INTEGRAL SOLUTIONS OF $x^3 - 2y^3 = 1$

KEITH CONRAD

1. INTRODUCTION

For each positive integer d that is not a perfect square, Pell's equation $x^2 - dy^2 = 1$ has infinitely many solutions in integers. For example, the integral solutions of $x^2 - 2y^2 = 1$ are $(\pm x_n, \pm y_n)$ where $x_n + y_n\sqrt{2} = (3 + 2\sqrt{2})^n$ for $n \in \mathbb{Z}$. Values of x_n and y_n for small |n|are in Table 1.

n	0	1	2	3	-1	-2	-3		
x_n	1	3	17	99	3	17	99		
y_n	0	2	12	70	-2	$17 \\ -12$	-70		
TABLE 1. Coefficients of $(3 + 2\sqrt{2})^n$.									

If the exponent in Pell's equation is increased from 2 to 3, so we are looking at $x^3 - dy^3 = 1$, then the description of its integral solutions changes dramatically.

Theorem 1.1 (Delaunay, Nagell). For nonzero $d \in \mathbf{Z}$, $x^3 - dy^3 = 1$ has at most one solution in \mathbf{Z} besides (1,0).

Table 2 lists small d > 0 for which there is a solution besides (1,0). Replacing d with -d has no real effect on solutions, since $x^3 + dy^3 = x^3 - d(-y)^3$.

d	2	7	17	19	20	26	28	37	43	63
x	-1	2	18	-8	-19	3	-3	10	-7	4
y	-1	1	7	-3	$-19 \\ -7$	1	-1	3	-2	1

TABLE 2. Ten d for which $x^3 - dy^3 = 1$ has an integral solution besides (1, 0).

Remark 1.2. Theorem 1.1 is about integral solutions, not rational solutions. The equation $x^3 - 7y^3 = 1$ has infinitely many rational solutions besides (1,0) and (2,1), such as (1/2, -1/2) and (17/73, -38/73). In contrast to this, the only rational solutions to $x^3 - 2y^3 = 1$ are its two integral solutions (1,0) and (-1, -1). That is due to Euler [4, Part II, Sect. II, §247], who showed the integral solutions to $a^3 - b^3 = 2c^3$ are (a, a, 0) and (a, -a, a) (take x = a/b and y = c/b if $b \neq 0$) in connection with his work [4, Part II, Sect. II, §243] on Fermat's Last Theorem for exponent 3.

That $x^3 - dy^3 = 1$ has finitely many integral solutions was first proved by Thue (1909) using an approximation theorem for irrational algebraic numbers by rational numbers, and his proof in fact shows $x^3 - dy^3 = m$ has finitely many integral solutions for each nonzero integer m. See Section A. That $x^3 - dy^3 = 1$ has at most one integral solution besides (1,0) is due independently to Delaunay¹ [2] and Nagell [6]. Their proofs are largely algebraic,

¹Delaunay also wrote his name as Delone. He was Russian and the CIA prepared a once-classified list of his work up to 1950. See https://www.cia.gov/library/readingroom/docs/CIA-RDP82-00039R0001000 90012-9.pdf.

and such a proof of Theorem 1.1 is in [3, Sect. VII.3] and [5, Sect. 3-9]. A proof of Theorem 1.1 using both algebraic and p-adic arguments, due to Skolem, is in [1, pp. 223-226]. We will use Skolem's ideas to prove Theorem 1.1 in the special case d = 2, based partly on [7, pp. 34–35]. Here is our goal.

Theorem 1.3. The only integral solutions to $x^3 - 2y^3 = 1$ are (1,0) and (-1,-1).

2. Reducing Theorem 1.3 to the vanishing of an exponential expression

Theorem 2.1. Let $u = 1 + \sqrt[3]{2} + \sqrt[3]{4}$ and ω be a nontrivial cube root of unity. The **Q**-conjugates of u are $u_1 = u$, $u_2 = 1 + \sqrt[3]{2}\omega + \sqrt[3]{4}\omega^2$, and $u_3 = 1 + \sqrt[3]{2}\omega^2 + \sqrt[3]{4}\omega$. For $x, y \in \mathbf{Z}$, $x^3 - 2y^3 = 1$ if and only if $x - y\sqrt[3]{2} = u^n$, where the integer n satisfies

(2.1)
$$u_1^n + \omega u_2^n + \omega^2 u_3^n = 0.$$

Proof. There are three embeddings of $\mathbf{Q}(\sqrt[3]{2})$ into \mathbf{C} , determined by $\sqrt[3]{2} \mapsto \sqrt[3]{2}, \sqrt[3]{2} \mapsto \sqrt[3]{2}\omega$, and $\sqrt[3]{2} \mapsto \sqrt[3]{2}\omega^2$. Under these embeddings, the corresponding images of u are u_1, u_2 , and u_3 as in the statement of the theorem, so these are the **Q**-conjugates of u. By a calculation, $u_1 u_2 u_3 = 1.$

If $x^3 - 2y^3 = 1$ then

(2.2)
$$(x - y\sqrt[3]{2})(x^2 + xy\sqrt[3]{2} + y^2\sqrt[3]{4}) = 1,$$

so $x - y\sqrt[3]{2}$ is a unit in $\mathbb{Z}[\sqrt[3]{2}]$. Since $x^2 + xy\sqrt[3]{2} + y^2\sqrt[3]{4} = (x + y\sqrt[3]{2}/2)^2 + (3/4)(y\sqrt[3]{2})^2 > 0$, $x - y\sqrt[3]{2} > 0$ by (2.2).

It can be shown using algebraic number theory that the units in $\mathbb{Z}[\sqrt[3]{2}]$ are the powers of u up to sign: $\mathbf{Z}[\sqrt[3]{2}]^{\times} = \pm u^{\mathbf{Z}}$. Therefore $x - y\sqrt[3]{2} = \pm u^n$ for some $n \in \mathbf{Z}$. Since the left side is positive and u > 0, the sign on the right side is +, so $x - y\sqrt[3]{2} = u^n$.

