
INTEGRAL SOLUTIONS OF x3 − 2y3 = 1

KEITH CONRAD

1. Introduction

For each positive integer d that is not a perfect square, Pell’s equation x2 − dy2 = 1 has
infinitely many solutions in integers. For example, the integral solutions of x2 − 2y2 = 1
are (±xn,±yn) where xn + yn

√
2 = (3 + 2

√
2)n for n ∈ Z. Values of xn and yn for small |n|

are in Table 1.

n 0 1 2 3 −1 −2 −3
xn 1 3 17 99 3 17 99
yn 0 2 12 70 −2 −12 −70

Table 1. Coefficients of (3 + 2
√

2)n.

If the exponent in Pell’s equation is increased from 2 to 3, so we are looking at x3−dy3 = 1,
then the description of its integral solutions changes dramatically.

Theorem 1.1 (Delaunay, Nagell). For nonzero d ∈ Z, x3 − dy3 = 1 has at most one
solution in Z besides (1, 0).

Table 2 lists small d > 0 for which there is a solution besides (1, 0). Replacing d with −d
has no real effect on solutions, since x3 + dy3 = x3 − d(−y)3.

d 2 7 17 19 20 26 28 37 43 63
x −1 2 18 −8 −19 3 −3 10 −7 4
y −1 1 7 −3 −7 1 −1 3 −2 1

Table 2. Ten d for which x3 − dy3 = 1 has an integral solution besides (1, 0).

Remark 1.2. Theorem 1.1 is about integral solutions, not rational solutions. The equa-
tion x3 − 7y3 = 1 has infinitely many rational solutions besides (1, 0) and (2, 1), such
as (1/2,−1/2) and (17/73,−38/73). In contrast to this, the only rational solutions to
x3 − 2y3 = 1 are its two integral solutions (1, 0) and (−1,−1). That is due to Euler [4,
Part II, Sect. II, § 247], who showed the integral solutions to a3 − b3 = 2c3 are (a, a, 0) and
(a,−a, a) (take x = a/b and y = c/b if b 6= 0) in connection with his work [4, Part II, Sect. II,
§ 243] on Fermat’s Last Theorem for exponent 3.

That x3 − dy3 = 1 has finitely many integral solutions was first proved by Thue (1909)
using an approximation theorem for irrational algebraic numbers by rational numbers, and
his proof in fact shows x3 − dy3 = m has finitely many integral solutions for each nonzero
integer m. See Section A. That x3−dy3 = 1 has at most one integral solution besides (1, 0)
is due independently to Delaunay1 [2] and Nagell [6]. Their proofs are largely algebraic,

1Delaunay also wrote his name as Delone. He was Russian and the CIA prepared a once-classified list
of his work up to 1950. See https://www.cia.gov/library/readingroom/docs/CIA-RDP82-00039R0001000

90012-9.pdf.
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https://www.cia.gov/library/readingroom/docs/CIA-RDP82-00039R000100090012-9.pdf
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and such a proof of Theorem 1.1 is in [3, Sect. VII.3] and [5, Sect. 3-9]. A proof of Theorem
1.1 using both algebraic and p-adic arguments, due to Skolem, is in [1, pp. 223–226]. We
will use Skolem’s ideas to prove Theorem 1.1 in the special case d = 2, based partly on [7,
pp. 34–35]. Here is our goal.

Theorem 1.3. The only integral solutions to x3 − 2y3 = 1 are (1, 0) and (−1,−1).

2. Reducing Theorem 1.3 to the vanishing of an exponential expression

Theorem 2.1. Let u = 1 + 3
√

2 + 3
√

4 and ω be a nontrivial cube root of unity. The
Q-conjugates of u are u1 = u, u2 = 1 + 3

√
2ω + 3

√
4ω2, and u3 = 1 + 3

√
2ω2 + 3

√
4ω.

For x, y ∈ Z, x3 − 2y3 = 1 if and only if x− y 3
√

2 = un, where the integer n satisfies

(2.1) un1 + ωun2 + ω2un3 = 0.

Proof. There are three embeddings of Q( 3
√

2) into C, determined by 3
√

2 7→ 3
√

2, 3
√

2 7→ 3
√

2ω,
and 3

√
2 7→ 3

√
2ω2. Under these embeddings, the corresponding images of u are u1, u2, and

u3 as in the statement of the theorem, so these are the Q-conjugates of u. By a calculation,
u1u2u3 = 1.

