INTEGRAL SOLUTIONS OF $x^{3}-2 y^{3}=1$

KEITH CONRAD

1. Introduction

For each positive integer d that is not a perfect square, Pell's equation $x^{2}-d y^{2}=1$ has infinitely many solutions in integers. For example, the integral solutions of $x^{2}-2 y^{2}=1$ are $\left(\pm x_{n}, \pm y_{n}\right)$ where $x_{n}+y_{n} \sqrt{2}=(3+2 \sqrt{2})^{n}$ for $n \in \mathbf{Z}$. Values of x_{n} and y_{n} for small $|n|$ are in Table 1.

n	0	1	2	3	-1	-2	-3
x_{n}	1	3	17	99	3	17	99
y_{n}	0	2	12	70	-2	-12	-70

Table 1. Coefficients of $(3+2 \sqrt{2})^{n}$.

If the exponent in Pell's equation is increased from 2 to 3 , so we are looking at $x^{3}-d y^{3}=1$, then the description of its integral solutions changes dramatically.
Theorem 1.1 (Delaunay, Nagell). For nonzero $d \in \mathbf{Z}, x^{3}-d y^{3}=1$ has at most one solution in \mathbf{Z} besides $(1,0)$.

Table 2 lists small $d>0$ for which there is a solution besides (1,0). Replacing d with $-d$ has no real effect on solutions, since $x^{3}+d y^{3}=x^{3}-d(-y)^{3}$.

d	2	7	17	19	20	26	28	37	43	63
x	-1	2	18	-8	-19	3	-3	10	-7	4
y	-1	1	7	-3	-7	1	-1	3	-2	1

Table 2. Ten d for which $x^{3}-d y^{3}=1$ has an integral solution besides $(1,0)$.

Remark 1.2. Theorem 1.1 is about integral solutions, not rational solutions. The equation $x^{3}-7 y^{3}=1$ has infinitely many rational solutions besides $(1,0)$ and $(2,1)$, such as $(1 / 2,-1 / 2)$ and $(17 / 73,-38 / 73)$. In contrast to this, the only rational solutions to $x^{3}-2 y^{3}=1$ are its two integral solutions $(1,0)$ and $(-1,-1)$. That is due to Euler [4, Part II, Sect. II, § 247], who showed the integral solutions to $a^{3}-b^{3}=2 c^{3}$ are ($a, a, 0$) and $(a,-a, a)$ (take $x=a / b$ and $y=c / b$ if $b \neq 0$) in connection with his work [4, Part II, Sect. II, $\S 243]$ on Fermat's Last Theorem for exponent 3.

That $x^{3}-d y^{3}=1$ has finitely many integral solutions was first proved by Thue (1909) using an approximation theorem for irrational algebraic numbers by rational numbers, and his proof in fact shows $x^{3}-d y^{3}=m$ has finitely many integral solutions for each nonzero integer m. See Section A. That $x^{3}-d y^{3}=1$ has at most one integral solution besides $(1,0)$ is due independently to Delaunay ${ }^{1}$ [2] and Nagell [6]. Their proofs are largely algebraic,

[^0]and such a proof of Theorem 1.1 is in [3, Sect. VII.3] and [5, Sect. 3-9]. A proof of Theorem 1.1 using both algebraic and p-adic arguments, due to Skolem, is in [1, pp. 223-226]. We will use Skolem's ideas to prove Theorem 1.1 in the special case $d=2$, based partly on [7 , pp. 34-35]. Here is our goal.
Theorem 1.3. The only integral solutions to $x^{3}-2 y^{3}=1$ are $(1,0)$ and $(-1,-1)$.

2. Reducing Theorem 1.3 to the vanishing of an exponential expression

Theorem 2.1. Let $u=1+\sqrt[3]{2}+\sqrt[3]{4}$ and ω be a nontrivial cube root of unity. The Q-conjugates of u are $u_{1}=u, u_{2}=1+\sqrt[3]{2} \omega+\sqrt[3]{4} \omega^{2}$, and $u_{3}=1+\sqrt[3]{2} \omega^{2}+\sqrt[3]{4} \omega$.

For $x, y \in \mathbf{Z}, x^{3}-2 y^{3}=1$ if and only if $x-y \sqrt[3]{2}=u^{n}$, where the integer n satisfies

$$
\begin{equation*}
u_{1}^{n}+\omega u_{2}^{n}+\omega^{2} u_{3}^{n}=0 . \tag{2.1}
\end{equation*}
$$

Proof. There are three embeddings of $\mathbf{Q}(\sqrt[3]{2})$ into \mathbf{C}, determined by $\sqrt[3]{2} \mapsto \sqrt[3]{2}, \sqrt[3]{2} \mapsto \sqrt[3]{2} \omega$, and $\sqrt[3]{2} \mapsto \sqrt[3]{2} \omega^{2}$. Under these embeddings, the corresponding images of u are u_{1}, u_{2}, and u_{3} as in the statement of the theorem, so these are the \mathbf{Q}-conjugates of u. By a calculation, $u_{1} u_{2} u_{3}=1$.

If $x^{3}-2 y^{3}=1$ then

$$
\begin{equation*}
(x-y \sqrt[3]{2})\left(x^{2}+x y \sqrt[3]{2}+y^{2} \sqrt[3]{4}\right)=1 \tag{2.2}
\end{equation*}
$$

so $x-y \sqrt[3]{2}$ is a unit in $\mathbf{Z}[\sqrt[3]{2}]$. Since $x^{2}+x y \sqrt[3]{2}+y^{2} \sqrt[3]{4}=(x+y \sqrt[3]{2} / 2)^{2}+(3 / 4)(y \sqrt[3]{2})^{2}>0$, $x-y \sqrt[3]{2}>0$ by (2.2).

It can be shown using algebraic number theory that the units in $\mathbf{Z}[\sqrt[3]{2}]$ are the powers of u up to sign: $\mathbf{Z}[\sqrt[3]{2}]^{\times}= \pm u^{\mathbf{Z}}$. Therefore $x-y \sqrt[3]{2}= \pm u^{n}$ for some $n \in \mathbf{Z}$. Since the left side is positive and $u>0$, the sign on the right side is + , so $x-y \sqrt[3]{2}=u^{n}$.