Conversely, suppose $x - y\sqrt[3]{2} = u^n$ for some $n \in \mathbb{Z}$. Applying to this equation the three embeddings of $\mathbf{Q}(\sqrt[3]{2})$ into \mathbf{C} , we get $x - y\sqrt[3]{2} = u_1^n$, $x - y\sqrt[3]{2}\omega = u_2^n$ and $x - y\sqrt[3]{2}\omega^2 = u_3^n$. Therefore

$$x^{3} - 2y^{3} = (x - y\sqrt[3]{2})(x - y\sqrt[3]{2}\omega)(x - y\sqrt[3]{2}\omega^{2}) = u_{1}^{n}u_{2}^{n}u_{3}^{n} = (u_{1}u_{2}u_{3})^{n} = 1.$$

It remains to determine which powers u^n have the form $x - y\sqrt[3]{2}$. The key point is that $\mathbf{Z}[\sqrt[3]{2}] = \mathbf{Z} + \mathbf{Z}\sqrt[3]{2} + \mathbf{Z}\sqrt[3]{4}$ has a **Z**-basis of size 3, so for all $n \in \mathbf{Z}$,

(2.3)
$$u^n = a_n + b_n \sqrt[3]{2} + c_n \sqrt[3]{4}$$

where $a_n, b_n, c_n \in \mathbb{Z}$. To have u^n of the form $x - y\sqrt[3]{2}$ means $c_n = 0$ (and $x = a_n, y = -b_n$). We seek a formula for c_n . Apply to (2.3) each embedding of $\mathbf{Q}(\sqrt[3]{2})$ into C:

$$u_{1}^{n} = a_{n} + b_{n}\sqrt[3]{2} + c_{n}\sqrt[3]{4},$$

$$u_{2}^{n} = a_{n} + b_{n}\sqrt[3]{2}\omega + c_{n}\sqrt[3]{4}\omega^{2},$$

$$u_{3}^{n} = a_{n} + b_{n}\sqrt[3]{2}\omega^{2} + c_{n}\sqrt[3]{4}\omega.$$

Therefore

$$\begin{pmatrix} u_1^n \\ u_2^n \\ u_3^n \end{pmatrix} = \begin{pmatrix} 1 & \sqrt[3]{2} & \sqrt[3]{4} \\ 1 & \sqrt[3]{2}\omega & \sqrt[3]{4}\omega^2 \\ 1 & \sqrt[3]{2}\omega^2 & \sqrt[3]{4}\omega \end{pmatrix} \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$$

Inverting the 3×3 matrix,

$$\begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/(3\sqrt[3]{2}) & 1/(3\sqrt[3]{2}\omega) & 1/(3\sqrt[3]{2}\omega^2) \\ 1/(3\sqrt[3]{4}) & 1/(3\sqrt[3]{4}\omega) & 1/(3\sqrt[3]{4}\omega^2) \end{pmatrix} \begin{pmatrix} u_1^n \\ u_2^n \\ u_3^n \end{pmatrix},$$

INTEGRAL SOLUTIONS OF $x^3 - 2y^3 = 1$

 \mathbf{SO}

$$c_n = \frac{u_1^n + \omega u_2^n + \omega^2 u_3^n}{3\sqrt[3]{4}}.$$

Therefore $c_n = 0$ if and only if $u_1^n + \omega u_2^n + \omega^2 u_3^n = 0$.

We now want to find every integer n such that (2.1) is satisfied. Since $u_1 \approx 3.847$ and $|u_2| = |u_3| \approx .5098$, when $n \ge 1$ we can't have $u_1^n = -\omega u_2^n - \omega^2 u_3^n$ since the left side is greater than 3 while the right side is smaller by the triangle inequality. If n = 0 and n = -1 then (2.1) is true and we have $x^3 - 2y^3 = 1$ where $x - y\sqrt[3]{2} = u^0 = 1$ or $x - y\sqrt[3]{2} = u^{-1} = -1 + \sqrt[3]{2}$: (x, y) is (1, 0) or (-1, -1). We don't expect (2.1) to hold for integers $n \le -2$, but this is not easy to see because when n < 0, (2.1) involves positive powers of $1/u_1$, $1/u_2$, and $1/u_3$ where $1/u_1 \approx .259$ while $|1/u_2| = |1/u_3| \approx 1.96$: if n < 0 then there are *two* dominant terms of equal absolute value on the left side of (2.1), so we need to rule out the possibility that there is a nearly total cancellation of dominant terms that could make (2.1) hold for n < -1. To achieve this, instead of looking at (2.1) in **C**, we will look at it in \mathbf{Q}_p for a suitable choice of p. Since (2.1) is a purely algebraic equation, it can be viewed in an arbitrary field of characteristic 0 containing a cube root of 2 and nontrivial cube roots of unity, or equivalently three different cube roots of 2.

To interpret $\sqrt[3]{2}$ and ω as *p*-adic numbers means the polynomial $T^3 - 2$ has to split completely in \mathbf{Q}_p . For p > 3, Hensel's lemma tells us that $T^3 - 2$ splits completely in \mathbf{Q}_p if $T^3 - 2$ splits completely mod p.² The first few such p are 31, 43, and 109. For example,

$$T^3 - 2 \equiv (T - 4)(T - 7)(T - 20) \mod{31}$$

and in \mathbf{Q}_{31} the polynomial $T^3 - 2$ has roots r_1, r_2 , and r_3 where $r_1 = 4 + 9 \cdot 31 + 4 \cdot 31^2 + \cdots, r_2 = 7 + 13 \cdot 31 + 29 \cdot 31^2 + \cdots, r_3 = 20 + 8 \cdot 31 + 28 \cdot 31^2 + \cdots$. In \mathbf{Q}_{31} the nontrivial cube roots of unity are $r_2/r_1 = 25 + 16 \cdot 31 + 6 \cdot 31^2 + \cdots$ and $r_3/r_1 = 5 + 14 \cdot 31 + 24 \cdot 31^2 + \cdots$. If we denote r_1 by $\sqrt[3]{2}$ and r_2/r_1 by ω then $r_2 = \sqrt[3]{2}\omega$ and $r_3 = \sqrt[3]{2}\omega^2$ in \mathbf{Z}_{31} .

