
SIMPLICITY OF An

KEITH CONRAD

1. Introduction

A finite group is called simple when it is nontrivial and its only normal subgroups are
the trivial subgroup and the whole group.

For instance, a finite group of prime order is simple, since it in fact has no nontrivial
proper subgroups at all (normal or not). A finite abelian group G not of prime order is not
simple: let p be a prime factor of |G|, so G contains a subgroup of order p, which is normal
since G is abelian and is proper since |G| > p. Thus, the abelian finite simple groups are
the groups of prime order.

When n ≥ 3 the group Sn is not simple since it has the normal subgroup An of index 2.

Theorem 1.1. For n ≥ 5, the group An is simple.

This is due to Camille Jordan [6, p. 66] in 1870. The special case n = 5 goes back to
Galois. The restriction n ≥ 5 is optimal, since A4 is not simple: it has the normal subgroup
{(1), (12)(34), (13)(24), (14)(23)}. The group A3 is simple, since it has order 3, and the
groups A1 and A2 are trivial.

We will give five proofs of Theorem 1.1. Section 2 includes some preparatory material
and later sections give the proofs of Theorem 1.1. In the final section, we give a quick
application of the simplicity of alternating groups and some references for further proofs
not treated here.

2. Preliminary lemmas

We need three lemmas: two are about alternating groups and one is about symmetric
groups on n letters for n ≥ 5.

Lemma 2.1. For n ≥ 3, An is generated by 3-cycles. For n ≥ 5, An is generated by
permutations of type (2, 2).

Proof. The identity (1) is (123)(132), which is a product of 3-cycles. Now pick a non-identity
element of An, say σ and write it as a product of transpositions in Sn:

σ = τ1τ2 · · · τr.
The left side has sign 1 and the right side has sign (−1)r, so r is even. Therefore we can
collect the products on the right into successive transpositions τiτi+1, where i = 1, 3, . . .
is odd. We will now show every product of two transpositions in Sn is a product of two
3-cycles, so σ is a product of 3-cycles.

Case 1: τi and τi+1 are equal. Then τiτi+1 = (1) = (123)(132), so we can replace τiτi+1

with a product of two 3-cycles.
Case 2: τi and τi+1 have exactly one element in common. Let the common element be a,

so we can write τi = (ab) and τi+1 = (ac), where b 6= c. Then

τiτi+1 = (ab)(ac) = (acb) = (abc)(abc),
1
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so we can replace τiτi+1 with a product of two 3-cycles.
Case 3: τi and τi+1 have no elements in common. This means τi and τi+1 are disjoint, so

we can write τi = (ab) and τi+1 = (cd) where a, b, c, d are distinct (so n ≥ 4). Then

τiτi+1 = (ab)(cd) = (ab)(bc)(bc)(cd) = (bca)(cdb) = (abc)(bcd),

so we can replace τiτi+1 with a product of two 3-cycles.
To show for n ≥ 5 that Ann is generated by permutations of type (2, 2), it suffices to

write each 3-cycle (abc) in terms of such permutations. Pick d, e 6∈ {a, b, c} (we can do this
since n ≥ 5). Then note

(abc) = (ab)(de)(de)(bc)

and the permutations (ab)(de) and (de)(bc) have type (2, 2) since a, b, c, d, e are distinct. �

The 3-cycles in Sn are all conjugate in Sn, since permutations of the same cycle type in
Sn are conjugate. Are 3-cycles conjugate in An? Not when n = 4: (123) and (132) are not
conjugate in A4. But for n ≥ 5 we do have conjugacy in An.

Lemma 2.2. For n ≥ 5, all 3-cycles in An are conjugate in An.

Proof. We show every 3-cycle in An is conjugate within An to (123). Let σ be a 3-cycle in
An. It can be conjugated to (123) in Sn:

(123) = πσπ−1

for some π ∈ Sn. If π ∈ An we’re done. Otherwise, let π′ = (45)π, so π′ ∈ An and

π′σπ′−1 = (45)πσπ−1(45) = (45)(123)(45) = (123). �

Example 2.3. The 3-cycles (123) and (132) are not conjugate in A4. But in A5 we have

(132) = π(123)π−1

for π = (45)(12) ∈ A5.

