
TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS

KEITH CONRAD

1. Introduction

A (monic) polynomial in Z[T ],

f(T ) = Tn + cn−1T
n−1 + · · ·+ c1T + c0,

is Eisenstein at a prime p when each coefficient ci is divisible by p and the constant term c0
is not divisible by p2. Such polynomials are irreducible in Q[T ], and this Eisenstein criterion
for irreducibility is the way essentially everyone first meets Eisenstein polynomials. Here we
will show Eisenstein polynomials at a prime p give us useful information about p-divisibility
of coefficients of a power basis and ramification of p in a number field.

Let K be a number field, with degree n over Q. A prime number p is said to be totally
ramified in K when pOK = pn. For example, in Z[i] and Z[

√
−5] we have (2) = (1 + i)2 and

(2) = (2, 1 +
√
−5)2, so 2 is totally ramified in Q(i) and Q(

√
−5).

2. Eisenstein polynomials and p-divisibility of coefficients

Our first use of Eisenstein polynomials will be to extract information about coefficients
for algebraic integers in the power basis generated by the root of an Eisenstein polynomial.

Lemma 2.1. Let K/Q be a number field with degree n. Assume K = Q(α), where α ∈ OK

and its minimal polynomial over Q is Eisenstein at p. For a0, a1, . . . , an−1 ∈ Z, if

(2.1) a0 + a1α+ · · ·+ an−1α
n−1 ≡ 0 mod pOK ,

then ai ≡ 0 mod pZ for all i.

Proof. Assume for some j ∈ {0, 1, . . . , n−1} that ai ≡ 0 mod pZ for i < j (this is an empty
condition for j = 0). We will prove aj ≡ 0 mod pZ.

Since ai ≡ 0 mod pZ for i < j, (2.1) implies

(2.2) ajα
j + aj+1α

j+1 + · · ·+ an−1α
n−1 ≡ 0 mod pOK .

Multiply through this congruence by αn−1−j , making all but the first term ajα
n−1 a multiple

of αn. Since α is the root of an Eisenstein polynomial at p, we have αn ≡ 0 mod pOK , so

(2.3) ajα
n−1 ≡ 0 mod pOK .

Write this congruence as an equation, say ajα
n−1 = pγ with γ ∈ OK . Now take norms of

both sides down to Q:
anj NK/Q(α)n−1 = pn NK/Q(γ).

The right side is an integral multiple of pn. On the left side the norm of α is, up to
sign, the constant term of its minimal polynomial for K/Q since α generates K/Q. The
integer NK/Q(α) is divisible by p exactly once (Eisenstein condition!), so divisibility of

anj NK/Q(α)n−1 by pn implies p | anj , so p | aj . Thus ai ≡ 0 mod pZ for i < j + 1. Repeat

this for j = 0, 1, . . . , n− 1 to get p | ai for all i. �
1
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Theorem 2.2. Let K/Q be a number field with degree n. Assume K = Q(α), where α is
an algebraic integer whose minimal polynomial over Q is Eisenstein at p. If

r0 + r1α+ · · ·+ rn−1α
n−1 ∈ OK

with ri ∈ Q, then each ri has no p in its denominator.

Proof. Assume some ri has a p in its denominator. Let d be the least common denominator
of the ri’s, so p | d. Write ri = ai/d where ai ∈ Z, so some ai is not divisible by p (otherwise
d, being divisible by p, would not be the least common denominator). Then

r0 + r1α+ · · ·+ rn−1α
n−1 ∈ OK =⇒ a0 + a1α+ · · ·+ an−1α

n−1

d
∈ OK .

Multiply through by the integer d to get

a0 + a1α+ · · ·+ an−1α
n−1 ∈ dOK ⊂ pOK .

Lemma 2.1 tells us ai ∈ pZ for every i. This is a contradiction. �

Theorem 2.3. Let K = Q(α) where α ∈ OK is the root of an Eisenstein polynomial at p,
with degree n. Then p - [OK : Z[α]].

