
STRASSMANN’S THEOREM AND AN APPLICATION

KEITH CONRAD

1. Introduction

Let {am} be the sequence defined by the linear recursion

(1.1) am = 2am−1 − 3am−2

with initial conditions a0 = 1, a1 = 1. Here are the values of am for m = 0, 1, . . . , 14.

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
am 1 1 −1 −5 −7 1 23 43 17 −95 −241 −197 329 1249 1511

One feature suggested by the data is that am is always odd. It is easy to prove this by
induction from the fact that a0 and a1 are both odd, since the recursion reduced mod 2
shows am ≡ am−2 mod 2.

The data also suggest that |am| → ∞ as m → ∞, and (seeing how |am| starts growing)
am = ±1 only for the times we see it happening in the table: for m = 0, 1, 2, and 5. This
all turns out to be true, and while it sounds like a problem in real analysis, it will explained
by p-adic analysis!

A natural way to study am is with an explicit formula for the sequence. Using complex
numbers, such a formula is

(1.2) am =
(1 +

√
−2)m

2
+

(1−
√
−2)m

2
.

(To verify this formula, check the right side satisfies the recursion (1.1) and has value 1
at m = 0 and 1.) This shows the integer am is the real part of the complex number
(1 +

√
−2)m, and that is the context in which the equation am = ±1 first came to my

attention [1]. Determining when am = ±1 is equivalent to finding all integers x such that
1 + 2x2 is a power of 3; see Appendix A for that, which shows understanding the values of
{am} has applications to number theory.

In C we have |1 ±
√
−2| =

√
1 + 2 =

√
3 > 1, so the absolute value of both terms in

(1.2) tends to ∞ with m. This is not sufficient to conclude |am| → ∞ as m → ∞ because
the two terms in (1.2) have the same magnitude. We need to rule out the possibility of a
massive cancellation for some large m that makes am small.

Let’s write the condition “|am| → ∞ as m → ∞” in another way: since each am is an
integer, saying |am| tends to ∞ as m → ∞ is equivalent to saying for each c ∈ Z that the
equation am = c is satisfied for only finitely many m. Here is our goal.

Theorem 1.1. For each integer c, the equation am = c holds for only finitely many integers
m. In particular, am = 1 if and only if m = 0, 1, or 5 and am = −1 if and only if m = 2.

To make progress on Theorem 1.1, the key idea is to interpret (1.2) not in C, but in
some Qp containing a square root of −2. Using the right side of (1.2) in Qp we will see how
to extend am from being a function of the integral parameter m to being a locally p-adic
analytic function of m: there are finitely many p-adic power series, for a suitable prime p,
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whose values at the nonnegative integers m are the sequence {am}. This will let us think
about the equation am = c as a special case of the equation f(x) = c where f is one of
finitely many p-adic power series and x ∈ Zp. We will prove qualitative and quantitative
theorems about zeros of p-adic power series that will tell us each equation f(x) = c has a
finite number of solutions in Zp and at most how many such solutions there can be. If the
upper bound on the number of solutions in Zp is accounted for by the known m ≥ 0 for
which am = c, we will have provably found all m ≥ 0 for which am = c.

2. Zeros of a p-adic analytic function

Theorem 2.1. Let f(x) be a power series with coefficients in Qp that converges on Zp and
is not identically zero. The zeros of f in Zp are isolated: for each α ∈ Zp at which f(α) = 0
there is an r > 0 such that f(x) 6= 0 for 0 < |x− α|p < r.

This theorem is analogous to a property of real power series: each real zero of a real
power series has an open interval around it in which there are no other real zeros.

Proof. We can recenter the power series at α: f(x) =
∑

n≥0 an(x − α)n on Zp with a0 =

f(α) = 0. Some an is not 0, since otherwise f would be identically zero on Zp. Let
aN 6= 0 with N ≥ 1 minimal, so f(x) =

∑
n≥N an(x − α)n = (x − α)Ng(x), where g(x) =∑

n≥N an(x − α)n−N . The power series g(x) converges for each x ∈ Zp: this is obvious at

x = α, and for x 6= α in Zp we have |an(x− α)n|p → 0 when n→∞, so |an(x− α)n−N |p =
|an(x− α)n|p/|x− α|Np → 0 when n→∞.

Although g was constructed as a power series centered at α, since 0 ∈ Zp we can recenter
g at 0 and the new series still converges on Zp. Since g(α) = aN and a power series on
Zp is continuous, limx→α g(x) = aN 6= 0. Therefore there is a small r > 0 such that
|x− α|p < r =⇒ g(x) 6= 0. Then 0 < |x− α|p < r =⇒ f(x) = (x− α)Ng(x) 6= 0. �

Corollary 2.2. For a sequence cn ∈ Qp such that the series f(x) =
∑

n≥0 cnx
n converges

on Zp, if the coefficients are not all zero then f has only finitely many zeros in Zp.

Proof. We will prove the contrapositive. Suppose f has infinitely many zeros x1, x2, . . . in
Zp. Since Zp is compact, this sequence has a convergent subsequence, say xni → x ∈ Zp.
Then f(x) = limi→∞ f(xni) = limi→∞ 0 = 0, and the zero x is not isolated since it is a limit
of the zeros xni . Theorem 2.1 implies f is identically 0, so all of its coefficients are 0. �

3. Turning {am} into the values of a p-adic power series

In the formula (1.2) we would like to extend integer powers (1 +
√
−2)m and (1−

√
−2)m

to p-adic integer powers (1 +
√
−2)x and (1 −

√
−2)x, where x ∈ Zp. This can’t be done

directly, because there is a restriction on the base b to be sure a power sequence {bm}
extends to a p-adic power function bx that is a p-adic power series in x: we want

(3.1) |b− 1|p ≤

{
1/p, if p 6= 2,

1/4, if p = 2.
.

Under this condition, bx has a power series representation

bx = ex log b =
∑
n≥0

(x log b)n

n!
=
∑
n≥0

(log b)n

n!
xn

that converges for all x ∈ Zp since |(log b)n/n!|p = |b− 1|np/|n!|p → 0 as n→∞.
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Even if Zp contains a square root of −2, 1 +
√
−2 and 1−

√
−2 can’t both satisfy (3.1)

in the role of b.