Conversely, suppose $x-y \sqrt[3]{2}=u^{n}$ for some $n \in \mathbf{Z}$. Applying to this equation the three embeddings of $\mathbf{Q}(\sqrt[3]{2})$ into \mathbf{C}, we get $x-y \sqrt[3]{2}=u_{1}^{n}, x-y \sqrt[3]{2} \omega=u_{2}^{n}$ and $x-y \sqrt[3]{2} \omega^{2}=u_{3}^{n}$. Therefore

$$
x^{3}-2 y^{3}=(x-y \sqrt[3]{2})(x-y \sqrt[3]{2} \omega)\left(x-y \sqrt[3]{2} \omega^{2}\right)=u_{1}^{n} u_{2}^{n} u_{3}^{n}=\left(u_{1} u_{2} u_{3}\right)^{n}=1 .
$$

It remains to determine which powers u^{n} have the form $x-y \sqrt[3]{2}$. The key point is that $\mathbf{Z}[\sqrt[3]{2}]=\mathbf{Z}+\mathbf{Z} \sqrt[3]{2}+\mathbf{Z} \sqrt[3]{4}$ has a Z-basis of size 3 , so for all $n \in \mathbf{Z}$,

$$
\begin{equation*}
u^{n}=a_{n}+b_{n} \sqrt[3]{2}+c_{n} \sqrt[3]{4} \tag{2.3}
\end{equation*}
$$

where $a_{n}, b_{n}, c_{n} \in \mathbf{Z}$. To have u^{n} of the form $x-y \sqrt[3]{2}$ means $c_{n}=0$ (and $x=a_{n}, y=-b_{n}$). We seek a formula for c_{n}. Apply to (2.3) each embedding of $\mathbf{Q}(\sqrt[3]{2})$ into \mathbf{C} :

$$
\begin{aligned}
& u_{1}^{n}=a_{n}+b_{n} \sqrt[3]{2}+c_{n} \sqrt[3]{4}, \\
& u_{2}^{n}=a_{n}+b_{n} \sqrt[3]{2} \omega+c_{n} \sqrt[3]{4} \omega^{2}, \\
& u_{3}^{n}=a_{n}+b_{n} \sqrt[3]{2} \omega^{2}+c_{n} \sqrt[3]{4} \omega .
\end{aligned}
$$

Therefore

$$
\left(\begin{array}{l}
u_{1}^{n} \\
u_{2}^{n} \\
u_{3}^{n}
\end{array}\right)=\left(\begin{array}{ccc}
1 & \sqrt[3]{2} & \sqrt[3]{4} \\
1 & \sqrt[3]{2} \omega & \sqrt[3]{4} \omega^{2} \\
1 & \sqrt[3]{2} \omega^{2} & \sqrt[3]{4} \omega
\end{array}\right)\left(\begin{array}{l}
a_{n} \\
b_{n} \\
c_{n}
\end{array}\right) .
$$

Inverting the 3×3 matrix,

$$
\left(\begin{array}{l}
a_{n} \\
b_{n} \\
c_{n}
\end{array}\right)=\left(\begin{array}{ccc}
1 / 3 & 1 / 3 & 1 / 3 \\
1 /(3 \sqrt[3]{2}) & 1 /(3 \sqrt[3]{2} \omega) & 1 /\left(3 \sqrt[3]{2} \omega^{2}\right) \\
1 /(3 \sqrt[3]{4}) & 1 /(3 \sqrt[3]{4} \omega) & 1 /\left(3 \sqrt[3]{4} \omega^{2}\right)
\end{array}\right)\left(\begin{array}{l}
u_{1}^{n} \\
u_{2}^{n} \\
u_{3}^{n}
\end{array}\right),
$$

SO

$$
c_{n}=\frac{u_{1}^{n}+\omega u_{2}^{n}+\omega^{2} u_{3}^{n}}{3 \sqrt[3]{4}}
$$

Therefore $c_{n}=0$ if and only if $u_{1}^{n}+\omega u_{2}^{n}+\omega^{2} u_{3}^{n}=0$.
We now want to find every integer n such that (2.1) is satisfied. Since $u_{1} \approx 3.847$ and $\left|u_{2}\right|=\left|u_{3}\right| \approx .5098$, when $n \geq 1$ we can't have $u_{1}^{n}=-\omega u_{2}^{n}-\omega^{2} u_{3}^{n}$ since the left side is greater than 3 while the right side is smaller by the triangle inequality. If $n=0$ and $n=-1$ then (2.1) is true and we have $x^{3}-2 y^{3}=1$ where $x-y \sqrt[3]{2}=u^{0}=1$ or $x-y \sqrt[3]{2}=u^{-1}=-1+\sqrt[3]{2}$: (x, y) is $(1,0)$ or $(-1,-1)$. We don't expect (2.1) to hold for integers $n \leq-2$, but this is not easy to see because when $n<0,(2.1)$ involves positive powers of $1 / u_{1}, 1 / u_{2}$, and $1 / u_{3}$ where $1 / u_{1} \approx .259$ while $\left|1 / u_{2}\right|=\left|1 / u_{3}\right| \approx 1.96$: if $n<0$ then there are two dominant terms of equal absolute value on the left side of (2.1), so we need to rule out the possibility that there is a nearly total cancellation of dominant terms that could make (2.1) hold for $n<-1$. To achieve this, instead of looking at (2.1) in \mathbf{C}, we will look at it in \mathbf{Q}_{p} for a suitable choice of p. Since (2.1) is a purely algebraic equation, it can be viewed in an arbitrary field of characteristic 0 containing a cube root of 2 and nontrivial cube roots of unity, or equivalently three different cube roots of 2 .

To interpret $\sqrt[3]{2}$ and ω as p-adic numbers means the polynomial $T^{3}-2$ has to split completely in \mathbf{Q}_{p}. For $p>3$, Hensel's lemma tells us that $T^{3}-2$ splits completely in \mathbf{Q}_{p} if $T^{3}-2$ splits completely mod $p .{ }^{2}$ The first few such p are 31, 43, and 109. For example,

$$
T^{3}-2 \equiv(T-4)(T-7)(T-20) \bmod 31
$$

and in \mathbf{Q}_{31} the polynomial $T^{3}-2$ has roots r_{1}, r_{2}, and r_{3} where
$r_{1}=4+9 \cdot 31+4 \cdot 31^{2}+\cdots, r_{2}=7+13 \cdot 31+29 \cdot 31^{2}+\cdots, r_{3}=20+8 \cdot 31+28 \cdot 31^{2}+\cdots$. In \mathbf{Q}_{31} the nontrivial cube roots of unity are $r_{2} / r_{1}=25+16 \cdot 31+6 \cdot 31^{2}+\cdots$ and $r_{3} / r_{1}=5+14 \cdot 31+24 \cdot 31^{2}+\cdots$. If we denote r_{1} by $\sqrt[3]{2}$ and r_{2} / r_{1} by ω then $r_{2}=\sqrt[3]{2} \omega$ and $r_{3}=\sqrt[3]{2} \omega^{2}$ in \mathbf{Z}_{31}.