Most proofs of the simplicity of the groups An are based on Lemmas 2.1 and 2.2. The
basic argument is this: show each nontrivial normal subgroup N C An contains a 3-cycle,
so N contains every 3-cycle by Lemma 2.2, and therefore N is An by Lemma 2.1.

The next lemma will be used in our fifth proof of the simplicity of alternating groups.

Lemma 2.4. For n ≥ 5, the only nontrivial proper normal subgroup of Sn is An. In
particular, the only subgroup of Sn with index 2 is An.

Proof. The last statement follows from the first since every subgroup of index 2 is normal.
Let N C Sn with N 6= {(1)}. We will show An ⊂ N , so N = An or Sn.
Pick σ ∈ N with σ 6= (1). That means there is an i with σ(i) 6= i. Pick j ∈ {1, 2, . . . , n}

so j 6= i and j 6= σ(i). Let τ = (ij). Then

στσ−1τ−1 = (σ(i) σ(j))(ij).

Since σ(i) 6= i or j and σ(i) 6= σ(j) (why?), the 2-cycles (σ(i) σ(j)) and (ij) are unequal,
so their product is not the identity. That shows στ 6= τσ.

Since N C Sn, στσ−1τ−1 lies in N . By construction, σ(i) 6= i or j. If σ(j) 6= i or j, then
(σ(i) σ(j))(ij) has type (2, 2). If σ(j) = i or j, (σ(i) σ(j))(ij) is a 3-cycle. Thus N contains
a permutation of type (2, 2) or a 3-cycle. Since N CSn, N contains all permutations of type
(2, 2) or all 3-cycles. In either case, this shows (by Lemma 2.1) that N ⊃ An. �
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Remark 2.5. There is an analogue of Lemma 2.4 for the “countable” symmetric group S∞
consisting of all permutations of {1, 2, 3, . . . }. A theorem of Schreier and Ulam (1933) says
the only nontrivial proper normal subgroups of S∞ are ∪n≥1Sn and ∪n≥1An, which are the
subgroup of permutations fixing all but a finite number of terms and its subgroup of even
permutations.

Remark 2.6. By Lemma 2.4, for n ≥ 5 each homomorphic image of Sn not isomorphic to
Sn has order 1 or 2. So there is no surjective homomorphism Sn → Z/(m) for m ≥ 3.

Theorem 2.7. For n ≥ 5, no subgroup of Sn has index strictly between 2 and n. Moreover,
each subgroup of index n in Sn is isomorphic to Sn−1.

Proof. Let H be a proper subgroup of Sn and let m := [Sn : H], so m ≥ 2. If m = 2 then
H = An by Lemma 2.4. If m < n then we will show m = 2. The left multiplication action
of Sn on Sn/H gives a group homomorphism

ϕ : Sn → Sym(Sn/H) ∼= Sm.

By hypothesis m < n, so ϕ is not injective. Let K be the kernel of ϕ, so K ⊂ H and K is
nontrivial. Since K CSn, Lemma 2.4 says K = An or Sn. Since K ⊂ H, we get H = An or
Sn, which implies m = 2. Therefore we can’t have 2 < m < n.

Now let H be a subgroup of Sn with index n. Consider the left multiplication action
of Sn on Sn/H. This is a homomorphism ` : Sn → Sym(Sn/H). Since Sn/H has order n,
Sym(Sn/H) is isomorphic to Sn. The kernel of ` is a normal subgroup of Sn that lies in H
(why?). Therefore the kernel has index at least n in Sn. Since the only normal subgroups
of Sn are 1, An, and Sn, the kernel of ` is trivial, so ` is an isomorphism. What is the image
`(H) in Sym(Sn/H)? Since gH = H if and only if g ∈ H, `(H) is the group of permutations
of Sn/H that fixes the “point” H in Sn/H. The subgroup fixing a point in a symmetric
group isomorphic to Sn is isomorphic to Sn−1. Therefore H ∼= `(H) ∼= Sn−1. �

Theorem 2.7 is false for n = 4: S4 contains the dihedral group of order 8 as a subgroup
of index 3. An analogue of Theorem 2.7 for alternating groups will be given in Section 8;
its proof will use the simplicity of the alternating groups.

Remark 2.8. That Sn has no subgroup with index strictly between 2 and n when n ≥ 5 is
due to Bertrand [1, p. 129] with an incomplete proof that relied on “Bertrand’s postulate”
that there is a prime strictly between n and 2n − 2 for n ≥ 4. He checked there is such a
prime for n up to 3 million and it was proved in general by Chebyshev several years later.