Example 3.1. In Z3 there is a square root of −2 since −2 ≡ 1 mod 3. Explicitly, we can
take √

−2 = 1 + 3 + 2 · 32 + 2 · 35 + · · · ,
so

1 +
√
−2 = 2 + 3 + 2 · 32 + · · · , 1−

√
−2 = 2 · 3 + 2 · 33 + · · · .

Neither 1 +
√
−2 nor 1−

√
−2 is in 1 + 3Z3: one is in 2 + 3Z3 and the other is in 3Z3.

Example 3.2. In Z11 there is a square root of −2 since −2 ≡ 9 mod 11. We can take√
−2 ≡ 3 mod 11, so 1 +

√
−2 ≡ 4 mod 11 and 1−

√
−2 ≡ −2 ≡ 9 mod 11. More explicitly,

√
−2 = 3 + 9 · 11 + 4 · 112 + · · · ,

so
1 +
√
−2 = 4 + 9 · 11 + 4 · 112 + · · · , 1−

√
−2 = 9 + 11 + 6 · 112 + · · · .

Both 1 +
√
−2 and 1−

√
−2 are in Z×11, but neither is in 1 + 11Z11.

Unless a p-adic integer b is p-adically close to 1, the power sequence {bm} is not the values
at 0, 1, 2, 3, . . . of a p-adic power series. However, if b ∈ Z×p then the sequence {bm} is the
values at nonnegative integers of a finite number of p-adic power series.

Theorem 3.3. Let b ∈ Z×p . If p 6= 2 then for each r ∈ {0, 1, . . . , p−2} there are power series

fr(x) converging on Zp such that fr(k) = b(p−1)k+r for all integers k ≥ 0. If p = 2 then for

r = 0 and 1 there are 2-adic power series fr(x) converging on Z2 such that fr(k) = b2k+r

for all integers k ≥ 0.

Proof. For 0 ≤ r ≤ p− 2 and k ≥ 0,

b(p−1)k+r = br(bp−1)k.

Since b 6≡ 0 mod p, by Fermat’s little theorem bp−1 ≡ 1 mod p. Thus |bp−1 − 1|p ≤ 1/p, so
when p 6= 2 we can extend integer powers of bp−1 to p-adic integer powers: for 0 ≤ r ≤ p−2
define the power series

fr(x) = br(bp−1)x = brex log(b
p−1) = br

∑
n≥0

(log bp−1)n

n!
xn.

(Do not rewrite log bp−1 as (p−1) log b if b 6≡ 1 mod p since otherwise b is not in the domain
of convergence of the p-adic logarithm series.) Each power series fr converges on Zp since
its coefficients tend to 0, and for nonnegative integers k we have

fr(k) = br(bp−1)k = b(p−1)k+r.

For p = 2 we have b ≡ 1 mod 2 =⇒ b2 ≡ 1 mod 4, so |b2 − 1|2 ≤ 1/4. (In fact,
|b2− 1|2 ≤ 1/8.) Therefore we can take 2-adic integer powers of b2 and define for r = 0 and
1 the power series

fr(x) = br(b2)x = brex log(b
2) = br

∑
n≥0

(log b2)n

n!
xn.

This power series converges on Z2, and for integers k ≥ 0 we have

fr(k) = br(b2)k = b2k+r.
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�

We used bp−1 for p 6= 2 and b2 for p = 2 to have a power of b that we know is congruent
to 1 mod p (or 1 mod 4, if p = 2). This led to p− 1 power series for p 6= 2 (or 2 power series
if p = 2) whose values on Zp include all values of bm. If a smaller power of b is congruent
to 1 mod p then we can use fewer power series in Theorem 3.3.

Example 3.4. For b ∈ Z×7 , we have b6 ≡ 1 mod 7 and Theorem 3.3 says for r = 0, 1, . . . , 5
that there are 7-adic power series fr(x) converging on Z7 such that fr(k) = b6k+r for integers
k ≥ 0.

If b ≡ 2 mod 7 then b3 ≡ 1 mod 7, so we can take 7-adic integer powers of b3, not just b6.
The sequence {bm} lies among the values of just three 7-adic power series: for 0 ≤ r ≤ 2 set
fr(x) = br(b3)x = br

∑
n≥0((log b3)n/n!)xn. These series converge on Z7 and fr(k) = b3k+r

for integers k ≥ 0.

Example 3.5. If b ≡ 1 mod p for p 6= 2 or b ≡ 1 mod 4 then we only need a sin-
gle p-adic power series to include all nonnegative integral powers of b: f(x) = bx =∑

n≥0((log b)n/n!)xn is a power series converging on Zp and f(k) = bk for integers k ≥ 0.

Example 3.6. Why do we require |b|p = 1 in Theorem 3.3? If |b|p < 1 and b 6= 0 then
Theorem 3.3 breaks down: for no arithmetic progression {Mk + r}k≥0, where M ≥ 1 and
r ∈ {0, . . . ,M − 1}, can bMk+r = f(k) for a p-adic power series f(x). Indeed, since p-adic

power series are continuous, f(pt) → f(0) as t → ∞ while bMpt+r → 0 as t → ∞ since

|bMpt+r|p = |br|p|b|Mpt
p ≤ |b|p

t

p → 0. Therefore we need f(0) = 0, so br = 0, which is false.
The underlying problem here is that every p-adic integer is the p-adic limit of integers

that are large in the ordinary sense, and when |b|p < 1 the number bm has to be very small
when m is very large in the ordinary sense. If |b|p = 1 then at least |bm|p = 1 all the time.

Corollary 3.7. For b1 and b2 in Z×p and c1 and c2 in Zp, the numbers c1b
m
1 + c2b

m
2 for

integers m ≥ 0 are the values of finitely many p-adic power series at nonnegative integers.