3. A finiteness theorem on linear combinations of powers in \mathbf{Z}_{p}

We have shown the only integral solutions to $x^{3}-2 y^{3}=1$ are $(x, y)=(1,0)$ and $(x, y)=(-1,-1)$ when the only $n \in \mathbf{Z}$ satisfying the exponential relation (2.1) are $n=0$ and $n=-1$. The following theorem uses p-adic power series to give conditions under which such an exponential relation has finitely many solutions.

Theorem 3.1. Let p be an odd prime. Fix $u_{1}, \ldots, u_{k} \in \mathbf{Z}_{p}^{\times}$and $c_{1}, \ldots, c_{k}, b \in \mathbf{Z}_{p}$. The equation

$$
\begin{equation*}
c_{1} u_{1}^{n}+c_{2} u_{2}^{n}+\cdots+c_{k} u_{k}^{n}=b \tag{3.1}
\end{equation*}
$$

is true for only finitely many integers n if, for each $r \in\{0,1, \ldots, p-2\}$, the left side of (3.1) is not b for some $n \equiv r \bmod p-1$.

Proof. For $a \in \mathbf{Z}_{p}^{\times}$with $a \equiv 1 \bmod p \mathbf{Z}_{p}$, the powers a^{n} for $n \in \mathbf{Z}$ interpolate to a p-adic analytic function a^{x} for $\left.x \in \mathbf{Z}_{p}: a^{x}=e^{x \log a}=\sum_{j \geq 0}(\log a)^{j} / j!\right) x^{j}$. For $u \in \mathbf{Z}_{p}^{\times}$with $u \not \equiv 1 \bmod p$, the sequence u^{n} for $n \in \mathbf{Z}$ does not p-adically interpolate (it is not p-adically continuous in n), but if we focus on exponents in one congruence class $\bmod p-1$ then the problem goes away: $u^{p-1} \equiv 1 \bmod p$, so when $n=(p-1) m+r$ for a fixed remainder $r \in\{0,1, \ldots, p-2\}$,

$$
u^{n}=u^{(p-1) m} u^{r}=u^{r}\left(u^{p-1}\right)^{m},
$$

[^1]and we can p-adically interpolate the right side as a function of m since $u^{p-1} \equiv 1 \bmod p$.
For $r=0,1, \ldots, p-2$, set
$$
f_{r}(m)=c_{1} u_{1}^{r}\left(u_{1}^{p-1}\right)^{m}+c_{2} u_{2}^{r}\left(u_{2}^{p-1}\right)^{m}+\cdots+c_{k} u_{k}^{r}\left(u_{k}^{p-1}\right)^{m}-b .
$$

This extends to a p-adic analytic function $f_{r}(x)$ for $x \in \mathbf{Z}_{p}$, and the integers $n \equiv r \bmod p-1$ that satisfy (3.1) are of the form $(p-1) m+r$ where m is an integer such that $f_{r}(m)=0$.

A p-adic analytic function on \mathbf{Z}_{p} is either identically zero on \mathbf{Z}_{p} or has finitely many zeros on \mathbf{Z}_{p}. Therefore if, for each $r \in\{0,1, \ldots, p-2\}, f_{r}(m) \neq 0$ for some integer m, which means (3.1) is not true for some $n \equiv r \bmod p-1$, then each $f_{r}(x)$ has finitely many zeros in \mathbf{Z}_{p}, so (3.1) is true for only finitely many integers n (check separately for the integers in each congruence class modulo $p-1$).

Example 3.2. For an integer $n \geq 0$, the sum $(1+\sqrt{-2})^{n}+(1-\sqrt{-2})^{n}$ is an even number (terms associated to odd powers of $\sqrt{-2}$ from the binomial theorem cancel out in the sum). How often can this sum be 2? Small n where this happens are $n=0,1$, and 5 . In \mathbf{C}, since $|1+\sqrt{-2}|=|1-\sqrt{-2}|=\sqrt{3}>1$, the terms $(1+\sqrt{-2})^{n}$ and $(1-\sqrt{-2})^{n}$ are equally large for every n, and it's not obvious that the terms couldn't have a near-cancellation and add up to 2 again for some $n>5$. To investigate this, we want to interpret $1 \pm \sqrt{-2}$ in \mathbf{Z}_{p}^{\times}as a first step towards p-adically interpolating their powers, so we need -2 to be a square in \mathbf{Z}_{p}.

The first two primes p for which -2 is a square in \mathbf{Z}_{p}^{\times}are 3 and 11. In \mathbf{Z}_{3}^{\times}, we can take $\sqrt{-2}=1+3+2 \cdot 3^{2}+\cdots$ using Hensel's lemma. Then $1+\sqrt{-2} \in \mathbf{Z}_{3}^{\times}$but $1-\sqrt{-2} \in 3 \mathbf{Z}_{3}$, which is bad. In \mathbf{Z}_{11}^{\times}we can take $\sqrt{-2}=3+9 \cdot 11+4 \cdot 11^{2}+\cdots$, so $1+\sqrt{-2} \equiv 4 \not \equiv 0 \bmod 11$ and $1-\sqrt{-2} \equiv 9 \not \equiv 0 \bmod 11$. Therefore we have 11-adic analytic functions

$$
f_{r}(x)=(1+\sqrt{-2})^{r}\left((1+\sqrt{-2})^{10}\right)^{x}+(1-\sqrt{-2})^{r}\left((1-\sqrt{-2})^{10}\right)^{x}-2
$$

for $r=0, \ldots, 9 .{ }^{3}$ A direct calculation for each r shows $f_{r}(0) \neq f_{r}(1)\left(e . g ., f_{3}(0)=-12\right.$ and $\left.f_{3}(1)=2496\right)$. Therefore, qualitatively, each $f_{r}(x)$ has finitely many zeros in \mathbf{Z}_{11}, so the equation $(1+\sqrt{-2})^{n}+(1-\sqrt{-2})^{n}=2$ has only finitely many solutions in nonnegative integers n.

