INTEGRAL SOLUTIONS OF 22 -2y =1

KEITH CONRAD

1. INTRODUCTION

For each positive integer d that is not a perfect square, Pell’s equation z? — dy? = 1 has
infinitely many solutions in integers. For example, the integral solutions of z? — 2y? = 1
are (£xn, £y,) where x,, + y,v/2 = (3 +2v/2)" for n € Z. Values of x,, and y,, for small |n|
are in Table 1.

n|0[1[2|3]|-1|-2]| -3
Tp (113117199 3 | 17 | 99
Yo |012]12|70| -2 | =12 | =70
TABLE 1. Coefficients of (3 + 2v/2)™.

If the exponent in Pell’s equation is increased from 2 to 3, so we are looking at 3 —dy3 = 1,
then the description of its integral solutions changes dramatically.

Theorem 1.1 (Delaunay, Nagell). For nonzero d € Z, 2 — dy® = 1 has at most one
solution in Z besides (1,0).

Table 2 lists small d > 0 for which there is a solution besides (1,0). Replacing d with —d
has no real effect on solutions, since z3 4 dy® = x> — d(—y)3.

d| 2 |7[17]19] 20 |26 28 | 37|43 |63
x| —1{218|-8|-19| 3 |-3|10|—7]| 4
y|-1/1,7/-3] =71 |-1|3|-2|1

TABLE 2. Ten d for which 23 — dy? = 1 has an integral solution besides (1, 0).

Remark 1.2. Theorem 1.1 is about integral solutions, not rational solutions. The equa-
tion 23 — 7y3 = 1 has infinitely many rational solutions besides (1,0) and (2, 1), such
as (1/2,—1/2) and (17/73,—38/73). In contrast to this, the only rational solutions to
23 — 292 = 1 are its two integral solutions (1,0) and (—1,—1). That is due to Euler [4,
Part II, Sect. II, §247], who showed the integral solutions to a® — b3 = 2¢3 are (a,a,0) and
(a,—a,a) (take z = a/band y = ¢/bif b # 0) in connection with his work [4, Part II, Sect. II,
§243] on Fermat’s Last Theorem for exponent 3.

That 23 — dy® = 1 has finitely many integral solutions was first proved by Thue (1909)
using an approximation theorem for irrational algebraic numbers by rational numbers, and
his proof in fact shows 2® — dy? = m has finitely many integral solutions for each nonzero
integer m. See Section A. That 3 —dy® = 1 has at most one integral solution besides (1,0)
is due independently to Delaunay' [2] and Nagell [6]. Their proofs are largely algebraic,

1Delaunay also wrote his name as Delone. He was Russian and the CIA prepared a once-classified list
of his work up to 1950. See https://www.cia.gov/library/readingroom/docs/CIA-RDP82-00039R0001000
90012-9.pdf.
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and such a proof of Theorem 1.1 is in [3, Sect. VII.3] and [5, Sect. 3-9]. A proof of Theorem
1.1 using both algebraic and p-adic arguments, due to Skolem, is in [1, pp. 223-226]. We
will use Skolem’s ideas to prove Theorem 1.1 in the special case d = 2, based partly on [7,
pp. 34-35]. Here is our goal.

Theorem 1.3. The only integral solutions to x* — 2y> = 1 are (1,0) and (—1,—1).

2. REDUCING THEOREM 1.3 TO THE VANISHING OF AN EXPONENTIAL EXPRESSION

Theorem 2.1. Let v = 1 + /2 + /4 and w be a nontrivial cube root of unity. The
Q-conjugates of u are uy = u, us = 1+ V2w + V4w?, and uz = 1 + V2w? + V4w.

Forx,y € Z, x> — 2y = 1 if and only if x — y</2 = u™, where the integer n satisfies
(2.1) uf + wuf + wiuf = 0.