3. A finiteness theorem on linear combinations of powers in \mathbf{Z}_p

We have shown the only integral solutions to $x^3 - 2y^3 = 1$ are (x, y) = (1, 0) and (x, y) = (-1, -1) when the only $n \in \mathbb{Z}$ satisfying the exponential relation (2.1) are n = 0 and n = -1. The following theorem uses *p*-adic power series to give conditions under which such an exponential relation has finitely many solutions.

Theorem 3.1. Let p be an odd prime. Fix $u_1, \ldots, u_k \in \mathbf{Z}_p^{\times}$ and $c_1, \ldots, c_k, b \in \mathbf{Z}_p$. The equation

(3.1)
$$c_1 u_1^n + c_2 u_2^n + \dots + c_k u_k^n = b$$

is true for only finitely many integers n if, for each $r \in \{0, 1, ..., p-2\}$, the left side of (3.1) is not b for some $n \equiv r \mod p-1$.

Proof. For $a \in \mathbf{Z}_p^{\times}$ with $a \equiv 1 \mod p\mathbf{Z}_p$, the powers a^n for $n \in \mathbf{Z}$ interpolate to a *p*-adic analytic function a^x for $x \in \mathbf{Z}_p$: $a^x = e^{x \log a} = \sum_{j \geq 0} (\log a)^j / j! x^j$. For $u \in \mathbf{Z}_p^{\times}$ with $u \not\equiv 1 \mod p$, the sequence u^n for $n \in \mathbf{Z}$ does not *p*-adically interpolate (it is not *p*-adically continuous in *n*), but if we focus on exponents in one congruence class mod p - 1 then the problem goes away: $u^{p-1} \equiv 1 \mod p$, so when n = (p-1)m + r for a fixed remainder $r \in \{0, 1, \ldots, p-2\}$,

$$u^{n} = u^{(p-1)m}u^{r} = u^{r}(u^{p-1})^{m},$$

²The polynomial $T^3 - 2$ is irreducible over \mathbf{Q}_2 and \mathbf{Q}_3 .

and we can *p*-adically interpolate the right side as a function of m since $u^{p-1} \equiv 1 \mod p$.

For r = 0, 1, ..., p - 2, set

$$f_r(m) = c_1 u_1^r (u_1^{p-1})^m + c_2 u_2^r (u_2^{p-1})^m + \dots + c_k u_k^r (u_k^{p-1})^m - b.$$

This extends to a *p*-adic analytic function $f_r(x)$ for $x \in \mathbb{Z}_p$, and the integers $n \equiv r \mod p-1$ that satisfy (3.1) are of the form (p-1)m+r where *m* is an integer such that $f_r(m) = 0$.

A *p*-adic analytic function on \mathbb{Z}_p is either identically zero on \mathbb{Z}_p or has finitely many zeros on \mathbb{Z}_p . Therefore if, for each $r \in \{0, 1, \ldots, p-2\}$, $f_r(m) \neq 0$ for some integer *m*, which means (3.1) is not true for some $n \equiv r \mod p - 1$, then each $f_r(x)$ has finitely many zeros in \mathbb{Z}_p , so (3.1) is true for only finitely many integers *n* (check separately for the integers in each congruence class modulo p - 1).

Example 3.2. For an integer $n \ge 0$, the sum $(1 + \sqrt{-2})^n + (1 - \sqrt{-2})^n$ is an even number (terms associated to odd powers of $\sqrt{-2}$ from the binomial theorem cancel out in the sum). How often can this sum be 2? Small n where this happens are n = 0, 1, and 5. In **C**, since $|1 + \sqrt{-2}| = |1 - \sqrt{-2}| = \sqrt{3} > 1$, the terms $(1 + \sqrt{-2})^n$ and $(1 - \sqrt{-2})^n$ are equally large for every n, and it's not obvious that the terms couldn't have a near-cancellation and add up to 2 again for some n > 5. To investigate this, we want to interpret $1 \pm \sqrt{-2}$ in \mathbf{Z}_p^{\times} as a first step towards p-adically interpolating their powers, so we need -2 to be a square in \mathbf{Z}_p .

The first two primes p for which -2 is a square in \mathbf{Z}_p^{\times} are 3 and 11. In \mathbf{Z}_3^{\times} , we can take $\sqrt{-2} = 1 + 3 + 2 \cdot 3^2 + \cdots$ using Hensel's lemma. Then $1 + \sqrt{-2} \in \mathbf{Z}_3^{\times}$ but $1 - \sqrt{-2} \in 3\mathbf{Z}_3$, which is bad. In \mathbf{Z}_{11}^{\times} we can take $\sqrt{-2} = 3 + 9 \cdot 11 + 4 \cdot 11^2 + \cdots$, so $1 + \sqrt{-2} \equiv 4 \neq 0 \mod 11$ and $1 - \sqrt{-2} \equiv 9 \neq 0 \mod 11$. Therefore we have 11-adic analytic functions

$$f_r(x) = (1 + \sqrt{-2})^r ((1 + \sqrt{-2})^{10})^x + (1 - \sqrt{-2})^r ((1 - \sqrt{-2})^{10})^x - 2$$

for r = 0, ..., 9.³ A direct calculation for each r shows $f_r(0) \neq f_r(1)$ (e.g., $f_3(0) = -12$ and $f_3(1) = 2496$). Therefore, qualitatively, each $f_r(x)$ has finitely many zeros in \mathbb{Z}_{11} , so the equation $(1 + \sqrt{-2})^n + (1 - \sqrt{-2})^n = 2$ has only finitely many solutions in nonnegative integers n.