Using Strassmann's theorem about zeros of p-adic analytic functions for $f_{0}(x), \ldots, f_{9}(x)$ on \mathbf{Z}_{11}, it can be shown that $f_{0}(x), f_{1}(x)$, and $f_{5}(x)$ each have $x=0$ as their only zero in \mathbf{Z}_{11} while $f_{r}(x)$ has no zero in \mathbf{Z}_{11} for $r \in\{2,3,4,6,7,8,9\}$, so the only solutions of $(1+\sqrt{-2})^{n}+$ $(1-\sqrt{-2})^{n}=2$ in nonnegative integers are $n=0,1$, and 5 . See Theorem 1.1 in https:// kconrad.math.uconn.edu/blurbs/gradnumthy/strassmannapplication.pdf.

There is an analogue of Theorem 3.1 in \mathbf{Z}_{2} by looking separately at the exponents $n \bmod 2$ since $u \in \mathbf{Z}_{2}^{\times} \Rightarrow u^{2} \equiv 1 \bmod 8$ and a^{x} is a 2-adic analytic function of x when $a \equiv 1 \bmod 4 \mathbf{Z}_{2}$.

4. Theorem 1.3 using \mathbf{Q}_{31}

Let's return to (2.1):

$$
u_{1}^{n}+\omega u_{2}^{n}+\omega^{2} u_{3}^{n}=0,
$$

where $u_{1}=1+\sqrt[3]{2}+\sqrt[3]{4}, u_{2}=1+\sqrt[3]{2} \omega+\sqrt[3]{4} \omega^{2}$, and $u_{3}=1+\sqrt[3]{2} \omega^{2}+\sqrt[3]{4} \omega$. Our goal is to show the only solutions to this in integers is $n=0$ and $n=-1$.

View the equation in \mathbf{Q}_{31} where $\sqrt[3]{2}$ is the cube root of 2 in \mathbf{Z}_{31} with $\sqrt[3]{2} \equiv 4 \bmod 31$ and ω is the cube root of unity in \mathbf{Z}_{31} with $\omega \equiv 25 \bmod 31$. Then calculations show

$$
u_{1} \equiv 21 \bmod 31, \quad u_{2} \equiv 26 \bmod 31, \quad u_{3} \equiv 18 \bmod 31 .
$$

[^2]To study $u_{1}^{n}+\omega u_{2}^{n}+\omega^{2} u_{3}^{n}$ using 31-adic analytic functions, pick $r \in\{0,1, \ldots, 29\}$ and look at $u_{1}^{n}+\omega u_{2}^{n}+\omega^{2} u_{3}^{n}$ for $n=30 m+r$: define

$$
f_{r}(x)=u_{1}^{r}\left(u_{1}^{30}\right)^{x}+\omega u_{2}^{r}\left(u_{2}^{30}\right)^{x}+\omega^{2} u_{3}^{r}\left(u_{3}^{30}\right)^{x}
$$

for $x \in \mathbf{Z}_{31} \cdot{ }^{4}$ We want to study the zeros of each $f_{r}(x)$ in \mathbf{Z}_{31}.
For odd prime p and $a \in 1+p \mathbf{Z}_{p}, a^{x}=e^{(\log a) x}=\sum_{j \geq 0}\left((\log a)^{j} / j!\right) x^{j}$ is p-adic analytic on \mathbf{Z}_{p} with $\log a \in p \mathbf{Z}_{p}$ since $|\log a|_{p}=|a-1|_{p} \leq 1 / p$. Therefore $f_{r}(x)$ is a \mathbf{Z}_{31}-linear combination of three 31-adic analytic functions, so $f_{r}(x)$ is 31-adic analytic. The function $f_{r}(x)$ is not identically 0 since $f_{0}(1) \neq 0$ and $f_{r}(0) \neq 0$ for $1 \leq r \leq 29$, so Strassmann's theorem provides an upper bound on the number of zeros of $f_{r}(x)$ in $\mathbf{Z}_{31}: f_{r}(x)$ has at most N zeros in \mathbf{Z}_{31} where the N th power series coefficient of $f_{r}(x)$ has maximal 31-adic absolute value (minimal 31-adic valuation) and N is as large as possible. For example, if the constant term of $f_{r}(x)$ has larger 31-adic absolute value than the other coefficients, $N=0$ so $f_{r}(x)$ has no zero in \mathbf{Z}_{31}.

For odd prime p and $a \in 1+p \mathbf{Z}_{p}, \log a \in p \mathbf{Z}_{p}$ and $p^{j} / j!\in p \mathbf{Z}_{p}$ for $j \geq 1$, so every nonconstant coefficient of the p-adic power series for a^{x} is in $p \mathbf{Z}_{p}$. Therefore the nonconstant coefficients of $f_{r}(x)$ are all in $31 \mathbf{Z}_{31}$. The constant term of $f_{r}(x)$ is

$$
f_{r}(0)=u_{1}^{r}+\omega u_{2}^{r}+\omega^{2} u_{3}^{r} \equiv 21^{r}+25 \cdot 26^{r}+25^{2} 18^{r} \bmod 31
$$

Using a computer, $f_{r}(0) \not \equiv 0 \bmod 31$ except when $r=0,9,10,19,20,29$. Therefore by Strassmann's theorem, $f_{r}(x)$ has no zero in \mathbf{Z}_{31} if $r \neq 0,9,10,19,20,29$. What if r is 0,9 , $10,19,20$, or 29 ?

Since $f_{0}(0)=1+\omega+\omega^{2}=0, f_{0}(x)$ has a zero at $x=0$. When r is $9,10,19,20$, and 29 , a calculation shows the constant term $f_{r}(0)$ is divisible by 31 precisely once. The linear coefficient of $f_{r}(x)$ is

$$
\begin{equation*}
u_{1}^{r} \log \left(u_{1}^{30}\right)+\omega u_{2}^{r} \log \left(u_{2}^{30}\right)+\omega^{2} u_{3}^{r} \log \left(u_{3}^{30}\right) . \tag{4.1}
\end{equation*}
$$

For odd prime p and $a \in 1+p \mathbf{Z}_{p}, \log a=(a-1)+\sum_{j \geq 2}(-1)^{j-1}(a-1)^{j} / j$ and $(a-1)^{j} / j \in$ $p^{2} \mathbf{Z}_{p}$ for $j \geq 2$, so $\log a \equiv a-1 \bmod p^{2} \mathbf{Z}_{p}$. Therefore (4.1) is congruent to

$$
\begin{equation*}
u_{1}^{r}\left(u_{1}^{30}-1\right)+\omega u_{2}^{r}\left(u_{2}^{30}-1\right)+\omega^{2} u_{3}^{r}\left(u_{3}^{30}-1\right) \bmod 31^{2} \mathbf{Z}_{31} . \tag{4.2}
\end{equation*}
$$

For $r=0,9,10,19,20,29$, calculations show (4.2) is divisible by 31 but is not $0 \bmod 31^{2}$, so $f_{r}(x)$ has linear coefficient divisible by 31 precisely once.