Corollary 2.9. Let F be a field. If f ∈ F [X1, . . . , Xn] and n ≥ 5, the number of different
polynomials we get from f by permuting its variables is either 1, 2, or at least n.

Proof. Letting Sn act on F [X1, . . . , Xn] by permutations of the variables, the polynomials
we get by permuting the variables of f is the Sn-orbit of f . The size of this orbit is [Sn : H],
where H = Stabf = {σ ∈ Sn : σf = f}. By Theorem 2.7, this index is either 1, 2, or at
least n. �

Corollary 2.9 is not true when n = 4. Here is a counterexample.

Example 2.10. In F [X1, X2, X3, X4], let f = X1X2 +X3X4. Its S4-orbit has 3 values:

X1X2 +X3X4, X1X3 +X2X4, X1X4 +X2X3.
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3. First proof

Our first proof of Theorem 1.1 is based on the one in [3, pp. 149–150].
We begin by showing A5 is simple.

Theorem 3.1. The group A5 is simple.

Proof. We want to show the only normal subgroups of A5 are {(1)} and A5. This will be
done in two ways.

Our first method involves counting the orders of the conjugacy classes. There are 5
conjugacy classes in A5, with representatives and orders as indicated in the following table.

Rep. (1) (12345) (21345) (12)(34) (123)
Order 1 12 12 15 20

If A5 has a normal subgroup N , then N is a union of conjugacy classes – including {(1)}
– whose total size divides 60. However, no sum of the above numbers that includes 1 is a
factor of 60 except for 1 and 60. Therefore N is trivial or A5.

For the second proof, let N C A5 with |N | > 1. We will show N contains a 3-cycle. It
follows that N = An by Lemmas 2.1 and 2.2.

Pick σ ∈ N with σ 6= (1). The cycle structure of σ is (abc), (ab)(cd), or (abcde), where
different letters represent different numbers. Since we want to show N contains a 3-cycle,
we may suppose σ has the second or third cycle type. In the second case, N contains

((abe)(ab)(cd)(abe)−1)(ab)(cd) = (be)(cd)(ab)(cd) = (aeb).

In the third case, N contains

((abc)(abcde)(abc)−1)(abcde)−1 = (adebc)(aedcb) = (abd).

Therefore N contains a 3-cycle, so N = A5. �

Lemma 3.2. When n ≥ 5, each nontrivial σ in An has a conjugate σ′ 6= σ such that
σ(i) = σ′(i) for some i.

For example, if σ = (12345) in A5 then σ′ = (345)σ(345)−1 = (12453) has the same value
at i = 1 as σ does.

Proof. Let r be the longest length of a disjoint cycle in σ. By replacing σ with a conjugate
permutation (which is also in An and has the effect of just relabeling the numbers from 1
to n when σ permutes them), we can assume the disjoint r-cycle in σ is (12 . . . r) and then
we can write

σ = (12 . . . r)π,

where (12 . . . r) and π are disjoint.
If r ≥ 3, let τ = (345) and σ′ = τστ−1. Then σ(1) = 2, σ′(1) = 2, σ(2) = 3, and

σ′(2) = 4. Thus σ′ 6= σ and both take the same value at 1.
If r = 2, then σ is a product of disjoint transpositions. If there are at least 3 disjoint

transpositions involved, then n ≥ 6 and we can write σ = (12)(34)(56)(. . . ) after relabelling.
Let τ = (12)(35) and σ′ = τστ−1. Then σ(1) = 2, σ′(1) = 2, σ(3) = 4, and σ′(3) = 6. Again,
we see σ′ 6= σ and σ and σ′ have the same value at 1.

If r = 2 and σ is a product of 2 disjoint transpositions, write σ = (12)(34) after relabelling.
Let τ = (132) and σ′ = τστ−1 = (13)(24). Then σ′ 6= σ and they both fix 5. �

Now we prove Theorem 1.1.
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Proof. We may suppose n ≥ 6, by Theorem 3.1. For 1 ≤ i ≤ n, let An act in the natural
way on {1, 2, . . . , n} and let Hi ⊂ An be the subgroup fixing i, so Hi

∼= An−1. By induction,
each Hi is simple. Note each Hi contains a 3-cycle (build out of 3 numbers other than i).