Proof. We argue by contradiction. Suppose p | [OK : Z[α]]. Then OK/Z[α], viewed as a
finite abelian group, has an element of order p: there is some γ ∈ OK such that γ 6∈ Z[α]
but pγ ∈ Z[α]. Using the basis {1, α, . . . , αn−1} for K/Q, write

γ = r0 + r1α+ · · ·+ rn−1α
n−1

with ri ∈ Q. Since γ 6∈ Z[α], some ri is not in Z. Since pγ ∈ Z[α] we have pri ∈ Z. Hence
ri has a p in its denominator, which contradicts Theorem 2.2. �

Example 2.4. We show the ring of algebraic integers of Q( 3
√

2) is Z[ 3
√

2]. Let O be the full
ring of algebraic integers of Q( 3

√
2), so Z[ 3

√
2] ⊂ O and

disc(Z[
3
√

2]) = [O : Z[
3
√

2]]2 disc(O).

By an explicit calculation, discZ(Z[ 3
√

2]) = −108 = −2233, so 2 and 3 are the only primes
that could divide [O : Z[ 3

√
2]]. Since 3

√
2 is the root of T 3 − 2, which is Eisenstein at 2, 2

does not divide [O : Z[ 3
√

2]] by Theorem 2.3. The number 1 + 3
√

2 is a root of (T − 1)3− 2 =
T 3 − 3T 2 + 3T − 3, which is Eisenstein at 3, so 3 does not divide [O : Z[1 + 3

√
2]]. The ring

Z[1 + 3
√

2] equals Z[ 3
√

2], so [O : Z[ 3
√

2]] is not divisible by 3. Therefore this index is 1, so
O = Z[ 3

√
2].

Example 2.5. We show the ring O of algebraic integers of Q( 4
√

2) is Z[ 4
√

2]. Since

disc(Z[
4
√

2]) = [O : Z[
4
√

2]]2 disc(O)

and the discriminant of Z[ 4
√

2] is −211, [O : Z[ 4
√

2]] is a power of 2. Because 4
√

2 is a root of
T 4− 2 that is Eisenstein at 2, 2 does not divide [O : Z[ 4

√
2]] by Theorem 2.3. Therefore the

index is 1.

Example 2.6. We show the ring O of algebraic integers of Q( 5
√

2) is Z[ 5
√

2]. The discrimi-
nant of Z[ 5

√
2] is 2455, so the only prime factors of [O : Z[ 5

√
2]] could be 2 and 5. Since 5

√
2

is a root of T 5 − 2, which is Eisenstein at 2, and 5
√

2− 2 is a root of

(T + 2)5 − 2 = T 5 + 10T 4 + 40T 3 + 80T 2 + 80T + 30,

which is Eisenstein at 5, neither 2 nor 5 divides the index since Z[ 5
√

2− 2] = Z[ 5
√

2].
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Remark 2.7. It is natural to ask if the ring of integers of Q( n
√

2) is Z[ n
√

2] for all n.
It’s true for n ≤ 1000, but it’s not always true! See https://kconrad.math.uconn.edu/

blurbs/gradnumthy/integersradical.pdf,

Example 2.8. We show the ring O of algebraic integers of Q( 3
√

3) is Z[ 3
√

3]. Since

disc(Z[
3
√

3]) = [O : Z[
3
√

3]]2 disc(O)

and the discriminant of Z[ 3
√

3] is −35, [O : Z[ 3
√

3]] divides 32. Since T 3 − 3 is Eisenstein at
3, [O : Z[ 3

√
3]] is not divisible by 3 by Theorem 2.3, so the index is 1: O = Z[ 3

√
3].

Example 2.9. We show the ring O of algebraic integers of Q( 3
√

5) is Z[ 3
√

5]. Since

disc(Z[
3
√

5]) = [O : Z[
3
√

5]]2 disc(O)

and the discriminant of Z[ 3
√

5] is −33 · 52, [O : Z[ 3
√

5]] is a factor of 15. Since T 3 − 5 is
Eisenstein at 5, 5 does not divide [O : Z[ 3

√
5]] by Theorem 2.3. The number 1 + 3

√
5 is a

root of (T − 1)3 − 5 = T 3 − 3T 2 − 3T − 6, which is Eisenstein at 3, so 3 does not divide
[O : Z[1 + 3

√
5]], and Z[1 + 3

√
5] = Z[ 3

√
5], so [O : Z[ 3

√
5]] is not divisible by 3. Therefore this

index is 1, so O = Z[ 3
√

5].

