A 2-PARAMETER NONABELIAN GROUP

KEITH CONRAD

1. Introduction

Set

$$
G=\left\{\left(\begin{array}{cc}
x & y \\
0 & 1 / x
\end{array}\right): x>0, y \in \mathbf{R}\right\},
$$

which is a group under matrix multiplication:

$$
\left(\begin{array}{cc}
x & y \\
0 & 1 / x
\end{array}\right)\left(\begin{array}{cc}
u & v \\
0 & 1 / u
\end{array}\right)=\left(\begin{array}{cc}
x u & x v+y / u \\
0 & 1 / x u
\end{array}\right), \quad\left(\begin{array}{cc}
x & y \\
0 & 1 / x
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 / x & -y \\
0 & x
\end{array}\right)
$$

We geometrically represent $\left(\begin{array}{cc}x & y \\ 0 & 1 / x\end{array}\right)$ as the point (x, y) in the plane. So $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ corresponds to $(1,0)$ and we plot $g=\left(\begin{array}{cc}2 & 2 \\ 0 & 1 / 2\end{array}\right), h=\left(\begin{array}{cc}3 & 1 \\ 0 & 1 / 3\end{array}\right)$, and several powers and products in Figure 1. Note $g h \neq h g$.

Figure 1. Powers and products of $g=\left(\begin{array}{cc}2 & 2 \\ 0 & 1 / 2\end{array}\right)$ and $h=\left(\begin{array}{ll}3 & 1 \\ 0 & 1 / 3\end{array}\right)$ in G.

In G, there are two "natural" subgroups

$$
H=\left\{\left(\begin{array}{cc}
x & 0 \\
0 & 1 / x
\end{array}\right): x>0\right\}, \quad K=\left\{\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right): y \in \mathbf{R}\right\} .
$$

They are pictured below in Figure 2 as the points $(x, 0)$ for H and the points $(1, y)$ for K.

Figure 2. The subgroups H and K.
In Section 2 we will make pictures of conjugacy classes and conjugate subgroups, and in Section 3 we will see pictures of the left and right cosets of H and K.

2. Conjugacy Classes and Conjugate Subgroups

The conjugate of $\left(\begin{array}{ll}x & y \\ 0 & 1 / x\end{array}\right)$ by $\left(\begin{array}{cc}a & b \\ 0 & 1 / a\end{array}\right)$ is

$$
\left(\begin{array}{cc}
a & b \tag{2.1}\\
0 & 1 / a
\end{array}\right)\left(\begin{array}{cc}
x & y \\
0 & 1 / x
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & 1 / b
\end{array}\right)^{-1}=\left(\begin{array}{cc}
x & a b(1 / x-x)+a^{2} y \\
0 & 1 / x
\end{array}\right) .
$$

Equation (2.1) tells us conjugate elements of G have the same same upper left entry. Therefore in our picture of G, conjugate elements of G have the same first coordinate: they must lie on the same vertical line. We can use the formula (2.1) to compute a conjugacy class: fix x and y, and let a and b vary on the right side of (2.1). Here are the results.

- The conjugacy class of the identity $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is itself. See the green dot in Figure 3.
- Conjugates of ($\left.\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ are found by setting $x=y=1$ on the right side of (2.1). We get $\left(\begin{array}{ll}1 & a^{2} \\ 0 & 1\end{array}\right)$ for all $a>0$, which in Figure 3 is the red half-line through $(1,1)$ above the x-axis.
- Conjugates of $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$ are $\left(\begin{array}{cc}1 & -a^{2} \\ 0 & 1\end{array}\right)$ for all $a>0$, which in Figure 3 is the blue half-line through $(1,-1)$ below the x-axis.
- We now determine the conjugacy class of $\left(\begin{array}{cc}x & 0 \\ 0 & 1 / x\end{array}\right)$, where $x>0$ and $x \neq 1$. A conjugate matrix has the form $\left(\begin{array}{cc}x & y \\ 0 & 1 / x\end{array}\right)$ for some y. We will now show, for $x>0$ and $x \neq 1$, that the
matrix $\left(\begin{array}{cc}x & y \\ 0 & 1 / x\end{array}\right)$ for all $y \in \mathbf{R}$ is conjugate to $\left(\begin{array}{cc}x & 0 \\ 0 & 1 / x\end{array}\right)$. This would mean that in Figure 3, the conjugacy class of $\left(\begin{array}{cc}x & 0 \\ 0 & 1 / x\end{array}\right)$ for $x>0$ with $x \neq 1$ is represented by the whole vertical line through $(x, 0)$.

