STRASSMANN'S THEOREM AND AN APPLICATION

KEITH CONRAD

1. Introduction

Let $\left\{a_{m}\right\}$ be the sequence defined by the linear recursion

$$
\begin{equation*}
a_{m}=2 a_{m-1}-3 a_{m-2} \tag{1.1}
\end{equation*}
$$

with initial conditions $a_{0}=1, a_{1}=1$. Here are the values of a_{m} for $m=0,1, \ldots, 14$.

m	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a_{m}	1	1	-1	-5	-7	1	23	43	17	-95	-241	-197	329	1249	1511

One feature suggested by the data is that a_{m} is always odd. It is easy to prove this by induction from the fact that a_{0} and a_{1} are both odd, since the recursion reduced $\bmod 2$ shows $a_{m} \equiv a_{m-2} \bmod 2$.

The data also suggest that $\left|a_{m}\right| \rightarrow \infty$ as $m \rightarrow \infty$, and (seeing how $\left|a_{m}\right|$ starts growing) $a_{m}= \pm 1$ only for the times we see it happening in the table: for $m=0,1,2$, and 5 . This all turns out to be true, and while it sounds like a problem in real analysis, it will explained by p-adic analysis!

A natural way to study a_{m} is with an explicit formula for the sequence. Using complex numbers, such a formula is

$$
\begin{equation*}
a_{m}=\frac{(1+\sqrt{-2})^{m}}{2}+\frac{(1-\sqrt{-2})^{m}}{2} \tag{1.2}
\end{equation*}
$$

(To verify this formula, check the right side satisfies the recursion (1.1) and has value 1 at $m=0$ and 1.) This shows the integer a_{m} is the real part of the complex number $(1+\sqrt{-2})^{m}$, and that is the context in which the equation $a_{m}= \pm 1$ first came to my attention [1]. Determining when $a_{m}= \pm 1$ is equivalent to finding all integers x such that $1+2 x^{2}$ is a power of 3 ; see Appendix A for that, which shows understanding the values of $\left\{a_{m}\right\}$ has applications to number theory.

In \mathbf{C} we have $|1 \pm \sqrt{-2}|=\sqrt{1+2}=\sqrt{3}>1$, so the absolute value of both terms in (1.2) tends to ∞ with m. This is not sufficient to conclude $\left|a_{m}\right| \rightarrow \infty$ as $m \rightarrow \infty$ because the two terms in (1.2) have the same magnitude. We need to rule out the possibility of a massive cancellation for some large m that makes a_{m} small.

Let's write the condition " $\left|a_{m}\right| \rightarrow \infty$ as $m \rightarrow \infty$ " in another way: since each a_{m} is an integer, saying $\left|a_{m}\right|$ tends to ∞ as $m \rightarrow \infty$ is equivalent to saying for each $c \in \mathbf{Z}$ that the equation $a_{m}=c$ is satisfied for only finitely many m. Here is our goal.

Theorem 1.1. For each integer c, the equation $a_{m}=c$ holds for only finitely many integers m. In particular, $a_{m}=1$ if and only if $m=0,1$, or 5 and $a_{m}=-1$ if and only if $m=2$.

To make progress on Theorem 1.1, the key idea is to interpret (1.2) not in \mathbf{C}, but in some \mathbf{Q}_{p} containing a square root of -2 . Using the right side of (1.2) in \mathbf{Q}_{p} we will see how to extend a_{m} from being a function of the integral parameter m to being a locally p-adic analytic function of m : there are finitely many p-adic power series, for a suitable prime p,
whose values at the nonnegative integers m are the sequence $\left\{a_{m}\right\}$. This will let us think about the equation $a_{m}=c$ as a special case of the equation $f(x)=c$ where f is one of finitely many p-adic power series and $x \in \mathbf{Z}_{p}$. We will prove qualitative and quantitative theorems about zeros of p-adic power series that will tell us each equation $f(x)=c$ has a finite number of solutions in \mathbf{Z}_{p} and at most how many such solutions there can be. If the upper bound on the number of solutions in \mathbf{Z}_{p} is accounted for by the known $m \geq 0$ for which $a_{m}=c$, we will have provably found all $m \geq 0$ for which $a_{m}=c$.

2. Zeros of a p-adic analytic function

Theorem 2.1. Let $f(x)$ be a power series with coefficients in \mathbf{Q}_{p} that converges on \mathbf{Z}_{p} and is not identically zero. The zeros of f in \mathbf{Z}_{p} are isolated: for each $\alpha \in \mathbf{Z}_{p}$ at which $f(\alpha)=0$ there is an $r>0$ such that $f(x) \neq 0$ for $0<|x-\alpha|_{p}<r$.

This theorem is analogous to a property of real power series: each real zero of a real power series has an open interval around it in which there are no other real zeros.

Proof. We can recenter the power series at $\alpha: f(x)=\sum_{n \geq 0} a_{n}(x-\alpha)^{n}$ on \mathbf{Z}_{p} with $a_{0}=$ $f(\alpha)=0$. Some a_{n} is not 0 , since otherwise f would be identically zero on \mathbf{Z}_{p}. Let $a_{N} \neq 0$ with $N \geq 1$ minimal, so $f(x)=\sum_{n \geq N} a_{n}(x-\alpha)^{n}=(x-\alpha)^{N} g(x)$, where $g(x)=$ $\sum_{n \geq N} a_{n}(x-\alpha)^{n-N}$. The power series $g(x)$ converges for each $x \in \mathbf{Z}_{p}$: this is obvious at $x=\alpha$, and for $x \neq \alpha$ in \mathbf{Z}_{p} we have $\left|a_{n}(x-\alpha)^{n}\right|_{p} \rightarrow 0$ when $n \rightarrow \infty$, so $\left|a_{n}(x-\alpha)^{n-N}\right|_{p}=$ $\left|a_{n}(x-\alpha)^{n}\right|_{p} /|x-\alpha|_{p}^{N} \rightarrow 0$ when $n \rightarrow \infty$.

Although g was constructed as a power series centered at α, since $0 \in \mathbf{Z}_{p}$ we can recenter g at 0 and the new series still converges on \mathbf{Z}_{p}. Since $g(\alpha)=a_{N}$ and a power series on \mathbf{Z}_{p} is continuous, $\lim _{x \rightarrow \alpha} g(x)=a_{N} \neq 0$. Therefore there is a small $r>0$ such that $|x-\alpha|_{p}<r \Longrightarrow g(x) \neq 0$. Then $0<|x-\alpha|_{p}<r \Longrightarrow f(x)=(x-\alpha)^{N} g(x) \neq 0$.

Corollary 2.2. For a sequence $c_{n} \in \mathbf{Q}_{p}$ such that the series $f(x)=\sum_{n \geq 0} c_{n} x^{n}$ converges on \mathbf{Z}_{p}, if the coefficients are not all zero then f has only finitely many zeros in \mathbf{Z}_{p}.
Proof. We will prove the contrapositive. Suppose f has infinitely many zeros x_{1}, x_{2}, \ldots in \mathbf{Z}_{p}. Since \mathbf{Z}_{p} is compact, this sequence has a convergent subsequence, say $x_{n_{i}} \rightarrow x \in \mathbf{Z}_{p}$. Then $f(x)=\lim _{i \rightarrow \infty} f\left(x_{n_{i}}\right)=\lim _{i \rightarrow \infty} 0=0$, and the zero x is not isolated since it is a limit of the zeros $x_{n_{i}}$. Theorem 2.1 implies f is identically 0 , so all of its coefficients are 0 .

3. Turning $\left\{a_{m}\right\}$ into the values of a p-Adic power series

In the formula (1.2) we would like to extend integer powers $(1+\sqrt{-2})^{m}$ and $(1-\sqrt{-2})^{m}$ to p-adic integer powers $(1+\sqrt{-2})^{x}$ and $(1-\sqrt{-2})^{x}$, where $x \in \mathbf{Z}_{p}$. This can't be done directly, because there is a restriction on the base b to be sure a power sequence $\left\{b^{m}\right\}$ extends to a p-adic power function b^{x} that is a p-adic power series in x : we want

$$
|b-1|_{p} \leq\left\{\begin{array}{ll}
1 / p, & \text { if } p \neq 2 \tag{3.1}\\
1 / 4, & \text { if } p=2
\end{array} .\right.
$$

Under this condition, b^{x} has a power series representation

$$
b^{x}=e^{x \log b}=\sum_{n \geq 0} \frac{(x \log b)^{n}}{n!}=\sum_{n \geq 0} \frac{(\log b)^{n}}{n!} x^{n}
$$

that converges for all $x \in \mathbf{Z}_{p}$ since $\left|(\log b)^{n} / n!\right|_{p}=|b-1|_{p}^{n} /|n!|_{p} \rightarrow 0$ as $n \rightarrow \infty$.