Example 2.10. We show the ring O of algebraic integers of Q( 3
√

6) is Z[ 3
√

6]. Since

disc(Z[
3
√

6]) = [O : Z[
3
√

6]]2 disc(O)

and the discriminant of Z[ 3
√

6] is −22 ·35, [O : Z[ 3
√

6]] divides 2 ·32. Since T 3−6 is Eisenstein
at 2 and 3, [O : Z[ 3

√
5]] is not divisible by 2 or 3 by Theorem 2.3. Therefore this index is 1,

so O = Z[ 3
√

6].

Example 2.11. We show the ring O of algebraic integers of Q( 3
√

7) is Z[ 3
√

7]. Since

disc(Z[
3
√

7]) = [O : Z[
3
√

7]]2 disc(O)

and the discriminant of Z[ 3
√

7] is −33 · 72, [O : Z[ 3
√

7]] is a factor of 21. Since T 3 − 7 is
Eisenstein at 7, 7 does not divide [O : Z[ 3

√
7]] by Theorem 2.3. The number −1 + 3

√
7 is a

root of (T + 1)3 − 7 = T 3 + 3T 2 + 3T − 6, which is Eisenstein at 3, so 3 does not divide
[O : Z[−1 + 3

√
7]] = [O : Z[ 3

√
7]]. Therefore [O : Z[ 3

√
7]] is 1, so O = Z[ 3

√
7].

Example 2.12. As a final use of Theorem 2.3, we compute the ring of integers of 3 cubic
fields. For i = 1, 2, 3, define three number fields Ki = Q(αi) where αi is the root of the
cubic polynomial fi(T ):

(2.4) f1(T ) = T 3 − 18T − 6, f2(T ) = T 3 − 36T − 78, f3(T ) = T 3 − 54T − 150.

These polynomials are each Eisenstein at both 2 and 3, so they are irreducible over Q.
Each polynomial has the same discriminant: 22356 = 22 · 35 · 23. (Recall disc(T 3 + aT +
b) = −4a3 − 27b2.) Let’s show Z[αi] is the ring of integers of Ki in each case. Since
22356 = disc(Z[αi]) = [OKi : Z[αi]]

2 disc(OKi), [OKi : Z[αi]] divides 2 · 32. Since all the
polynomials are Eisenstein at 2 and 3, neither 2 nor 3 divides the index of Z[αi] in OKi by
Theorem 2.3. That proves the index is 1 in all three cases. Therefore

disc(OKi) = disc(Z[αi]) = disc(Z[T ]/(fi(T ))) = disc(fi(T )) = 22356

for i = 1, 2, 3.
The fields K1, K2, and K3 are all cubic extensions of Q with the same discriminant and

the ring of integers of Ki has a power basis. The cubic polynomials fi each have 3 real roots.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/integersradical.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/integersradical.pdf
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So far the Ki’s seem to be quite similar. Are they isomorphic fields? No. To prove this, we
show some prime numbers factor differently in the fields. Since OKi = Z[αi], Dedekind’s
factorization criterion tells us that the way p factors in OKi is the same as the way fi(T )
factors in Fp[T ] for the polynomials fi(T ) in (2.4). We factor fi(T ) mod p for the first few
primes p in the table below.

p f1(T ) mod p f2(T ) mod p f3(T ) mod p

2 T 3 T 3 T 3

3 T 3 T 3 T 3

5 irred. irred. T (T − 2)(T − 3)
7 (T − 4)(T 2 + 4T + 5) (T − 5)(T 2 + 5T + 3) (T − 1)(T 2 + T + 3)
11 (T − 3)(T − 9)(T − 10) irred. irred.

The key rows are p = 5 and p = 11: 5 stays prime in K1 and K2 but not in K3, and 11
stays prime in K2 and K3 but not in K1. This is enough to distinguish each field from the
other two.

3. The Eisenstein condition and total ramification

The link between Eisenstein polynomials and totally ramified primes is described in the
following two theorems, which are converses of each other.

Theorem 3.1. Let K = Q(α), where α in OK is the root of a polynomial that is Eisenstein
at p. Then p is totally ramified in K.

Theorem 3.2. Let K be a number field, and suppose a prime p is totally ramified in K.
Then K = Q(α) for some α in OK that is the root of an Eisenstein polynomial at p.

