=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

Then

$$
g h g^{-1} h^{-1}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

which is $I_{3}+E_{12}$. For $n \geq 4, I_{n}+E_{12}$ is the block matrix

$$
\begin{aligned}
\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & I_{n-2}
\end{array}\right) & =\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & I_{n-3}
\end{array}\right) \\
& =\left(\begin{array}{cc}
g & O \\
O & I_{n-3}
\end{array}\right)\left(\begin{array}{cc}
h & O \\
O & I_{n-3}
\end{array}\right)\left(\begin{array}{cc}
g & O \\
O & I_{n-3}
\end{array}\right)^{-1}\left(\begin{array}{cc}
h & O \\
O & I_{n-3}
\end{array}\right)^{-1}
\end{aligned}
$$

All that remains is to prove the two properties we listed of the elementary matrices, and this is handled by the next two theorems.

Theorem 4.3. For $n>2$, each $I_{n}+\lambda E_{i j}$ with $\lambda \in F^{\times}$is conjugate in $\mathrm{SL}_{n}(F)$ to $I_{n}+E_{12}$.
Proof. Let $T=I_{n}+\lambda E_{i j}$. For the standard basis e_{1}, \ldots, e_{n} of F^{n},

$$
T\left(e_{k}\right)= \begin{cases}e_{k}, & \text { if } k \neq j, \\ \lambda e_{i}+e_{j}, & \text { if } k=j\end{cases}
$$

We want a basis $e_{1}^{\prime}, \ldots, e_{n}^{\prime}$ of F^{n} in which the matrix representation of T is $I_{n}+E_{12}$, i.e., $T\left(e_{k}^{\prime}\right)=e_{k}^{\prime}$ for $k \neq 2$ and $T\left(e_{2}^{\prime}\right)=e_{1}^{\prime}+e_{2}^{\prime}$.

Define a basis f_{1}, \ldots, f_{n} of F^{n} by $f_{1}=\lambda e_{i}, f_{2}=e_{j}$, and f_{3}, \ldots, f_{n} is some ordering of the $n-2$ standard basis vectors of F^{n} besides e_{i} and e_{j}. Then

$$
T\left(f_{1}\right)=\lambda T\left(e_{i}\right)=\lambda e_{i}=f_{1}, \quad T\left(f_{2}\right)=T\left(e_{j}\right)=\lambda e_{i}+e_{j}=f_{1}+f_{2}, \quad T\left(f_{k}\right)=f_{k} \text { for } k \geq 3,
$$

so relative to the basis f_{1}, \ldots, f_{n} the matrix representation of T is $I_{n}+E_{12}$. Therefore

$$
T=A\left(I_{n}+E_{12}\right) A^{-1}
$$

where A is the matrix such that $A\left(e_{k}\right)=f_{k}$ for all k. (Check $T=A\left(I_{n}+E_{12}\right) A^{-1}$ by checking both sides take the same values at f_{1}, \ldots, f_{n}.) There is no reason to expect $\operatorname{det} A=1$, so the equation $T=A\left(I_{n}+E_{12}\right) A^{-1}$ shows us T and $I_{n}+E_{12}$ are conjugate in $\mathrm{GL}_{n}(F)$, rather than in $\mathrm{SL}_{n}(F)$. With a small change we can get a conjugating matrix in $\mathrm{SL}_{n}(F)$, as follows. For all $c \in F^{\times}$we have

$$
T=A_{c}\left(I_{n}+E_{12}\right) A_{c}^{-1}
$$

where

$$
A_{c}\left(e_{k}\right)= \begin{cases}f_{k}, & \text { if } k<n, \\ c f_{n}, & \text { if } k=n\end{cases}
$$

(Check both sides of the equation $T=A_{c}\left(I_{n}+E_{12}\right) A_{c}^{-1}$ are equal at $f_{1}, \ldots, f_{n-1}, c f_{n}$, where we need $n>2$ for both sides to be the same at f_{2}.) The columns of A_{c} are the same as the columns of A except for the nth column, where A_{c} is c times the nth column of A.