Even if \mathbf{Z}_{p} contains a square root of $-2,1+\sqrt{-2}$ and $1-\sqrt{-2}$ can't both satisfy (3.1) in the role of b.

Example 3.1. In \mathbf{Z}_{3} there is a square root of -2 since $-2 \equiv 1 \bmod 3$. Explicitly, we can take

$$
\sqrt{-2}=1+3+2 \cdot 3^{2}+2 \cdot 3^{5}+\cdots,
$$

so

$$
1+\sqrt{-2}=2+3+2 \cdot 3^{2}+\cdots, \quad 1-\sqrt{-2}=2 \cdot 3+2 \cdot 3^{3}+\cdots
$$

Neither $1+\sqrt{-2}$ nor $1-\sqrt{-2}$ is in $1+3 \mathbf{Z}_{3}$: one is in $2+3 \mathbf{Z}_{3}$ and the other is in $3 \mathbf{Z}_{3}$.
Example 3.2. In \mathbf{Z}_{11} there is a square root of -2 since $-2 \equiv 9 \bmod 11$. We can take $\sqrt{-2} \equiv 3 \bmod 11$, so $1+\sqrt{-2} \equiv 4 \bmod 11$ and $1-\sqrt{-2} \equiv-2 \equiv 9 \bmod 11$. More explicitly,

$$
\sqrt{-2}=3+9 \cdot 11+4 \cdot 11^{2}+\cdots
$$

so

$$
1+\sqrt{-2}=4+9 \cdot 11+4 \cdot 11^{2}+\cdots, \quad 1-\sqrt{-2}=9+11+6 \cdot 11^{2}+\cdots
$$

Both $1+\sqrt{-2}$ and $1-\sqrt{-2}$ are in \mathbf{Z}_{11}^{\times}, but neither is in $1+11 \mathbf{Z}_{11}$.
Unless a p-adic integer b is p-adically close to 1 , the power sequence $\left\{b^{m}\right\}$ is not the values at $0,1,2,3, \ldots$ of a p-adic power series. However, if $b \in \mathbf{Z}_{p}^{\times}$then the sequence $\left\{b^{m}\right\}$ is the values at nonnegative integers of a finite number of p-adic power series.
Theorem 3.3. Let $b \in \mathbf{Z}_{p}^{\times}$. If $p \neq 2$ then for each $r \in\{0,1, \ldots, p-2\}$ there are power series $f_{r}(x)$ converging on \mathbf{Z}_{p} such that $f_{r}(k)=b^{(p-1) k+r}$ for all integers $k \geq 0$. If $p=2$ then for $r=0$ and 1 there are 2 -adic power series $f_{r}(x)$ converging on \mathbf{Z}_{2} such that $f_{r}(k)=b^{2 k+r}$ for all integers $k \geq 0$.
Proof. For $0 \leq r \leq p-2$ and $k \geq 0$,

$$
b^{(p-1) k+r}=b^{r}\left(b^{p-1}\right)^{k} .
$$

Since $b \not \equiv 0 \bmod p$, by Fermat's little theorem $b^{p-1} \equiv 1 \bmod p$. Thus $\left|b^{p-1}-1\right|_{p} \leq 1 / p$, so when $p \neq 2$ we can extend integer powers of b^{p-1} to p-adic integer powers: for $0 \leq r \leq p-2$ define the power series

$$
f_{r}(x)=b^{r}\left(b^{p-1}\right)^{x}=b^{r} e^{x \log \left(b^{p-1}\right)}=b^{r} \sum_{n \geq 0} \frac{\left(\log b^{p-1}\right)^{n}}{n!} x^{n} .
$$

(Do not rewrite $\log b^{p-1}$ as $(p-1) \log b$ if $b \not \equiv 1 \bmod p$ since otherwise b is not in the domain of convergence of the p-adic logarithm series.) Each power series f_{r} converges on \mathbf{Z}_{p} since its coefficients tend to 0 , and for nonnegative integers k we have

$$
f_{r}(k)=b^{r}\left(b^{p-1}\right)^{k}=b^{(p-1) k+r} .
$$

For $p=2$ we have $b \equiv 1 \bmod 2 \Longrightarrow b^{2} \equiv 1 \bmod 4$, so $\left|b^{2}-1\right|_{2} \leq 1 / 4$. (In fact, $\left|b^{2}-1\right|_{2} \leq 1 / 8$.) Therefore we can take 2-adic integer powers of b^{2} and define for $r=0$ and 1 the power series

$$
f_{r}(x)=b^{r}\left(b^{2}\right)^{x}=b^{r} e^{x \log \left(b^{2}\right)}=b^{r} \sum_{n \geq 0} \frac{\left(\log b^{2}\right)^{n}}{n!} x^{n}
$$

This power series converges on \mathbf{Z}_{2}, and for integers $k \geq 0$ we have

$$
f_{r}(k)=b^{r}\left(b^{2}\right)^{k}=b^{2 k+r} .
$$

We used b^{p-1} for $p \neq 2$ and b^{2} for $p=2$ to have a power of b that we know is congruent to $1 \bmod p($ or $1 \bmod 4$, if $p=2$). This led to $p-1$ power series for $p \neq 2$ (or 2 power series if $p=2$) whose values on \mathbf{Z}_{p} include all values of b^{m}. If a smaller power of b is congruent to $1 \bmod p$ then we can use fewer power series in Theorem 3.3.
Example 3.4. For $b \in \mathbf{Z}_{7}^{\times}$, we have $b^{6} \equiv 1 \bmod 7$ and Theorem 3.3 says for $r=0,1, \ldots, 5$ that there are 7 -adic power series $f_{r}(x)$ converging on \mathbf{Z}_{7} such that $f_{r}(k)=b^{6 k+r}$ for integers $k \geq 0$.

If $b \equiv 2 \bmod 7$ then $b^{3} \equiv 1 \bmod 7$, so we can take 7 -adic integer powers of b^{3}, not just b^{6}. The sequence $\left\{b^{m}\right\}$ lies among the values of just three 7 -adic power series: for $0 \leq r \leq 2$ set $f_{r}(x)=b^{r}\left(b^{3}\right)^{x}=b^{r} \sum_{n \geq 0}\left(\left(\log b^{3}\right)^{n} / n!\right) x^{n}$. These series converge on \mathbf{Z}_{7} and $f_{r}(k)=b^{3 k+r}$ for integers $k \geq 0$.
Example 3.5. If $b \equiv 1 \bmod p$ for $p \neq 2$ or $b \equiv 1 \bmod 4$ then we only need a single p-adic power series to include all nonnegative integral powers of b : $f(x)=b^{x}=$ $\sum_{n \geq 0}\left((\log b)^{n} / n!\right) x^{n}$ is a power series converging on \mathbf{Z}_{p} and $f(k)=b^{k}$ for integers $k \geq 0$.

Example 3.6. Why do we require $|b|_{p}=1$ in Theorem 3.3? If $|b|_{p}<1$ and $b \neq 0$ then Theorem 3.3 breaks down: for no arithmetic progression $\{M k+r\}_{k \geq 0}$, where $M \geq 1$ and $r \in\{0, \ldots, M-1\}$, can $b^{M k+r}=f(k)$ for a p-adic power series $f(x)$. Indeed, since p-adic power series are continuous, $f\left(p^{t}\right) \rightarrow f(0)$ as $t \rightarrow \infty$ while $b^{M p^{t}+r} \rightarrow 0$ as $t \rightarrow \infty$ since $\left|b^{M p^{t}+r}\right|_{p}=\left|b^{r}\right|_{p}|b|_{p}^{M p^{t}} \leq|b|_{p}^{p^{t}} \rightarrow 0$. Therefore we need $f(0)=0$, so $b^{r}=0$, which is false.