Let NCAn be a nontrivial normal subgroup. We want to show N = An. Pick σ ∈ N with
σ 6= {(1)}. By Lemma 3.2, there is a conjugate σ′ of σ such that σ′ 6= σ and σ(i) = σ′(i)
for some i. Since N is normal in An, σ′ ∈ N . Then σ−1σ′ is a non-identity element of N
that fixes i, so N ∩Hi is a nontrivial subgroup of Hi. It is also a normal subgroup of Hi

since N C An. Since Hi is simple, N ∩Hi = Hi. Therefore Hi ⊂ N . Since Hi contains a
3-cycle, N contains a 3-cycle and we are done.

Alternatively, we can show N = An when N ∩Hi is nontrivial for some i as follows. As
before, since N ∩Hi is a nontrivial normal subgroup of Hi, Hi ⊂ N . Without referring to
3-cycles, we instead note that the different Hi’s are conjugate subgroups of An: σHiσ

−1 =
Hσ(i) for σ ∈ An Since N C An and N contains Hi, N contains every Hσ(i) for all σ ∈ An.
Since σ(i) can be an arbitrary element of An as σ varies in An, N contains every Hi. Every
permutation of type (2, 2) is in some Hi since n ≥ 5, so N contains all permutations of type
(2, 2). Every permutation in An is a product of permutations of type (2,2), so N ⊃ An.
Therefore N = An. �

4. Second proof

Our next proof is taken from [8, p. 108]. It does not use induction on n, but we do need
to know A6 is simple at the start.

Theorem 4.1. The group A6 is simple.

Proof. We follow the first method of proof of Theorem 3.1. Here is the table of conjugacy
classes in A6.

Rep. (1) (123) (123)(456) (12)(34) (12345) (23456) (1234)(56)
Order 1 40 40 45 72 72 90

A tedious check shows no sum of these orders, which includes 1, is a factor of 6!/2 except
for the sum of all the terms. Therefore the only nontrivial normal subgroup of A6 is A6. �

Now we prove the simplicity of An for larger n by reducing directly to the case of A6.

Proof. Since A5 and A6 are known to be simple by Theorems 3.1 and 4.1, pick n ≥ 7 and
let N CAn be a nontrivial subgroup. We will show N contains a 3-cycle.

Let σ be a non-identity element of N . It moves some number. By relabelling, we may
suppose σ(1) 6= 1. Let τ = (ijk), where i, j, k are not 1 and σ(1) ∈ {i, j, k}. Then
τστ−1(1) = τ(σ(1)) 6= σ(1), so τστ−1 6= σ. Let ϕ = τστ−1σ−1, so ϕ 6= (1). Writing

ϕ = (τστ−1)σ−1,

we see ϕ ∈ N . Now write
ϕ = τ(στ−1σ−1),

Since τ−1 is a 3-cycle, στ−1σ−1 is also a 3-cycle. Therefore ϕ is a product of two 3-
cycles, so ϕ moves at most 6 numbers in {1, 2, . . . , n}. Let H be the copy of A6 inside
An corresponding to the even permutations of those 6 numbers (possibly augmented to 6
arbitrarily if in fact ϕ moves fewer numbers). Then N ∩H is nontrivial (it contains ϕ) and
it is a normal subgroup of H. Since H ∼= A6, which is simple, N ∩H = H. Thus H ⊂ N ,
so N contains a 3-cycle. �
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5. Third proof

Our next proof is by induction, and uses conjugacy classes instead of Lemma 3.2. It is
based on [11, §2.3].

Lemma 5.1. If n ≥ 6 then every nontrivial conjugacy class in Sn and An has at least n
elements.

The lower bound n in Lemma 5.1 is actually quite weak as n grows. But it shows that
the size of each nontrivial conjugacy class in Sn and An grows with n.

Proof. For n ≥ 6, pick σ ∈ Sn with σ 6= (1). We want to look at the conjugacy class of σ in
Sn, and if σ ∈ An we also want to look at the conjugacy class of σ in An, and our goal in
both cases is to find at least n elements in the conjugacy class.

Case 1: The disjoint cycle decomposition of σ includes a cycle with length greater than
2. Without loss of generality, σ = (123 . . . ) . . . .