To prove our description of the conjugacy class of $\left(\begin{array}{cc}x & 0 \\ 0 & 1 / x\end{array}\right)$ is correct, this conjugacy class includes the matrices $\left(\begin{array}{ll}1 & b \\ 0 & b\end{array}\right)\left(\begin{array}{cc}x & 0 \\ 0 & 1 / x\end{array}\right)\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{cc}x & b(x-1 / x) \\ 0 & 1 / x\end{array}\right)$, with b running through all real numbers. Here b is variable and x is fixed. Since $x>0$ and $x \neq 1$ we have $x-1 / x \neq 0$, so the upper right entry of the conjugate matrix runs through all real numbers as b varies. See the orange and purple vertical lines in Figure 3 corresponding to $x=3$ and $x=5$.

Figure 3. Conjugacy classes of $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}3 & 0 \\ 0 & 1 / 3\end{array}\right)$, and $\left(\begin{array}{cc}5 & 0 \\ 0 & 1 / 5\end{array}\right)$.
Turning from conjugacy classes of elements to conjugate subgroups, we will compute the subgroups of G that are conjugate to $H=\left\{\left(\begin{array}{cc}x & 0 \\ 0 & 1 / x\end{array}\right): x>0\right\}$ and to $K=\left\{\left(\begin{array}{ll}1 & y \\ 0 & 1\end{array}\right): y \in \mathbf{R}\right\}$. The answers in these two cases will be very different.

For $a>0$ and $b \in \mathbf{R}$, we have by equation (2.1) with $y=0$ that $\left(\begin{array}{cc}a & b \\ 0 & 1 / a\end{array}\right)\left(\begin{array}{cc}x & 0 \\ 0 & 1 / x\end{array}\right)\left(\begin{array}{ll}a & b \\ 0 & 1 / a\end{array}\right)^{-1}=$ $\left(\begin{array}{cc}x a b(1 / x-x) \\ 0 & 1 / x\end{array}\right)$, so the subgroup conjugate to H by $\left(\begin{array}{ll}a & b \\ 0 & 1 / a\end{array}\right)$ is

$$
\left(\begin{array}{cc}
a & b \tag{2.2}\\
0 & 1 / a
\end{array}\right) H\left(\begin{array}{cc}
a & b \\
0 & 1 / a
\end{array}\right)^{-1}=\left\{\left(\begin{array}{cc}
x & a b(1 / x-x) \\
0 & 1 / x
\end{array}\right): x>0\right\} .
$$

On the right side of (2.2), a and b are fixed and x varies. Since a and b occur on the right side of (2.2) only through $a b$, conjugating H by matrices in G whose top two entries have the same product leads to the same conjugate subgroup to H. Thus for $b>0$

$$
\left(\begin{array}{cc}
a & b \\
0 & 1 / a
\end{array}\right) H\left(\begin{array}{cc}
a & b \\
0 & 1 / a
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a b & 1 \\
0 & 1 / a b
\end{array}\right) H\left(\begin{array}{cc}
a b & 1 \\
0 & 1 / a b
\end{array}\right)^{-1}
$$

since $a \cdot b=a b \cdot 1$, and for $b<0$

$$
\left(\begin{array}{cc}
a & b \\
0 & 1 / a
\end{array}\right) H\left(\begin{array}{cc}
a & b \\
0 & 1 / a
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a|b| & -1 \\
0 & 1 / a|b|
\end{array}\right) H\left(\begin{array}{cc}
a|b| & -1 \\
0 & 1 / a|b|
\end{array}\right)^{-1}
$$

since $a \cdot b=a|b| \cdot(-1)$. Thus conjugating H by an element of G that is not in H (meaning $b \neq 0$) has the same effect as conjugating H by a matrix of the form $\left(\begin{array}{ll}t & 1 \\ 0 & 1 / t\end{array}\right)$ or $\left(\begin{array}{cc}t & -1 \\ 0 & 1 / t\end{array}\right)$, where $t>0$.

As an example,

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) H\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{-1}=\left\{\left(\begin{array}{cc}
x & 1 / x-x \\
0 & 1 / x
\end{array}\right): x>0\right\} .
$$

Figure 4. Conjugating H by $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}2 & 1 \\ 0 & 1 / 2\end{array}\right),\left(\begin{array}{ll}2 & -1 \\ 0 & 1 / 2\end{array}\right),\left(\begin{array}{cc}1 / 4 & 1 \\ 0 & 4\end{array}\right)$, and $\left(\begin{array}{cc}1 / 4 & -1 \\ 0 & 4\end{array}\right)$.
In Figure 4 this conjugate subgroup is represented by the set of all $(x, 1 / x-x)$ with $x>0$, which is the graph of $y=1 / x-x$ for $x>0$ (in red). The conjugate subgroup $\left(\begin{array}{ll}2 & 1 \\ 0 & 1 / 2\end{array}\right) H\left(\begin{array}{ll}2 & 1 \\ 0 & 1 / 2\end{array}\right)^{-1}$ is all $\left(\begin{array}{c}x \\ 0 \\ 0 \\ 2(1 / x-x)\end{array}\right)$, which in Figure 4 is represented by the graph of $y=2(1 / x-x)$ for $x>0$ (in green). More generally, from (2.2) the subgroup conjugate to H by $\left(\begin{array}{cc}a & 1 \\ 0 & 1 / a\end{array}\right)$ is represented as the graph of $y=a(1 / x-x)$ for $x>0$ and the subgroup conjugate to H by $\left(\begin{array}{cc}a & -1 \\ 0 & 1 / a\end{array}\right)$ is represented as the graph of $y=-a(1 / x-x)$ for $x>0$. These curves are pictured in Figure 4 for different a.