If x3 − 2y3 = 1 then

(2.2) (x− y 3
√

2)(x2 + xy
3
√

2 + y2
3
√

4) = 1,

so x−y 3
√

2 is a unit in Z[ 3
√

2]. Since x2 +xy 3
√

2 +y2 3
√

4 = (x+y 3
√

2/2)2 + (3/4)(y 3
√

2)2 > 0,
x− y 3

√
2 > 0 by (2.2).

It can be shown using algebraic number theory that the units in Z[ 3
√

2] are the powers
of u up to sign: Z[ 3

√
2]× = ±uZ. Therefore x− y 3

√
2 = ±un for some n ∈ Z. Since the left

side is positive and u > 0, the sign on the right side is +, so x− y 3
√

2 = un.
Conversely, suppose x− y 3

√
2 = un for some n ∈ Z. Applying to this equation the three

embeddings of Q( 3
√

2) into C, we get x− y 3
√

2 = un1 , x− y 3
√

2ω = un2 and x− y 3
√

2ω2 = un3 .
Therefore

x3 − 2y3 = (x− y 3
√

2)(x− y 3
√

2ω)(x− y 3
√

2ω2) = un1u
n
2u

n
3 = (u1u2u3)

n = 1.

It remains to determine which powers un have the form x− y 3
√

2. The key point is that
Z[ 3
√

2] = Z + Z 3
√

2 + Z 3
√

4 has a Z-basis of size 3, so for all n ∈ Z,

(2.3) un = an + bn
3
√

2 + cn
3
√

4

where an, bn, cn ∈ Z. To have un of the form x− y 3
√

2 means cn = 0 (and x = an, y = −bn).
We seek a formula for cn. Apply to (2.3) each embedding of Q( 3

√
2) into C:

un1 = an + bn
3
√

2 + cn
3
√

4,

un2 = an + bn
3
√

2ω + cn
3
√

4ω2,

un3 = an + bn
3
√

2ω2 + cn
3
√

4ω.

Therefore un1un2
un3

 =

1 3
√

2 3
√

4

1 3
√

2ω 3
√

4ω2

1 3
√

2ω2 3
√

4ω

anbn
cn

 .

Inverting the 3× 3 matrix,anbn
cn

 =

 1/3 1/3 1/3

1/(3 3
√

2) 1/(3 3
√

2ω) 1/(3 3
√

2ω2)

1/(3 3
√

4) 1/(3 3
√

4ω) 1/(3 3
√

4ω2)

un1un2
un3

 ,
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so

cn =
un1 + ωun2 + ω2un3

3 3
√

4
.

Therefore cn = 0 if and only if un1 + ωun2 + ω2un3 = 0. �

We now want to find every integer n such that (2.1) is satisfied. Since u1 ≈ 3.847 and
|u2| = |u3| ≈ .5098, when n ≥ 1 we can’t have un1 = −ωun2−ω2un3 since the left side is greater
than 3 while the right side is smaller by the triangle inequality. If n = 0 and n = −1 then
(2.1) is true and we have x3−2y3 = 1 where x−y 3

√
2 = u0 = 1 or x−y 3

√
2 = u−1 = −1+ 3

√
2:

(x, y) is (1, 0) or (−1,−1). We don’t expect (2.1) to hold for integers n ≤ −2, but this is
not easy to see because when n < 0, (2.1) involves positive powers of 1/u1, 1/u2, and 1/u3
where 1/u1 ≈ .259 while |1/u2| = |1/u3| ≈ 1.96: if n < 0 then there are two dominant
terms of equal absolute value on the left side of (2.1), so we need to rule out the possibility
that there is a nearly total cancellation of dominant terms that could make (2.1) hold for
n < −1. To achieve this, instead of looking at (2.1) in C, we will look at it in Qp for
a suitable choice of p. Since (2.1) is a purely algebraic equation, it can be viewed in an
arbitrary field of characteristic 0 containing a cube root of 2 and nontrivial cube roots of
unity, or equivalently three different cube roots of 2.