For odd prime p and $a \in 1+p \mathbf{Z}_{p}, \log a \in p \mathbf{Z}_{p}$ and $p^{j} / j!\in p^{2} \mathbf{Z}_{p}$ for $j \geq 2$, so $(\log a)^{j} / j!\in$ $p^{2} \mathbf{Z}_{p}$ for $j \geq 2$. Thus the coefficients of every $f_{r}(x)$ in degree 2 and higher are in $31^{2} \mathbf{Z}_{31}$.

Combining the underlined information about 31-divisibility of power series coefficients with Strassmann's theorem, $f_{r}(x)$ has at most one zero in \mathbf{Z}_{31} for $r=0,9,10,19,20,29$. Using Hensel's lemma for power series converging on \mathbf{Z}_{31} instead of Strassmann's theorem for power series converging on $\mathbf{Z}_{31}, f_{r}(x)$ has a unique zero in \mathbf{Z}_{31} for $r=0,9,10,19,20,29$. The zero of $f_{0}(x)$ is $x=0$ (corresponding to (2.1) being zero at $n=0=30(0)+0$) and the zero of $f_{29}(x)$ is $x=-1$ (corresponding to (2.1) being zero at $n=-1=30(-1)+29$). We don't expect the zeros of $f_{r}(x)$ in \mathbf{Z}_{31} for $r=9,10,19$, or 20 to be integers, but that possibility can't be ruled out from the reasoning presented so far. Therefore by working in \mathbf{Z}_{31}, we have shown (2.1) is true for at most 6 integers n. To cut down the upper bound further, we will work in a p-adic completion for $p \neq 31$.

[^3]
5. THEOREM 1.3 USING 3 -ADIC POWERS

There is no cube root of 2 in \mathbf{Q}_{3} : if $\alpha^{3}=2$ then $|\alpha|_{3}^{3}=|2|_{3}=1$, so $|\alpha|_{3}=1: \alpha$ is in \mathbf{Z}_{3}^{\times}. Therefore we can reduce the equation $\alpha^{3}=2$ modulo 9 to get $\alpha^{3} \equiv 2 \bmod 9 \mathbf{Z}_{3}$. The cubes $\bmod 9$ are 0,1 , and 8 , so we have a contradiction. Thus $T^{3}-2$ is a cubic polynomial with no root in \mathbf{Q}_{3}, so $\mathbf{Q}_{3}(\sqrt[3]{2})$ is a cubic extension of \mathbf{Q}_{3} with basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$. There are no nontrivial cube roots of unity in $\mathbf{Q}_{3}(\sqrt[3]{2})$ since $\mathbf{Q}_{3}(\omega)=\mathbf{Q}_{3}(\sqrt{-3})$ is a quadratic extension of \mathbf{Q}_{3}, which can't lie in a cubic extension.

Just as the absolute value on \mathbf{R} has a unique extension to an absolute value on its quadratic extension \mathbf{C}, which is complete, the 3 -adic absolute value on \mathbf{Q}_{3} has a unique extension to an absolute value on its cubic extension $\mathbf{Q}_{3}(\sqrt[3]{2})$, which is complete. It is possible to give a formula for $|a+b \sqrt[3]{2}+c \sqrt[3]{4}|_{3}$, where $a, b, c \in \mathbf{Q}_{3}$, that is analogous to the formula $|a+b i|=\sqrt{a^{2}+b^{2}}$ for the absolute value of complex numbers. Here it is:

$$
|a+b \sqrt[3]{2}+c \sqrt[3]{4}|_{3}=\sqrt[3]{\left|a^{3}+2 b^{3}+4 c^{3}-6 a b c\right|_{3}}
$$

We will not discuss how to derive this formula or why it is an absolute value on $\mathbf{Q}_{3}(\sqrt[3]{2})$. The formula reveals a new phenomenon compared to absolute values on \mathbf{Q}_{3} : some numbers in $\mathbf{Q}_{3}(\sqrt[3]{2})$ have absolute value that is not an integral power of $1 / 3$: the nonzero numbers have 3 -adic absolute value $(1 / 3)^{n / 3}=(1 / \sqrt[3]{3})^{n}$ for some $n \in \mathbf{Z}$.

Example 5.1. Let $\pi=\sqrt[3]{2}+1$. Since $|\sqrt[3]{2}|_{3}=|2|_{3}=1,|\sqrt[3]{2}|_{3}^{3}=1$, so $|\sqrt[3]{2}|_{3}=1$. From the ultrametric inequality, $|\pi|_{3} \leq \max \left(|\sqrt[3]{2}|_{3},|1|_{3}\right)=1$. Expanding the left side of the equation $(\pi-1)^{3}=2$ and rearranging terms, we get $\pi^{3}-3 \pi^{2}+3 \pi-3=0$. Rewrite this as

$$
\pi^{3}=3\left(\pi^{2}-\pi+1\right)
$$

Therefore $|\pi|_{3}^{3}=(1 / 3)\left|\pi^{2}-\pi+1\right|_{3} \leq 1 / 3<1$, so $|\pi|_{3}<1$. Therefore $\left|\pi^{2}-\pi+1\right|_{3}=1$ by the ultrametric inequality, so $|\pi|_{3}^{3}=1 / 3$, which implies $|\pi|_{3}=1 / \sqrt[3]{3}$. Here $1 / \sqrt[3]{3}$ is a real number: absolute values live in \mathbf{R}, not in a 3 -adic field.

It can be shown that the closed unit ball in $\mathbf{Q}_{3}(\sqrt[3]{2})$, which is $\left\{y \in \mathbf{Q}_{3}(\sqrt[3]{2}):|y|_{3} \leq 1\right\}$, equals $\mathbf{Z}_{3}[\sqrt[3]{2}]$. We'll be using this later.

In $\mathbf{Z}[\sqrt[3]{2}]$, the unit $u=1+\sqrt[3]{2}+\sqrt[3]{4}$ has inverse $v=\sqrt[3]{2}-1$, so by working with powers of v we can reformulate Theorem 2.1 as follows: for $x, y \in \mathbf{Z}, x^{3}-2 y^{3}=1$ if and only if $x-y \sqrt[3]{2}=v^{n}$ for some $n \in \mathbf{Z}$. We want to find the integers n such that v^{n} written in the \mathbf{Q}_{3}-basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ has $\sqrt[3]{4}$-coefficient equal to 0 . We expect the only such n are $n=0$ (so $(x, y)=(1,0))$ and $n=1$ (so $(x, y)=(-1,-1)$). To prove this, we will 3 -adically interpolate the powers of v in $\mathbf{Q}_{3}(\sqrt[3]{2})$ and use Strassmann's theorem.