Let’s illustrate Theorem 3.1.

Example 3.3. Since 3
√

10 is a root of T 3 − 10, which is Eisenstein at 2 and 5, 2 and 5 are
totally ramified in K = Q( 3

√
10): (2) = p3 and (5) = q3 in OK . (The ring of integers is not

Z[ 3
√

10]: α = 1
3(1 + 3

√
10 + 3

√
100) is a root of T 3 − T 2 − 3T − 3, and in fact OK = Z[α].)

Example 3.4. Let K = Q(
√
−5). Since K = Q(1 +

√
−5) and 1 +

√
−5 is a root of

T 2 − 2T + 6, which is Eisenstein at 2, we have (2) = p2 for some prime ideal p. The ideal p
is (2, 1 +

√
−5).

Now we prove Theorem 3.1.

Proof. Let p be a prime ideal of OK that divides (p) = pOK , and n = [K : Q]. We want to
show that (p) = pn.

Let e ≥ 1 be the multiplicity of p in (p), so

(3.1) (p) = pea,

where p does not divide a. Then e ≤ n. We will show e = n, which implies by taking
ideal norms in (3.1) that pn = N(p)n N(a). Since N(p) is a power of p, this equation implies
N(p) = p, so N(a) = 1 and thus a = (1).

Let f(T ) in Z[T ] be the Eisenstein polynomial at p with α as a root, say

f(T ) = Tn + cn−1T
n−1 + · · ·+ c1T + c0.

Since ci ≡ 0 mod p, the equation f(α) = 0 implies αn ≡ 0 mod p, so

(3.2) α ≡ 0 mod p,
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since p is prime.
Since c1, . . . , cn−1 are divisible by p, and thus by pe, we get from (3.2) that

ciα
i ≡ 0 mod pe+1

for 1 ≤ i ≤ n − 1. Therefore all intermediate terms in the sum for f(α) are divisible by
pe+1, so

(3.3) αn + c0 ≡ 0 mod pe+1.

Since c0 is divisible by p exactly once, and pOK divisible by pe but not pe+1, unique
factorization of ideals implies that c0OK is divisible by pe but not pe+1. (Here are details
on that. Write c0 = pb, where b is an integer that is relatively prime to p, so c0OK =
pOKbOK = pea(bOK), using (3.1). Thus pe divides c0OK . If pe+1 divided c0OK then
p | bOK , so b ∈ bOK ⊂ p, so b ∈ p ∩ Z = pZ, which is false.) In terms of congruences,
c0 ≡ 0 mod pe and c0 6≡ 0 mod pe+1. Combining this with (3.3) implies αn 6≡ 0 mod pe+1.
As α is divisible by p at least once, so αn is divisible by pn, the condition αn 6≡ 0 mod pe+1

implies n < e+ 1. Therefore n ≤ e. Since e ≤ n, the only choice is e = n. �

Corollary 3.5. If K = Q(α) where α in OK is the root of an Eisenstein polynomial at p
and p is the unique prime lying over p in OK , then (α) is divisible by p exactly once.

Proof. Using notation of the proof of Theorem 3.1, (3.3) tells us αn +c0 ≡ 0 mod pn+1 since
e = n. Also αn ≡ 0 mod pn and αn+1 6≡ 0 mod pn+1, so pn is the highest power of p dividing
(αn) = (α)n. By unique factorization of ideals, p is the highest power of p dividing (α). �

The proof of Theorem 3.2 will tell us quite explicitly how to find the element α that is
the root of an Eisenstein polynomial.

Proof. Let n = [K : Q] and pOK = pn. Then, taking ideal norms, pn = Npn, so Np = p.
We will use as α a number in p that is not in p2. (In other words, (α) is divisible by p

exactly once.) It will turn out that the characteristic polynomial of α over Q, which we
know is monic of degree n in Z[T ], is an Eisenstein polynomial at p. That implies this
characteristic polynomial is irreducible, so K = Q(α) and we’re done.

Consider the characteristic polynomial of α over Q:

Tn + an−1T
n−1 + · · ·+ a1T + a0,

where ai ∈ Z. The constant term is a0 = ±NK/Q(α). Let’s show this is divisible by p
exactly once.