For 3 ≤ k ≤ n, fix a choice of ` 6∈ {1, 2, 3, k} (which is possible since n ≥ 5) and let
αk = (2k`) and βk = (3k`). Then αkσα

−1
k has the effect 1 → 1 → 2 → k and βkσβ

−1
k has

the effect 1→ 1→ 2→ 2 and 2→ 2→ 3→ k. This tells us that the conjugates

α3σα
−1
3 , . . . , αnσα

−1
n , β3σβ

−1
3 , . . . , βnσβ

−1
n

are all different from each other: the conjugates by the α’s have different effects on 1, the
conjugates by the β’s have different effects on 2, and a conjugate by an α is not a conjugate
by a β since they have different effects on 1. Since these conjugates are different, the number
of conjugates of σ is at least 2(n− 2) > n. Because αk and βk are 3-cycles, if σ ∈ An then
these conjugates are in the An-conjugacy class of σ.

Case 2: The disjoint cycle decomposition of σ only has cycles with length 1 or 2. Therefore
without loss of generality σ is a transposition or a product of at least 2 disjoint transposi-
tions.

If σ is a transposition, then its Sn-conjugacy class is the set of all transpositions (ij)

where 1 ≤ i < j ≤ n, and the number of these permutations is
(
n
2

)
= n2−n

2 , which is greater
than n for n ≥ 6.

If σ is a product of at least 2 disjoint transpositions, then without loss of generality
σ = (12)(34) . . . , where the terms in . . . don’t involve 1, 2, 3, or 4.

For 5 ≤ k ≤ n, let αk = (12)(3k), βk = (13)(2k), and γk = (1k)(23). Then αkσα
−1
k has

the effect
1→ 2→ 1→ 2, 2→ 1→ 2→ 1, k → 3→ 4→ 4,

βkσβ
−1
k has the effect

1→ 3→ 4→ 4, 3→ 1→ 2→ k, k → 2→ 1→ 3,

and γkσγ
−1
k has the effect

2→ 3→ 4→ 4, 3→ 2→ 1→ k, k → 1→ 2→ 3.

The conjugates of σ by the α’s are different from each other since they take different elements
to 4, the conjugates of σ by the β’s are different from each other since they take different
elements to 3, and the conjugates of σ by the γ’s are different from each other since they
take different elements to 3. Conjugates of σ by an α and a β are different since they send
1 to different places, conjugates of σ by an α and a γ are different since they send 2 to
different places, and conjugates of σ by a β and a γ are different since they send different
elements to 4 (1 for the β’s and 2 for the γ’s). In total the number of conjugates of σ we
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have written down (which are all conjugates by 3-cycles, hence they are conjugates in An
if σ ∈ An) is 3(n− 4), and 3(n− 4) ≥ n if n ≥ 6. �

Now we prove Theorem 1.1.

Proof. We argue by induction on n, the case n = 5 having already been settled by Theorem
3.1. Say n ≥ 6. Let N CAn with N 6= {(1)}. Since N is normal and nontrivial, it contains
non-identity conjugacy classes in An. By Lemma 5.1, each non-identity conjugacy class in
An has size at least n when n ≥ 6. Therefore, by counting the trivial conjugacy class and
a nontrivial conjugacy class in N , we see |N | ≥ n+ 1.

Using a wholly different argument, we now show that |N | ≤ n if N 6= An, which will be
a contradiction. Pick 1 ≤ i ≤ n. Let Hi ⊂ An be the subgroup fixing i, so Hi

∼= An−1. In
particular, Hi is a simple group by induction. Notice each Hi contains a 3-cycle.

The intersection N ∩Hi is a normal subgroup of Hi, so simplicity of Hi implies N ∩Hi

is either {(1)} or Hi. If N ∩Hi = Hi for some i, then Hi ⊂ N . Since Hi contains a 3-cycle,
N does as well, so N = An by Lemmas 2.1 and 2.2. (This part resembles part of our first
proof of simplicity of An, but we will now use Lemma 5.1 instead of Lemma 3.2 to show
the possibility that N ∩Hi = {(1)} for all i is absurd.)

Suppose N 6= An. Then, by the previous paragraph, N ∩Hi = {(1)} for all i. Therefore
each σ 6= (1) in N acts on {1, 2, . . . , n} without fixed points (otherwise σ would be a non-
identity element in some N ∩Hi). That implies each σ 6= (1) in N is completely determined
by the value σ(1): if τ 6= (1) is in N and σ(1) = τ(1), then στ−1 ∈ N fixes 1, so στ−1 is
the identity, so σ = τ .