To interpret 3
√

2 and ω as p-adic numbers means the polynomial T 3 − 2 has to split
completely in Qp. For p > 3, Hensel’s lemma tells us that T 3 − 2 splits completely in Qp if
T 3 − 2 splits completely mod p.2 The first few such p are 31, 43, and 109. For example,

T 3 − 2 ≡ (T − 4)(T − 7)(T − 20) mod 31

and in Q31 the polynomial T 3 − 2 has roots r1, r2, and r3 where

r1 = 4 + 9 · 31 + 4 · 312 + · · · , r2 = 7 + 13 · 31 + 29 · 312 + · · · , r3 = 20 + 8 · 31 + 28 · 312 + · · · .
In Q31 the nontrivial cube roots of unity are r2/r1 = 25 + 16 · 31 + 6 · 312 + · · · and
r3/r1 = 5 + 14 · 31 + 24 · 312 + · · · . If we denote r1 by 3

√
2 and r2/r1 by ω then r2 = 3

√
2ω

and r3 = 3
√

2ω2 in Z31.

3. A finiteness theorem on linear combinations of powers in Zp

We have shown the only integral solutions to x3 − 2y3 = 1 are (x, y) = (1, 0) and
(x, y) = (−1,−1) when the only n ∈ Z satisfying the exponential relation (2.1) are n = 0
and n = −1. The following theorem uses p-adic power series to give conditions under which
such an exponential relation has finitely many solutions.

Theorem 3.1. Let p be an odd prime. Fix u1, . . . , uk ∈ Z×
p and c1, . . . , ck, b ∈ Zp. The

equation

(3.1) c1u
n
1 + c2u

n
2 + · · ·+ cku

n
k = b

is true for only finitely many integers n if, for each r ∈ {0, 1, . . . , p − 2}, the left side of
(3.1) is not b for some n ≡ r mod p− 1.

Proof. For a ∈ Z×
p with a ≡ 1 mod pZp, the powers an for n ∈ Z interpolate to a p-adic

analytic function ax for x ∈ Zp: ax = ex log a =
∑

j≥0(log a)j/j!)xj . For u ∈ Z×
p with

u 6≡ 1 mod p, the sequence un for n ∈ Z does not p-adically interpolate (it is not p-adically
continuous in n), but if we focus on exponents in one congruence class mod p − 1 then
the problem goes away: up−1 ≡ 1 mod p, so when n = (p − 1)m + r for a fixed remainder
r ∈ {0, 1, . . . , p− 2},

un = u(p−1)mur = ur(up−1)m,

2The polynomial T 3 − 2 is irreducible over Q2 and Q3.
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and we can p-adically interpolate the right side as a function of m since up−1 ≡ 1 mod p.
For r = 0, 1, . . . , p− 2, set

fr(m) = c1u
r
1(u

p−1
1 )m + c2u

r
2(u

p−1
2 )m + · · ·+ cku

r
k(u

p−1
k )m − b.

This extends to a p-adic analytic function fr(x) for x ∈ Zp, and the integers n ≡ r mod p−1
that satisfy (3.1) are of the form (p− 1)m+ r where m is an integer such that fr(m) = 0.

A p-adic analytic function on Zp is either identically zero on Zp or has finitely many zeros
on Zp. Therefore if, for each r ∈ {0, 1, . . . , p − 2}, fr(m) 6= 0 for some integer m, which
means (3.1) is not true for some n ≡ r mod p − 1, then each fr(x) has finitely many zeros
in Zp, so (3.1) is true for only finitely many integers n (check separately for the integers in
each congruence class modulo p− 1). �

Example 3.2. For an integer n ≥ 0, the sum (1 +
√
−2)n + (1−

√
−2)n is an even number

(terms associated to odd powers of
√
−2 from the binomial theorem cancel out in the sum).

How often can this sum be 2? Small n where this happens are n = 0, 1, and 5. In C, since
|1 +
√
−2| = |1−

√
−2| =

√
3 > 1, the terms (1 +

√
−2)n and (1−

√
−2)n are equally large

for every n, and it’s not obvious that the terms couldn’t have a near-cancellation and add
up to 2 again for some n > 5. To investigate this, we want to interpret 1±

√
−2 in Z×

p as a
first step towards p-adically interpolating their powers, so we need −2 to be a square in Zp.