Using Strassmann's theorem about zeros of *p*-adic analytic functions for $f_0(x), \ldots, f_9(x)$ on \mathbf{Z}_{11} , it can be shown that $f_0(x), f_1(x)$, and $f_5(x)$ each have x = 0 as their only zero in \mathbf{Z}_{11} while $f_r(x)$ has no zero in \mathbf{Z}_{11} for $r \in \{2, 3, 4, 6, 7, 8, 9\}$, so the only solutions of $(1+\sqrt{-2})^n + (1-\sqrt{-2})^n = 2$ in nonnegative integers are n = 0, 1, and 5. See Theorem 1.1 in https:// kconrad.math.uconn.edu/blurbs/gradnumthy/strassmannapplication.pdf.

There is an analogue of Theorem 3.1 in \mathbb{Z}_2 by looking separately at the exponents $n \mod 2$ since $u \in \mathbb{Z}_2^{\times} \Rightarrow u^2 \equiv 1 \mod 8$ and a^x is a 2-adic analytic function of x when $a \equiv 1 \mod 4\mathbb{Z}_2$.

4. Theorem 1.3 Using \mathbf{Q}_{31}

Let's return to (2.1):

$$u_1^n + \omega u_2^n + \omega^2 u_3^n = 0,$$

where $u_1 = 1 + \sqrt[3]{2} + \sqrt[3]{4}$, $u_2 = 1 + \sqrt[3]{2}\omega + \sqrt[3]{4}\omega^2$, and $u_3 = 1 + \sqrt[3]{2}\omega^2 + \sqrt[3]{4}\omega$. Our goal is to show the only solutions to this in integers is n = 0 and n = -1.

View the equation in \mathbf{Q}_{31} where $\sqrt[3]{2}$ is the cube root of 2 in \mathbf{Z}_{31} with $\sqrt[3]{2} \equiv 4 \mod 31$ and ω is the cube root of unity in \mathbf{Z}_{31} with $\omega \equiv 25 \mod 31$. Then calculations show

 $u_1 \equiv 21 \mod 31$, $u_2 \equiv 26 \mod 31$, $u_3 \equiv 18 \mod 31$.

4

³Since 4 mod 11 and 9 mod 11 have order 5, we could take 11-adic powers of $(1 \pm \sqrt{-2})^5$ and thereby cut down the number of 11-adic analytic functions under consideration from 10 down to 5.

To study $u_1^n + \omega u_2^n + \omega^2 u_3^n$ using 31-adic analytic functions, pick $r \in \{0, 1, \dots, 29\}$ and look at $u_1^n + \omega u_2^n + \omega^2 u_3^n$ for n = 30m + r: define

$$f_r(x) = u_1^r (u_1^{30})^x + \omega u_2^r (u_2^{30})^x + \omega^2 u_3^r (u_3^{30})^x$$

for $x \in \mathbf{Z}_{31}$.⁴ We want to study the zeros of each $f_r(x)$ in \mathbf{Z}_{31} .

For odd prime p and $a \in 1 + p\mathbf{Z}_p$, $a^x = e^{(\log a)x} = \sum_{j\geq 0} ((\log a)^j / j!) x^j$ is p-adic analytic on \mathbf{Z}_p with $\log a \in p\mathbf{Z}_p$ since $|\log a|_p = |a - 1|_p \leq 1/p$. Therefore $f_r(x)$ is a \mathbf{Z}_{31} -linear combination of three 31-adic analytic functions, so $f_r(x)$ is 31-adic analytic. The function $f_r(x)$ is not identically 0 since $f_0(1) \neq 0$ and $f_r(0) \neq 0$ for $1 \leq r \leq 29$, so Strassmann's theorem provides an upper bound on the number of zeros of $f_r(x)$ in \mathbf{Z}_{31} : $f_r(x)$ has at most N zeros in \mathbf{Z}_{31} where the Nth power series coefficient of $f_r(x)$ has maximal 31-adic absolute value (minimal 31-adic valuation) and N is as large as possible. For example, if the constant term of $f_r(x)$ has larger 31-adic absolute value than the other coefficients, N = 0so $f_r(x)$ has no zero in \mathbf{Z}_{31} .

For odd prime p and $a \in 1 + p\mathbf{Z}_p$, $\log a \in p\mathbf{Z}_p$ and $p^j/j! \in p\mathbf{Z}_p$ for $j \ge 1$, so every nonconstant coefficient of the p-adic power series for a^x is in $p\mathbf{Z}_p$. Therefore the nonconstant coefficients of $f_r(x)$ are all in $31\mathbf{Z}_{31}$. The constant term of $f_r(x)$ is

$$f_r(0) = u_1^r + \omega u_2^r + \omega^2 u_3^r \equiv 21^r + 25 \cdot 26^r + 25^2 18^r \mod 31$$

Using a computer, $f_r(0) \neq 0 \mod 31$ except when r = 0, 9, 10, 19, 20, 29. Therefore by Strassmann's theorem, $f_r(x)$ has no zero in \mathbb{Z}_{31} if $r \neq 0, 9, 10, 19, 20, 29$. What if r is 0, 9, 10, 19, 20, or 29?