Proof. There are three embeddings of Q(\?’/ﬁ) into C, determined by v/2 — /2, V2 — V2w,
and /2 — V/2w?. Under these embeddings, the corresponding images of u are uj, us, and
ug as in the statement of the theorem, so these are the Q-conjugates of u. By a calculation,
uju2U3 = 1.

If 23 — 292 = 1 then
(2:2) (= yV2)(@® + 2y V2 + ¢ V4) = 1,
s0 x —y+v/2 is a unit in Z[v/2]. Since 22 + xyv/2+ 92 V4 = (x +yv/2/2)% + (3/4)(yV/2)? > 0,
x —yv/2 >0 by (2.2).

It can be shown using algebraic number theory that the units in Z[v/2] are the powers
of u up to sign: Z[/2]* = £u?%. Therefore x — y3/2 = £u™ for some n € Z. Since the left
side is positive and u > 0, the sign on the right side is +, so  — yv/2 = u".

Conversely, suppose & — yv/2 = u" for some n € Z. Applying to this equation the three
embeddings of Q(+/2) into C, we get z — yv/2 = u}, z — yv/2w = u} and x — yv/2w? = u}.
Therefore

2’ = 2¢° = (z — yV2)(z — yV2w)(z — yV2w?) = wuhul = (wruzus)” = 1.

It remains to determine which powers u™ have the form x — y+/2. The key point is that
Z[\?’/i] =7 + Z+/2 + Z/4 has a Z-basis of size 3, so for all n € Z,

(2.3) U = ay + by V2 + cp V4
where a,,, b,, ¢, € Z. To have u™ of the form x — y\?’/§ means ¢, = 0 (and © = a,,y = —by).

We seek a formula for ¢,. Apply to (2.3) each embedding of Q(+/2) into C:
uf = ap + b V/2 + cnw,
uy = ap + b V2w + cp V/4AW?,
uz = ap + bV 2w? + cp Viw.

Therefore

3

Uy 1 \3/5 \3/1 Qap
uy | =11 Vo FAuw? b,
uy 1 V2w? Vdw Cn

3

Inverting the 3 x 3 matrix,
an, 1/3 1/3 1/3 ul
b | = [1/(3V2) 1/(8V2w) 1/(3V2w?) | | uf |,
o) \1/(3VE) 1/(3VAw) 1/(3VAw?)) \uf



INTEGRAL SOLUTIONS OF z3 —2y% =1 3

S0
o Ul Fwus + w?uf
=
34
Therefore ¢, = 0 if and only if v} + wuf + w2u§ = 0. O
We now want to find every integer n such that (2.1) is satisfied. Since u; ~ 3.847 and
lug| = |uz| ~ .5098, when n > 1 we can’t have u = —wuf —w?u? since the left side is greater

than 3 while the right side is smaller by the triangle inequality. If n = 0 and n = —1 then
(2.1) is true and we have 3 —2y3 = 1 where z —yv2 =u’ = lorz—yv2 =u"! = —1+/2:
(z,y) is (1,0) or (—1,—1). We don’t expect (2.1) to hold for integers n < —2, but this is
not easy to see because when n < 0, (2.1) involves positive powers of 1/uy, 1/ug, and 1/ug
where 1/u; ~ .259 while |1/us| = |1/ug| =~ 1.96: if n < 0 then there are two dominant
terms of equal absolute value on the left side of (2.1), so we need to rule out the possibility
that there is a nearly total cancellation of dominant terms that could make (2.1) hold for
n < —1. To achieve this, instead of looking at (2.1) in C, we will look at it in Q, for
a suitable choice of p. Since (2.1) is a purely algebraic equation, it can be viewed in an
arbitrary field of characteristic 0 containing a cube root of 2 and nontrivial cube roots of
unity, or equivalently three different cube roots of 2.