Proof. Assume p 6= 2. Then bp−11 ≡ 1 mod p and bp−12 ≡ 1 mod p. For 0 ≤ r ≤ p − 2 and
x ∈ Zp set

fr(x) = c1b
r
1(b

p−1
1 )x + c2b

r
2(b

p−1
2 )x

=
∑
n≥0

c1b
r
1(log bp−11 )n + c2b

r
2(log bp−12 )n

n!
xn.

This power series converges on Zp, and for integers k ≥ 0

fr(k) = c1b
r
1(b

p−1
1 )k + c2b

r
2(b

p−1
2 )k = c1b

(p−1)k+r
1 + c2b

(p−1)k+r
2 .

If p = 2 then b21 ≡ 1 mod 4 and b22 ≡ 1 mod 4, so for r = 0 or 1 and x ∈ Z2, define

fr(x) = c1b
r
1(b

2
1)
x + c2b

r
2(b

2
2)
x

=
∑
n≥0

c1b
r
1(log b21)

n + c2b
r
2(log b22)

n

n!
xn.

This series converges on Z2, and for integers k ≥ 0

fr(k) = c1b
r
1(b

2
1)
k + c2b

r
2(b

2
2)
k = c1b

2k+r
1 + c2b

2k+r
2 .

�
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Corollary 3.7 extends to a linear combination of the powers of more than two p-adic units.
We stick to two units for concreteness, as it will be sufficient for our intended application.

For p 6= 2, if bM1 ≡ 1 mod p and bM2 ≡ 1 mod p for some M < p − 1 then the sequence
{c1bm1 + c2b

m
2 }m≥0 lies among the values of M power series in Corollary 3.7 instead of

p − 1 power series. In particular, if b1 ≡ 1 mod p and b2 ≡ 1 mod p then the sequence
{c1bm1 + c2b

m
2 }m≥0 lies among the values of a single power series converging on Zp.

Example 3.8. In Z7, if b1 ≡ 2 mod 7 and b2 ≡ 4 mod 7 then b31 ≡ 1 mod 7 and b32 ≡
1 mod 7, so the numbers c1b

m
1 + c2b

m
2 for m ≥ 0 can be broken up into three sequences

c1b
r
1(b

3
1)
k + c2b

r
2(b

3
2)
k

for r = 0, 1, 2 and k ≥ 0, which each extend to a 7-adic power series converging on Z7:

c1b
r
1(b

3
1)
x + c2b

r
2(b

3
2)
x =

∑
n≥0

c1b
r
1(log b31)

n + c2b
r
2(log b32)

n

n!
xn.

Let’s return to our original sequence of interest am in (1.1), which has an explicit formula
in terms of powers of 1 +

√
−2 and 1 −

√
−2 in (1.2). Although there are square roots of

−2 in Z3, one lying in 1 + 3Z3 and one lying in 2 + 3Z3, there is not a formula for am using
3-adic power series: taking

√
−2 ≡ 1 mod 3, there are problems with powers of 1 −

√
−2

since |1−
√
−2|3 < 1, and if we had chosen

√
−2 ≡ 2 mod 3 then we’d have problems with

powers of 1 +
√
−2 for a similar reason.

The next prime after p = 3 where −2 has square roots in Zp is 11, so let’s turn it up to
11. We saw in Example 3.2 that we can choose

√
−2 ≡ 3 mod 11, so 1 +

√
−2 ≡ 4 mod 11

and 1−
√
−2 ≡ −2 ≡ 9 mod 11. Since 45 ≡ 1 mod 11 and 95 ≡ 1 mod 11, both (1 +

√
−2)5

and (1−
√
−2)5 lie in 1 + 11Z11. Explicitly,

(1 +
√
−2)5 = 1− 11

√
−2, (1−

√
−2)5 = 1 + 11

√
−2.

For r = 0, 1, 2, 3, 4, and x ∈ Z11, define

fr(x) =
(1 +

√
−2)r((1 +

√
−2)5)x + (1−

√
−2)r((1−

√
−2)5)x

2

=
(1 +

√
−2)r

2
(1− 11

√
−2)x +

(1−
√
−2)r

2
(1 + 11

√
−2)x

=
∑
n≥0

(
(1 +

√
−2)r

2

(log(1− 11
√
−2))n

n!
+

(1−
√
−2)r

2

(log(1 + 11
√
−2))n

n!

)
xn.(3.2)

For integers k ≥ 0,

fr(k) =
(1 +

√
−2)5k+r

2
+

(1−
√
−2)5k+r

2
= a5k+r.

This way of looking at the sequence {am}, as the values at nonnegative integers of five
11-adic power series, leads to a solution of the qualitative problem about values of am.

Theorem 3.9. The sequence {am} in (1.2) with initial conditions a0 = a1 = 1 has |am| →
∞ as m→∞.

Proof. We will show for each c ∈ Z that the equation am = c is satisfied for only finitely
many integers m ≥ 0 by showing a more general property in the 11-adic integers: for each
c ∈ Z11 and r ∈ {0, 1, . . . , 4} the equations fr(x) = c, where fr is defined by (3.2), each have
only finitely many solutions x in Z11. To prove that, we will show each fr is a nonconstant
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power series, since that makes the power series fr(x)−c nonconstant and thus it has finitely
many zeros in Z11 by Corollary 2.2.

To check each of the five power series fr in (3.2) is not constant, we could compute the
linear coefficient of fr and check it is not 0 (and if it were 0, we could then check the
quadratic coefficient is not 0, and so on). But we will do something simpler: compare
fr(0) = ar and fr(1) = a5+r for 0 ≤ r ≤ 4. If they are not equal then fr is not a constant
series. We already saw these values in the table at the start of Section 1. Here they are
again, in a more suitable form for us now.

r 0 1 2 3 4
ar 1 1 −1 −5 −7
a5+r 1 23 43 17 −95

We see ar 6= a5+r when r is 1, 2, 3, and 4, so fr is not constant, but at r = 0 we have
a0 = a5 = 1. That is not a problem: just compute one more value: f0(2) = a5·2 = a10 =
−241. So f0 is not constant either. �

To bound how often am = ±1, we will bound how often fr(x) = 1 and fr(x) = −1 in Z11

for 0 ≤ r ≤ 4 in (3.2). This is equivalent to bounding the number of 11-adic integer zeros of
fr(x)− 1 and fr(x) + 1, which can be thought of as a quantitative refinement of Corollary
2.2. To do this we will use a theorem from p-adic analysis called Strassmann’s theorem.