The first two primes p for which −2 is a square in Z×
p are 3 and 11. In Z×

3 , we can take√
−2 = 1 + 3 + 2 · 32 + · · · using Hensel’s lemma. Then 1 +

√
−2 ∈ Z×

3 but 1−
√
−2 ∈ 3Z3,

which is bad. In Z×
11 we can take

√
−2 = 3+9 ·11+4 ·112+ · · · , so 1+

√
−2 ≡ 4 6≡ 0 mod 11

and 1−
√
−2 ≡ 9 6≡ 0 mod 11. Therefore we have 11-adic analytic functions

fr(x) = (1 +
√
−2)r((1 +

√
−2)10)x + (1−

√
−2)r((1−

√
−2)10)x − 2

for r = 0, . . . , 9.3 A direct calculation for each r shows fr(0) 6= fr(1) (e.g., f3(0) = −12
and f3(1) = 2496). Therefore, qualitatively, each fr(x) has finitely many zeros in Z11, so
the equation (1 +

√
−2)n + (1−

√
−2)n = 2 has only finitely many solutions in nonnegative

integers n.
Using Strassmann’s theorem about zeros of p-adic analytic functions for f0(x), . . . , f9(x)

on Z11, it can be shown that f0(x), f1(x), and f5(x) each have x = 0 as their only zero in Z11

while fr(x) has no zero in Z11 for r ∈ {2, 3, 4, 6, 7, 8, 9}, so the only solutions of (1+
√
−2)n+

(1−
√
−2)n = 2 in nonnegative integers are n = 0, 1, and 5. See Theorem 1.1 in https://

kconrad.math.uconn.edu/blurbs/gradnumthy/strassmannapplication.pdf.

There is an analogue of Theorem 3.1 in Z2 by looking separately at the exponents n mod 2
since u ∈ Z×

2 ⇒ u2 ≡ 1 mod 8 and ax is a 2-adic analytic function of x when a ≡ 1 mod 4Z2.

4. Theorem 1.3 using Q31

Let’s return to (2.1):

un1 + ωun2 + ω2un3 = 0,

where u1 = 1 + 3
√

2 + 3
√

4, u2 = 1 + 3
√

2ω + 3
√

4ω2, and u3 = 1 + 3
√

2ω2 + 3
√

4ω. Our goal is
to show the only solutions to this in integers is n = 0 and n = −1.

View the equation in Q31 where 3
√

2 is the cube root of 2 in Z31 with 3
√

2 ≡ 4 mod 31
and ω is the cube root of unity in Z31 with ω ≡ 25 mod 31. Then calculations show

u1 ≡ 21 mod 31, u2 ≡ 26 mod 31, u3 ≡ 18 mod 31.

3Since 4 mod 11 and 9 mod 11 have order 5, we could take 11-adic powers of (1±
√
−2)5 and thereby cut

down the number of 11-adic analytic functions under consideration from 10 down to 5.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/strassmannapplication.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/strassmannapplication.pdf
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To study un1 +ωun2 +ω2un3 using 31-adic analytic functions, pick r ∈ {0, 1, . . . , 29} and look
at un1 + ωun2 + ω2un3 for n = 30m+ r: define

fr(x) = ur1(u
30
1 )x + ωur2(u

30
2 )x + ω2ur3(u

30
3 )x

for x ∈ Z31.
4 We want to study the zeros of each fr(x) in Z31.

For odd prime p and a ∈ 1 + pZp, a
x = e(log a)x =

∑
j≥0((log a)j/j!)xj is p-adic analytic

on Zp with log a ∈ pZp since | log a|p = |a − 1|p ≤ 1/p. Therefore fr(x) is a Z31-linear
combination of three 31-adic analytic functions, so fr(x) is 31-adic analytic. The function
fr(x) is not identically 0 since f0(1) 6= 0 and fr(0) 6= 0 for 1 ≤ r ≤ 29, so Strassmann’s
theorem provides an upper bound on the number of zeros of fr(x) in Z31: fr(x) has at
most N zeros in Z31 where the Nth power series coefficient of fr(x) has maximal 31-adic
absolute value (minimal 31-adic valuation) and N is as large as possible. For example, if the
constant term of fr(x) has larger 31-adic absolute value than the other coefficients, N = 0
so fr(x) has no zero in Z31.

For odd prime p and a ∈ 1 + pZp, log a ∈ pZp and pj/j! ∈ pZp for j ≥ 1, so every
nonconstant coefficient of the p-adic power series for ax is in pZp. Therefore the nonconstant
coefficients of fr(x) are all in 31Z31. The constant term of fr(x) is

fr(0) = ur1 + ωur2 + ω2ur3 ≡ 21r + 25 · 26r + 25218r mod 31

Using a computer, fr(0) 6≡ 0 mod 31 except when r = 0, 9, 10, 19, 20, 29. Therefore by
Strassmann’s theorem, fr(x) has no zero in Z31 if r 6= 0, 9, 10, 19, 20, 29. What if r is 0, 9,
10, 19, 20, or 29?