To interpret /2 and w as p-adic numbers means the polynomial 7% — 2 has to split
completely in Q,. For p > 3, Hensel’s lemma tells us that T3 — 2 splits completely in Q, if
T3 — 2 splits completely mod p.? The first few such p are 31, 43, and 109. For example,

T3 — 2= (T —4)(T — 7)(T — 20) mod 31
and in Qg the polynomial 73 — 2 has roots ry, 7, and r3 where
r=4+9-3144-3124... ro=74+13-314+29-31%+--- ;13 =204+8-31+28-312+. ...

In Q3 the nontrivial cube roots of unity are ro/r; = 25 4+ 16 - 31 + 6 - 312 + .- and
r3/r1 =54 14-31 +24-31%2 + .- .. If we denote 71 by V/2 and ro/r; by w then ry = /2w
and r3 = v2w? in Zs;.

3. A FINITENESS THEOREM ON LINEAR COMBINATIONS OF POWERS IN Zp

We have shown the only integral solutions to a3 — 2y3 = 1 are (z,y) = (1,0) and
(z,y) = (—1,—1) when the only n € Z satisfying the exponential relation (2.1) are n =0
and n = —1. The following theorem uses p-adic power series to give conditions under which
such an exponential relation has finitely many solutions.

Theorem 3.1. Let p be an odd prime. Fix uy,...,ur € Z; and ci,...,ck,b € Z,. The
equation

(3.1) ciuy +couy + -+ cpup =b

is true for only finitely many integers n if, for each r € {0,1,...,p — 2}, the left side of
(3.1) is not b for some n =r mod p — 1.

Proof. For a € Z, with a = 1 mod pZ,, the powers a" for n € Z interpolate to a p-adic

analytic function a® for x € Z,: a® = e*l°8% = ijo(loga)j/j!)xj. For w € Z; with

u # 1 mod p, the sequence u" for n € Z does not p-adically interpolate (it is not p-adically
continuous in n), but if we focus on exponents in one congruence class mod p — 1 then
the problem goes away: uP~! = 1 mod p, so when n = (p — 1)m + r for a fixed remainder
ref{0,1,...,p— 2},

ut = u(p—l)mur _ ur(up—l)m

I

2The polynomial 7% — 2 is irreducible over Q2 and Qs.
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and we can p-adically interpolate the right side as a function of m since v?~! = 1 mod p.
Forr=0,1,...,p— 2, set

fr(m) = eruf (W)™ + cquby(ub ™)™ + - 4 cpub (P ™ — b,

This extends to a p-adic analytic function f,(x) for € Z,,, and the integers n = r mod p—1
that satisfy (3.1) are of the form (p — 1)m + r where m is an integer such that f.(m) = 0.

A p-adic analytic function on Z, is either identically zero on Z,, or has finitely many zeros
on Z,. Therefore if, for each r € {0,1,...,p — 2}, fr(m) # 0 for some integer m, which
means (3.1) is not true for some n = r mod p — 1, then each f,(x) has finitely many zeros
in Z,, so (3.1) is true for only finitely many integers n (check separately for the integers in
each congruence class modulo p — 1). O

Example 3.2. For an integer n > 0, the sum (1 + 1/—=2)" + (1 —1/—2)" is an even number
(terms associated to odd powers of v/—2 from the binomial theorem cancel out in the sum).
How often can this sum be 27 Small n where this happens are n = 0,1, and 5. In C, since
1+ v=2|=|1 —v/=2| = V3 > 1, the terms (1++/—2)" and (1 — v/—2)" are equally large
for every n, and it’s not obvious that the terms couldn’t have a near-cancellation and add
up to 2 again for some n > 5. To investigate this, we want to interpret 1 £+/—2 in Z; asa
first step towards p-adically interpolating their powers, so we need —2 to be a square in Z,.