Since α ∈ p− p2,

(3.4) (α) = pa,

where p does not divide a. Taking ideal norms in (3.4),

|NK/Q(α)| = pNa.

Thus a0 = ±NK/Q(α) is divisible by p. To show p2 does not divide a0, we show p is not a
factor of Na. The prime numbers dividing Na are the prime numbers lying under the prime
ideals dividing a. Since p does not divide a, and p is the only prime ideal dividing p, Na is
not divisible by p.

Now we show every ai is divisible by p. We may assume n ≥ 2. (Otherwise, if n = 1,
K = Q and the characteristic polynomial is T + a0, which is Eisenstein at p.) Assume for
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some i from 1 to n− 1 that we know a0, . . . , ai−1 ≡ 0 mod p. To show ai ≡ 0 mod p, reduce
the equation

αn + an−1α
n−1 + · · ·+ a1α+ a0 = 0

modulo pOK :

(3.5) αn + an−1α
n−1 + · · ·+ aiα

i ≡ 0 mod pOK .

Raising both sides of (3.4) to the n-th power,

(αn) = (p)an,

so

(3.6) αn ∈ pOK .

Multiply through (3.5) by αn−1−i, and take into account (3.6):

aiα
n−1 ≡ 0 mod pOK .

Write this congruence as an equation, say aiα
n−1 = pγ, and take norms down to Q:

ani NK/Q(α)n−1 = pn NK/Q(γ).

The right side is an integral multiple of pn. The left side is ani NK/Q(α)n−1 = ±ani a
n−1
0 , and

a0 is divisible by p just once, so ani a
n−1
0 being divisible by pn forces p to divide ai. Thus,

by induction, every ai is a multiple of p. �

Theorem 3.6. Let K = Q(α) where α in OK is the root of an Eisenstein polynomial at p,
with degree n. Then pn−1 || disc(K) if p - n and pn | disc(K) if p | n.

Proof. We will first show pn−1 | disc(K) and then show pn - disc(K) if p - n and pn | disc(K)
if p | n.

Let the minimal polynomial of α over Q be f(T ) =
∑n

i=0 ciT
i. By hypothesis, f(T )

is monic and Eisenstein at p: cn = 1, p | ci for i < n, and p2 - c0. Since disc(Z[α]) =
[OK : Z[α]]2 disc(K), by Theorem 2.3 the highest power of p in disc(K) and disc(Z[α]) is
the same. We’ll use the formula

disc(Z[α]) = disc(f(T )) = ±NK/Q(f ′(α))

to examine the highest power of p dividing disc(Z[α]).
We have

(3.7) f ′(α) = nαn−1 + (n− 1)cn−1α
n−2 + · · ·+ 2c2α+ c1.

By Theorem 3.1 and Corollary 3.5, (p) = pn and (α) = pa with p - a. Since each ci for i < n
is divisible by p and thus by pn, all terms on the right side of (3.7) except the first term are
divisible by pn. Collecting together all terms on the right in (3.7) except the first term,

(3.8) f ′(α) = nαn−1 + β, where β ∈ pn.

Since (α) is divisible by p, (αn−1) is divisible by pn−1, so (3.8) implies (f ′(α)) is divisible
by pn−1. Therefore NK/Q(f ′(α)) is divisible by N(p)n−1 = pn−1.

If p - n, then we want to show pn - NK/Q(f ′(α)). We will prove the contrapositive: if
pn | NK/Q(f ′(α)) then p | n. The only prime over p in OK is p, which has ideal norm
p, and the ideal (f ′(α)) has norm |NK/Q(f ′(α))|, so pn | (f ′(α)). Then (3.8) implies

nαn−1 ≡ 0 mod pn. The highest power of p dividing (α) is p, so the highest power of p
dividing (α)n−1 is pn−1. Therefore p | (n), so p | n.
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If p | n, then we want to show pn | NK/Q(f ′(α)). Since p | (p), from p - n we get
p | (n), so both terms on the right side of (3.8) are divisible by pn. Thus N(pn) divides
N((f ′(α))) = |NK/Q(f ′(α))|. �

So far we have been discussing Eisenstein polynomials in Z[T ]. Let’s generalize the
concept to polynomials over other rings of integers.