Since f0(0) = 1 + ω + ω2 = 0, f0(x) has a zero at x = 0. When r is 9, 10, 19, 20, and
29, a calculation shows the constant term fr(0) is divisible by 31 precisely once. The linear

coefficient of fr(x) is

(4.1) ur1 log(u301 ) + ωur2 log(u302 ) + ω2ur3 log(u303 ).

For odd prime p and a ∈ 1 +pZp, log a = (a− 1) +
∑

j≥2(−1)j−1(a− 1)j/j and (a− 1)j/j ∈
p2Zp for j ≥ 2, so log a ≡ a− 1 mod p2Zp. Therefore (4.1) is congruent to

(4.2) ur1(u
30
1 − 1) + ωur2(u

30
2 − 1) + ω2ur3(u

30
3 − 1) mod 312Z31.

For r = 0, 9, 10, 19, 20, 29, calculations show (4.2) is divisible by 31 but is not 0 mod 312, so
fr(x) has linear coefficient divisible by 31 precisely once.

For odd prime p and a ∈ 1 + pZp, log a ∈ pZp and pj/j! ∈ p2Zp for j ≥ 2, so (log a)j/j! ∈
p2Zp for j ≥ 2. Thus the coefficients of every fr(x) in degree 2 and higher are in 312Z31.

Combining the underlined information about 31-divisibility of power series coefficients
with Strassmann’s theorem, fr(x) has at most one zero in Z31 for r = 0, 9, 10, 19, 20, 29.
Using Hensel’s lemma for power series converging on Z31 instead of Strassmann’s theorem
for power series converging on Z31, fr(x) has a unique zero in Z31 for r = 0, 9, 10, 19, 20, 29.
The zero of f0(x) is x = 0 (corresponding to (2.1) being zero at n = 0 = 30(0) + 0) and
the zero of f29(x) is x = −1 (corresponding to (2.1) being zero at n = −1 = 30(−1) + 29).
We don’t expect the zeros of fr(x) in Z31 for r = 9, 10, 19, or 20 to be integers, but that
possibility can’t be ruled out from the reasoning presented so far. Therefore by working in
Z31, we have shown (2.1) is true for at most 6 integers n. To cut down the upper bound
further, we will work in a p-adic completion for p 6= 31.

4Since 21 mod 31 has order 30, we can’t use an exponent smaller than 30 in the terms of fr(x).
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5. Theorem 1.3 using 3-adic powers

There is no cube root of 2 in Q3: if α3 = 2 then |α|33 = |2|3 = 1, so |α|3 = 1: α is in Z×
3 .

Therefore we can reduce the equation α3 = 2 modulo 9 to get α3 ≡ 2 mod 9Z3. The cubes
mod 9 are 0, 1, and 8, so we have a contradiction. Thus T 3 − 2 is a cubic polynomial with
no root in Q3, so Q3(

3
√

2) is a cubic extension of Q3 with basis {1, 3
√

2, 3
√

4}. There are no
nontrivial cube roots of unity in Q3(

3
√

2) since Q3(ω) = Q3(
√
−3) is a quadratic extension

of Q3, which can’t lie in a cubic extension.
Just as the absolute value on R has a unique extension to an absolute value on its

quadratic extension C, which is complete, the 3-adic absolute value on Q3 has a unique
extension to an absolute value on its cubic extension Q3(

3
√

2), which is complete. It is
possible to give a formula for |a+ b 3

√
2 + c 3

√
4|3, where a, b, c ∈ Q3, that is analogous to the

formula |a+ bi| =
√
a2 + b2 for the absolute value of complex numbers. Here it is:

|a+ b
3
√

2 + c
3
√

4|3 = 3
√
|a3 + 2b3 + 4c3 − 6abc|3.

We will not discuss how to derive this formula or why it is an absolute value on Q3(
3
√

2).
The formula reveals a new phenomenon compared to absolute values on Q3: some numbers
in Q3(

3
√

2) have absolute value that is not an integral power of 1/3: the nonzero numbers

have 3-adic absolute value (1/3)n/3 = (1/ 3
√

3)n for some n ∈ Z.