The first two primes p for which —2 is a square in Z; are 3 and 11. In Z, we can take
V-2=1+3+2-32+... using Hensel’s lemma. Then 1+ /-2 € Zg but 1 — /=2 € 3Zs,
which is bad. In Z;| we can take V=2=349-114+4-112+...  so14+v/—2=4# 0mod 11
and 1 — /=2 =9 # 0 mod 11. Therefore we have 11-adic analytic functions

fr(m) = (1 +vV=2"(1+vV=2)1%" + (1 - V=2)"((1 — vV=2)19)" — 2

for r = 0,...,9.3 A direct calculation for each r shows f.(0) # f.(1) (e.g., f3(0) = —12
and f3(1) = 2496). Therefore, qualitatively, each f.(z) has finitely many zeros in Zij, so
the equation (1 ++/=2)" + (1 —/=2)" = 2 has only finitely many solutions in nonnegative
integers n.

Using Strassmann’s theorem about zeros of p-adic analytic functions for fy(x),..., fo(x)
on Zy1, it can be shown that fy(x), fi(z), and f5(z) each have x = 0 as their only zero in Z1;
while f,.(z) has no zero in Zj; for r € {2,3,4,6,7,8,9}, so the only solutions of (1++/—2)"+
(1 —+/—2)" = 2 in nonnegative integers are n = 0, 1, and 5. See Theorem 1.1 in https://
kconrad.math.uconn.edu/blurbs/gradnumthy/strassmannapplication.pdf.

There is an analogue of Theorem 3.1 in Z» by looking separately at the exponents n mod 2
since u € Z; = u? = 1 mod 8 and a® is a 2-adic analytic function of x when a = 1 mod 4Z.

4. THEOREM 1.3 USING Q31

Let’s return to (2.1):
ul 4+ wulf + w?ul =0,
where uy = 1+ V2 + \3/41, Uy = 1+\3/§w+\3/21w2, and ug =1+ V2w? + V4w. Our goal is
to show the only solutions to this in integers is n =0 and n = —1.

View the equation in Qg where /2 is the cube root of 2 in Zs; with ¥/2 = 4 mod 31
and w is the cube root of unity in Zs; with w = 25 mod 31. Then calculations show

u; = 21 mod 31, w9 =26 mod 31, w3 = 18 mod 31.

3Since 4 mod 11 and 9 mod 11 have order 5, we could take 11-adic powers of (1 £+ \/—2)5 and thereby cut
down the number of 11-adic analytic functions under consideration from 10 down to 5.
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To study u} +wusy + w2u§ using 31-adic analytic functions, pick r € {0,1,...,29} and look
at uf + wud + w?u for n = 30m + r: define

Fr(@) = uf (ui®)" + wuh(u3’)” + wul(uz’)®

for x € Z3;.* We want to study the zeros of each f,(z) in Z3;.

For odd prime p and a € 1+ pZ,, a® = (807 = > j>0((log a)/j)a? is p-adic analytic
on Z, with loga € pZ, since |logal, = |a — 1|, < 1/p. Therefore f,(z) is a Zgi-linear
combination of three 31-adic analytic functions, so f.(z) is 31-adic analytic. The function
fr(x) is not identically 0 since fo(1) # 0 and f-(0) # 0 for 1 < r < 29, so Strassmann’s
theorem provides an upper bound on the number of zeros of f,(x) in Zs;: f-(z) has at
most N zeros in Zs3; where the Nth power series coefficient of f,(x) has maximal 31-adic
absolute value (minimal 31-adic valuation) and N is as large as possible. For example, if the
constant term of f,(z) has larger 31-adic absolute value than the other coefficients, N =0
so fr(z) has no zero in Zs;.