There are only n − 1 possible values for σ(1) ∈ {2, 3, . . . , n}, so N − {(1)} has size at
most n− 1, hence |N | ≤ n. We already saw from Lemma 5.1 that |N | ≥ n+ 1, so we have
a contradiction. �

6. Fourth proof

Our next proof, based on [4, p. 50], is very computational.

Proof. Let N CAn be a nontrivial normal subgroup. We will show N contains a 3-cycle.
Pick σ ∈ N , σ 6= (1). Write

σ = π1π2 · · ·πk,

where the πj ’s are disjoint cycles. In particular, they commute, so we can relabel them at
our convenience. Eliminate all 1-cycles from the product.

Case 1: Some πi has length at least 4. Relabelling, we can write

π1 = (12 · · · r)

with r ≥ 4. Let ϕ = (123). Then ϕσϕ−1 ∈ N and

ϕσϕ−1 = ϕπ1ϕ
−1π2 · · ·πk

= ϕπ1ϕ
−1π−11 σ

= (123)(123 · · · r)(132)(r · · · 21)σ

= (124)σ,

so (124) = ϕσϕ−1σ−1 ∈ N .
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Case 2: Each πi has length ≤ 3, and at least two have length 3 (so n ≥ 6). Without loss
of generality, π1 = (123) and π2 = (456). Let ϕ = (124). Then

ϕσϕ−1 = ϕπ1π2ϕ
−1π3 · · ·πk

= ϕπ1π2ϕ
−1π−12 π−11 σ

= (124)(123)(456)(142)(465)(132)σ

= (12534)σ,

so ϕσϕ−1σ−1 = (12534) ∈ N . Now run through Case 1 with this 5-cycle to find a 3-cycle
in N .

Case 3: Exactly one πi has length 3, and the rest have length ≤ 2. Without loss of
generality, π1 = (123) and the other πi’s are 2-cycles. Then σ2 = π21 is in N , and π21 = (132).

Case 4: All πi’s are 2-cycles, so necessarily k > 1. Write π1 = (12) and π2 = (34). Let
ϕ = (123). Then

ϕσϕ−1 = ϕπ1π2ϕ
−1π3 · · ·πk

= ϕπ1π2ϕ
−1π−12 π−11 σ

= (123)(12)(34)(132)(34)(12)σ

= (13)(24)σ,

so

ϕσϕ−1σ−1 = (13)(24) ∈ N.
Let ψ = (135). Then

(13)(24)ψ(13)(24)ψ−1 = (13)(24)(135)(13)(24)(153)

= (13)(135)(13)(153)

= (135),

so N contains a 3-cycle. �

7. Fifth proof

Our final proof is taken from [10, p. 295].
Let N CAn with N not {(1)} or An. We will study N as a subgroup of Sn. By Lemma

2.4, N is not a normal subgroup of Sn. This means the normalizer of N inside Sn is a
proper subgroup, which contains An, so

(7.1) An = NSn(N).

For a transposition τ in Sn, τ 6∈ NSn(N) by (7.1), so τNτ−1 6= N . Since NCAn and τNτ−1

is a subgroup of An, the product set N · τNτ−1 is a subgroup of An. We have the chain of
inclusions

N ∩ τNτ−1 ⊂ N ⊂ N · τNτ−1 ⊂ An,
where the first and second are strict.

We will now show, for each transposition τ in Sn, that

(7.2) N ∩ τNτ−1 C Sn, N · τNτ−1 C Sn.
The proof of (7.2) is a bit tedious , so first let’s see why (7.2) leads to a contradiction.

It follows from (7.2) and Lemma 2.4 that

(7.3) N ∩ τNτ−1 = {(1)}, N · τNτ−1 = An
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for all transpositions τ in Sn. By (7.3), |An| = |N | · |τNτ−1| = |N |2, so n! = 2|N |2. This
tells us |N | must be even, so N has an element, say σ, of order 2. Then σ is a product of
disjoint 2-cycles. There is a transposition ρ in Sn that commutes with σ: just take for ρ
one of the transpositions in the disjoint cycle decomposition of σ. Then

σ = ρσρ−1 ∈ N ∩ ρNρ−1.