Definition 3.7. Let K be a number field. A monic polynomial

f(T ) = Tn + cn−1T
n−1 + · · ·+ c1T + c0 ∈ OK [T ]

is called Eisenstein at the nonzero prime ideal p when ci ≡ 0 mod p for all i and c0 6≡
0 mod p2.

Theorem 3.8. An Eisenstein polynomial in OK [T ] is irreducible in K[T ].

Proof. Let f(T ) ∈ OK [T ] be Eisenstein at some prime ideal. If f(T ) is reducible in K[T ]
then f(T ) = g(T )h(T ) for some nonconstant g(T ) and h(T ) in K[T ].

We first show that g and h can be chosen in OK [T ]. As f is monic, we can assume g and
h are monic by rescaling if necessary. Every root of g or h is an algebraic integer (since
their roots are roots of f(T ), so they’re integral over OK and thus also over Z). Because g
and h are monic, their coefficients are polynomials in their roots with Z-coefficients, hence
their coefficients are algebraic integers. Since the coefficients are in K, both g and h are in
OK [T ].

Let n = deg f , r = deg g, and s = deg h. All of these degrees are positive. Let p be
a prime at which f is Eisenstein. Reduce the equation f = gh in OK [T ] modulo p to get
f = gh in (OK/p)[T ]. As f, g, and h are all monic, their reductions modulo p have the
same degree as the original polynomials (n, r, and s respectively). Since f is Eisenstein at
p, f = Tn. Therefore, by unique factorization in (OK/p)[T ], g and h are powers of T too,
so g = T r and h = T s in (OK/p)[T ]. Since r and s are positive, we conclude that g and h
have all non-leading coefficients in p. Thus the constant term of f is f(0) = g(0)h(0) ∈ p2.
This contradicts the definition of an Eisenstein polynomial. �

Theorems 3.1 and 3.2 generalize as follows.

Theorem 3.9. Let F be a number field and E = F (α), where α is the root of a polynomial
in OF [T ] that is Eisenstein at a prime p in OF . Then p is totally ramified in E: pOE = Pn

for some prime ideal P of OE, where n = [E : F ].

Theorem 3.10. Let E/F be a finite extension of number fields, and suppose there is a
prime p of OF that is totally ramified in E. Then E = F (α) for some α that is the root of
an Eisenstein polynomial at p.

It is left to the reader to work out the proofs, which are quite similar to the case of base
field Q.

Remark 3.11. I first learned about results like Theorems 3.1 and 3.2, connecting Eisen-
stein polynomials to total ramification, from exercise 9 in [1, Chap. 3, Sect. 5] about totally
ramified primes in a finite extension of the fraction field of a Krull domain (which includes
the integers of a number field as a special case) and from the first proposition in [3, Chap. III,
Sect. 3] about totally ramified extensions of the p-adic numbers.
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4. A ring of integers without a power basis

Using Eisenstein polynomials, we’ll describe many pure cubic fields Q( 3
√
m) whose ring

of integers does not have the form Z[α].

Theorem 4.1. Let p and q be distinct primes not equal to 3 such that pq2 6≡ ±1 mod 9.

The cubic field K = Q( 3
√
pq2) has ring of integers Z + Z 3

√
pq2 + Z 3

√
p2q and discriminant

−27p2q2. The ramified primes in K are 3, p, and q, and they are all totally ramified. If
p mod q or q mod p is not a cube then OK 6= Z[γ] for every γ ∈ OK − Z.

Proof. Set α = 3
√
pq2 and β = 3

√
p2q = α2/q. Then α is a root of T 3 − pq2 and β is a root

of T 3 − p2q, which are Eisenstein at p and q, respectively. Since pq2 is not divisible by 3
and is not ±1 mod 9, we have pq2 ≡ 2, 4, 5, or 7 mod 9. Therefore pq2 is 1 away from 3 or
6 mod 9, which makes one of pq2 ± 1 divisible by 3 precisely once. That means one of the
polynomials