Example 5.1. Let π = 3
√

2+1. Since | 3
√

2
3|3 = |2|3 = 1, | 3

√
2|33 = 1, so | 3

√
2|3 = 1. From the

ultrametric inequality, |π|3 ≤ max(| 3
√

2|3, |1|3) = 1. Expanding the left side of the equation
(π − 1)3 = 2 and rearranging terms, we get π3 − 3π2 + 3π − 3 = 0. Rewrite this as

π3 = 3(π2 − π + 1).

Therefore |π|33 = (1/3)|π2 − π + 1|3 ≤ 1/3 < 1, so |π|3 < 1. Therefore |π2 − π + 1|3 = 1 by

the ultrametric inequality, so |π|33 = 1/3, which implies |π|3 = 1/ 3
√

3. Here 1/ 3
√

3 is a real
number: absolute values live in R, not in a 3-adic field.

It can be shown that the closed unit ball in Q3(
3
√

2), which is {y ∈ Q3(
3
√

2) : |y|3 ≤ 1},
equals Z3[

3
√

2]. We’ll be using this later.
In Z[ 3

√
2], the unit u = 1 + 3

√
2 + 3
√

4 has inverse v = 3
√

2− 1, so by working with powers
of v we can reformulate Theorem 2.1 as follows: for x, y ∈ Z, x3 − 2y3 = 1 if and only
if x − y 3

√
2 = vn for some n ∈ Z. We want to find the integers n such that vn written

in the Q3-basis {1, 3
√

2, 3
√

4} has 3
√

4-coefficient equal to 0. We expect the only such n are
n = 0 (so (x, y) = (1, 0)) and n = 1 (so (x, y) = (−1,−1)). To prove this, we will 3-adically
interpolate the powers of v in Q3(

3
√

2) and use Strassmann’s theorem.
To interpolate powers an where a is in a p-adic field, we need |a−1|p < 1. Using Example

5.1 in the field Q3(
3
√

2),

v =
3
√

2− 1 = π − 2 = 1 + (π − 3)

and |π − 3|3 = max(1/ 3
√

3, 1/3) = 1/ 3
√

3 < 1, so |v − 1|3 = |π − 3|3 < 1. Thus there is a
3-adically continuous function

vx =
∑
k≥0

(v − 1)k
(
x

k

)
where x ∈ Z3. However, vx is not a 3-adic analytic function Z3 → Q3(

3
√

2). When |a−1|p <
1, the condition for ax =

∑
k≥0(a − 1)k

(
x
k

)
to be p-adic analytic in x, not just p-adically

continuous in x, is that |a − 1|p < (1/p)1/(p−1). For our example, where a = v in Q3(
3
√

2),
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|a − 1|3 = |v − 1|3 = |π − 3|3 = (1/3)1/3 > (1/3)1/2. Taking a 3rd power of v will improve
the situation:

(5.1) v3 = (
3
√

2−1)3 = 2−3
3
√

4+3
3
√

2−1 = 1+3(
3
√

2− 3
√

4) = 1−3
3
√

2v =⇒ |v3−1|3 =
1

3
.

Therefore (v3)x is 3-adic analytic in x, so we’ll look at the powers vn with n restricted to a
congruence class mod 3: For r ∈ {0, 1, 2}, set fr(x) = vr(v3)x where x ∈ Z3. This is 3-adic
analytic in x, and for m ∈ Z we have fr(m) = vr(v3)m = v3m+r.

We will study vn for n ∈ Z by studying the three 3-adic analytic functions fr : Z3 →
Q3(

3
√

2), which each interpolate one of the sequences v3m+r (r being fixed). Write fr(x) as
a power series in x:

(5.2) fr(x) = vr(v3)x = vrex log(v
3) = vr

∑
k≥0

(log(v3))k

k!
xk.

Write (log(v3))k/k! in terms of its coefficients in the Q3-basis {1, 3
√

2, 3
√

4} of Q3(
3
√

2):

(log(v3))k

k!
= ak + bk

3
√

2 + ck
3
√

4,

where ak, bk, ck ∈ Q3. Plugging this into (5.2),

fr(x) = vr
∑
k≥0

(ak + bk
3
√

2 + ck
3
√

4)xk

= vr
∑
k≥0

(
akx

k + bkx
k 3
√

2 + ckx
k 3
√

4
)

= vr

∑
k≥0

akx
k

+

∑
k≥0

bkx
k

 3
√

2 +

∑
k≥0

ckx
k

 3
√

4

 .