To interpolate powers a^{n} where a is in a p-adic field, we need $|a-1|_{p}<1$. Using Example 5.1 in the field $\mathbf{Q}_{3}(\sqrt[3]{2})$,

$$
v=\sqrt[3]{2}-1=\pi-2=1+(\pi-3)
$$

and $|\pi-3|_{3}=\max (1 / \sqrt[3]{3}, 1 / 3)=1 / \sqrt[3]{3}<1$, so $|v-1|_{3}=|\pi-3|_{3}<1$. Thus there is a 3 -adically continuous function

$$
v^{x}=\sum_{k \geq 0}(v-1)^{k}\binom{x}{k}
$$

where $x \in \mathbf{Z}_{3}$. However, v^{x} is not a 3-adic analytic function $\mathbf{Z}_{3} \rightarrow \mathbf{Q}_{3}(\sqrt[3]{2})$. When $|a-1|_{p}<$ 1, the condition for $a^{x}=\sum_{k \geq 0}(a-1)^{k}\binom{x}{k}$ to be p-adic analytic in x, not just p-adically continuous in x, is that $|a-1|_{p}<(1 / p)^{1 /(p-1)}$. For our example, where $a=v$ in $\mathbf{Q}_{3}(\sqrt[3]{2})$,
$|a-1|_{3}=|v-1|_{3}=|\pi-3|_{3}=(1 / 3)^{1 / 3}>(1 / 3)^{1 / 2}$. Taking a 3rd power of v will improve the situation:

$$
\begin{equation*}
v^{3}=(\sqrt[3]{2}-1)^{3}=2-3 \sqrt[3]{4}+3 \sqrt[3]{2}-1=1+3(\sqrt[3]{2}-\sqrt[3]{4})=1-3 \sqrt[3]{2} v \Longrightarrow\left|v^{3}-1\right|_{3}=\frac{1}{3} \tag{5.1}
\end{equation*}
$$

Therefore $\left(v^{3}\right)^{x}$ is 3 -adic analytic in x, so we'll look at the powers v^{n} with n restricted to a congruence class mod 3: For $r \in\{0,1,2\}$, set $f_{r}(x)=v^{r}\left(v^{3}\right)^{x}$ where $x \in \mathbf{Z}_{3}$. This is 3-adic analytic in x, and for $m \in \mathbf{Z}$ we have $f_{r}(m)=v^{r}\left(v^{3}\right)^{m}=v^{3 m+r}$.

We will study v^{n} for $n \in \mathbf{Z}$ by studying the three 3-adic analytic functions $f_{r}: \mathbf{Z}_{3} \rightarrow$ $\mathbf{Q}_{3}(\sqrt[3]{2})$, which each interpolate one of the sequences $v^{3 m+r}$ (r being fixed). Write $f_{r}(x)$ as a power series in x :

$$
\begin{equation*}
f_{r}(x)=v^{r}\left(v^{3}\right)^{x}=v^{r} e^{x \log \left(v^{3}\right)}=v^{r} \sum_{k \geq 0} \frac{\left(\log \left(v^{3}\right)\right)^{k}}{k!} x^{k} \tag{5.2}
\end{equation*}
$$

Write $\left(\log \left(v^{3}\right)\right)^{k} / k!$ in terms of its coefficients in the \mathbf{Q}_{3}-basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ of $\mathbf{Q}_{3}(\sqrt[3]{2})$:

$$
\frac{\left(\log \left(v^{3}\right)\right)^{k}}{k!}=a_{k}+b_{k} \sqrt[3]{2}+c_{k} \sqrt[3]{4}
$$

where $a_{k}, b_{k}, c_{k} \in \mathbf{Q}_{3}$. Plugging this into (5.2),

$$
\begin{aligned}
f_{r}(x) & =v^{r} \sum_{k \geq 0}\left(a_{k}+b_{k} \sqrt[3]{2}+c_{k} \sqrt[3]{4}\right) x^{k} \\
& =v^{r} \sum_{k \geq 0}\left(a_{k} x^{k}+b_{k} x^{k} \sqrt[3]{2}+c_{k} x^{k} \sqrt[3]{4}\right) \\
& =v^{r}\left(\left(\sum_{k \geq 0} a_{k} x^{k}\right)+\left(\sum_{k \geq 0} b_{k} x^{k}\right) \sqrt[3]{2}+\left(\sum_{k \geq 0} c_{k} x^{k}\right) \sqrt[3]{4}\right) .
\end{aligned}
$$

(In $\mathbf{Q}_{3}(\sqrt[3]{2})$, a sequence tends to 0 if and only if its 3 sequences of coefficients in the basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ each tend to 0 in \mathbf{Q}_{3}. That justifies splitting up the power series into a sum of three power series multiplied by the basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$.) Since v^{r} is either $1,-1+\sqrt[3]{2}$, or $1-2 \sqrt[3]{2}+\sqrt[3]{4}$, the coefficients of $f_{r}(x)$ in the basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ are each 3 -adic analytic functions. Therefore $f_{r}(x) \in \mathbf{Q}_{3}+\mathbf{Q}_{3} \sqrt[3]{2}$ for an x if and only if its $\sqrt[3]{4}$-coefficient is 0 , which is equivalent to the vanishing of a 3 -adic analytic function $\mathbf{Z}_{3} \rightarrow \mathbf{Q}_{3}$ at x.