What subgroups in G are conjugate to K ? Since $\left(\begin{array}{ccc}a & b \\ 0 & 1 / a\end{array}\right)\left(\begin{array}{ll}1 & y \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}a & b \\ 0 & 1 / a\end{array}\right)^{-1}=\left(\begin{array}{cc}1 & a^{2} y \\ 0 & 1\end{array}\right)$ we get

$$
\left(\begin{array}{cc}
a & b \\
0 & 1 / a
\end{array}\right) K\left(\begin{array}{cc}
a & b \\
0 & 1 / a
\end{array}\right)^{-1}=\left\{\left(\begin{array}{cc}
1 & a^{2} y \\
0 & 1
\end{array}\right): y \in \mathbf{R}\right\}=\left\{\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right): t \in \mathbf{R}\right\}=K,
$$

so the only subgroup of G conjugate to K is K. See Figure 5 .

Figure 5. The only conjugate subgroup of K is K.

3. Cosets

We will draw pictures for the left and right cosets of the subgroups H and K.
For $g=\left(\begin{array}{cc}a & b \\ 0 & 1 / a\end{array}\right)$, a typical element in $g H$ is

$$
\left(\begin{array}{cc}
a & b \\
0 & 1 / a
\end{array}\right)\left(\begin{array}{cc}
x & 0 \\
0 & 1 / x
\end{array}\right)=\left(\begin{array}{cc}
a x & b / x \\
0 & 1 / a x
\end{array}\right)
$$

where $x>0$. Letting x run over all positive numbers, by a change of variables

$$
g H=\left\{\left(\begin{array}{cc}
a x & b / x \\
0 & 1 / a x
\end{array}\right): x>0\right\}=\left\{\left(\begin{array}{cc}
t & a b / t \\
0 & 1 / t
\end{array}\right): t>0\right\},
$$

which is pictured in Figure 6 as the graph of $y=a b / x$ for $x>0$: the branch of a hyperbola passing through (a, b). The left H-cosets are branches of hyperbolas that fill up G without overlapping.

A typical element in the right coset Hg is

$$
\left(\begin{array}{cc}
x & 0 \\
0 & 1 / x
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & 1 / a
\end{array}\right)=\left(\begin{array}{cc}
a x & b x \\
0 & 1 / a x
\end{array}\right)
$$

Figure 6. The left cosets of H : hyperbolas $x y=$ constant, $x>0$.
for $x>0$. Letting x run over all positive numbers,

$$
H g=\left\{\left(\begin{array}{cc}
a x & b x \\
0 & 1 / a x
\end{array}\right): x>0\right\}=\left\{\left(\begin{array}{cc}
t & (b / a) t \\
0 & 1 / t
\end{array}\right): t>0\right\},
$$

which is pictured in Figure 7 as the graph of the ray $y=(b / a) x$ coming out of the origin and passing through (a, b). The right H-cosets are rays that fill up G without overlapping.

Turning to the left and right cosets of K, a typical element in $g K$ is

$$
\left(\begin{array}{cc}
a & b \\
0 & 1 / a
\end{array}\right)\left(\begin{array}{cc}
1 & y \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a & a y+b \\
0 & 1 / a
\end{array}\right) .
$$

As y runs over all real numbers, $a y+b$ runs over all real numbers, so

$$
g K=\left\{\left(\begin{array}{cc}
a & y \\
0 & 1 / a
\end{array}\right): y \in \mathbf{R}\right\},
$$

which is pictured as the vertical line $x=a$. Similarly, a typical element of the right coset Kg is

$$
\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & 1 / a
\end{array}\right)=\left(\begin{array}{cc}
a & b+y / a \\
0 & 1 / a
\end{array}\right),
$$

and as y runs over \mathbf{R} the numbers $b+y / a$ run over \mathbf{R}, so $K g=g K$ for each $g \in G$. The left K-cosets and right K-cosets are each the collection of all vertical lines, which fill up G without overlaps. See Figure 8.

Figure 7. The right cosets of H : rays coming out of $(0,0)$.

Figure 8. The left and right cosets of K : vertical lines.