(In Q3(
3
√

2), a sequence tends to 0 if and only if its 3 sequences of coefficients in the basis
{1, 3
√

2, 3
√

4} each tend to 0 in Q3. That justifies splitting up the power series into a sum
of three power series multiplied by the basis {1, 3

√
2, 3
√

4}.) Since vr is either 1, −1 + 3
√

2,
or 1− 2 3

√
2 + 3
√

4, the coefficients of fr(x) in the basis {1, 3
√

2, 3
√

4} are each 3-adic analytic
functions. Therefore fr(x) ∈ Q3 +Q3

3
√

2 for an x if and only if its 3
√

4-coefficient is 0, which
is equivalent to the vanishing of a 3-adic analytic function Z3 → Q3 at x.

Since |v3 − 1|3 = 1/3, in the 3-adic power series

(v3)x = ex log(v
3) = 1 + (log(v3))x+

∑
k≥2

(log(v3))k

k!
xk

for x ∈ Z3, we have | log(v3)|3 = |v3 − 1|3 = 1/3, so the coefficient of xk is divisible by 9
when k ≥ 2. Therefore

(5.3) (v3)x = 1 + (log(v3))x+ 9x2g(x)

where g(x) is a power series converging on Z3 with coefficients in Q3(
3
√

2) of absolute value
at most 1 that tend to 0. Also

log(v3) = (v3 − 1) +
∑
k≥2

(−1)k−1 (v3 − 1)k

k
,

and |v3 − 1|3 = 1/3⇒ |(v3 − 1)k/k|3 ≤ 1/9 for k ≥ 2, so log(v3) ≡ v3 − 1 mod 9. Plugging
this into (5.3),

(v3)x = 1 + (v3 − 1)x+ 9xh(x),
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where h(x) is a power series converging on Z3 with coefficients in Q3(
3
√

2) of absolute value
at most 1 that tend to 0. Since {y ∈ Q3(

3
√

2) : |y|3 ≤ 1} = Z3[
3
√

2], which was mentioned
earlier, the coefficients of h(x) are all in Z3[

3
√

2]. From (5.1), v3 − 1 = 3( 3
√

2− 3
√

4), so

(5.4) (v3)x = 1 + 3(
3
√

2− 3
√

4)x+ 9xh(x) = 1 + 3x
3
√

2− 3x
3
√

4 + 9xh(x).

We will use (5.4) to bound the number of zeros in Z3 of the 3
√

4-coefficient of the function
fr(x) = vr(v3)x when r = 0, 1, and 2.

Case 1: r = 0.
By (5.4), the 3

√
4-coefficient of the power series for f0(x) = (v3)x is −3x + 9xk0(x) for

a power series k0(x) on Z3 with Z3-coefficients that tend to 0. By Strassmann’s theorem,
−3x + 9xk0(x) has at most one zero in Z3. The choice x = 0 works, so it is the only zero
in Z3.

Case 2: r = 1.
Since f1(x) = v(v3)x, multiply (5.4) by v:

v(1 + 3x
3
√

2− 3x
3
√

4 + 9xh(x)) = (
3
√

2− 1)(1 + 3x
3
√

2− 3x
3
√

4 + 9xh(x))

= (−1− 6x) + (1− 3x)
3
√

2 + (6x)
3
√

4 + 9vxh(x),

so the 3
√

4-coefficient of the power series for f1(x) is 6x + 9xk1(x) for a power series k1(x)
on Z3 with Z3-coefficients that tend to 0. By Strassmann’s theorem, 6x + 9xk1(x) has at
most one zero in Z3. The choice x = 0 works, so it is the only zero in Z3.

Case 3: r = 2.
Since f2(x) = v2(v3)x, multiply (5.4) by v2:

v2(1 + 3x
3
√

2− 3x
3
√

4 + 9xh(x)) = (
3
√

2− 1)2(1 + 3x
3
√

2− 3x
3
√

4 + 9xh(x))

= (1− 2
3
√

2 +
3
√

4)(1 + 3x
3
√

2− 3x
3
√

4 + 9xh(x))

= (1 + 18x) + (−2− 3x)
3
√

2 + (1− 9x)
3
√

4 + 9v2xh(x),

so the 3
√

4-coefficient of the power series for f2(x) is 1− 9xk2(x) for a power series k2(x) on
Z3 with Z3-coefficients that tend to 0. By Strassmann’s theorem, 1− 9xk2(x) has no zero
in Z3.