For odd prime p and a € 1+ pZ,, loga € pZ, and pl /5! € pZ, for j > 1, so every
nonconstant coefficient of the p-adic power series for a” is in pZ,,. Therefore the nonconstant
coefficients of f,(z) are all in 31Z3;. The constant term of f,(x) is

£r(0) = uf + wul + w?ul = 21" + 25 - 26" + 25%18" mod 31

Using a computer, f,.(0) # 0mod 31 except when r = 0,9,10,19,20,29. Therefore by
Strassmann’s theorem, f,(x) has no zero in Zs; if r # 0,9, 10,19,20,29. What if r is 0, 9,
10, 19, 20, or 297

Since fo(0) = 1 +w +w? = 0, fo(z) has a zero at z = 0. When r is 9, 10, 19, 20, and
29, a calculation shows the constant term f,(0) is divisible by 31 precisely once. The linear
coefficient of f,(z) is

(4.1) uf log(u3®) + wub log(us’) 4 w?ub log(usl).

For odd prime p and a € 1+ pZ,, loga = (a—1) —i—ZjZQ(—l)j_l(a— 1)//j and (a—1)7/j €
pQZp for 7 > 2, so loga = a — 1 mod pQZp. Therefore (4.1) is congruent to

(4.2) uf (u3® — 1) 4+ wub(ud® — 1) + wub(u3’ — 1) mod 31%Z3;.

For r = 0,9, 10, 19, 20, 29, calculations show (4.2) is divisible by 31 but is not 0 mod 312, so
fr(x) has linear coefficient divisible by 31 precisely once.

For odd prime p and a € 1+ pZ,, loga € pZ, and p/ /j! € p*Z, for j > 2, so (loga)’/j! €
p*Z,, for j > 2. Thus the coefficients of every f,.(z) in degree 2 and higher are in 31%Zs;.

Combining the underlined information about 31-divisibility of power series coefficients
with Strassmann’s theorem, f,(x) has at most one zero in Zs; for r = 0,9, 10,19, 20, 29.
Using Hensel’s lemma for power series converging on Zs; instead of Strassmann’s theorem
for power series converging on Zs;, f.(x) has a unique zero in Zs; for r = 0,9, 10, 19, 20, 29.
The zero of fo(x) is © = 0 (corresponding to (2.1) being zero at n = 0 = 30(0) + 0) and
the zero of fag(x) is © = —1 (corresponding to (2.1) being zero at n = —1 = 30(—1) + 29).
We don’t expect the zeros of f.(x) in Zsy for r = 9,10, 19, or 20 to be integers, but that
possibility can’t be ruled out from the reasoning presented so far. Therefore by working in
Z31, we have shown (2.1) is true for at most 6 integers n. To cut down the upper bound
further, we will work in a p-adic completion for p # 31.

4Since 21 mod 31 has order 30, we can’t use an exponent smaller than 30 in the terms of f.(z).
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5. THEOREM 1.3 USING 3-ADIC POWERS

There is no cube root of 2 in Qs: if o = 2 then |a|3 = |23 =1, so |a|3 = 1: « is in Z].
Therefore we can reduce the equation o = 2 modulo 9 to get o = 2 mod 9Z3. The cubes
mod 9 are 0, 1, and 8, so we have a contradiction. Thus T — 2 is a cubic polynomial with
no root in Qs, so Q3(+/2) is a cubic extension of Q3 with basis {1, /2, ¥/4}. There are no
nontrivial cube roots of unity in Q3(+/2) since Q3(w) = Q3(v/—3) is a quadratic extension
of Q3, which can’t lie in a cubic extension.

Just as the absolute value on R has a unique extension to an absolute value on its
quadratic extension C, which is complete, the 3-adic absolute value on Q3 has a unique
extension to an absolute value on its cubic extension Qs(+/2), which is complete. It is
possible to give a formula for |a + b3/2 + c¢V/4|3, where a, b, c € Q3, that is analogous to the
formula |a + bi| = vVa? 4 b? for the absolute value of complex numbers. Here it is:

la +bV/2 + V4|3 = /]ad + 203 + 4¢3 — 6abcs.