Since $f_0(0) = 1 + \omega + \omega^2 = 0$, $f_0(x)$ has a zero at x = 0. When r is 9, 10, 19, 20, and 29, a calculation shows the constant term $f_r(0)$ is divisible by 31 precisely once. The linear coefficient of $f_r(x)$ is

(4.1)
$$u_1^r \log(u_1^{30}) + \omega u_2^r \log(u_2^{30}) + \omega^2 u_3^r \log(u_3^{30}).$$

For odd prime p and $a \in 1 + p\mathbf{Z}_p$, $\log a = (a-1) + \sum_{j\geq 2} (-1)^{j-1} (a-1)^j / j$ and $(a-1)^j / j \in p^2 \mathbf{Z}_p$ for $j \geq 2$, so $\log a \equiv a-1 \mod p^2 \mathbf{Z}_p$. Therefore (4.1) is congruent to

(4.2)
$$u_1^r(u_1^{30}-1) + \omega u_2^r(u_2^{30}-1) + \omega^2 u_3^r(u_3^{30}-1) \mod 31^2 \mathbf{Z}_{31}.$$

For r = 0, 9, 10, 19, 20, 29, calculations show (4.2) is divisible by 31 but is not 0 mod 31², so $f_r(x)$ has linear coefficient divisible by 31 precisely once.

For odd prime p and $a \in 1 + p\mathbf{Z}_p$, $\log a \in p\mathbf{Z}_p$ and $p^j/j! \in p^2\mathbf{Z}_p$ for $j \ge 2$, so $(\log a)^j/j! \in p^2\mathbf{Z}_p$ for $j \ge 2$. Thus the coefficients of every $f_r(x)$ in degree 2 and higher are in $31^2\mathbf{Z}_{31}$.

Combining the underlined information about 31-divisibility of power series coefficients with Strassmann's theorem, $f_r(x)$ has at most one zero in \mathbf{Z}_{31} for r = 0, 9, 10, 19, 20, 29. Using Hensel's lemma for power series converging on \mathbf{Z}_{31} instead of Strassmann's theorem for power series converging on \mathbf{Z}_{31} , $f_r(x)$ has a unique zero in \mathbf{Z}_{31} for r = 0, 9, 10, 19, 20, 29. The zero of $f_0(x)$ is x = 0 (corresponding to (2.1) being zero at n = 0 = 30(0) + 0) and the zero of $f_{29}(x)$ is x = -1 (corresponding to (2.1) being zero at n = -1 = 30(-1) + 29). We don't expect the zeros of $f_r(x)$ in \mathbf{Z}_{31} for r = 9, 10, 19, or 20 to be integers, but that possibility can't be ruled out from the reasoning presented so far. Therefore by working in \mathbf{Z}_{31} , we have shown (2.1) is true for at most 6 integers n. To cut down the upper bound further, we will work in a p-adic completion for $p \neq 31$.

⁴Since 21 mod 31 has order 30, we can't use an exponent smaller than 30 in the terms of $f_r(x)$.

5. Theorem 1.3 Using 3-Adic powers

There is no cube root of 2 in \mathbf{Q}_3 : if $\alpha^3 = 2$ then $|\alpha|_3^3 = |2|_3 = 1$, so $|\alpha|_3 = 1$: α is in \mathbf{Z}_3^{\times} . Therefore we can reduce the equation $\alpha^3 = 2$ modulo 9 to get $\alpha^3 \equiv 2 \mod 9\mathbf{Z}_3$. The cubes mod 9 are 0, 1, and 8, so we have a contradiction. Thus $T^3 - 2$ is a cubic polynomial with no root in \mathbf{Q}_3 , so $\mathbf{Q}_3(\sqrt[3]{2})$ is a cubic extension of \mathbf{Q}_3 with basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$. There are no nontrivial cube roots of unity in $\mathbf{Q}_3(\sqrt[3]{2})$ since $\mathbf{Q}_3(\omega) = \mathbf{Q}_3(\sqrt{-3})$ is a quadratic extension of \mathbf{Q}_3 , which can't lie in a cubic extension.

Just as the absolute value on **R** has a unique extension to an absolute value on its quadratic extension **C**, which is complete, the 3-adic absolute value on \mathbf{Q}_3 has a unique extension to an absolute value on its cubic extension $\mathbf{Q}_3(\sqrt[3]{2})$, which is complete. It is possible to give a formula for $|a + b\sqrt[3]{2} + c\sqrt[3]{4}|_3$, where $a, b, c \in \mathbf{Q}_3$, that is analogous to the formula $|a + bi| = \sqrt{a^2 + b^2}$ for the absolute value of complex numbers. Here it is:

$$|a+b\sqrt[3]{2}+c\sqrt[3]{4}|_{3} = \sqrt[3]{|a^{3}+2b^{3}+4c^{3}-6abc|_{3}}.$$

We will not discuss how to derive this formula or why it is an absolute value on $\mathbf{Q}_3(\sqrt[3]{2})$. The formula reveals a new phenomenon compared to absolute values on \mathbf{Q}_3 : some numbers in $\mathbf{Q}_3(\sqrt[3]{2})$ have absolute value that is not an integral power of 1/3: the nonzero numbers have 3-adic absolute value $(1/3)^{n/3} = (1/\sqrt[3]{3})^n$ for some $n \in \mathbf{Z}$.

Example 5.1. Let $\pi = \sqrt[3]{2} + 1$. Since $|\sqrt[3]{2}|_3 = |2|_3 = 1$, $|\sqrt[3]{2}|_3^3 = 1$, so $|\sqrt[3]{2}|_3 = 1$. From the ultrametric inequality, $|\pi|_3 \leq \max(|\sqrt[3]{2}|_3, |1|_3) = 1$. Expanding the left side of the equation $(\pi - 1)^3 = 2$ and rearranging terms, we get $\pi^3 - 3\pi^2 + 3\pi - 3 = 0$. Rewrite this as

$$\pi^3 = 3(\pi^2 - \pi + 1)$$

Therefore $|\pi|_3^3 = (1/3)|\pi^2 - \pi + 1|_3 \le 1/3 < 1$, so $|\pi|_3 < 1$. Therefore $|\pi^2 - \pi + 1|_3 = 1$ by the ultrametric inequality, so $|\pi|_3^3 = 1/3$, which implies $|\pi|_3 = 1/\sqrt[3]{3}$. Here $1/\sqrt[3]{3}$ is a real number: absolute values live in **R**, not in a 3-adic field.