The underlying problem here is that every p-adic integer is the p-adic limit of integers that are large in the ordinary sense, and when $|b|_{p}<1$ the number b^{m} has to be very small when m is very large in the ordinary sense. If $|b|_{p}=1$ then at least $\left|b^{m}\right|_{p}=1$ all the time.
Corollary 3.7. For b_{1} and b_{2} in \mathbf{Z}_{p}^{\times}and c_{1} and c_{2} in \mathbf{Z}_{p}, the numbers $c_{1} b_{1}^{m}+c_{2} b_{2}^{m}$ for integers $m \geq 0$ are the values of finitely many p-adic power series at nonnegative integers.
Proof. Assume $p \neq 2$. Then $b_{1}^{p-1} \equiv 1 \bmod p$ and $b_{2}^{p-1} \equiv 1 \bmod p$. For $0 \leq r \leq p-2$ and $x \in \mathbf{Z}_{p}$ set

$$
\begin{aligned}
f_{r}(x) & =c_{1} b_{1}^{r}\left(b_{1}^{p-1}\right)^{x}+c_{2} b_{2}^{r}\left(b_{2}^{p-1}\right)^{x} \\
& =\sum_{n \geq 0} \frac{c_{1} b_{1}^{r}\left(\log b_{1}^{p-1}\right)^{n}+c_{2} b_{2}^{r}\left(\log b_{2}^{p-1}\right)^{n}}{n!} x^{n} .
\end{aligned}
$$

This power series converges on \mathbf{Z}_{p}, and for integers $k \geq 0$

$$
f_{r}(k)=c_{1} b_{1}^{r}\left(b_{1}^{p-1}\right)^{k}+c_{2} b_{2}^{r}\left(b_{2}^{p-1}\right)^{k}=c_{1} b_{1}^{(p-1) k+r}+c_{2} b_{2}^{(p-1) k+r} .
$$

If $p=2$ then $b_{1}^{2} \equiv 1 \bmod 4$ and $b_{2}^{2} \equiv 1 \bmod 4$, so for $r=0$ or 1 and $x \in \mathbf{Z}_{2}$, define

$$
\begin{aligned}
f_{r}(x) & =c_{1} b_{1}^{r}\left(b_{1}^{2}\right)^{x}+c_{2} b_{2}^{r}\left(b_{2}^{2}\right)^{x} \\
& =\sum_{n \geq 0} \frac{c_{1} b_{1}^{r}\left(\log b_{1}^{2}\right)^{n}+c_{2} b_{2}^{r}\left(\log b_{2}^{2}\right)^{n}}{n!} x^{n} .
\end{aligned}
$$

This series converges on \mathbf{Z}_{2}, and for integers $k \geq 0$

$$
f_{r}(k)=c_{1} b_{1}^{r}\left(b_{1}^{2}\right)^{k}+c_{2} b_{2}^{r}\left(b_{2}^{2}\right)^{k}=c_{1} b_{1}^{2 k+r}+c_{2} b_{2}^{2 k+r} .
$$

Corollary 3.7 extends to a linear combination of the powers of more than two p-adic units. We stick to two units for concreteness, as it will be sufficient for our intended application.

For $p \neq 2$, if $b_{1}^{M} \equiv 1 \bmod p$ and $b_{2}^{M} \equiv 1 \bmod p$ for some $M<p-1$ then the sequence $\left\{c_{1} b_{1}^{m}+c_{2} b_{2}^{m}\right\}_{m \geq 0}$ lies among the values of M power series in Corollary 3.7 instead of $p-1$ power series. In particular, if $b_{1} \equiv 1 \bmod p$ and $b_{2} \equiv 1 \bmod p$ then the sequence $\left\{c_{1} b_{1}^{m}+c_{2} b_{2}^{m}\right\}_{m \geq 0}$ lies among the values of a single power series converging on \mathbf{Z}_{p}.
Example 3.8. In \mathbf{Z}_{7}, if $b_{1} \equiv 2 \bmod 7$ and $b_{2} \equiv 4 \bmod 7$ then $b_{1}^{3} \equiv 1 \bmod 7$ and $b_{2}^{3} \equiv$ $1 \bmod 7$, so the numbers $c_{1} b_{1}^{m}+c_{2} b_{2}^{m}$ for $m \geq 0$ can be broken up into three sequences

$$
c_{1} b_{1}^{r}\left(b_{1}^{3}\right)^{k}+c_{2} b_{2}^{r}\left(b_{2}^{3}\right)^{k}
$$

for $r=0,1,2$ and $k \geq 0$, which each extend to a 7 -adic power series converging on \mathbf{Z}_{7} :

$$
c_{1} b_{1}^{r}\left(b_{1}^{3}\right)^{x}+c_{2} b_{2}^{r}\left(b_{2}^{3}\right)^{x}=\sum_{n \geq 0} \frac{c_{1} b_{1}^{r}\left(\log b_{1}^{3}\right)^{n}+c_{2} b_{2}^{r}\left(\log b_{2}^{3}\right)^{n}}{n!} x^{n} .
$$

Let's return to our original sequence of interest a_{m} in (1.1), which has an explicit formula in terms of powers of $1+\sqrt{-2}$ and $1-\sqrt{-2}$ in (1.2). Although there are square roots of -2 in \mathbf{Z}_{3}, one lying in $1+3 \mathbf{Z}_{3}$ and one lying in $2+3 \mathbf{Z}_{3}$, there is not a formula for a_{m} using 3 -adic power series: taking $\sqrt{-2} \equiv 1 \bmod 3$, there are problems with powers of $1-\sqrt{-2}$ since $|1-\sqrt{-2}|_{3}<1$, and if we had chosen $\sqrt{-2} \equiv 2 \bmod 3$ then we'd have problems with powers of $1+\sqrt{-2}$ for a similar reason.

The next prime after $p=3$ where -2 has square roots in \mathbf{Z}_{p} is 11 , so let's turn it up to 11. We saw in Example 3.2 that we can choose $\sqrt{-2} \equiv 3 \bmod 11$, so $1+\sqrt{-2} \equiv 4 \bmod 11$ and $1-\sqrt{-2} \equiv-2 \equiv 9 \bmod 11$. Since $4^{5} \equiv 1 \bmod 11$ and $9^{5} \equiv 1 \bmod 11$, both $(1+\sqrt{-2})^{5}$ and $(1-\sqrt{-2})^{5}$ lie in $1+11 \mathbf{Z}_{11}$. Explicitly,

$$
(1+\sqrt{-2})^{5}=1-11 \sqrt{-2}, \quad(1-\sqrt{-2})^{5}=1+11 \sqrt{-2} .
$$

For $r=0,1,2,3,4$, and $x \in \mathbf{Z}_{11}$, define

$$
\begin{aligned}
f_{r}(x) & =\frac{(1+\sqrt{-2})^{r}\left((1+\sqrt{-2})^{5}\right)^{x}+(1-\sqrt{-2})^{r}\left((1-\sqrt{-2})^{5}\right)^{x}}{2} \\
& =\frac{(1+\sqrt{-2})^{r}}{2}(1-11 \sqrt{-2})^{x}+\frac{(1-\sqrt{-2})^{r}}{2}(1+11 \sqrt{-2})^{x} \\
3.2) & =\sum_{n \geq 0}\left(\frac{(1+\sqrt{-2})^{r}}{2} \frac{(\log (1-11 \sqrt{-2}))^{n}}{n!}+\frac{(1-\sqrt{-2})^{r}}{2} \frac{(\log (1+11 \sqrt{-2}))^{n}}{n!}\right) x^{n} .
\end{aligned}
$$

For integers $k \geq 0$,

$$
f_{r}(k)=\frac{(1+\sqrt{-2})^{5 k+r}}{2}+\frac{(1-\sqrt{-2})^{5 k+r}}{2}=a_{5 k+r}
$$

This way of looking at the sequence $\left\{a_{m}\right\}$, as the values at nonnegative integers of five 11-adic power series, leads to a solution of the qualitative problem about values of a_{m}.

Theorem 3.9. The sequence $\left\{a_{m}\right\}$ in (1.2) with initial conditions $a_{0}=a_{1}=1$ has $\left|a_{m}\right| \rightarrow$ ∞ as $m \rightarrow \infty$.
Proof. We will show for each $c \in \mathbf{Z}$ that the equation $a_{m}=c$ is satisfied for only finitely many integers $m \geq 0$ by showing a more general property in the 11-adic integers: for each $c \in \mathbf{Z}_{11}$ and $r \in\{0,1, \ldots, 4\}$ the equations $f_{r}(x)=c$, where f_{r} is defined by (3.2), each have only finitely many solutions x in \mathbf{Z}_{11}. To prove that, we will show each f_{r} is a nonconstant
power series, since that makes the power series $f_{r}(x)-c$ nonconstant and thus it has finitely many zeros in \mathbf{Z}_{11} by Corollary 2.2.

To check each of the five power series f_{r} in (3.2) is not constant, we could compute the linear coefficient of f_{r} and check it is not 0 (and if it were 0 , we could then check the quadratic coefficient is not 0 , and so on). But we will do something simpler: compare $f_{r}(0)=a_{r}$ and $f_{r}(1)=a_{5+r}$ for $0 \leq r \leq 4$. If they are not equal then f_{r} is not a constant series. We already saw these values in the table at the start of Section 1. Here they are again, in a more suitable form for us now.

r	0	1	2	3	4
a_{r}	1	1	-1	-5	-7
a_{5+r}	1	23	43	17	-95

We see $a_{r} \neq a_{5+r}$ when r is $1,2,3$, and 4 , so f_{r} is not constant, but at $r=0$ we have $a_{0}=a_{5}=1$. That is not a problem: just compute one more value: $f_{0}(2)=a_{5 \cdot 2}=a_{10}=$ -241 . So f_{0} is not constant either.