4. Strassmann’s theorem

By Corollary 2.2, a nonzero series f(x) =
∑

n≥0 anx
n with an ∈ Qp that converges on

Zp has finitely many zeros in Zp. We want to bound the number of those zeros. The series∑
n≥0 anx

n converges on Zp if and only if an → 0. If an → 0 and the an’s are not all 0 then

the numbers |an|p have a positive maximum and there is a last time the maximum occurs.
The largest index for a coefficient of maximal absolute value is denoted N(f). That is,

N(f) = max{N ≥ 0 : |an|p ≤ |aN |p for all n ≥ 0}.

For the power series f whose coefficients are all 0, N(f) is not defined.

Theorem 4.1 (Strassmann). Let f(x) =
∑

n≥0 anx
n where an ∈ Qp and an → 0. If the

an’s are not all zero then the number of solutions to f(x) = 0 in Zp is at most N(f).

We can apply this theorem to polynomials, which are power series with finitely many
terms.

Example 4.2. Over Qp, f(X) = 1+pX+X2+pX5 has N = 2, so it has at most 2 zeros in
Zp. The actual number of zeros of f(X) in Zp is 0 when p = 2 (a ∈ Z2 ⇒ f(a) ≡ 1, 2 mod 4)
and p = 3 (a ∈ Z3 ⇒ f(a) ≡ 1, 2 mod 3) and 2 when p = 5 (use Hensel’s lemma for f(X)
with a = 2 and a = 3).

Example 4.3. Over Qp, 1 + X + pX2 has N = 1 and thus at most 1 zero in Zp. In fact
there is a zero in Zp, as you can check with the quadratic formula; a second zero is in Qp

but outside of Zp.

Example 4.4. Over Qp, X
n − p has N = n and no roots in Zp (or Qp) for n ≥ 2. This

illustrates that the bound in Strassmann’s theorem is only an upper bound on the number
of roots in Zp, not a formula in general for the number of roots in Zp.
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Strassmann’s theorem can be regarded as an analogue for p-adic power series of bounding
the number of roots of a polynomial over a field by the degree of the polynomial. In the
polynomial theorem the key idea is to factor out x−α if α is a root, which lowers the degree
of the polynomial by one, and the proof of Strassmann’s theorem will have a step just like
this where the value of N(f) drops by one after removing a factor corresponding to a root
(if one exists). When dealing with power series rather than polynomials we have to be a
little more careful at the factoring step due to convergence issues.

Proof. We use induction on N(f).
When N(f) = 0, |an|p < |a0|p for all n ≥ 1, so a0 6= 0 and maxn≥1 |an|p < |a0|p because

the an’s tend to 0. For x ∈ Zp,∣∣∣∣∣∣
∑
n≥1

anx
n

∣∣∣∣∣∣
p

≤ max
n≥1
|anxn|p ≤ max

n≥1
|an|p < |a0|p,

so by the strong triangle inequality |f(x)|p = |a0 +
∑

n≥1 anx
n|p = |a0|p > 0. Thus f has

no zero in Zp.
Now suppose N ≥ 1 and the theorem is proved for all power series g(x) with coefficients

in Qp converging on Zp with N(g) < N . If N(f) = N and f has no zeros in Zp then we
are done since 0 < N . If f has a zero α ∈ Zp then by the same reasoning as in the proof of
Theorem 2.1 we can write

(4.1) f(x) = (x− α)g(x)

where g is a power series centered at 0 that converges on Zp. By (4.1), for x ∈ Zp we have
f(x) = 0 if and only if x = α or g(x) = 0. We will show N(g) = N(f)− 1 = N − 1, so by
induction g has at most N − 1 zeros in Zp, and therefore the number of zeros of f in Zp is
at most 1 + (N − 1) = N .

Writing g(x) =
∑

n≥0 bnx
n, to show N(g) = N − 1 means showing

(4.2) |bn|p ≤ |bN−1|p for all n, |bn|p < |bN−1|p for n ≥ N.
While doing this we will also show |bN−1|p = |aN |p.

If α = 0 then f(x) = xg(x), so bn = an+1 for all n, and then (4.2) and |bN−1|p = |aN |p
are clear. If α 6= 0, substituting the power series representations f(x) =

∑
n≥0 anx

n and

g(x) =
∑

n≥0 bnx
n into (4.1) and equating coefficients of like powers of x on both sides, we

get

a0 = −αb0, an = bn−1 − bnα for n ≥ 1.

Replacing n by n+ 1 in this recursion,

bn = an+1 + bn+1α

= an+1 + (an+2 + bn+2α)α

= an+1 + an+2α+ bn+2α
2

= an+1 + an+2α+ (an+3 + bn+3α)α2

= an+1 + an+2α+ an+3α
2 + bn+3α

3.

Repeating this, for any m ≥ 1

bn =

m∑
k=1

an+kα
k−1 + bn+mα

m−1.
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Since α 6= 0, |an+kαk−1|p = |an+kαn+kp |/|α|n+1
p → 0 as k → ∞ since the power series for f

centered at 0 converges at α, and similarly |bn+mαm−1|p → 0 as m → ∞ since the power
series for g centered at 0 converges at α. Therefore

(4.3) bn =
∑
k≥1

an+kα
k−1,

so for all n
|bn|p ≤ max

k≥1
|an+k|p = max

k≥n+1
|ak|p ≤ |aN |p.