It can be shown that the closed unit ball in $\mathbf{Q}_3(\sqrt[3]{2})$, which is $\{y \in \mathbf{Q}_3(\sqrt[3]{2}) : |y|_3 \leq 1\}$, equals $\mathbf{Z}_3[\sqrt[3]{2}]$. We'll be using this later.

In $\mathbb{Z}[\sqrt[3]{2}]$, the unit $u = 1 + \sqrt[3]{2} + \sqrt[3]{4}$ has inverse $v = \sqrt[3]{2} - 1$, so by working with powers of v we can reformulate Theorem 2.1 as follows: for $x, y \in \mathbb{Z}$, $x^3 - 2y^3 = 1$ if and only if $x - y\sqrt[3]{2} = v^n$ for some $n \in \mathbb{Z}$. We want to find the integers n such that v^n written in the \mathbb{Q}_3 -basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ has $\sqrt[3]{4}$ -coefficient equal to 0. We expect the only such n are n = 0 (so (x, y) = (1, 0)) and n = 1 (so (x, y) = (-1, -1)). To prove this, we will 3-adically interpolate the powers of v in $\mathbb{Q}_3(\sqrt[3]{2})$ and use Strassmann's theorem.

To interpolate powers a^n where a is in a p-adic field, we need $|a-1|_p < 1$. Using Example 5.1 in the field $\mathbf{Q}_3(\sqrt[3]{2})$,

$$v = \sqrt[3]{2-1} = \pi - 2 = 1 + (\pi - 3)$$

and $|\pi - 3|_3 = \max(1/\sqrt[3]{3}, 1/3) = 1/\sqrt[3]{3} < 1$, so $|v - 1|_3 = |\pi - 3|_3 < 1$. Thus there is a 3-adically continuous function

$$v^x = \sum_{k \ge 0} (v-1)^k \binom{x}{k}$$

where $x \in \mathbf{Z}_3$. However, v^x is not a 3-adic analytic function $\mathbf{Z}_3 \to \mathbf{Q}_3(\sqrt[3]{2})$. When $|a-1|_p < 1$, the condition for $a^x = \sum_{k\geq 0} (a-1)^k {x \choose k}$ to be *p*-adic analytic in *x*, not just *p*-adically continuous in *x*, is that $|a-1|_p < (1/p)^{1/(p-1)}$. For our example, where a = v in $\mathbf{Q}_3(\sqrt[3]{2})$,

 $|a-1|_3 = |v-1|_3 = |\pi-3|_3 = (1/3)^{1/3} > (1/3)^{1/2}$. Taking a 3rd power of v will improve the situation:

$$(5.1) \quad v^3 = (\sqrt[3]{2} - 1)^3 = 2 - 3\sqrt[3]{4} + 3\sqrt[3]{2} - 1 = 1 + 3(\sqrt[3]{2} - \sqrt[3]{4}) = 1 - 3\sqrt[3]{2}v \Longrightarrow |v^3 - 1|_3 = \frac{1}{3}.$$

Therefore $(v^3)^x$ is 3-adic analytic in x, so we'll look at the powers v^n with n restricted to a congruence class mod 3: For $r \in \{0, 1, 2\}$, set $f_r(x) = v^r(v^3)^x$ where $x \in \mathbb{Z}_3$. This is 3-adic analytic in x, and for $m \in \mathbb{Z}$ we have $f_r(m) = v^r(v^3)^m = v^{3m+r}$.

We will study v^n for $n \in \mathbb{Z}$ by studying the three 3-adic analytic functions $f_r: \mathbb{Z}_3 \to \mathbb{Q}_3(\sqrt[3]{2})$, which each interpolate one of the sequences v^{3m+r} (r being fixed). Write $f_r(x)$ as a power series in x:

(5.2)
$$f_r(x) = v^r (v^3)^x = v^r e^{x \log(v^3)} = v^r \sum_{k \ge 0} \frac{(\log(v^3))^k}{k!} x^k.$$

Write $(\log(v^3))^k/k!$ in terms of its coefficients in the \mathbf{Q}_3 -basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ of $\mathbf{Q}_3(\sqrt[3]{2})$:

$$\frac{(\log(v^3))^k}{k!} = a_k + b_k \sqrt[3]{2} + c_k \sqrt[3]{4},$$

where $a_k, b_k, c_k \in \mathbf{Q}_3$. Plugging this into (5.2),

$$f_{r}(x) = v^{r} \sum_{k \ge 0} (a_{k} + b_{k} \sqrt[3]{2} + c_{k} \sqrt[3]{4}) x^{k}$$

= $v^{r} \sum_{k \ge 0} \left(a_{k} x^{k} + b_{k} x^{k} \sqrt[3]{2} + c_{k} x^{k} \sqrt[3]{4} \right)$
= $v^{r} \left(\left(\sum_{k \ge 0} a_{k} x^{k} \right) + \left(\sum_{k \ge 0} b_{k} x^{k} \right) \sqrt[3]{2} + \left(\sum_{k \ge 0} c_{k} x^{k} \right) \sqrt[3]{4} \right).$

(In $\mathbf{Q}_3(\sqrt[3]{2})$, a sequence tends to 0 if and only if its 3 sequences of coefficients in the basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ each tend to 0 in \mathbf{Q}_3 . That justifies splitting up the power series into a sum of three power series multiplied by the basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$.) Since v^r is either 1, $-1 + \sqrt[3]{2}$, or $1 - 2\sqrt[3]{2} + \sqrt[3]{4}$, the coefficients of $f_r(x)$ in the basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ are each 3-adic analytic functions. Therefore $f_r(x) \in \mathbf{Q}_3 + \mathbf{Q}_3\sqrt[3]{2}$ for an x if and only if its $\sqrt[3]{4}$ -coefficient is 0, which is equivalent to the vanishing of a 3-adic analytic function $\mathbf{Z}_3 \to \mathbf{Q}_3$ at x.