To bound how often $a_{m}= \pm 1$, we will bound how often $f_{r}(x)=1$ and $f_{r}(x)=-1$ in \mathbf{Z}_{11} for $0 \leq r \leq 4$ in (3.2). This is equivalent to bounding the number of 11 -adic integer zeros of $f_{r}(x)-1$ and $f_{r}(x)+1$, which can be thought of as a quantitative refinement of Corollary 2.2. To do this we will use a theorem from p-adic analysis called Strassmann's theorem.

4. Strassmann's theorem

By Corollary 2.2, a nonzero series $f(x)=\sum_{n \geq 0} a_{n} x^{n}$ with $a_{n} \in \mathbf{Q}_{p}$ that converges on \mathbf{Z}_{p} has finitely many zeros in \mathbf{Z}_{p}. We want to bound the number of those zeros. The series $\sum_{n \geq 0} a_{n} x^{n}$ converges on \mathbf{Z}_{p} if and only if $a_{n} \rightarrow 0$. If $a_{n} \rightarrow 0$ and the a_{n} 's are not all 0 then the numbers $\left|a_{n}\right|_{p}$ have a positive maximum and there is a last time the maximum occurs. The largest index for a coefficient of maximal absolute value is denoted $N(f)$. That is,

$$
N(f)=\max \left\{N \geq 0:\left|a_{n}\right|_{p} \leq\left|a_{N}\right|_{p} \text { for all } n \geq 0\right\} .
$$

For the power series f whose coefficients are all $0, N(f)$ is not defined.
Theorem 4.1 (Strassmann). Let $f(x)=\sum_{n \geq 0} a_{n} x^{n}$ where $a_{n} \in \mathbf{Q}_{p}$ and $a_{n} \rightarrow 0$. If the a_{n} 's are not all zero then the number of solutions to $f(x)=0$ in \mathbf{Z}_{p} is at most $N(f)$.

We can apply this theorem to polynomials, which are power series with finitely many terms.

Example 4.2. Over $\mathbf{Q}_{p}, f(X)=1+p X+X^{2}+p X^{5}$ has $N=2$, so it has at most 2 zeros in \mathbf{Z}_{p}. The actual number of zeros of $f(X)$ in \mathbf{Z}_{p} is 0 when $p=2\left(a \in \mathbf{Z}_{2} \Rightarrow f(a) \equiv 1,2 \bmod 4\right)$ and $p=3\left(a \in \mathbf{Z}_{3} \Rightarrow f(a) \equiv 1,2 \bmod 3\right)$ and 2 when $p=5$ (use Hensel's lemma for $f(X)$ with $a=2$ and $a=3$).
Example 4.3. Over $\mathbf{Q}_{p}, 1+X+p X^{2}$ has $N=1$ and thus at most 1 zero in \mathbf{Z}_{p}. In fact there is a zero in \mathbf{Z}_{p}, as you can check with the quadratic formula; a second zero is in \mathbf{Q}_{p} but outside of \mathbf{Z}_{p}.
Example 4.4. Over $\mathbf{Q}_{p}, X^{n}-p$ has $N=n$ and no roots in \mathbf{Z}_{p} (or \mathbf{Q}_{p}) for $n \geq 2$. This illustrates that the bound in Strassmann's theorem is only an upper bound on the number of roots in \mathbf{Z}_{p}, not a formula in general for the number of roots in \mathbf{Z}_{p}.

Strassmann's theorem can be regarded as an analogue for p-adic power series of bounding the number of roots of a polynomial over a field by the degree of the polynomial. In the polynomial theorem the key idea is to factor out $x-\alpha$ if α is a root, which lowers the degree of the polynomial by one, and the proof of Strassmann's theorem will have a step just like this where the value of $N(f)$ drops by one after removing a factor corresponding to a root (if one exists). When dealing with power series rather than polynomials we have to be a little more careful at the factoring step due to convergence issues.

Proof. We use induction on $N(f)$.
When $N(f)=0,\left|a_{n}\right|_{p}<\left|a_{0}\right|_{p}$ for all $n \geq 1$, so $a_{0} \neq 0$ and $\max _{n \geq 1}\left|a_{n}\right|_{p}<\left|a_{0}\right|_{p}$ because the a_{n} 's tend to 0 . For $x \in \mathbf{Z}_{p}$,

$$
\left|\sum_{n \geq 1} a_{n} x^{n}\right|_{p} \leq \max _{n \geq 1}\left|a_{n} x^{n}\right|_{p} \leq \max _{n \geq 1}\left|a_{n}\right|_{p}<\left|a_{0}\right|_{p}
$$

so by the strong triangle inequality $|f(x)|_{p}=\left|a_{0}+\sum_{n \geq 1} a_{n} x^{n}\right|_{p}=\left|a_{0}\right|_{p}>0$. Thus f has no zero in \mathbf{Z}_{p}.

Now suppose $N \geq 1$ and the theorem is proved for all power series $g(x)$ with coefficients in \mathbf{Q}_{p} converging on \mathbf{Z}_{p} with $N(g)<N$. If $N(f)=N$ and f has no zeros in \mathbf{Z}_{p} then we are done since $0<N$. If f has a zero $\alpha \in \mathbf{Z}_{p}$ then by the same reasoning as in the proof of Theorem 2.1 we can write

$$
\begin{equation*}
f(x)=(x-\alpha) g(x) \tag{4.1}
\end{equation*}
$$

where g is a power series centered at 0 that converges on \mathbf{Z}_{p}. By (4.1), for $x \in \mathbf{Z}_{p}$ we have $f(x)=0$ if and only if $x=\alpha$ or $g(x)=0$. We will show $N(g)=N(f)-1=N-1$, so by induction g has at most $N-1$ zeros in \mathbf{Z}_{p}, and therefore the number of zeros of f in \mathbf{Z}_{p} is at most $1+(N-1)=N$.

Writing $g(x)=\sum_{n \geq 0} b_{n} x^{n}$, to show $N(g)=N-1$ means showing

$$
\begin{equation*}
\left|b_{n}\right|_{p} \leq\left|b_{N-1}\right|_{p} \text { for all } n, \quad\left|b_{n}\right|_{p}<\left|b_{N-1}\right|_{p} \text { for } n \geq N \tag{4.2}
\end{equation*}
$$

While doing this we will also show $\left|b_{N-1}\right|_{p}=\left|a_{N}\right|_{p}$.
If $\alpha=0$ then $f(x)=x g(x)$, so $b_{n}=a_{n+1}$ for all n, and then (4.2) and $\left|b_{N-1}\right|_{p}=\left|a_{N}\right|_{p}$ are clear. If $\alpha \neq 0$, substituting the power series representations $f(x)=\sum_{n \geq 0} a_{n} x^{n}$ and $g(x)=\sum_{n \geq 0} b_{n} x^{n}$ into (4.1) and equating coefficients of like powers of x on both sides, we get

$$
a_{0}=-\alpha b_{0}, \quad a_{n}=b_{n-1}-b_{n} \alpha \text { for } n \geq 1 .
$$

Replacing n by $n+1$ in this recursion,

$$
\begin{aligned}
b_{n} & =a_{n+1}+b_{n+1} \alpha \\
& =a_{n+1}+\left(a_{n+2}+b_{n+2} \alpha\right) \alpha \\
& =a_{n+1}+a_{n+2} \alpha+b_{n+2} \alpha^{2} \\
& =a_{n+1}+a_{n+2} \alpha+\left(a_{n+3}+b_{n+3} \alpha\right) \alpha^{2} \\
& =a_{n+1}+a_{n+2} \alpha+a_{n+3} \alpha^{2}+b_{n+3} \alpha^{3} .
\end{aligned}
$$

Repeating this, for any $m \geq 1$

$$
b_{n}=\sum_{k=1}^{m} a_{n+k} \alpha^{k-1}+b_{n+m} \alpha^{m-1} .
$$

Since $\alpha \neq 0,\left|a_{n+k} \alpha^{k-1}\right|_{p}=\left|a_{n+k} \alpha_{p}^{n+k}\right| /|\alpha|_{p}^{n+1} \rightarrow 0$ as $k \rightarrow \infty$ since the power series for f centered at 0 converges at α, and similarly $\left|b_{n+m} \alpha^{m-1}\right|_{p} \rightarrow 0$ as $m \rightarrow \infty$ since the power series for g centered at 0 converges at α. Therefore

$$
\begin{equation*}
b_{n}=\sum_{k \geq 1} a_{n+k} \alpha^{k-1} \tag{4.3}
\end{equation*}
$$

so for all n

$$
\left|b_{n}\right|_{p} \leq \max _{k \geq 1}\left|a_{n+k}\right|_{p}=\max _{k \geq n+1}\left|a_{k}\right|_{p} \leq\left|a_{N}\right|_{p} .
$$

If $k \geq N+1$ then $\left|a_{k}\right|_{p}<\left|a_{N}\right|_{p}$ by the definition of N, so $n \geq N \Longrightarrow\left|b_{n}\right|_{p}<\left|a_{N}\right|_{p}$. Also $b_{N-1}=a_{N}+\sum_{k \geq 2} a_{N-1+k} \alpha^{k-1}$ where $\left|a_{N-1+k} \alpha^{k-1}\right|_{p} \leq\left|a_{N-1+k}\right|_{p}<\left|a_{N}\right|_{p}$ for $k \geq 2$, so $\left|b_{N-1}\right|_{p}=\left|a_{N}\right|_{p}$. Thus $\left|b_{n}\right|_{p}$ is maximized for the last time at $n=N-1$, so $N(g)=N-1$.
Remark 4.5. The number of roots of a polynomial over a field need not equal its degree, but equality does occur in degree $1: a x+b=0$ if and only if $x=-b / a($ if $a \neq 0)$. Similarly, if $N(f)=1$ in Strassmann's theorem then there really is a root of $f(x)$ in \mathbf{Z}_{p}. This can be proved using a version of Hensel's lemma for power series.