If k ≥ N + 1 then |ak|p < |aN |p by the definition of N , so n ≥ N =⇒ |bn|p < |aN |p. Also

bN−1 = aN +
∑

k≥2 aN−1+kα
k−1 where |aN−1+kαk−1|p ≤ |aN−1+k|p < |aN |p for k ≥ 2, so

|bN−1|p = |aN |p. Thus |bn|p is maximized for the last time at n = N−1, soN(g) = N−1. �

Remark 4.5. The number of roots of a polynomial over a field need not equal its degree,
but equality does occur in degree 1: ax+ b = 0 if and only if x = −b/a (if a 6= 0). Similarly,
if N(f) = 1 in Strassmann’s theorem then there really is a root of f(x) in Zp. This can be
proved using a version of Hensel’s lemma for power series.

5. Proof of Theorem 1.1 using Q11

The formula for am in (1.2) uses a square root of −2. Since −2 ≡ 9 mod 11, −2 has a
square root in Z11 that is congruent to 3 mod 11. Define

√
−2 to be that 11-adic integer:

√
−2 = 3 + 9 · 11 + 4 · 112 + 113 + · · · .

Step 1: Estimate values of the p-adic logarithm on 1 + pZp.
We will show for odd p (the case of interest is p = 11) and y ∈ pZp that | log(1+y)|p = |y|p

and log(1 + y) ≡ y mod p2.
Since log(1 + y) =

∑
n≥1(−1)n−1yn/n it suffices, for both the desired equation and

congruence, to check when n ≥ 2 and |y|p ≤ 1/p that |yn/n|p < |y|p, or equivalently that

1/p < |n|1/(n−1)p . This is clear if |n|p = 1, and if |n|p < 1 set n = prm for r ≥ 1 and p - m.
Then

|n|1/(n−1)p =
1

pr/(prm−1)
>

1

pr/(pr−1)
?
>

1

p
⇐⇒ 1 >

r

pr − 1
⇐⇒ pr − 1

X
> r (since p > 2).

Step 2: Make the numbers am into values of several 11-adic power series.
We seek j such that |(1 +

√
−2)j−1|11 ≤ 1/11 and |(1−

√
−2)j−1|11 ≤ 1/11. Use j = 5:

(1 +
√
−2)5 = 1− 11

√
−2, (1−

√
−2)5 = 1 + 11

√
−2.

Therefore if we write m = 5k + r where k ≥ 0 and 0 ≤ r ≤ 4, we have

a5k+r =
(1 +

√
−2)r

2
((1 +

√
−2)5)k +

(1−
√
−2)r

2
((1−

√
−2)5)k

=
(1 +

√
−2)r

2
(1− 11

√
−2)k +

(1−
√
−2)r

2
(1 + 11

√
−2)k.

This formula suggests looking at the 11-adic analytic functions

fr(x) =
(1 +

√
−2)r

2
(1− 11

√
−2)x +

(1−
√
−2)r

2
(1 + 11

√
−2)x

where 0 ≤ r ≤ 4 and x ∈ Z11. For integers k ≥ 0,

(5.1) fr(k) = a5k+r.
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Do not forget this! In terms of the 11-adic exponential series,

fr(x) =
(1 +

√
−2)r

2
ex log(1−11

√
−2) +

(1−
√
−2)r

2
ex log(1+11

√
−2)

=
∑
n≥0

cr,nx
n,

where cr,n =
(1 +

√
−2)r

2

(log(1− 11
√
−2))n

n!
+

(1−
√
−2)r

2

(log(1 + 11
√
−2))n

n!
in Q11. We

have | log(1± 11
√
−2)|11 = |11|11 by Step 1, so from |11n/n!|11 ≤ 1 we get cr,n ∈ Z11.

Step 3: Estimate how quickly the coefficients of fr tend to 0.

Theorem 5.1. For 0 ≤ r ≤ 4 and n ≥ 1, |cr,n|11 ≤ 1/11(9n+1)/10 ≤ 1/11. In particular,
|cr,n|11 ≤ 1/11 for n ≥ 1, |cr,n|11 ≤ 1/112 for n ≥ 2, and |cr,n|11 ≤ 1/113 for n ≥ 3.

Proof. Since (1 +
√
−2)r/2 and (1−

√
−2)r/2 are in Z×11,

|cr,n|11 ≤ max

(∣∣∣∣(log(1− 11
√
−2))n

n!

∣∣∣∣
11

,

∣∣∣∣(log(1 + 11
√
−2))n

n!

∣∣∣∣
11

)
= max

(
|11|n11
|n!|11

,
|11|n11
|n!|11

)
by Step 1

=
(1/11)n

(1/11)(n−s11(n))/(11−1)

=
1

119n/10+s11(n)/10

≤ 1

119n/10+1/10
since n ≥ 1.

For n ≥ 1 we have 9n/10 + 1/10 ≥ 1, for n ≥ 2 we have 9n/10 + 1/10 ≥ 1.9, and for n ≥ 3
we have 9n/10 + 1/10 ≥ 2.8, Since ord11(cn,r) is an integer (or ∞), if ord11(cr,n) ≥ 1.9 then
ord11(cr,n) ≥ 2 and if ord11(cr,n) ≥ 2.8 then ord11(cr,n) ≥ 3. �

Step 4: Finishing the proof of Theorem 1.1.
We want to show am = 1 only when m = 0, 1, and 5, and am = −1 only when m = 2.

The following table writes these m as 5k + r: 1 arises twice when r = 0 (at k = 0, 1) and
once when r = 1 (at k = 0), and −1 arises once when r = 2 (at k = 0).

5k + r k r a5k+r
0 0 0 1
1 0 1 1
2 0 2 −1
5 1 0 1

Since a5k+r = fr(k), we want to show the only zeros of fr(x)− 1 and fr(x) + 1 in Z11 are
as described in the following table, where k is replaced with the 11-adic integer variable x.

r Zeros of fr(x)− 1 Zeros of fr(x) + 1
0 x = 0, 1 None
1 x = 0 None
2 None x = 0
3 None None
4 None None
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The indicated zeros for f0(x)−1, f1(x)−1, and f2(x)+1 follow from (5.1). We will show
for Strassmann’s theorem that f0(x) − 1 has N = 2, f1(x) − 1 and f2(x) + 1 have N = 1,
and other fr(x)±1 have N = 0, so the upper bound on zeros is reached by the known zeros.