Since $|v^3 - 1|_3 = 1/3$, in the 3-adic power series

$$(v^3)^x = e^{x \log(v^3)} = 1 + (\log(v^3))x + \sum_{k \ge 2} \frac{(\log(v^3))^k}{k!} x^k$$

for $x \in \mathbb{Z}_3$, we have $|\log(v^3)|_3 = |v^3 - 1|_3 = 1/3$, so the coefficient of x^k is divisible by 9 when $k \ge 2$. Therefore

(5.3)
$$(v^3)^x = 1 + (\log(v^3))x + 9x^2g(x)$$

where g(x) is a power series converging on \mathbb{Z}_3 with coefficients in $\mathbb{Q}_3(\sqrt[3]{2})$ of absolute value at most 1 that tend to 0. Also

$$\log(v^3) = (v^3 - 1) + \sum_{k \ge 2} (-1)^{k-1} \frac{(v^3 - 1)^k}{k},$$

and $|v^3 - 1|_3 = 1/3 \Rightarrow |(v^3 - 1)^k/k|_3 \le 1/9$ for $k \ge 2$, so $\log(v^3) \equiv v^3 - 1 \mod 9$. Plugging this into (5.3),

$$(v^3)^x = 1 + (v^3 - 1)x + 9xh(x),$$

where h(x) is a power series converging on \mathbb{Z}_3 with coefficients in $\mathbb{Q}_3(\sqrt[3]{2})$ of absolute value at most 1 that tend to 0. Since $\{y \in \mathbb{Q}_3(\sqrt[3]{2}) : |y|_3 \leq 1\} = \mathbb{Z}_3[\sqrt[3]{2}]$, which was mentioned earlier, the coefficients of h(x) are all in $\mathbb{Z}_3[\sqrt[3]{2}]$. From (5.1), $v^3 - 1 = 3(\sqrt[3]{2} - \sqrt[3]{4})$, so

(5.4)
$$(v^3)^x = 1 + 3(\sqrt[3]{2} - \sqrt[3]{4})x + 9xh(x) = 1 + 3x\sqrt[3]{2} - 3x\sqrt[3]{4} + 9xh(x).$$

We will use (5.4) to bound the number of zeros in \mathbb{Z}_3 of the $\sqrt[3]{4}$ -coefficient of the function $f_r(x) = v^r (v^3)^x$ when r = 0, 1, and 2.

 $\underline{\text{Case 1}}: r = 0.$

By (5.4), the $\sqrt[3]{4}$ -coefficient of the power series for $f_0(x) = (v^3)^x$ is $-3x + 9xk_0(x)$ for a power series $k_0(x)$ on \mathbb{Z}_3 with \mathbb{Z}_3 -coefficients that tend to 0. By Strassmann's theorem, $-3x + 9xk_0(x)$ has at most one zero in \mathbb{Z}_3 . The choice x = 0 works, so it is the only zero in \mathbb{Z}_3 .

Case 2:
$$r = 1$$
.
Since $f_1(x) = v(v^3)^x$, multiply (5.4) by v :
 $v(1 + 3x\sqrt[3]{2} - 3x\sqrt[3]{4} + 9xh(x)) = (\sqrt[3]{2} - 1)(1 + 3x\sqrt[3]{2} - 3x\sqrt[3]{4} + 9xh(x))$
 $= (-1 - 6x) + (1 - 3x)\sqrt[3]{2} + (6x)\sqrt[3]{4} + 9vxh(x),$

so the $\sqrt[3]{4}$ -coefficient of the power series for $f_1(x)$ is $6x + 9xk_1(x)$ for a power series $k_1(x)$ on \mathbb{Z}_3 with \mathbb{Z}_3 -coefficients that tend to 0. By Strassmann's theorem, $6x + 9xk_1(x)$ has at most one zero in \mathbb{Z}_3 . The choice x = 0 works, so it is the only zero in \mathbb{Z}_3 . Case 3: r = 2

$$\begin{aligned} \underbrace{\text{Case 5. }}_{\text{Since } f_2(x) = v^2(v^3)^x, \text{ multiply } (5.4) \text{ by } v^2: \\ v^2(1 + 3x\sqrt[3]{2} - 3x\sqrt[3]{4} + 9xh(x)) &= (\sqrt[3]{2} - 1)^2(1 + 3x\sqrt[3]{2} - 3x\sqrt[3]{4} + 9xh(x)) \\ &= (1 - 2\sqrt[3]{2} + \sqrt[3]{4})(1 + 3x\sqrt[3]{2} - 3x\sqrt[3]{4} + 9xh(x)) \\ &= (1 + 18x) + (-2 - 3x)\sqrt[3]{2} + (1 - 9x)\sqrt[3]{4} + 9v^2xh(x), \end{aligned}$$

so the $\sqrt[3]{4}$ -coefficient of the power series for $f_2(x)$ is $1 - 9xk_2(x)$ for a power series $k_2(x)$ on \mathbb{Z}_3 with \mathbb{Z}_3 -coefficients that tend to 0. By Strassmann's theorem, $1 - 9xk_2(x)$ has no zero in \mathbb{Z}_3 .

From all three cases, $f_0(x)$ and $f_1(x)$ each have a zero in \mathbb{Z}_3 only at x = 0 and $f_2(x)$ has no zero in \mathbb{Z}_3 . That implies the only (r, x) with $r \in \{0, 1, 2\}$ and $x \in \mathbb{Z}_3$ such that $v^r(v^3)^x$ has its $\sqrt[3]{4}$ -coefficient equal to 0 are (r, x) = (0, 0) and (1, 0), so 3m + x is 0 and 1. Therefore the only positive units in $\mathbb{Z}[\sqrt[3]{2}]$ with $\sqrt[3]{4}$ -coefficient 0 are $v^0 = 1$ and $v^1 = v = -1 + \sqrt[3]{2}$, which proves Theorem 1.3.