5. Proof of Theorem 1.1 using \mathbf{Q}_{11}

The formula for a_{m} in (1.2) uses a square root of -2 . Since $-2 \equiv 9 \bmod 11,-2$ has a square root in \mathbf{Z}_{11} that is congruent to $3 \bmod 11$. Define $\sqrt{-2}$ to be that 11-adic integer:

$$
\sqrt{-2}=3+9 \cdot 11+4 \cdot 11^{2}+11^{3}+\cdots
$$

Step 1: Estimate values of the p-adic logarithm on $1+p \mathbf{Z}_{p}$.
We will show for odd p (the case of interest is $p=11$) and $y \in p \mathbf{Z}_{p}$ that $|\log (1+y)|_{p}=|y|_{p}$ and $\log (1+y) \equiv y \bmod p^{2}$.

Since $\log (1+y)=\sum_{n \geq 1}(-1)^{n-1} y^{n} / n$ it suffices, for both the desired equation and congruence, to check when $n \geq 2$ and $|y|_{p} \leq 1 / p$ that $\left|y^{n} / n\right|_{p}<|y|_{p}$, or equivalently that $1 / p<|n|_{p}^{1 /(n-1)}$. This is clear if $|n|_{p}=1$, and if $|n|_{p}<1$ set $n=p^{r} m$ for $r \geq 1$ and $p \nmid m$. Then

$$
\left.|n|_{p}^{1 /(n-1)}=\frac{1}{p^{r /\left(p^{r} m-1\right)}}>\frac{1}{p^{r /\left(p^{r}-1\right)}} \stackrel{?}{>} \frac{1}{p} \Longleftrightarrow 1>\frac{r}{p^{r}-1} \Longleftrightarrow p^{r}-1 \stackrel{\vee}{>} r \text { (since } p>2\right) .
$$

Step 2: Make the numbers a_{m} into values of several 11-adic power series.
We seek j such that $\left|(1+\sqrt{-2})^{j}-1\right|_{11} \leq 1 / 11$ and $\left|(1-\sqrt{-2})^{j}-1\right|_{11} \leq 1 / 11$. Use $j=5$:

$$
(1+\sqrt{-2})^{5}=1-11 \sqrt{-2}, \quad(1-\sqrt{-2})^{5}=1+11 \sqrt{-2} .
$$

Therefore if we write $m=5 k+r$ where $k \geq 0$ and $0 \leq r \leq 4$, we have

$$
\begin{aligned}
a_{5 k+r} & =\frac{(1+\sqrt{-2})^{r}}{2}\left((1+\sqrt{-2})^{5}\right)^{k}+\frac{(1-\sqrt{-2})^{r}}{2}\left((1-\sqrt{-2})^{5}\right)^{k} \\
& =\frac{(1+\sqrt{-2})^{r}}{2}(1-11 \sqrt{-2})^{k}+\frac{(1-\sqrt{-2})^{r}}{2}(1+11 \sqrt{-2})^{k} .
\end{aligned}
$$

This formula suggests looking at the 11-adic analytic functions

$$
f_{r}(x)=\frac{(1+\sqrt{-2})^{r}}{2}(1-11 \sqrt{-2})^{x}+\frac{(1-\sqrt{-2})^{r}}{2}(1+11 \sqrt{-2})^{x}
$$

where $0 \leq r \leq 4$ and $x \in \mathbf{Z}_{11}$. For integers $k \geq 0$,

$$
\begin{equation*}
f_{r}(k)=a_{5 k+r} \tag{5.1}
\end{equation*}
$$

Do not forget this! In terms of the 11-adic exponential series,

$$
\begin{aligned}
f_{r}(x) & =\frac{(1+\sqrt{-2})^{r}}{2} e^{x \log (1-11 \sqrt{-2})}+\frac{(1-\sqrt{-2})^{r}}{2} e^{x \log (1+11 \sqrt{-2})} \\
& =\sum_{n \geq 0} c_{r, n} x^{n}
\end{aligned}
$$

where $c_{r, n}=\frac{(1+\sqrt{-2})^{r}}{2} \frac{(\log (1-11 \sqrt{-2}))^{n}}{n!}+\frac{(1-\sqrt{-2})^{r}}{2} \frac{(\log (1+11 \sqrt{-2}))^{n}}{n!}$ in \mathbf{Q}_{11}. We have $|\log (1 \pm 11 \sqrt{-2})|_{11}=|11|_{11}$ by Step 1 , so from $\left|11^{n} / n!\right|_{11} \leq 1$ we get $c_{r, n} \in \mathbf{Z}_{11}$.

Step 3: Estimate how quickly the coefficients of f_{r} tend to 0 .
Theorem 5.1. For $0 \leq r \leq 4$ and $n \geq 1,\left|c_{r, n}\right|_{11} \leq 1 / 11^{(9 n+1) / 10} \leq 1 / 11$. In particular, $\left|c_{r, n}\right|_{11} \leq 1 / 11$ for $n \geq 1,\left|c_{r, n}\right|_{11} \leq 1 / 11^{2}$ for $n \geq 2$, and $\left|c_{r, n}\right|_{11} \leq 1 / 11^{3}$ for $n \geq 3$.
Proof. Since $(1+\sqrt{-2})^{r} / 2$ and $(1-\sqrt{-2})^{r} / 2$ are in \mathbf{Z}_{11}^{\times},

$$
\begin{aligned}
\left|c_{r, n}\right|_{11} & \leq \max \left(\left|\frac{(\log (1-11 \sqrt{-2}))^{n}}{n!}\right|_{11},\left|\frac{(\log (1+11 \sqrt{-2}))^{n}}{n!}\right|_{11}\right) \\
& =\max \left(\frac{|11|_{11}^{n}}{|n!|_{11}}, \frac{|11|_{11}^{n}}{|n!|_{11}}\right) \text { by Step } 1 \\
& =\frac{(1 / 11)^{n}}{(1 / 11)^{\left(n-s_{11}(n)\right) /(11-1)}} \\
& =\frac{1}{11^{9 n / 10+s_{11}(n) / 10}} \\
& \leq \frac{1}{11^{9 n / 10+1 / 10}} \text { since } n \geq 1 .
\end{aligned}
$$

For $n \geq 1$ we have $9 n / 10+1 / 10 \geq 1$, for $n \geq 2$ we have $9 n / 10+1 / 10 \geq 1.9$, and for $n \geq 3$ we have $9 n / 10+1 / 10 \geq 2.8$, Since $\operatorname{ord}_{11}\left(c_{n, r}\right)$ is an integer (or ∞), if $\operatorname{ord}_{11}\left(c_{r, n}\right) \geq 1.9$ then $\operatorname{ord}_{11}\left(c_{r, n}\right) \geq 2$ and if $\operatorname{ord}_{11}\left(c_{r, n}\right) \geq 2.8$ then $\operatorname{ord}_{11}\left(c_{r, n}\right) \geq 3$.

Step 4: Finishing the proof of Theorem 1.1.
We want to show $a_{m}=1$ only when $m=0,1$, and 5 , and $a_{m}=-1$ only when $m=2$. The following table writes these m as $5 k+r: 1$ arises twice when $r=0$ (at $k=0,1$) and once when $r=1$ (at $k=0$), and -1 arises once when $r=2$ (at $k=0$).

$5 k+r$	k	r	$a_{5 k+r}$
0	0	0	1
1	0	1	1
2	0	2	-1
5	1	0	1

Since $a_{5 k+r}=f_{r}(k)$, we want to show the only zeros of $f_{r}(x)-1$ and $f_{r}(x)+1$ in \mathbf{Z}_{11} are as described in the following table, where k is replaced with the 11-adic integer variable x.

r	Zeros of $f_{r}(x)-1$	Zeros of $f_{r}(x)+1$
0	$x=0,1$	None
1	$x=0$	None
2	None	$x=0$
3	None	None
4	None	None

The indicated zeros for $f_{0}(x)-1, f_{1}(x)-1$, and $f_{2}(x)+1$ follow from (5.1). We will show for Strassmann's theorem that $f_{0}(x)-1$ has $N=2, f_{1}(x)-1$ and $f_{2}(x)+1$ have $N=1$, and other $f_{r}(x) \pm 1$ have $N=0$, so the upper bound on zeros is reached by the known zeros.