We will not discuss how to derive this formula or why it is an absolute value on Qs(+v/2).
The formula reveals a new phenomenon compared to absolute values on Qs: some numbers
in Q3(4/2) have absolute value that is not an integral power of 1/3: the nonzero numbers
have 3-adic absolute value (1/3)"/3 = (1/{/3)" for some n € Z.

Example 5.1. Let m = v/2+1. Since ]\3@3\3 =23 =1, |v2]3 =1, 50 | /2|3 = 1. From the
ultrametric inequality, |7|3 < max(|v/2[3, |1|3) = 1. Expanding the left side of the equation
(r —1)3 = 2 and rearranging terms, we get 7> — 372 4+ 37 — 3 = 0. Rewrite this as

3 =3(n? — w4 1).

Therefore |73 = (1/3)|7% — 7 + 1|3 < 1/3 < 1, so |r|3 < 1. Therefore |72 — 7 + 1|3 = 1 by
the ultrametric inequality, so |7|3 = 1/3, which implies |r|3 = 1//3. Here 1/3/3 is a real
number: absolute values live in R, not in a 3-adic field.

It can be shown that the closed unit ball in Q3(+/2), which is {y € Q3(v/2) : |y|z < 1},
equals Z3[v/2]. We'll be using this later.

In Z[¥/2], the unit v = 1 + /2 + V/4 has inverse v = V/2 — 1, so by working with powers
of v we can reformulate Theorem 2.1 as follows: for =,y € Z, 2 — 2y% = 1 if and only
if  —yv/2 = o™ for some n € Z. We want to find the integers n such that v™ written
in the Qs-basis {1, /2, ¥/4} has V/4-coefficient equal to 0. We expect the only such n are
n =20 (so (z,y) = (1,0)) and n =1 (so (z,y) = (—1,—1)). To prove this, we will 3-adically
interpolate the powers of v in Q3(3/2) and use Strassmann’s theorem.

To interpolate powers a” where a is in a p-adic field, we need |a —1|, < 1. Using Example
5.1 in the field Q3(v/2),

v=V2—-1=n-2=1+(7—3)
and |7 — 3|3 = max(1/V/3,1/3) = 1/v/3 < 1,50 |[v — 1|3 = |t — 3|3 < 1. Thus there is a

3-adically continuous function
x
T _ 1 k
=Y -1}
k>0

where x € Zs. However, v* is not a 3-adic analytic function Zs — Q3(+v/2). When |a—1|, <
1, the condition for a® = Zkzo(a — 1)’“(;) to be p-adic analytic in x, not just p-adically
continuous in , is that |a — 1], < (1/p)/®=1). For our example, where a = v in Q3(3/2),
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la — 1|3 = |v — 1|3 = |7 — 3|3 = (1/3)"/% > (1/3)"/2. Taking a 3rd power of v will improve
the situation:

1
(5.1) v3 = (V2-1)3=2-3V4+3V2-1=1+43(V2-V4) =1-3V20 = [® - 1|3 = 3

Therefore (v3)? is 3-adic analytic in z, so we’ll look at the powers v™ with n restricted to a
congruence class mod 3: For r € {0, 1,2}, set f.(z) = v"(v®)® where x € Z3. This is 3-adic
analytic in z, and for m € Z we have f.(m) = v"(v3)™ = v3"*".

We will study v™ for n € Z by studying the three 3-adic analytic functions f,.: Z3 —
Q3(+/2), which each interpolate one of the sequences v®*" (r being fixed). Write f,.(z) as
a power series in :

3k
(52) fr(iﬂ) _ UT(U3)I _ Urecclog(vg) — " Z (loggg )) oy

k>0

Write (log(v?))*/k! in terms of its coefficients in the Qs-basis {1, V/2, V/4} of Q3(v/2):