Therefore $\operatorname{det}\left(A_{c}\right)=c \operatorname{det} A$, so if we use $c=1 / \operatorname{det} A$ then $A_{c} \in \operatorname{SL}_{n}(F)$. That proves T is conjugate to $I_{n}+E_{12}$ in $\mathrm{SL}_{n}(F)$.

Example 4.4. Let

$$
T=I_{3}+\lambda E_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \lambda \\
0 & 0 & 1
\end{array}\right) .
$$

Starting from the standard basis e_{1}, e_{2}, e_{3} of F^{3}, introduce a new basis f_{1}, f_{2}, f_{3} by $f_{1}=\lambda e_{2}$, $f_{2}=e_{3}$, and $f_{3}=e_{1}$. Since $T\left(f_{1}\right)=f_{1}, T\left(f_{2}\right)=f_{1}+f_{2}$, and $T\left(f_{3}\right)=f_{3}$, we have

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & \lambda \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
\lambda & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
\lambda & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{-1},
$$

where the conjugating matrix

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
\lambda & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

has for its columns f_{1}, f_{2}, and f_{3} in order. The determinant of this conjugating matrix is λ, so it is usually not in $\mathrm{SL}_{3}(F)$. If we insert a nonzero constant c into the third column then we get a more general conjugation relation between $I_{3}+\lambda E_{23}$ and $I_{3}+E_{12}$:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \lambda \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & c \\
\lambda & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & c \\
\lambda & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{-1} .
$$

The conjugating matrix has determinant λc, so using $c=1 / \lambda$ makes the conjugating matrix have determinant 1 , which exhibits an $\mathrm{SL}_{3}(F)$-conjugation between $I_{3}+\lambda E_{23}$ and $I_{3}+E_{12}$.

Theorem 4.5. For $n \geq 2$, the matrices $I_{n}+\lambda E_{i j}$ with $i \neq j$ and $\lambda \in F^{\times}$generate $\mathrm{SL}_{n}(F)$.
Proof. This will be a sequence of tedious computations. By a matrix calculation,

$$
E_{i j} E_{k \ell}=\delta_{j k} E_{i \ell}= \begin{cases}E_{i \ell}, & \text { if } j=k, \tag{4.3}\\ O, & \text { if } j \neq k\end{cases}
$$

Therefore $\left(I_{n}+\lambda E_{i j}\right)\left(I_{n}+\mu E_{i j}\right)=I_{n}+(\lambda+\mu) E_{i j}$, so $\left(I_{n}+\lambda E_{i j}\right)^{-1}=1-\lambda E_{i j}$, so the theorem amounts to saying that every element of $\operatorname{SL}_{n}(F)$ is a product of matrices $I_{n}+\lambda E_{i j}$.

We already proved the theorem for $n=2$ in Theorem 3.3, so we can take $n>2$ and assume the theorem is proved for $\mathrm{SL}_{n-1}(F)$. Pick $A \in \mathrm{SL}_{n}(F)$. We will show that by multiplying A on the left or right by suitable elementary matrices $I_{n}+\lambda E_{i j}$ we can obtain a block matrix $\left(\begin{array}{cc}1 & \mathbf{0} \\ \mathbf{0} & A^{\prime}\end{array}\right)$. Since this is in $\mathrm{SL}_{n}(F)$, taking its determinant shows $\operatorname{det} A^{\prime}=1$, so $A^{\prime} \in \mathrm{SL}_{n-1}(F)$. By induction A^{\prime} is a product of elementary matrices $I_{n-1}+\lambda E_{i j}$, so $\left(\begin{array}{ll}1 & \mathbf{0} \\ \mathbf{0} & A^{\prime}\end{array}\right)$ would be a product of block matrices of the form $\binom{1}{\mathbf{0} I_{n-1}+\lambda E_{i j}}$, which is $I_{n}+\lambda E_{i+1}{ }_{j+1}$. Therefore
(product of some $\left.I_{n}+\lambda E_{i j}\right) A\left(\right.$ product of some $\left.I_{n}+\lambda E_{i j}\right)=$ product of some $I_{n}+\lambda E_{i j}$, and we can solve for A to see that it is a product of matrices $I_{n}+\lambda E_{i j}$.