Since $\left|v^{3}-1\right|_{3}=1 / 3$, in the 3 -adic power series

$$
\left(v^{3}\right)^{x}=e^{x \log \left(v^{3}\right)}=1+\left(\log \left(v^{3}\right)\right) x+\sum_{k \geq 2} \frac{\left(\log \left(v^{3}\right)\right)^{k}}{k!} x^{k}
$$

for $x \in \mathbf{Z}_{3}$, we have $\left|\log \left(v^{3}\right)\right|_{3}=\left|v^{3}-1\right|_{3}=1 / 3$, so the coefficient of x^{k} is divisible by 9 when $k \geq 2$. Therefore

$$
\begin{equation*}
\left(v^{3}\right)^{x}=1+\left(\log \left(v^{3}\right)\right) x+9 x^{2} g(x) \tag{5.3}
\end{equation*}
$$

where $g(x)$ is a power series converging on \mathbf{Z}_{3} with coefficients in $\mathbf{Q}_{3}(\sqrt[3]{2})$ of absolute value at most 1 that tend to 0 . Also

$$
\log \left(v^{3}\right)=\left(v^{3}-1\right)+\sum_{k \geq 2}(-1)^{k-1} \frac{\left(v^{3}-1\right)^{k}}{k}
$$

and $\left|v^{3}-1\right|_{3}=1 / 3 \Rightarrow\left|\left(v^{3}-1\right)^{k} / k\right|_{3} \leq 1 / 9$ for $k \geq 2$, so $\log \left(v^{3}\right) \equiv v^{3}-1 \bmod 9$. Plugging this into (5.3),

$$
\left(v^{3}\right)^{x}=1+\left(v^{3}-1\right) x+9 x h(x),
$$

where $h(x)$ is a power series converging on \mathbf{Z}_{3} with coefficients in $\mathbf{Q}_{3}(\sqrt[3]{2})$ of absolute value at most 1 that tend to 0 . Since $\left\{y \in \mathbf{Q}_{3}(\sqrt[3]{2}):|y|_{3} \leq 1\right\}=\mathbf{Z}_{3}[\sqrt[3]{2}]$, which was mentioned earlier, the coefficients of $h(x)$ are all in $\mathbf{Z}_{3}[\sqrt[3]{2}]$. From $(5.1), v^{3}-1=3(\sqrt[3]{2}-\sqrt[3]{4})$, so

$$
\begin{equation*}
\left(v^{3}\right)^{x}=1+3(\sqrt[3]{2}-\sqrt[3]{4}) x+9 x h(x)=1+3 x \sqrt[3]{2}-3 x \sqrt[3]{4}+9 x h(x) \tag{5.4}
\end{equation*}
$$

We will use (5.4) to bound the number of zeros in \mathbf{Z}_{3} of the $\sqrt[3]{4}$-coefficient of the function $f_{r}(x)=v^{r}\left(v^{3}\right)^{x}$ when $r=0,1$, and 2 .

Case 1: $r=0$.
By (5.4), the $\sqrt[3]{4}$-coefficient of the power series for $f_{0}(x)=\left(v^{3}\right)^{x}$ is $-3 x+9 x k_{0}(x)$ for a power series $k_{0}(x)$ on \mathbf{Z}_{3} with \mathbf{Z}_{3}-coefficients that tend to 0. By Strassmann's theorem, $-3 x+9 x k_{0}(x)$ has at most one zero in \mathbf{Z}_{3}. The choice $x=0$ works, so it is the only zero in \mathbf{Z}_{3}.

Case 2: $r=1$.
Since $f_{1}(x)=v\left(v^{3}\right)^{x}$, multiply (5.4) by v :

$$
\begin{aligned}
v(1+3 x \sqrt[3]{2}-3 x \sqrt[3]{4}+9 x h(x)) & =(\sqrt[3]{2}-1)(1+3 x \sqrt[3]{2}-3 x \sqrt[3]{4}+9 x h(x)) \\
& =(-1-6 x)+(1-3 x) \sqrt[3]{2}+(6 x) \sqrt[3]{4}+9 v x h(x)
\end{aligned}
$$

so the $\sqrt[3]{4}$-coefficient of the power series for $f_{1}(x)$ is $6 x+9 x k_{1}(x)$ for a power series $k_{1}(x)$ on \mathbf{Z}_{3} with \mathbf{Z}_{3}-coefficients that tend to 0 . By Strassmann's theorem, $6 x+9 x k_{1}(x)$ has at most one zero in \mathbf{Z}_{3}. The choice $x=0$ works, so it is the only zero in \mathbf{Z}_{3}.

Case 3: $r=2$.
Since $f_{2}(x)=v^{2}\left(v^{3}\right)^{x}$, multiply (5.4) by v^{2} :

$$
\begin{aligned}
v^{2}(1+3 x \sqrt[3]{2}-3 x \sqrt[3]{4}+9 x h(x)) & =(\sqrt[3]{2}-1)^{2}(1+3 x \sqrt[3]{2}-3 x \sqrt[3]{4}+9 x h(x)) \\
& =(1-2 \sqrt[3]{2}+\sqrt[3]{4})(1+3 x \sqrt[3]{2}-3 x \sqrt[3]{4}+9 x h(x)) \\
& =(1+18 x)+(-2-3 x) \sqrt[3]{2}+(1-9 x) \sqrt[3]{4}+9 v^{2} x h(x)
\end{aligned}
$$

so the $\sqrt[3]{4}$-coefficient of the power series for $f_{2}(x)$ is $1-9 x k_{2}(x)$ for a power series $k_{2}(x)$ on \mathbf{Z}_{3} with \mathbf{Z}_{3}-coefficients that tend to 0 . By Strassmann's theorem, $1-9 x k_{2}(x)$ has no zero in \mathbf{Z}_{3}.

From all three cases, $f_{0}(x)$ and $f_{1}(x)$ each have a zero in \mathbf{Z}_{3} only at $x=0$ and $f_{2}(x)$ has no zero in \mathbf{Z}_{3}. That implies the only (r, x) with $r \in\{0,1,2\}$ and $x \in \mathbf{Z}_{3}$ such that $v^{r}\left(v^{3}\right)^{x}$ has its $\sqrt[3]{4}$-coefficient equal to 0 are $(r, x)=(0,0)$ and $(1,0)$, so $3 m+x$ is 0 and 1 . Therefore the only positive units in $\mathbf{Z}[\sqrt[3]{2}]$ with $\sqrt[3]{4}$-coefficient 0 are $v^{0}=1$ and $v^{1}=v=-1+\sqrt[3]{2}$, which proves Theorem 1.3.

Appendix A. Thue's theorem

In this appendix we describe a different approach to the integral solutions of $x^{3}-d y^{3}=1$, which historically was the original method and it goes back to Thue.

Theorem A. 1 (Thue, 1909). Let d be a nonzero integer. For each nonzero $m \in \mathbf{Z}$, the equation $x^{3}-d y^{3}=m$ has finitely many integral solutions (x, y).

Thue's actual theorem is a general finiteness theorem for integral solutions of certain two-variable polynomial equations $f(x, y)=m$ where $\operatorname{deg} f \geq 3$. We focus on the special case $f(x, y)=x^{3}-d y^{3}$ for simplicity.