From all three cases, f0(x) and f1(x) each have a zero in Z3 only at x = 0 and f2(x) has
no zero in Z3. That implies the only (r, x) with r ∈ {0, 1, 2} and x ∈ Z3 such that vr(v3)x

has its 3
√

4-coefficient equal to 0 are (r, x) = (0, 0) and (1, 0), so 3m+x is 0 and 1. Therefore
the only positive units in Z[ 3

√
2] with 3

√
4-coefficient 0 are v0 = 1 and v1 = v = −1 + 3

√
2,

which proves Theorem 1.3.

Appendix A. Thue’s theorem

In this appendix we describe a different approach to the integral solutions of x3−dy3 = 1,
which historically was the original method and it goes back to Thue.

Theorem A.1 (Thue, 1909). Let d be a nonzero integer. For each nonzero m ∈ Z, the
equation x3 − dy3 = m has finitely many integral solutions (x, y).

Thue’s actual theorem is a general finiteness theorem for integral solutions of certain
two-variable polynomial equations f(x, y) = m where deg f ≥ 3. We focus on the special
case f(x, y) = x3 − dy3 for simplicity.

Proof. If y = 0 then x3 = m, which has at most one solution for x, so we can now assume
y 6= 0.

If d is a perfect cube in Z, say d = c3, then x3−(cy)3 = m, so (x−cy)(x2+cxy+c2y2) = m.
This makes x−cy a factor of m. For each factor f , x = cy+f , so (cy+f)3−dy3 = m. This
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equation simplifies to (3c2f)y2 + (3cf2)y + (f3 −m) = 0 since c3 = d, and this quadratic
equation has at most two solutions y for each f . Thus x3 − dy3 = m has finitely many
integral solutions if d is a perfect cube.

Now suppose d is not a perfect cube, so 3
√
d is irrational in R. Factor x3 − dy3 as

(x− 3
√
dy)(x− 3

√
dωy)(x− 3

√
dω2y), so

x3 − dy3 = m =⇒
(
x

y
− 3
√
d

)(
x

y
− 3
√
dω

)(
x

y
− 3
√
dω2

)
=
m

y3
.

Taking absolute values, ∣∣∣∣xy − 3
√
d

∣∣∣∣ ∣∣∣∣xy − 3
√
dω

∣∣∣∣ ∣∣∣∣xy − 3
√
dω2

∣∣∣∣ =
|m|
|y|3

.

On the left side, the second and third factors have positive lower bounds since x/y does not

interact with the imaginary parts of 3
√
dω = 3

√
d(−1/2 +

√
3i/2) and 3

√
dω2 = 3

√
d(−1/2 −√

3i/2), so ∣∣∣∣xy − 3
√
d

∣∣∣∣ 3 3
√
d
2

4
≤ |m|
|y|3

.

Thus ∣∣∣∣xy − 3
√
d

∣∣∣∣ ≤ (4/3)|m|/ 3
√
d
2

|y|3
=

K

|y|3
,

where K = (4/3)|m|/ 3
√
d
2

depends on d and m but not on x or y.
Thue proved that for every ε > 0 and real algebraic irrational α of degree n ≥ 3, there

is C = Cα,ε > 0 such that |x/y − α| ≥ C/|y|n/2+1+ε for all rational x/y. Taking α = 3
√
d,

so n = 3, the exponent n/2 + 1 + ε = 2.5 + ε is less than 3 if ε < 1/2. In this case, if

x3 − dy3 = m then C/|y|2.5+ε ≤ |x/y − 3
√
d| ≤ K/|y|3, so |y|.5−ε ≤ K/C, which has finitely

many solutions in y. For each y there is at most one x such that x3 − dy3 = m, so the
equation x3 − dy3 = m has finitely many integral solutions. �

Thue’s proof does not give upper bounds on the magnitude of |x| or |y| in an integral
solution of x3 − dy3 = m (when d is not a perfect cube) since the constant Cα,ε at the end
of the proof is not explicit. Therefore Thue’s work is fundamentally ineffective: it proved
an equation has finitely many solutions in Z but gives no method of finding all the solutions
in Z. Decades later, work of Baker and Coates on linear forms in logarithms led to upper
bounds on |x| and |y| that are explicit, but the size of the bounds in terms of |d| and |m|
often makes them impractical. The p-adic method leads to more practical bounds when it
can be applied.
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