The effect of multiplying an $n \times n$ matrix A by $I_{n}+\lambda E_{i j}$ on the left or right is an elementary row or column operation:
$\left(I_{n}+\lambda E_{i j}\right) A=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{i 1}+\lambda a_{j 1} & \cdots & a_{i n}+\lambda a_{j n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right) i$ th row $=i$ th row of $A+\lambda(j$ th row of $A)$
and

$$
A\left(I_{n}+\lambda E_{i j}\right)=\left(\begin{array}{ccccc}
a_{11} & \cdots & a_{1 j}+\lambda a_{1 i} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n j}+\lambda a_{n i} & \cdots & a_{n n}
\end{array}\right)
$$

j th col. $=j$ th col. of $A+\lambda(i$ th col. of $A)$
Looking along the first column of A, some entry is not 0 since $\operatorname{det} A \neq 0$. If some $a_{k 1}$ in A is not 0 where $k>1$, then

$$
\left(I_{n}+\frac{1-a_{11}}{a_{k 1}} E_{1 k}\right) A=\left(\begin{array}{cc}
1 & \cdots \tag{4.4}\\
\vdots & \ddots
\end{array}\right) .
$$

If $a_{21}, \ldots, a_{n 1}$ are all 0 , then $a_{11} \neq 0$ and

$$
\left(I_{n}+\frac{1}{a_{11}} E_{21}\right) A=\left(\begin{array}{cc}
a_{11} & \cdots \\
1 & \cdots \\
\vdots & \ddots
\end{array}\right)
$$

Then by (4.4) with $k=2$,

$$
\left(I_{n}+\left(1-a_{11}\right) E_{12}\right)\left(I_{n}+\frac{1}{a_{11}} E_{21}\right) A=\left(\begin{array}{cc}
1 & \cdots \\
\vdots & \ddots
\end{array}\right)
$$

Once we have a matrix with upper left entry 1 , multiplying it on the left by $I_{n}+\lambda E_{i 1}$ for $i \neq 1$ will add λ to the $(i, 1)$-entry, so with a suitable λ we can make the $(i, 1)$-entry of the matrix 0 . Thus multiplication on the left by suitable matrices of the form $I_{n}+\lambda E_{i j}$ produces a block matrix $\left(\begin{array}{cc}1 & * \\ 0 & B\end{array}\right)$ whose first column is all 0 's except for the upper left entry, which is 1 . Multiplying this matrix on the right by $I_{n}+\lambda E_{1 j}$ for $j \neq 1$ adds λ to the $(1, j)$-entry without changing column other than the j th column. With a suitable choice of λ we can make the $(1, j)$-entry equal to 0 , and carrying this out for $j=2, \ldots, n$ leads to a block matrix $\left(\begin{array}{cc}1 & 0 \\ 0 & A^{\prime}\end{array}\right)$, which is what we need to conclude the proof by induction.

References

[1] L. E. Dickson, "The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group," Ann. Math. 11 (1897), 161-183.
[2] L. E. Dickson, "Theory of linear groups in an arbitrary field," Trans. Amer. Math. Soc. 2 (1901), 363-394.
[3] K. Iwasawa, "Über die Einfachkeit der speziellen projection Gruppen," Proc. Imperial Acad. Tokyo 17 (1941), 57-59.
[4] C. Jordan, Traité des Substitutions, Gauthier-Villars, Paris, 1870.
[5] E. H. Moore, "A doubly-infinite system of simple groups," Bull. New York Math. Soc. 3 (1893), 73-78.