Adding and subtracting 1 to fr(x) affects the constant term but no other coefficients:

fr(x)± 1 = (cr,0 ± 1) +
∑
n≥1

cr,nx
n = (ar ± 1) +

∑
n≥1

cr,nx
n.

Let’s first take care of the series where no zeros are expected.

Theorem 5.2. The series f2(x)− 1, f3(x)− 1, f4(x)− 1, f0(x) + 1, f1(x) + 1, f3(x) + 1,
and f4(x) + 1 all have no zeros in Z11.

Proof. To prove an 11-adic power series has no zeros in Z11 with Strassmann’s theorem, we
want to show N = 0: the constant term of fr(x) ± 1 has larger absolute value than every
other coefficient. The table below lists the constant term fr(0)± 1 = ar ± 1.

r 0 1 2 3 4
fr(0) 1 1 −1 −5 −7

fr(0)− 1 0 0 −2 −6 −8
fr(0) + 1 2 2 0 −4 −6

Thus f2(x)− 1, f3(x)− 1, f4(x)− 1, f0(x) + 1, f1(x) + 1, f3(x) + 1, and f4(x) + 1 have
constant terms in Z×11. The higher-degree coefficients are the same as those of fr(x), namely
cr,n for n ≥ 1. Those coefficients are in 11Z11 by Theorem 5.1, so f2(x) − 1, f3(x) − 1,
f4(x)− 1, f0(x) + 1, f1(x) + 1, f3(x) + 1, and f4(x) + 1 all have N = 0. �

It remains to handle f0(x)− 1, f1(x)− 1, and f2(x) + 1.

Theorem 5.3. The only zeros of f0(x)− 1 in Z11 are x = 0 and x = 1.

Proof. The constant term of f0(x)− 1 is 0. For the linear and quadratic coefficients we will
show |c0,1|11 = 1/121 and |c0,2|11 = 1/121. For n ≥ 3, Theorem 5.1 tells us |c0,n|11 < 1/121,
so f0(x)−1 would have N = 2 and that upper bound on the zeros in Z11 is already accounted
for by the two zeros we know (corresponding to a0 = 1 and a5 = 1).

The linear coefficient of f0(x)− 1 is

c0,1 =
1

2
log(1− 11

√
−2) +

1

2
log(1 + 11

√
−2) =

1

2
log(1 + 2 · 112),

so |c0,1|11 = |2 · 112|11 = 1/121. The quadratic coefficient of f0(x)− 1 is

c0,2 =
1

2

(log(1− 11
√
−2))2

2
+

1

2

(log(1 + 11
√
−2))2

2

=
(log(1− 11

√
−2))2 + (log(1 + 11

√
−2))2

4

=
1

4


log(1− 11

√
−2) + log(1 + 11

√
−2)︸ ︷︷ ︸

log((1−11
√
−2)(1+11

√
−2))


2

− 2 log(1− 11
√
−2) log(1 + 11

√
−2)

 .

Since (1 − 11
√
−2)(1 + 11

√
−2) = 1 + 242, the squared term has absolute value |242|211 =

1/114, while by Step 1 | log(1 − 11
√
−2) log(1 + 11

√
−2)|11 = (1/11)(1/11) = 1/112, so by

the strong triangle inequality |c0,2|11 = |1/4|11(1/112) = 1/121.
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Another way to show |c0,2|11 = 1/121 is to compute c0,2 mod 113. By Step 1, log(1 ±
11
√
−2) ≡ ±11

√
−2 mod 112. Thus log(1± 11

√
−2) = ±11

√
−2 + 112x± with x± ∈ Z11, so

(log(1± 11
√
−2))2 = −2 · 112 + 113(11-adic integer) ≡ −2 · 112 mod 113

for both choices of sign. Therefore

c0,2 ≡
1

4
(−2 · 112) +

1

4
(−2 · 112) mod 113 ≡ −112 mod 113,

so |c0,2|11 = 1/121.
�

Theorem 5.4. The only zero of f1(x)− 1 in Z11 is x = 0.

Proof. The constant term of f1(x)− 1 is 0. We will prove |c1,1|11 = 1/11. By Theorem 5.1,
|c1,n|11 < 1/11 for n ≥ 2, so f1(x)− 1 would have N = 1 and thus its known zero at x = 0
(corresponding to a1 = 1) is its only zero in Z11.

The linear coefficient of f1(x)− 1 is

c1,1 =
1 +
√
−2

2
log(1− 11

√
−2) +

1−
√
−2

2
log(1 + 11

√
−2).

Using the congruence mod p2 in Step 1 at p = 11,

c1,1 ≡
1 +
√
−2

2
(−11

√
−2) +

1−
√
−2

2
(11
√
−2) ≡ 22 mod 112 =⇒ |c1,1|11 =

1

11
.

�

Theorem 5.5. The only zero of f2(x) + 1 in Z11 is x = 0.

Proof. The constant term of f2(x) + 1 is 0. We will prove |c2,1|11 = 1/11, which suffices by
the same reasoning as in the proof of the previous theorem. Since

c2,1 =
(1 +

√
−2)2

2
log(1− 11

√
−2) +

(1−
√
−2)2

2
log(1 + 11

√
−2)

=
−1 + 2

√
−2

2
log(1− 11

√
−2) +

−1− 2
√
−2

2
log(1 + 11

√
−2)

≡ −1 + 2
√
−2

2
(−11

√
−2) +

−1− 2
√
−2

2
(11
√
−2) mod 112 by Step 1

≡ 4 · 11 mod 112,

we get |c2,1|11 = 1/11. �

6. Further values of am

The method used to determine all m ≥ 0 for which am = ±1 can be applied to other
values in the sequence {am}. The values of am for 0 ≤ m ≤ 10 besides ±1 are

(6.1) a3 = −5, a4 = −7, a6 = 23, a7 = 43, a8 = 17, a9 = −95, a10 = −241.