(4.1) (T + 1)3 − pq2 = T 3 + 3T 2 + 3T + (1− pq2) with root α− 1

or

(4.2) (T − 1)3 − pq2 = T 3 + 3T 2 + 3T − (1 + pq2) with root α+ 1

is Eisenstein at 3. Therefore by Theorem 2.3,

(4.3) p - [OK : Z[α]], q - [OK : Z[β]], 3 - [OK : Z[α± 1]]

for some choice of sign in the last relation, and Z[α± 1] = Z[α] for either sign.
We will show the abelian group R = Z + Zα + Zβ equals OK . First of all, R is a ring

since α2 = qβ, β2 = pα, and αβ = pq, and R contains both Z[α] = Z + Zα + Zqβ with
index q and Z[β] = Z + Zβ + Zpα with index p. We have

(4.4) disc(Z[α]) = −27(pq2)2 = −33p2q4 = [OK : Z[α]]2 disc(K)

and

(4.5) disc(Z[β]) = −27(p2q)2 = −33p4q2 = [OK : Z[β]]2 disc(K).

By (4.3) and (4.4), 33p2 | disc(K), By (4.3) and (4.5), q2 | disc(K). Thus 33p2q2 | disc(K).
Feeding this divisibility relation back into (4.4) and (4.5), [OK : Z[α]] | q and [OK : Z[β]] | p.
We get reverse divisibility relations from

(4.6) [OK : Z[α]] = [OK : R][R : Z[α]] = [OK : R]q =⇒ q | [OK : Z[α]]

and

(4.7) [OK : Z[β]] = [OK : R][R : Z[β]] = [OK : R]p =⇒ p | [OK : Z[β]].

Therefore [OK : Z[α]] = q and [OK : Z[β]] = p, so either (4.4) or (4.5) implies disc(K) =
−33p2q2. By the index equations in (4.6) or (4.7), [OK : R] = 1 and thus OK = R.

The prime factors of disc(K) are 3, p, and q, so these are the primes that ramify in K.
They are totally ramified by Theorem 3.1 since K is generated by the root of an Eisenstein
polynomial at p (T 3 − pq2 with root α), at q (T 3 − pq2 with root β = α2/q), and at 3 (one
of the polynomials in (4.1) or (4.2), with root α± 1).

To show there is no γ in OK −Z such that OK = Z[γ], we will show the index [OK : Z[γ]]
is always greater than 1. Write γ = a+ bα+ cβ for integers a, b, c with b and c not both 0.
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Then Z[γ] = Z[bα+ cβ], so we may take a = 0. Writing {1, bα+ cβ, (bα+ cβ)2} as Z-linear
combinations of {1, α, β}, we have 1

bα+ cβ
(bα+ cβ)2

 =

 1 0 0
0 b c

2pqbc pc2 qb2

1
α
β

 .

since α2 = qβ, β2 = pα, and αβ = pq. The determinant of the 3 × 3 matrix is qb3 − pc3,
and this can’t be 1 or −1 since if qb3−pc3 = ±1 then qb3 ≡ ±1 mod p and pc3 ≡ ±1 mod q,
which imply q mod p is a cube and p mod q is cube. As long as either of those properties is
not true, [OK : Z[γ]] > 1 no matter which γ is used from OK − Z. �

Remark 4.2. Since [OK : Z[α]] = q and [OK : Z[β]] = p, the set of all indices [OK : Z[γ]]
does not have a common prime factor. That makes this example of a ring of integers not
of the form Z[γ] more subtle than “Dedekind’s field” L = Q(θ) where θ3 − θ2 − 2θ− 8 = 0,
since OL isn’t of the form Z[γ] because all the indices [OL : Z[γ]] are even.1

Example 4.3. The primes p = 13 and q = 2 fit all the conditions of Theorem 4.1, with
pq2 = 52 ≡ 7 mod 9 and 2 mod 13 not being a cube, so the ring of integers of Q( 3

√
52) is

not of the form Z[γ].

Example 4.4. The primes p = 7 and q = 5 fit all the conditions of Theorem 4.1, with
pq2 = 175 ≡ 4 mod 9 and 5 mod 7 not being a cube, so the ring of integers of Q( 3

√
175) is

not of the form Z[γ].

Example 4.5. The primes p = 7 and q = 2 do not fit all the conditions of Theorem 4.1:

pq2 = 28 ≡ 1 mod 9. In Q( 3
√

28), it turns out that the ring Z+Z 3
√
pq2+Z 3

√
p2q is not all of

OK (it has index 3 in OK) and OK has a power basis {1, γ, γ2} where γ = ( 3
√

28
2−2 3
√

28−2)/6
and γ has minimal polynomial T 3+T 2+5T−1. This polynomial modulo 3 is (T−1)(T−2)2,
so in OK the prime 3 is ramified but not totally ramified: 3OK = pq2 for some prime ideals
p and q of norm 3.