Proof. If $y=0$ then $x^{3}=m$, which has at most one solution for x, so we can now assume $y \neq 0$.

If d is a perfect cube in \mathbf{Z}, say $d=c^{3}$, then $x^{3}-(c y)^{3}=m$, so $(x-c y)\left(x^{2}+c x y+c^{2} y^{2}\right)=m$. This makes $x-c y$ a factor of m. For each factor $f, x=c y+f$, so $(c y+f)^{3}-d y^{3}=m$. This
equation simplifies to $\left(3 c^{2} f\right) y^{2}+\left(3 c f^{2}\right) y+\left(f^{3}-m\right)=0$ since $c^{3}=d$, and this quadratic equation has at most two solutions y for each f. Thus $x^{3}-d y^{3}=m$ has finitely many integral solutions if d is a perfect cube.

Now suppose d is not a perfect cube, so $\sqrt[3]{d}$ is irrational in R. Factor $x^{3}-d y^{3}$ as $(x-\sqrt[3]{d} y)(x-\sqrt[3]{d} \omega y)\left(x-\sqrt[3]{d} \omega^{2} y\right)$, so

$$
x^{3}-d y^{3}=m \Longrightarrow\left(\frac{x}{y}-\sqrt[3]{d}\right)\left(\frac{x}{y}-\sqrt[3]{d} \omega\right)\left(\frac{x}{y}-\sqrt[3]{d} \omega^{2}\right)=\frac{m}{y^{3}}
$$

Taking absolute values,

$$
\left|\frac{x}{y}-\sqrt[3]{d}\right|\left|\frac{x}{y}-\sqrt[3]{d} \omega\right|\left|\frac{x}{y}-\sqrt[3]{d} \omega^{2}\right|=\frac{|m|}{|y|^{3}}
$$

On the left side, the second and third factors have positive lower bounds since x / y does not interact with the imaginary parts of $\sqrt[3]{d} \omega=\sqrt[3]{d}(-1 / 2+\sqrt{3} i / 2)$ and $\sqrt[3]{d} \omega^{2}=\sqrt[3]{d}(-1 / 2-$ $\sqrt{3} i / 2)$, so

$$
\left|\frac{x}{y}-\sqrt[3]{d}\right| \frac{3 \sqrt[3]{d}}{4} \leq \frac{|m|}{|y|^{3}}
$$

Thus

$$
\left|\frac{x}{y}-\sqrt[3]{d}\right| \leq \frac{(4 / 3)|m| / \sqrt[3]{d}^{2}}{|y|^{3}}=\frac{K}{|y|^{3}}
$$

where $K=(4 / 3)|m| / \sqrt[3]{d}^{2}$ depends on d and m but not on x or y.
Thue proved that for every $\varepsilon>0$ and real algebraic irrational α of degree $n \geq 3$, there is $C=C_{\alpha, \varepsilon}>0$ such that $|x / y-\alpha| \geq C /|y|^{n / 2+1+\varepsilon}$ for all rational x / y. Taking $\alpha=\sqrt[3]{d}$, so $n=3$, the exponent $n / 2+1+\varepsilon=2.5+\varepsilon$ is less than 3 if $\varepsilon<1 / 2$. In this case, if $x^{3}-d y^{3}=m$ then $C /|y|^{2.5+\varepsilon} \leq|x / y-\sqrt[3]{d}| \leq K /|y|^{3}$, so $|y|^{.5-\varepsilon} \leq K / C$, which has finitely many solutions in y. For each y there is at most one x such that $x^{3}-d y^{3}=m$, so the equation $x^{3}-d y^{3}=m$ has finitely many integral solutions.

Thue's proof does not give upper bounds on the magnitude of $|x|$ or $|y|$ in an integral solution of $x^{3}-d y^{3}=m$ (when d is not a perfect cube) since the constant $C_{\alpha, \varepsilon}$ at the end of the proof is not explicit. Therefore Thue's work is fundamentally ineffective: it proved an equation has finitely many solutions in \mathbf{Z} but gives no method of finding all the solutions in Z. Decades later, work of Baker and Coates on linear forms in logarithms led to upper bounds on $|x|$ and $|y|$ that are explicit, but the size of the bounds in terms of $|d|$ and $|m|$ often makes them impractical. The p-adic method leads to more practical bounds when it can be applied.

References

[1] J. W. S. Cassels, "Local Fields," Cambridge Univ. Press, 1986.
[2] B. N. Delaunay, La solution générale de l'équation $X^{3} \rho+Y^{3}=1$, Comptes Rendus Acad. Sci. Paris 162 (1916), 150-151. Online at https://www.biodiversitylibrary.org/item/30710\#page/156/mode/1up. ${ }^{5}$
[3] A. Fröhlich and M. J. Taylor, "Algebraic Number Theory," Cambridge Univ. Press, 1993.
[4] L. Euler, "Elements of Algebra," 1770. English translation online at http://www.17centurymaths.com/ contents/euleralgebra.htm.
[5] W. J. Leveque, "Topics in Number Theory, Volume II," Addison-Wesley, 1956.
[6] T. Nagell, Solution complète de quelques équations cubiques à deux indéterminées, J. Math. Pures et Appl. 4 (1925), 209-270. Online at http://sites.mathdoc.fr/JMPA/PDF/JMPA_1925_9_4_A6_0.pdf.
[7] N. P. Smart, "The Algorithmic Resolution of Diophantine Equations," Cambridge Univ. Press, 1998.

[^4]
[^0]: ${ }^{1}$ Delaunay also wrote his name as Delone. He was Russian and the CIA prepared a once-classified list of his work up to 1950. See https://www.cia.gov/library/readingroom/docs/CIA-RDP82-00039R0001000 90012-9.pdf.

[^1]: ${ }^{2}$ The polynomial $T^{3}-2$ is irreducible over \mathbf{Q}_{2} and \mathbf{Q}_{3}.

[^2]: ${ }^{3}$ Since $4 \bmod 11$ and $9 \bmod 11$ have order 5 , we could take 11 -adic powers of $(1 \pm \sqrt{-2})^{5}$ and thereby cut down the number of 11 -adic analytic functions under consideration from 10 down to 5 .

[^3]: ${ }^{4}$ Since $21 \bmod 31$ has order 30 , we can't use an exponent smaller than 30 in the terms of $f_{r}(x)$.

[^4]: ${ }^{5}$ This is a short announcement of the result. Details were given earlier in several papers in Russian. See papers $37,38,39$, and 40 at http://www.mathnet.ru/php/person.phtml?personid=25811\&option_lang=eng.