12 KEITH CONRAD

To prove these values occur exactly once in the sequence, let’s write out what each fr(x)
looks like. The constant term of fr(x) is fr(0) = ar, so

f0(x) = 1 +
∑
n≥1

c0,nx
n,

f1(x) = 1 +
∑
n≥1

c1,nx
n,

f2(x) = −1 +
∑
n≥1

c2,nx
n,

f3(x) = −5 +
∑
n≥1

c3,nx
n,

f4(x) = −7 +
∑
n≥1

c4,nx
n.

We already showed in Theorems 5.3, 5.4, and 5.5 that |c0,1|11 = 1/121, |c1,1|11 = 1/11,
and |c2,1|11 = 1/11. It is left to the reader to check that |c3,1|11 = 1/11 and |c4,1|11 = 1/11.
For n ≥ 2, |cr,n|11 ≤ 1/121 by Theorem 5.1.

Theorem 6.1. We have am = −5 if and only if m = 3.

Proof. For r = 0, 1, 2, 4 the series fr(x) + 5 has constant term in Z×11 and higher-degree
coefficients in 11Z11, so N(fr + 5) = 0 and thus a5k+r 6= −5 for all k ≥ 0. What if
r = 3? The series f3(x) + 5 has constant term 0, linear coefficient of absolute value 1/11
and |c3,n|11 ≤ 1/121 for n ≥ 2, so N(f3 + 5) = 1 and thus the only solution to f3(x) + 5 = 0
in Z11 is x = 0. That proves am = −5 only for m = 5 · 0 + 3 = 3. �

Theorem 6.2. We have am = 23 if and only if m = 6.

Proof. For r = 2, 3, 4, the series fr(x) − 23 has constant term in Z×11 and higher-degree
coefficients in 11Z11, so none of these series has a zero in Z11. Both f0(x)−23 and f1(x)−23
have constant term −22 ∈ 11Z11. Since | − 22|11 = 1/11, |c0,1|11 = 1/121, and |c0,n|11 ≤
1/121 for n ≥ 2, N(f0 − 23) = 0 and thus f0(x) − 23 is nonvanishing on Z11. Since
| − 22|11 = 1/11, |c1,1|11 = 1/11, and |c1,n|11 ≤ 1/121 for n ≥ 2, N(f1 − 23) = 1 and thus
the zero of f1(x)− 23 at x = 1 (corresponding to a6 = 23) is its only zero in Z11. �

It is left as an exercise to the reader to show the values of am in (6.1) at m = 4, 7, 8, and
9 each occur only once among all m ≥ 0.

While a10 = −241, showing am = −241 only at m = 10 doesn’t work using Q11 because
something new happens: two of the series fr(x) + 241 have a root in Z11 that is not a
nonnegative integer, so the Strassmann bound is too big. The reader can check fr(x) + 241
has N = 0 for r = 2, 3, 4. At r = 0 and 1 we have

f0(x) + 241 = 242 +
∑
n≥1

c0,nx
n,

f1(x) + 241 = 242 +
∑
n≥1

c1,nx
n,

and |242|11 = 1/121. The linear and quadratic coefficients of f0(x) + 241 also have absolute
value 1/121 (see the proof of Theorem 5.3), while |c0,n|11 < 1/121 for n ≥ 3 (Theorem
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5.1), so N(f0 + 241) = 2. In f1(x) + 241, |c1,1|11 = 1/11 and |c1,n|11 < 1/11 for n ≥ 2, so
N(f1 + 241) = 1.

By Strassmann’s theorem, f0(x) + 241 has at most two zeros in Z11 and f1(x) + 241 has
at most one zero in Z11. The zero corresponding to the value a10 = −241 is x = 2 for
f0(x) + 241 (since 10 = 5 · 2 + 0). Write f0(x) + 241 = (x − 2)g(x) where g(x) is a power
series converging on Z11. Then N(g) = N(f0 + 241)− 1 = 1 by the proof of Strassmann’s
theorem, so g(x) and f1(x) + 241 both have N = 1. By Remark 4.5, g(x) and f1(x) + 241
each have have one root in Z11, so am can be −241 for at most two values of m other than
10. The roots of g(x) and f1(x) + 241 don’t appear to be nonnegative integers (we estimate
them in Appendix B), but it is numerically hard to prove rigorously that an 11-adic integer
is not a nonnegative integer from an 11-adic approximation. In order to prove am = −241
only at m = 10 (thereby also proving the unique roots of g(x) and f1(x)+241 in Z11 are not
nonnegative integers) we give up on the prime 11 and seek to apply Strassmann’s theorem
to Qp for some p > 11.

Theorem 6.3. For m ≥ 0, am = −241 if and only if m = 10.

Proof. We want to find a prime p > 3 such that −2 has a square root in Zp. Then
|1±
√
−2|p = 1 and for r ∈ {0, 1, . . . , p− 2} and k ≥ 0, a(p−1)k+r = gr(k) where

gr(x) =
(1 +

√
−2)r

2
((1 +

√
−2)p−1)x +

(1−
√
−2)r

2
((1−

√
−2)p−1)x

=
(1 +

√
−2)r

2
ex log((1+

√
−2)p−1) +

(1−
√
−2)r

2
ex log((1−

√
−2)p−1)

= ar +
∑
n≥1

dr,nx
n

is a p-adic power series converging on all x ∈ Zp, and

dr,n =
(1 +

√
−2)r

2

(log((1 +
√
−2)p−1))n

n!
+

(1−
√
−2)r

2

(log((1−
√
−2)p−1))n

n!
∈ pZp

for n ≥ 1. Thus gr(x) ≡ ar mod p for all x ∈ Zp, so if ar 6≡ −241 mod p then gr(x) + 241
has no zero in Zp. We want to find p so that g10(x) + 241 (which has constant term 0) has
N = 1 and all other gr(x) + 241 have N = 0. (The series gr(x) and its coefficients dr,n all
depend on the choice of p, but we omit this dependence in the notation.)