5. Generalizing Eisensteiin polynomials

In the Eisenstein criterion, the constant term of the polynomial is divisible by a prime
exactly once. The following theorem gives us an irreducibility test that relaxes the divis-
ibility condition in the Eisenstein criterion while still letting us conclude that a prime is
totally ramified.

Theorem 5.1. Let f(T ) = Tn+cn−1T
n−1+· · ·+c1T+c0 ∈ Z[T ] be monic and assume there

is a prime p and d ∈ Z+ such that (d, n) = 1, ci ≡ 0 mod pd for all i, and c0 6≡ 0 mod pd+1.
Then f(T ) is irreducible over Q and p is totally ramified in Q(α), where f(α) = 0.

The irreducibility part of this theorem is due to Flanders [2, Theorem 1]. When d = 1
in the theorem, the irreducibility test in it is the Eisenstein criterion.

Proof. Set K = Q(α), where f(α) = 0, so [K : Q] ≤ n. We will show [K : Q] = n, so f(T )
is irreducible over Q. In this proof, we’ll write principal ideals γOK as (γ).

Without loss of generality, n ≥ 2. In OK , let p be a prime ideal lying over p, say with
multiplicity e: pe | (p) and pe+1 - (p). The number e is the ramification index e(p|p), so we
have e ≤ [K : Q] by the standard identity [K : Q] =

∑g
i=1 eifi for the prime p.

1See Section 1 in https://kconrad.math.uconn.edu/blurbs/gradnumthy/nopowerbasis.pdf.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/nopowerbasis.pdf
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For all i, ci ≡ 0 mod pdZ, so ci ≡ 0 mod pde. Thus

αn = −cn−1αn−1 − · · · − c1α− c0 ≡ 0 mod pde.

Since p is a prime ideal, α ≡ 0 mod p.
From pde | (pd) and pd | ci, pde | (ci) for all i. Thus ciα

i ≡ 0 mod pde+1 for 1 ≤ i ≤ n− 1,
so

αn ≡ −c0 mod pde+1.

The highest power of p dividing c0 is pd and the highest power of p dividing (p) is pe, so
the highest power of p dividing (c0) is pde. Thus c0 6≡ 0 mod pde+1, so αn 6≡ 0 mod pde+1.
We saw above that αn ≡ 0 mod pde, so the highest power of p dividing (αn) is pde. Every
prime ideal dividing (αn) has multiplicity divisible by n, since (αn) = (α)n, so n | de. Then
n | e since (d, n) = 1.

Combining the inequalities e ≤ [K : Q] ≤ n from early in the proof with n | e, we get
e = [K : Q] = n, so f(T ) is irreducible over Q and (p) = pn. �

Example 5.2. The polynomial f(T ) = Tn − 9T − 9 fits the hypotheses of Theorem 5.1
when (2, n) = 1, meaning n is odd.

Example 5.3. When p is prime and d ≥ 1, Tn − pd fits the hypotheses in Theorem 5.1
when (d, n) = 1. If (d, n) > 1, then Tn − pd is reducible: letting m = (d, n), and writing
d = md′ and n = mn′,

Tn − pd = Tmn′ − pmd′ = Xm − Y m = (X − Y )
m−1∑
k=0

XkY m−1−k,

where X = Tn′
and Y = pm

′
. The right side is a product of two nonconstant polynomials

in T when m > 1.

We can generalize Theorem 5.1 to base fields other than Q.

Theorem 5.4. Let F be a number field and f(T ) = Tn+cn−1T
n−1+ · · ·+c1T +c0 ∈ OF [T ]

be monic. If there is a prime p in OF and d ∈ Z+ such that (d, n) = 1, ci ≡ 0 mod pd for all
i, and c0 6≡ 0 mod pd+1. then f(T ) is irreducible over F and p is totally ramified in F (α),
where f(α) = 0: pOE = Pn for some prime ideal P in OE.

Proof. Left to the reader. The irreducibility part is a special case of [2, Theorem 1]. �
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