1 3\\k
7( Ogg: )) :ak—l—bk%%-ck%,

where ag, by, ¢, € Q3. Plugging this into (5.2),
fr(z)=12" Z(ak + bk\?)@ + Ck \3/41)%']c

k>0
=" Z <ak3:k + bpa® V2 + cpa® \‘711)
k>0

=" Z apz® | + Z bz | V2 + Z cpzh

k>0 k>0 k>0

(In Q3(V/2), a sequence tends to 0 if and only if its 3 sequences of coefficients in the basis
{1, /2, v/4} each tend to 0 in Qs. That justifies splitting up the power series into a sum
of three power series multiplied by the basis {1, v/2, v/4}.) Since v" is either 1, —1 + /2,
or 1 —2+/2 + V/4, the coefficients of f.(x) in the basis {1, /2, V/4} are each 3-adic analytic
functions. Therefore f,(z) € Q3+ Q3+/2 for an z if and only if its /4-coefficient is 0, which
is equivalent to the vanishing of a 3-adic analytic function Z3 — Qg at x.

Since |[v® — 1|3 = 1/3, in the 3-adic power series

(1
(UB)x _ 6:tlog(v ) -1 + IOg x+z Og k
k>2

for x € Z3, we have |log(v?)|3 = |v® — 1|3 = 1/3, so the coefficient of ¥ is divisible by 9
when k& > 2. Therefore

(5.3) (v3)® =1 + (log(v®))z + 92%g(x)

where g(z) is a power series converging on Zs3 with coefficients in Q3(+/2) of absolute value
at most 1 that tend to 0. Also

-1
log(v®) = (v* — 1) —i—Z 1)k~ lu,
k>2

and [v3 — 1|3 =1/3 = |(v® — 1)¥/k|3 < 1/9 for k > 2, so log(v3) = v* — 1 mod 9. Plugging
this into (5.3),
(3% =1+ (v® — D)z + 9zh(z),
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where h(z) is a power series converging on Zs with coefficients in Q3(+¥/2) of absolute value
at most 1 that tend to 0. Since {y € Q3(¥/2) : |y|s < 1} = Z3[v/2], which was mentioned
earlier, the coefficients of h(x) are all in Z3[+v/2]. From (5.1), v® — 1 = 3(¥/2 — V/4), so
(5.4) (03 =14 3(V2 - V4)x + 9zh(z) = 1 + 32V/2 — 3zV4 + 9zh(z).
We will use (5.4) to bound the number of zeros in Z3 of the V/4-coefficient of the function
fr(z) =v"(v¥)® when r =0, 1, and 2.

Case 1: r = 0.

By (5.4), the v/4-coefficient of the power series for fo(z) = (v3)® is —3z + 9zko(x) for
a power series ko(x) on Zs with Zs-coefficients that tend to 0. By Strassmann’s theorem,
—3x + 9zko(x) has at most one zero in Zgz. The choice x = 0 works, so it is the only zero
in Zs.

Case 2: 7 = 1.

Since f1(x) = v(v®)%, multiply (5.4) by v:

v(1 4+ 32V2 — 32V4 4 9zh(x)) = (V2 — 1)(1 + 32V/2 — 32V/4 + 9zh(z))
= (—1—62) + (1 — 32) V2 + (62) V4 + Jvzh(z),

so the v/4-coefficient of the power series for fi(z) is 6x + 92k (x) for a power series k;(x)
on Zs with Zs-coefficients that tend to 0. By Strassmann’s theorem, 6z + 92k (z) has at
most one zero in Z3. The choice x = 0 works, so it is the only zero in Zs.

Case 3: r = 2.

Since fo(x) = v%(v3)®, multiply (5.4) by v*:

v2(1 4+ 322 — 324+ 9zh(z)) = (V2 — 1)2(1 + 32V/2 — 3zV/4 + 9zh(z))
= (1 —2V2+ V4)(1 4 32V/2 — 32V/4 + 9zh(z))
= (1 +18z) + (=2 — 32) V2 + (1 — 92) V4 + 9v?zh(x),

so the /4-coefficient of the power series for fo(x) is 1 — 9zky(z) for a power series kz(z) on
Z3 with Zs-coefficients that tend to 0. By Strassmann’s theorem, 1 — 9zks(z) has no zero
in Z3.