Adding and subtracting 1 to $f_{r}(x)$ affects the constant term but no other coefficients:

$$
f_{r}(x) \pm 1=\left(c_{r, 0} \pm 1\right)+\sum_{n \geq 1} c_{r, n} x^{n}=\left(a_{r} \pm 1\right)+\sum_{n \geq 1} c_{r, n} x^{n} .
$$

Let's first take care of the series where no zeros are expected.
Theorem 5.2. The series $f_{2}(x)-1, f_{3}(x)-1, f_{4}(x)-1, f_{0}(x)+1, f_{1}(x)+1, f_{3}(x)+1$, and $f_{4}(x)+1$ all have no zeros in \mathbf{Z}_{11}.

Proof. To prove an 11-adic power series has no zeros in \mathbf{Z}_{11} with Strassmann's theorem, we want to show $N=0$: the constant term of $f_{r}(x) \pm 1$ has larger absolute value than every other coefficient. The table below lists the constant term $f_{r}(0) \pm 1=a_{r} \pm 1$.

r	0	1	2	3	4
$f_{r}(0)$	1	1	-1	-5	-7
$f_{r}(0)-1$	0	0	-2	-6	-8
$f_{r}(0)+1$	2	2	0	-4	-6

Thus $f_{2}(x)-1, f_{3}(x)-1, f_{4}(x)-1, f_{0}(x)+1, f_{1}(x)+1, f_{3}(x)+1$, and $f_{4}(x)+1$ have constant terms in \mathbf{Z}_{11}^{\times}. The higher-degree coefficients are the same as those of $f_{r}(x)$, namely $c_{r, n}$ for $n \geq 1$. Those coefficients are in $11 \mathbf{Z}_{11}$ by Theorem 5.1, so $f_{2}(x)-1, f_{3}(x)-1$, $f_{4}(x)-1, f_{0}(x)+1, f_{1}(x)+1, f_{3}(x)+1$, and $f_{4}(x)+1$ all have $N=0$.

It remains to handle $f_{0}(x)-1, f_{1}(x)-1$, and $f_{2}(x)+1$.
Theorem 5.3. The only zeros of $f_{0}(x)-1$ in \mathbf{Z}_{11} are $x=0$ and $x=1$.
Proof. The constant term of $f_{0}(x)-1$ is 0 . For the linear and quadratic coefficients we will show $\left|c_{0,1}\right|_{11}=1 / 121$ and $\left|c_{0,2}\right|_{11}=1 / 121$. For $n \geq 3$, Theorem 5.1 tells us $\left|c_{0, n}\right|_{11}<1 / 121$, so $f_{0}(x)-1$ would have $N=2$ and that upper bound on the zeros in \mathbf{Z}_{11} is already accounted for by the two zeros we know (corresponding to $a_{0}=1$ and $a_{5}=1$).

The linear coefficient of $f_{0}(x)-1$ is

$$
c_{0,1}=\frac{1}{2} \log (1-11 \sqrt{-2})+\frac{1}{2} \log (1+11 \sqrt{-2})=\frac{1}{2} \log \left(1+2 \cdot 11^{2}\right),
$$

so $\left|c_{0,1}\right|_{11}=\left|2 \cdot 11^{2}\right|_{11}=1 / 121$. The quadratic coefficient of $f_{0}(x)-1$ is

$$
\begin{aligned}
c_{0,2} & =\frac{1}{2} \frac{(\log (1-11 \sqrt{-2}))^{2}}{2}+\frac{1}{2} \frac{(\log (1+11 \sqrt{-2}))^{2}}{2} \\
& =\frac{(\log (1-11 \sqrt{-2}))^{2}+(\log (1+11 \sqrt{-2}))^{2}}{4} \\
& =\frac{1}{4}((\underbrace{\log (1-11 \sqrt{-2})+\log (1+11 \sqrt{-2})}_{\log ((1-11 \sqrt{-2})(1+11 \sqrt{-2}))})^{2}-2 \log (1-11 \sqrt{-2}) \log (1+11 \sqrt{-2})) .
\end{aligned}
$$

Since $(1-11 \sqrt{-2})(1+11 \sqrt{-2})=1+242$, the squared term has absolute value $|242|_{11}^{2}=$ $1 / 11^{4}$, while by Step $1|\log (1-11 \sqrt{-2}) \log (1+11 \sqrt{-2})|_{11}=(1 / 11)(1 / 11)=1 / 11^{2}$, so by the strong triangle inequality $\left|c_{0,2}\right|_{11}=|1 / 4|_{11}\left(1 / 11^{2}\right)=1 / 121$.

Another way to show $\left|c_{0,2}\right|_{11}=1 / 121$ is to compute $c_{0,2} \bmod 11^{3}$. By Step $1, \log (1 \pm$ $11 \sqrt{-2}) \equiv \pm 11 \sqrt{-2} \bmod 11^{2}$. Thus $\log (1 \pm 11 \sqrt{-2})= \pm 11 \sqrt{-2}+11^{2} x_{ \pm}$with $x_{ \pm} \in \mathbf{Z}_{11}$, so

$$
(\log (1 \pm 11 \sqrt{-2}))^{2}=-2 \cdot 11^{2}+11^{3}(11 \text {-adic integer }) \equiv-2 \cdot 11^{2} \bmod 11^{3}
$$

for both choices of sign. Therefore

$$
c_{0,2} \equiv \frac{1}{4}\left(-2 \cdot 11^{2}\right)+\frac{1}{4}\left(-2 \cdot 11^{2}\right) \bmod 11^{3} \equiv-11^{2} \bmod 11^{3},
$$

so $\left|c_{0,2}\right|_{11}=1 / 121$.

Theorem 5.4. The only zero of $f_{1}(x)-1$ in \mathbf{Z}_{11} is $x=0$.
Proof. The constant term of $f_{1}(x)-1$ is 0 . We will prove $\left|c_{1,1}\right|_{11}=1 / 11$. By Theorem 5.1, $\left|c_{1, n}\right|_{11}<1 / 11$ for $n \geq 2$, so $f_{1}(x)-1$ would have $N=1$ and thus its known zero at $x=0$ (corresponding to $a_{1}=1$) is its only zero in \mathbf{Z}_{11}.

The linear coefficient of $f_{1}(x)-1$ is

$$
c_{1,1}=\frac{1+\sqrt{-2}}{2} \log (1-11 \sqrt{-2})+\frac{1-\sqrt{-2}}{2} \log (1+11 \sqrt{-2}) .
$$

Using the congruence $\bmod p^{2}$ in Step 1 at $p=11$,

$$
c_{1,1} \equiv \frac{1+\sqrt{-2}}{2}(-11 \sqrt{-2})+\frac{1-\sqrt{-2}}{2}(11 \sqrt{-2}) \equiv 22 \bmod 11^{2} \Longrightarrow\left|c_{1,1}\right|_{11}=\frac{1}{11} .
$$

Theorem 5.5. The only zero of $f_{2}(x)+1$ in \mathbf{Z}_{11} is $x=0$.
Proof. The constant term of $f_{2}(x)+1$ is 0 . We will prove $\left|c_{2,1}\right|_{11}=1 / 11$, which suffices by the same reasoning as in the proof of the previous theorem. Since

$$
\begin{aligned}
c_{2,1} & =\frac{(1+\sqrt{-2})^{2}}{2} \log (1-11 \sqrt{-2})+\frac{(1-\sqrt{-2})^{2}}{2} \log (1+11 \sqrt{-2}) \\
& =\frac{-1+2 \sqrt{-2}}{2} \log (1-11 \sqrt{-2})+\frac{-1-2 \sqrt{-2}}{2} \log (1+11 \sqrt{-2}) \\
& \equiv \frac{-1+2 \sqrt{-2}}{2}(-11 \sqrt{-2})+\frac{-1-2 \sqrt{-2}}{2}(11 \sqrt{-2}) \bmod 11^{2} \text { by Step } 1 \\
& \equiv 4 \cdot 11 \bmod 11^{2},
\end{aligned}
$$

we get $\left|c_{2,1}\right|_{11}=1 / 11$.