APPENDIX A. THUE'S THEOREM

In this appendix we describe a different approach to the integral solutions of $x^3 - dy^3 = 1$, which historically was the original method and it goes back to Thue.

Theorem A.1 (Thue, 1909). Let d be a nonzero integer. For each nonzero $m \in \mathbb{Z}$, the equation $x^3 - dy^3 = m$ has finitely many integral solutions (x, y).

Thue's actual theorem is a general finiteness theorem for integral solutions of certain two-variable polynomial equations f(x, y) = m where deg $f \ge 3$. We focus on the special case $f(x, y) = x^3 - dy^3$ for simplicity.

Proof. If y = 0 then $x^3 = m$, which has at most one solution for x, so we can now assume $y \neq 0$.

If d is a perfect cube in **Z**, say $d = c^3$, then $x^3 - (cy)^3 = m$, so $(x - cy)(x^2 + cxy + c^2y^2) = m$. This makes x - cy a factor of m. For each factor f, x = cy + f, so $(cy + f)^3 - dy^3 = m$. This equation simplifies to $(3c^2f)y^2 + (3cf^2)y + (f^3 - m) = 0$ since $c^3 = d$, and this quadratic equation has at most two solutions y for each f. Thus $x^3 - dy^3 = m$ has finitely many integral solutions if d is a perfect cube.

Now suppose d is not a perfect cube, so $\sqrt[3]{d}$ is irrational in **R**. Factor $x^3 - dy^3$ as $(x - \sqrt[3]{d}y)(x - \sqrt[3]{d}\omega y)(x - \sqrt[3]{d}\omega^2 y)$, so

$$x^{3} - dy^{3} = m \Longrightarrow \left(\frac{x}{y} - \sqrt[3]{d}\right) \left(\frac{x}{y} - \sqrt[3]{d}\omega\right) \left(\frac{x}{y} - \sqrt[3]{d}\omega^{2}\right) = \frac{m}{y^{3}}.$$

Taking absolute values,

$$\left|\frac{x}{y} - \sqrt[3]{d}\right| \left|\frac{x}{y} - \sqrt[3]{d}\omega\right| \left|\frac{x}{y} - \sqrt[3]{d}\omega^2\right| = \frac{|m|}{|y|^3}$$

On the left side, the second and third factors have positive lower bounds since x/y does not interact with the imaginary parts of $\sqrt[3]{d\omega} = \sqrt[3]{d}(-1/2 + \sqrt{3}i/2)$ and $\sqrt[3]{d\omega}^2 = \sqrt[3]{d}(-1/2 - \sqrt{3}i/2)$, so

$$\left|\frac{x}{y} - \sqrt[3]{d}\right| \frac{3\sqrt[3]{d}^2}{4} \le \frac{|m|}{|y|^3}.$$

Thus

$$\left|\frac{x}{y} - \sqrt[3]{d}\right| \le \frac{(4/3)|m|/\sqrt[3]{d}^2}{|y|^3} = \frac{K}{|y|^3}$$

where $K = (4/3)|m|/\sqrt[3]{d^2}$ depends on d and m but not on x or y.

Thue proved that for every $\varepsilon > 0$ and real algebraic irrational α of degree $n \ge 3$, there is $C = C_{\alpha,\varepsilon} > 0$ such that $|x/y - \alpha| \ge C/|y|^{n/2+1+\varepsilon}$ for all rational x/y. Taking $\alpha = \sqrt[3]{d}$, so n = 3, the exponent $n/2 + 1 + \varepsilon = 2.5 + \varepsilon$ is less than 3 if $\varepsilon < 1/2$. In this case, if $x^3 - dy^3 = m$ then $C/|y|^{2.5+\varepsilon} \le |x/y - \sqrt[3]{d}| \le K/|y|^3$, so $|y|^{.5-\varepsilon} \le K/C$, which has finitely many solutions in y. For each y there is at most one x such that $x^3 - dy^3 = m$, so the equation $x^3 - dy^3 = m$ has finitely many integral solutions. \Box

Thue's proof does not give upper bounds on the magnitude of |x| or |y| in an integral solution of $x^3 - dy^3 = m$ (when d is not a perfect cube) since the constant $C_{\alpha,\varepsilon}$ at the end of the proof is not explicit. Therefore Thue's work is fundamentally ineffective: it proved an equation has finitely many solutions in **Z** but gives no method of finding all the solutions in **Z**. Decades later, work of Baker and Coates on linear forms in logarithms led to upper bounds on |x| and |y| that are explicit, but the size of the bounds in terms of |d| and |m| often makes them impractical. The *p*-adic method leads to more practical bounds when it can be applied.

References

- [1] J. W. S. Cassels, "Local Fields," Cambridge Univ. Press, 1986.
- [2] B. N. Delaunay, La solution générale de l'équation $X^3 \rho + Y^3 = 1$, Comptes Rendus Acad. Sci. Paris **162** (1916), 150–151. Online at https://www.biodiversitylibrary.org/item/30710#page/156/mode/1up.⁵
- [3] A. Fröhlich and M. J. Taylor, "Algebraic Number Theory," Cambridge Univ. Press, 1993.
- [4] L. Euler, "Elements of Algebra," 1770. English translation online at http://www.17centurymaths.com/ contents/euleralgebra.htm.
- [5] W. J. Leveque, "Topics in Number Theory, Volume II," Addison-Wesley, 1956.
- [6] T. Nagell, Solution complète de quelques équations cubiques à deux indéterminées, J. Math. Pures et Appl. 4 (1925), 209-270. Online at http://sites.mathdoc.fr/JMPA/PDF/JMPA_1925_9_4_A6_0.pdf.
- [7] N. P. Smart, "The Algorithmic Resolution of Diophantine Equations," Cambridge Univ. Press, 1998.

⁵This is a short announcement of the result. Details were given earlier in several papers in Russian. See papers 37, 38, 39, and 40 at http://www.mathnet.ru/php/person.phtml?personid=25811&option_lang=eng.