From (7.3), using ρ for the arbitrary τ there, N∩ρNρ−1 is trivial, so we have a contradiction.
Another way of reaching a contradiction from the equation n! = 2|N |2 uses Bertrand’s
postulate (Remark 2.8), which implies n!/2 can’t be a perfect square since it is divisible
once by a prime between n!/4 and n!/2.

It remains to check the two conditions in (7.2). In both cases, we show the subgroups
are normalized by An and by τ , so the normalizer contains 〈An, τ〉 = Sn.

First consider N ∩ τNτ−1. It is clearly normalized by τ . Now pick π ∈ An. Then
πNπ−1 = N since N CAn, and

(7.4) π(τNτ−1)π−1 = τ(τ−1πτ)N(τ−1π−1τ)τ−1 = τNτ−1

since τ−1πτ ∈ An. Therefore

π(N ∩ τNτ−1)π−1 = πNπ−1 ∩ πτNτ−1π−1 = N ∩ τNτ−1,

so An normalizes N ∩ τNτ−1.
Now we look at N · τNτ−1. Pick an element of this product, say

σ = σ1τσ2τ
−1,

where σ1, σ2 ∈ N . Then, since N CAn,

τστ−1 = τσ1τσ2τ
−2 = τσ1τσ2 ∈ τNτ−1 ·N = N · τNτ−1,

which shows τ normalizes N · τNτ−1.
Now pick π ∈ An. To see π normalizes N · τNτ−1, pick σ as before. Then

πσπ−1 = πσ1π
−1 · π(τσ2τ

−1)π−1.

The first factor πσ1π
−1 is in N since N C An. The second factor is in πτNτ−1π−1, which

equals τNτ−1 by (7.4).

8. Concluding Remarks

The standard counterexample to the converse of Lagrange’s theorem is A4: it has order
12 but no subgroup of index 2. For n ≥ 5, the groups An also have no subgroup of index 2,
since each index-2 subgroup of a group would be normal and An is simple.

In fact, something stronger is true.

Corollary 8.1. For n ≥ 5, each proper subgroup of An has index at least n.

This is an analogue of Theorem 2.7, but its proof is more sophisticated.

Proof. LetH be a proper subgroup of An, with indexm > 1. Consider the left multiplication
action of An on An/H. This gives a group homomorphism

ϕ : An → Sym(An/H) ∼= Sm.

Let K be the kernel of ϕ, so K ⊂ H (why?) and K CAn. By simplicity of An, K is trivial.
Therefore An injects into Sm, so (n!/2) | m!, which implies n ≤ m. �
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The lower bound of n is sharp since [An : An−1] = n. Corollary 8.1 is false for n = 4: A4

has a subgroup of index 3.

Remark 8.2. What the proof of Corollary 8.1 shows more generally is that if G is a finite
simple group and H is a subgroup with index m > 1, then there is an embedding of G into
Sm, so |G| | m!. With G fixed, this divisibility relation puts a lower bound on the index of
a proper subgroup of G.

A reader who wants to read more proofs that An is simple for n ≥ 5 can see [5, pp. 247-
248] or [7, pp. 32–33] for another way of showing a nontrivial normal subgroup contains a
3-cycle, or see [2, §1.7] or [9, pp. 295–296] for a proof based on the theory of highly transitive
permutation groups.
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https://archive.org/details/traitdessubsti00jorduoft.

[7] S. Lang, “Algebra,” revised 3rd ed., Springer-Verlag, New York, 2002.
[8] J. Rotman, “Advanced Modern Algebra,” Prentice-Hall, Upper Saddle River, 2002.
[9] W. R. Scott, “Group Theory,” Dover, New York, 1987.
[10] M. Suzuki, “Group Theory I,” Springer-Verlag, Berlin, 1982.
[11] R. Wilson, “The Finite Simple Groups,” Springer-Verlag, New York, 2009,

https://books.google.com/books?id=Tso6AQAAMAAJ&pg=PA123#v=onepage&q&f=false
https://books.google.com/books?id=Tso6AQAAMAAJ&pg=PA123#v=onepage&q&f=false
https://archive.org/details/traitdessubsti00jorduoft

	1. Introduction
	2. Preliminaries
	3. First proof
	4. Second proof
	5. Third proof
	6. Fourth proof
	7. Fifth proof
	8. Concluding Remarks
	References