6. Further values of a_{m}

The method used to determine all $m \geq 0$ for which $a_{m}= \pm 1$ can be applied to other values in the sequence $\left\{a_{m}\right\}$. The values of a_{m} for $0 \leq m \leq 10$ besides ± 1 are

$$
\begin{equation*}
a_{3}=-5, \quad a_{4}=-7, \quad a_{6}=23, \quad a_{7}=43, \quad a_{8}=17, \quad a_{9}=-95, \quad a_{10}=-241 \tag{6.1}
\end{equation*}
$$

To prove these values occur exactly once in the sequence, let's write out what each $f_{r}(x)$ looks like. The constant term of $f_{r}(x)$ is $f_{r}(0)=a_{r}$, so

$$
\begin{aligned}
& f_{0}(x)=1+\sum_{n \geq 1} c_{0, n} x^{n}, \\
& f_{1}(x)=1+\sum_{n \geq 1} c_{1, n} x^{n}, \\
& f_{2}(x)=-1+\sum_{n \geq 1} c_{2, n} x^{n}, \\
& f_{3}(x)=-5+\sum_{n \geq 1} c_{3, n} x^{n}, \\
& f_{4}(x)=-7+\sum_{n \geq 1} c_{4, n} x^{n} .
\end{aligned}
$$

We already showed in Theorems 5.3, 5.4, and 5.5 that $\left|c_{0,1}\right|_{11}=1 / 121,\left|c_{1,1}\right|_{11}=1 / 11$, and $\left|c_{2,1}\right|_{11}=1 / 11$. It is left to the reader to check that $\left|c_{3,1}\right|_{11}=1 / 11$ and $\left|c_{4,1}\right|_{11}=1 / 11$. For $n \geq 2,\left|c_{r, n}\right|_{11} \leq 1 / 121$ by Theorem 5.1.

Theorem 6.1. We have $a_{m}=-5$ if and only if $m=3$.
Proof. For $r=0,1,2,4$ the series $f_{r}(x)+5$ has constant term in \mathbf{Z}_{11}^{\times}and higher-degree coefficients in $11 \mathbf{Z}_{11}$, so $N\left(f_{r}+5\right)=0$ and thus $a_{5 k+r} \neq-5$ for all $k \geq 0$. What if $r=3$? The series $f_{3}(x)+5$ has constant term 0 , linear coefficient of absolute value $1 / 11$ and $\left|c_{3, n}\right|_{11} \leq 1 / 121$ for $n \geq 2$, so $N\left(f_{3}+5\right)=1$ and thus the only solution to $f_{3}(x)+5=0$ in \mathbf{Z}_{11} is $x=0$. That proves $a_{m}=-5$ only for $m=5 \cdot 0+3=3$.

Theorem 6.2. We have $a_{m}=23$ if and only if $m=6$.
Proof. For $r=2,3,4$, the series $f_{r}(x)-23$ has constant term in \mathbf{Z}_{11}^{\times}and higher-degree coefficients in $11 \mathbf{Z}_{11}$, so none of these series has a zero in \mathbf{Z}_{11}. Both $f_{0}(x)-23$ and $f_{1}(x)-23$ have constant term $-22 \in 11 \mathbf{Z}_{11}$. Since $|-22|_{11}=1 / 11,\left|c_{0,1}\right|_{11}=1 / 121$, and $\left|c_{0, n}\right|_{11} \leq$ $1 / 121$ for $n \geq 2, N\left(f_{0}-23\right)=0$ and thus $f_{0}(x)-23$ is nonvanishing on \mathbf{Z}_{11}. Since $|-22|_{11}=1 / 11,\left|c_{1,1}\right|_{11}=1 / 11$, and $\left|c_{1, n}\right|_{11} \leq 1 / 121$ for $n \geq 2, N\left(f_{1}-23\right)=1$ and thus the zero of $f_{1}(x)-23$ at $x=1$ (corresponding to $a_{6}=23$) is its only zero in \mathbf{Z}_{11}.

It is left as an exercise to the reader to show the values of a_{m} in (6.1) at $m=4,7,8$, and 9 each occur only once among all $m \geq 0$.

While $a_{10}=-241$, showing $a_{m}=-241$ only at $m=10$ doesn't work using \mathbf{Q}_{11} because something new happens: two of the series $f_{r}(x)+241$ have a root in \mathbf{Z}_{11} that is not a nonnegative integer, so the Strassmann bound is too big. The reader can check $f_{r}(x)+241$ has $N=0$ for $r=2,3,4$. At $r=0$ and 1 we have

$$
\begin{aligned}
& f_{0}(x)+241=242+\sum_{n \geq 1} c_{0, n} x^{n} \\
& f_{1}(x)+241=242+\sum_{n \geq 1} c_{1, n} x^{n}
\end{aligned}
$$

and $|242|_{11}=1 / 121$. The linear and quadratic coefficients of $f_{0}(x)+241$ also have absolute value $1 / 121$ (see the proof of Theorem 5.3), while $\left|c_{0, n}\right|_{11}<1 / 121$ for $n \geq 3$ (Theorem
5.1), so $N\left(f_{0}+241\right)=2$. In $f_{1}(x)+241,\left|c_{1,1}\right|_{11}=1 / 11$ and $\left|c_{1, n}\right|_{11}<1 / 11$ for $n \geq 2$, so $N\left(f_{1}+241\right)=1$.

By Strassmann's theorem, $f_{0}(x)+241$ has at most two zeros in \mathbf{Z}_{11} and $f_{1}(x)+241$ has at most one zero in \mathbf{Z}_{11}. The zero corresponding to the value $a_{10}=-241$ is $x=2$ for $f_{0}(x)+241$ (since $10=5 \cdot 2+0$). Write $f_{0}(x)+241=(x-2) g(x)$ where $g(x)$ is a power series converging on \mathbf{Z}_{11}. Then $N(g)=N\left(f_{0}+241\right)-1=1$ by the proof of Strassmann's theorem, so $g(x)$ and $f_{1}(x)+241$ both have $N=1$. By Remark $4.5, g(x)$ and $f_{1}(x)+241$ each have have one root in \mathbf{Z}_{11}, so a_{m} can be -241 for at most two values of m other than 10. The roots of $g(x)$ and $f_{1}(x)+241$ don't appear to be nonnegative integers (we estimate them in Appendix B), but it is numerically hard to prove rigorously that an 11-adic integer is not a nonnegative integer from an 11-adic approximation. In order to prove $a_{m}=-241$ only at $m=10$ (thereby also proving the unique roots of $g(x)$ and $f_{1}(x)+241$ in \mathbf{Z}_{11} are not nonnegative integers) we give up on the prime 11 and seek to apply Strassmann's theorem to \mathbf{Q}_{p} for some $p>11$.

Theorem 6.3. For $m \geq 0, a_{m}=-241$ if and only if $m=10$.
Proof. We want to find a prime $p>3$ such that -2 has a square root in \mathbf{Z}_{p}. Then $|1 \pm \sqrt{-2}|_{p}=1$ and for $r \in\{0,1, \ldots, p-2\}$ and $k \geq 0, a_{(p-1) k+r}=g_{r}(k)$ where

$$
\begin{aligned}
g_{r}(x) & =\frac{(1+\sqrt{-2})^{r}}{2}\left((1+\sqrt{-2})^{p-1}\right)^{x}+\frac{(1-\sqrt{-2})^{r}}{2}\left((1-\sqrt{-2})^{p-1}\right)^{x} \\
& =\frac{(1+\sqrt{-2})^{r}}{2} e^{x \log \left((1+\sqrt{-2})^{p-1}\right)}+\frac{(1-\sqrt{-2})^{r}}{2} e^{x \log \left((1-\sqrt{-2})^{p-1}\right)} \\
& =a_{r}+\sum_{n \geq 1} d_{r, n} x^{n}
\end{aligned}
$$

is a p-adic power series converging on all $x \in \mathbf{Z}_{p}$, and

$$
d_{r, n}=\frac{(1+\sqrt{-2})^{r}}{2} \frac{\left(\log \left((1+\sqrt{-2})^{p-1}\right)\right)^{n}}{n!}+\frac{(1-\sqrt{-2})^{r}}{2} \frac{\left(\log \left((1-\sqrt{-2})^{p-1}\right)\right)^{n}}{n!} \in p \mathbf{Z}_{p}
$$

for $n \geq 1$. Thus $g_{r}(x) \equiv a_{r} \bmod p$ for all $x \in \mathbf{Z}_{p}$, so if $a_{r} \not \equiv-241 \bmod p$ then $g_{r}(x)+241$ has no zero in \mathbf{Z}_{p}. We want to find p so that $g_{10}(x)+241$ (which has constant term 0) has $N=1$ and all other $g_{r}(x)+241$ have $N=0$. (The series $g_{r}(x)$ and its coefficients $d_{r, n}$ all depend on the choice of p, but we omit this dependence in the notation.)