The first few primes p > 3 such that −2 has a square root in Zp are 11, 17, 19, and 41.
We already saw p = 11 is not a good choice.
p = 17: The only r ∈ {0, 1, . . . , 15} such that ar ≡ −241 mod 17 is r = 10, but over Q17,

g10(x) + 241 = d10,1x + d10,2x
2 + · · · has d10,1 ≡ 4 · 172 + · · · , d10,2 = 6 · 172 + · · · and

d10,n ≡ 0 mod 173 for n ≥ 3, so g10(x) + 241 has N = 2. This is not good.
p = 19: There are two r ∈ {0, 1, . . . , 17} such that ar ≡ −241 mod 19: r = 10 and r = 12.

Over Q19, g10(x) + 241 and g12(x) + 241 both have N = 1. This is not good.
p = 41: The only r ∈ {0, 1, . . . , 39} such that ar ≡ −241 mod 41 is r = 10. Over Q41 the

series g10(x) + 241 has constant term 0, linear coefficient d10,1 = 40 · 41 + 16 · 412 + · · · , and
d10,n ≡ 0 mod 412 for n ≥ 2, so g10(x) + 241 has N = 1. Thus x = 0 is the only zero of
g10(x) + 241 in Z41. Therefore am = 10 only for m = 10 by working in Q41.

�
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Appendix A. Relation to a Diophantine equation

Theorem A.1. The m ≥ 0 such that am = ±1 are also the m ≥ 0 such that 3m = 1 + 2x2

for some integer x.

The solutions are (m,x) = (0, 0), (1,±1), (2,±2), and (5,±11).

Proof. We will study the equation by working in Z[
√
−2], which like Z has unique factor-

ization and its only units are ±1. We will assume the reader knows enough number theory
to understand how to work in such rings (norms, primes, and relatively prime elements).

In Z[
√
−2] both sides of the equation 3m = 1 + 2x2 decompose:

((1 +
√
−2)(1−

√
−2))m = (1 + x

√
−2)(1− x

√
−2).

On the left side, 1+
√
−2 and 1−

√
−2 are both prime elements of Z[

√
−2] since their norms

equal 3, which is a prime number. On the right side, the numbers 1 +x
√
−2 and 1−x

√
−2

are relatively prime: if δ is a common divisor then δ divides their sum 2, which has prime
factorization in Z[

√
−2] equal to −(

√
−2)2, so δ is ±1 or ±

√
−2. Thus N(δ) is 1 or 2. Also

δ2 divides (1 + x
√
−2)(1 − x

√
−2) = 1 + 2x2 = 3m, so taking norms shows N(δ)2 divides

N(3m) = 9m. Thus the integer N(δ) is a power of 3, so N(δ) = 1, which means δ = ±1.
Since 1+x

√
−2 and 1−x

√
−2 are relatively prime in Z[

√
−2], the only way their product

can equal (1 +
√
−2)m(1−

√
−2)m is if

(A.1) 1 + x
√
−2 = ±(1 +

√
−2)m or ± (1−

√
−2)m.

This is equivalent to saying (1 +
√
−2)m has real part ±1. Since the real part is the average

of a complex number and its complex conjugate, (A.1) holds for some integer x and some
nonnegative integer m if and only if

(1 +
√
−2)m

2
+

(1−
√
−2)m

2
= ±1,

which in light of (1.2) is equivalent to saying am = ±1. �

Appendix B. Estimating roots of f0(x) + 241 and f1(x) + 241 in Z11

We will show how to compute f0(x)+241 ≡ (x−2)g(x) mod 116 and f1(x)+241 mod 116

in order to estimate their roots in Z11. Both series have constant term 242. For n ≥ 1, the
coefficient of xn in f0(x) + 241 is

c0,n =
1

2

(log(1− 11
√

2))n + (log(1 + 11
√
−2))n

n!
.

To estimate c0,n we estimate log(1+
√
−2) and log(1−

√
−2). If |x|11 = 1/11 then |xk/k|11 ≤

1/116 for all k ≥ 6, so log(1 + x) ≡
∑5

k=1(−1)k−1xk/k mod 116. Using this together with

the estimate
√
−2 ≡ 3 + 9 · 11 + 4 · 112 + 113 + 4 · 114 + 4 · 115 mod 116, we have

log(1− 11
√
−2) ≡ 8 · 11 + 2 · 112 + 8 · 113 + 3 · 114 + 8 · 115 mod 116,

log(1 + 11
√
−2) ≡ 3 · 11 + 10 · 112 + 2 · 113 + 5 · 114 + 2 · 115 mod 116.

Recall from Section 6 that c0,n ≡ 0 mod 112 for all n ≥ 1, so we use the above to compute

f0(x) + 241

112
= 2 + (1 + 10 · 112 + 10 · 113)x+ (10 + 10 · 11 + 10 · 112 + 113)x2 +

(10 · 112 + 10 · 113)x3 + (2 · 112 + 9 · 113)x4 mod 114.
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This polynomial has two roots modulo 114: 2 and 10 + 10 · 11 + 5 · 112 + 3 · 113. (Since
(f0(x) + 241)/112 ≡ 2 + x− x2 ≡ −(x− 2)(x+ 1) mod 11, a version of Hensel’s lemma for
power series implies there are roots in Z11 that reduce to 2 and −1 mod 11.)

For n ≥ 1, the coefficient of xn in f1(x) + 241 is

c1,n =
1 +
√
−2

2

(log(1− 11
√

2))n

n!
+

1−
√
−2

2

(log(1 + 11
√
−2))n

n!
.

Since c1,n ≡ 0 mod 11 for all n ≥ 1, the above estimates let us compute

f1(x) + 241

11
= 2 · 11 + (2 + 11 + 6 · 112 + 2 · 113 + 2 · 114)x+ (10 · 11 + 112 + 6 · 114)x2 +

(3 · 112 + 6 · 113 + 9 · 114)x3 + (2 · 113 + 114)x4 + 3 · 114x5 mod 115.

There is a unique root modulo 115: 10 · 11 + 5 · 112 + 9 · 114. (Since (f1(x) + 241)/11 ≡
2x mod 11, Hensel’s lemma for power series implies there is one root in Z11 that is congruent
to 0 mod 11.)
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