From all three cases, fo(x) and fi(z) each have a zero in Zs only at x = 0 and fa(x) has
no zero in Zz. That implies the only (r,z) with » € {0,1,2} and x € Z3 such that v"(v3)*
has its v/4-coefficient equal to 0 are (r,2) = (0,0) and (1,0), so 3m+x is 0 and 1. Therefore
the only positive units in Z[\B/i] with /4-coefficient 0 are v° = 1 and v! = v = —1 + /2,
which proves Theorem 1.3.

APPENDIX A. THUE’S THEOREM

In this appendix we describe a different approach to the integral solutions of 2% —dy> = 1,
which historically was the original method and it goes back to Thue.

Theorem A.1 (Thue, 1909). Let d be a nonzero integer. For each nonzero m € Z, the
equation x3 — dy> = m has finitely many integral solutions (x,7).

Thue’s actual theorem is a general finiteness theorem for integral solutions of certain
two-variable polynomial equations f(z,y) = m where deg f > 3. We focus on the special
case f(x,y) = 23 — dy? for simplicity.

Proof. If y = 0 then 22 = m, which has at most one solution for x, so we can now assume

y #0.
If d is a perfect cube in Z, say d = ¢*, then 23— (cy)® = m, so (z—cy)(2*+cxy+cy?) = m.
This makes = — cy a factor of m. For each factor f, z = cy+ f, so (cy+ f)3 —dy® = m. This
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equation simplifies to (3¢2f)y? + (3cf?)y + (f2> — m) = 0 since ¢® = d, and this quadratic
equation has at most two solutions y for each f. Thus 2% — dy®> = m has finitely many
integral solutions if d is a perfect cube.

Now suppose d is not a perfect cube, so V/d is irrational in R. Factor 2® — dy® as

(x = Vdy)(z — Vdwy)(z — Vdw?y), so
2 —dy=m = (1’_\3/&> <x_%w> <$—3/Ew2> :%.
Yy Yy Yy Yy
Taking absolute values,

Iml

T Ya x_m] T g =
y y y |yl

On the left side, the second and third factors have positive lower bounds since x/y does not
interact with the imaginary parts of Vdw = Vd(—1/2 4 v/3i/2) and Vdw? = V/d(—1/2 —

\/32'/2), SO

< 2

2
y 4 7 |yP?

Thus 9
R DY
y lyl? lyl?’
where K = (4/3)]m\/\3/a2 depends on d and m but not on x or y.

Thue proved that for every € > 0 and real algebraic irrational « of degree n > 3, there
is C' = Cy. > 0 such that |z/y —a| > C/|y|"/?>T1+¢ for all rational z/y. Taking o = V/d,
so n = 3, the exponent n/2 + 1+ ¢ = 2.5 4 ¢ is less than 3 if ¢ < 1/2. In this case, if
23 — dy3 = m then CO/|y|?>>° < |z/y — Vd| < K/|y]?, so |y|°¢ < K/C, which has finitely
many solutions in y. For each y there is at most one z such that 23 — dy®> = m, so the
equation z2 — dy® = m has finitely many integral solutions. O

Thue’s proof does not give upper bounds on the magnitude of |z| or |y| in an integral
solution of 2% — dy® = m (when d is not a perfect cube) since the constant C, . at the end
of the proof is not explicit. Therefore Thue’s work is fundamentally ineffective: it proved
an equation has finitely many solutions in Z but gives no method of finding all the solutions
in Z. Decades later, work of Baker and Coates on linear forms in logarithms led to upper
bounds on |z| and |y| that are explicit, but the size of the bounds in terms of |d| and |m|
often makes them impractical. The p-adic method leads to more practical bounds when it
can be applied.
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