The first few primes $p>3$ such that -2 has a square root in \mathbf{Z}_{p} are 11, 17, 19, and 41. We already saw $p=11$ is not a good choice.
$p=17$: The only $r \in\{0,1, \ldots, 15\}$ such that $a_{r} \equiv-241 \bmod 17$ is $r=10$, but over \mathbf{Q}_{17}, $g_{10} \overline{(x)+241}=d_{10,1} x+d_{10,2} x^{2}+\cdots$ has $d_{10,1} \equiv 4 \cdot 17^{2}+\cdots, d_{10,2}=6 \cdot 17^{2}+\cdots$ and $d_{10, n} \equiv 0 \bmod 17^{3}$ for $n \geq 3$, so $g_{10}(x)+241$ has $N=2$. This is not good.
$p=19$: There are two $r \in\{0,1, \ldots, 17\}$ such that $a_{r} \equiv-241 \bmod 19: r=10$ and $r=12$. Over $\mathbf{Q}_{19}, g_{10}(x)+241$ and $g_{12}(x)+241$ both have $N=1$. This is not good.
$p=41$: The only $r \in\{0,1, \ldots, 39\}$ such that $a_{r} \equiv-241 \bmod 41$ is $r=10$. Over \mathbf{Q}_{41} the series $g_{10}(x)+241$ has constant term 0 , linear coefficient $d_{10,1}=40 \cdot 41+16 \cdot 41^{2}+\cdots$, and $d_{10, n} \equiv 0 \bmod 41^{2}$ for $n \geq 2$, so $g_{10}(x)+241$ has $N=1$. Thus $x=0$ is the only zero of $g_{10}(x)+241$ in \mathbf{Z}_{41}. Therefore $a_{m}=10$ only for $m=10$ by working in \mathbf{Q}_{41}.

Appendix A. Relation to a Diophantine equation

Theorem A.1. The $m \geq 0$ such that $a_{m}= \pm 1$ are also the $m \geq 0$ such that $3^{m}=1+2 x^{2}$ for some integer x.

The solutions are $(m, x)=(0,0),(1, \pm 1),(2, \pm 2)$, and $(5, \pm 11)$.
Proof. We will study the equation by working in $\mathbf{Z}[\sqrt{-2}]$, which like \mathbf{Z} has unique factorization and its only units are ± 1. We will assume the reader knows enough number theory to understand how to work in such rings (norms, primes, and relatively prime elements).

In $\mathbf{Z}[\sqrt{-2}]$ both sides of the equation $3^{m}=1+2 x^{2}$ decompose:

$$
((1+\sqrt{-2})(1-\sqrt{-2}))^{m}=(1+x \sqrt{-2})(1-x \sqrt{-2}) .
$$

On the left side, $1+\sqrt{-2}$ and $1-\sqrt{-2}$ are both prime elements of $\mathbf{Z}[\sqrt{-2}]$ since their norms equal 3 , which is a prime number. On the right side, the numbers $1+x \sqrt{-2}$ and $1-x \sqrt{-2}$ are relatively prime: if δ is a common divisor then δ divides their sum 2 , which has prime factorization in $\mathbf{Z}[\sqrt{-2}]$ equal to $-(\sqrt{-2})^{2}$, so δ is ± 1 or $\pm \sqrt{-2}$. Thus $\mathrm{N}(\delta)$ is 1 or 2 . Also δ^{2} divides $(1+x \sqrt{-2})(1-x \sqrt{-2})=1+2 x^{2}=3^{m}$, so taking norms shows $\mathrm{N}(\delta)^{2}$ divides $\mathrm{N}\left(3^{m}\right)=9^{m}$. Thus the integer $\mathrm{N}(\delta)$ is a power of 3 , so $\mathrm{N}(\delta)=1$, which means $\delta= \pm 1$.

Since $1+x \sqrt{-2}$ and $1-x \sqrt{-2}$ are relatively prime in $\mathbf{Z}[\sqrt{-2}]$, the only way their product can equal $(1+\sqrt{-2})^{m}(1-\sqrt{-2})^{m}$ is if

$$
\begin{equation*}
1+x \sqrt{-2}= \pm(1+\sqrt{-2})^{m} \text { or } \pm(1-\sqrt{-2})^{m} . \tag{A.1}
\end{equation*}
$$

This is equivalent to saying $(1+\sqrt{-2})^{m}$ has real part ± 1. Since the real part is the average of a complex number and its complex conjugate, (A.1) holds for some integer x and some nonnegative integer m if and only if

$$
\frac{(1+\sqrt{-2})^{m}}{2}+\frac{(1-\sqrt{-2})^{m}}{2}= \pm 1
$$

which in light of (1.2) is equivalent to saying $a_{m}= \pm 1$.

Appendix B. Estimating roots of $f_{0}(x)+241$ and $f_{1}(x)+241$ in \mathbf{Z}_{11}

We will show how to compute $f_{0}(x)+241 \equiv(x-2) g(x) \bmod 11^{6}$ and $f_{1}(x)+241 \bmod 11^{6}$ in order to estimate their roots in \mathbf{Z}_{11}. Both series have constant term 242 . For $n \geq 1$, the coefficient of x^{n} in $f_{0}(x)+241$ is

$$
c_{0, n}=\frac{1}{2} \frac{(\log (1-11 \sqrt{2}))^{n}+(\log (1+11 \sqrt{-2}))^{n}}{n!} .
$$

To estimate $c_{0, n}$ we estimate $\log (1+\sqrt{-2})$ and $\log (1-\sqrt{-2})$. If $|x|_{11}=1 / 11$ then $\left|x^{k} / k\right|_{11} \leq$ $1 / 11^{6}$ for all $k \geq 6$, so $\log (1+x) \equiv \sum_{k=1}^{5}(-1)^{k-1} x^{k} / k \bmod 11^{6}$. Using this together with the estimate $\sqrt{-2} \equiv 3+9 \cdot 11+4 \cdot 11^{2}+11^{3}+4 \cdot 11^{4}+4 \cdot 11^{5} \bmod 11^{6}$, we have

$$
\begin{aligned}
\log (1-11 \sqrt{-2}) & \equiv 8 \cdot 11+2 \cdot 11^{2}+8 \cdot 11^{3}+3 \cdot 11^{4}+8 \cdot 11^{5} \bmod 11^{6} \\
\log (1+11 \sqrt{-2}) & \equiv 3 \cdot 11+10 \cdot 11^{2}+2 \cdot 11^{3}+5 \cdot 11^{4}+2 \cdot 11^{5} \bmod 11^{6} .
\end{aligned}
$$

Recall from Section 6 that $c_{0, n} \equiv 0 \bmod 11^{2}$ for all $n \geq 1$, so we use the above to compute

$$
\begin{gathered}
\frac{f_{0}(x)+241}{11^{2}}=2+\left(1+10 \cdot 11^{2}+10 \cdot 11^{3}\right) x+\left(10+10 \cdot 11+10 \cdot 11^{2}+11^{3}\right) x^{2}+ \\
\left(10 \cdot 11^{2}+10 \cdot 11^{3}\right) x^{3}+\left(2 \cdot 11^{2}+9 \cdot 11^{3}\right) x^{4} \bmod 11^{4} .
\end{gathered}
$$

This polynomial has two roots modulo $11^{4}: 2$ and $10+10 \cdot 11+5 \cdot 11^{2}+3 \cdot 11^{3}$. (Since $\left(f_{0}(x)+241\right) / 11^{2} \equiv 2+x-x^{2} \equiv-(x-2)(x+1) \bmod 11$, a version of Hensel's lemma for power series implies there are roots in \mathbf{Z}_{11} that reduce to 2 and $-1 \bmod 11$.)

For $n \geq 1$, the coefficient of x^{n} in $f_{1}(x)+241$ is

$$
c_{1, n}=\frac{1+\sqrt{-2}}{2} \frac{(\log (1-11 \sqrt{2}))^{n}}{n!}+\frac{1-\sqrt{-2}}{2} \frac{(\log (1+11 \sqrt{-2}))^{n}}{n!} .
$$

Since $c_{1, n} \equiv 0 \bmod 11$ for all $n \geq 1$, the above estimates let us compute

$$
\begin{array}{r}
\frac{f_{1}(x)+241}{11}=2 \cdot 11+\left(2+11+6 \cdot 11^{2}+2 \cdot 11^{3}+2 \cdot 11^{4}\right) x+\left(10 \cdot 11+11^{2}+6 \cdot 11^{4}\right) x^{2}+ \\
\left(3 \cdot 11^{2}+6 \cdot 11^{3}+9 \cdot 11^{4}\right) x^{3}+\left(2 \cdot 11^{3}+11^{4}\right) x^{4}+3 \cdot 11^{4} x^{5} \bmod 11^{5} .
\end{array}
$$

There is a unique root modulo $11^{5}: 10 \cdot 11+5 \cdot 11^{2}+9 \cdot 11^{4}$. (Since $\left(f_{1}(x)+241\right) / 11 \equiv$ $2 x \bmod 11$, Hensel's lemma for power series implies there is one root in \mathbf{Z}_{11} that is congruent to $0 \bmod 11$.)

References

[1] http://math.stackexchange.com/questions/873147/finding-non-negative-integers-m-such-that-1-sqrt-2m-has-real-part/873529

