SELMER'S EXAMPLE

KEITH CONRAD

1. Introduction

Selmer's cubic is $3 x^{3}+4 y^{3}+5 z^{3}$. It is a famous example of an irreducible polynomial that has no nontrivial rational zero (that is, no rational zero other than $(0,0,0)$), but it has a nontrivial real and p-adic zero for all p.
Theorem 1 (Selmer [4]). The equation $3 x^{3}+4 y^{3}+5 z^{3}=0$ has only the solution $(0,0,0)$ over \mathbf{Q}, but it has a nonzero solution over \mathbf{R} and every \mathbf{Q}_{p}.

We will first build solutions in all the completions, relying for the most part on Hensel's lemma, and then use algebraic number theory to look for solutions in \mathbf{Q}.

2. Local solutions

In \mathbf{R} we have the solution $(\sqrt[3]{5 / 3}, 0,-1)$. To show there is a solution besides $(0,0,0)$ in each \mathbf{Q}_{p} we follow a method I learned from Kevin Buzzard. The basic idea is to show there is a nonzero solution modulo p and then lift that solution p-adically by Hensel's lemma. We will separately treat the cases $p=3, p=5$, and $p \neq 3$ or 5 .

To find a 3 -adic solution, set $x=0$ and $z=-1$, making the equation $4 y^{3}-5=0$, or $y^{3}=5 / 4$. Although $5 / 4 \equiv-1 \bmod 9$ and -1 is a 3 -adic cube, this congruence modulo 9 isn't sharp enough to conclude by Hensel's lemma that $5 / 4$ is a 3 -adic cube: to use Hensel's lemma (in the form $\left.|f(\alpha)|_{3}<\left|f^{\prime}(\alpha)\right|_{3}^{2}\right)$, we seek an $\alpha \in \mathbf{Z}_{3}^{\times}$such that $\left|\alpha^{3}-5 / 4\right|_{3}<1 / 9$, i.e., $\alpha^{3} \equiv 5 / 4 \bmod 27$. The choice $\alpha=2$ works, so $5 / 4$ is a 3 -adic cube and we can solve Selmer's equation in \mathbf{Q}_{3} as $(0, y,-1)$ where $y^{3}=5 / 4$ in \mathbf{Z}_{3}.

If $p \neq 3$ and the p-adic integer a is a nonzero cube $\bmod p$ then a is a cube in \mathbf{Z}_{p}^{\times}by Hensel's lemma for $X^{3}-a$. In particular, for $p=5$, set $y=-1$ and $z=-1$ to make Selmer's equation $3 x^{3}-4-5=0$, or $x^{3}=3$. Since $3 \equiv 2^{3} \bmod 5$, by Hensel's lemma for $X^{3}-3$ with approximate solution 2 we see that 3 is a 5 -adic cube. We get a 5 -adic solution to Selmer's equation as $(x,-1,-1)$ where $x^{3}=3$ in \mathbf{Z}_{5}.

From now on let p be a prime other than 3 or 5 (this includes allowing $p=2$). Then $3,5 \not \equiv 0 \bmod p$. We are going to look at the group $(\mathbf{Z} /(p))^{\times}$, which is cyclic of order $p-1$. What proportion of the group is filled up by cubes?

- If $p \equiv 1 \bmod 3$ then the cubes in $(\mathbf{Z} /(p))^{\times}$are a subgroup of index 3 .
- If $p \not \equiv 1 \bmod 3$ then $(3, p-1)=1$, so every number in $(\mathbf{Z} /(p))^{\times}$is a cube.

If $3 \bmod p$ is a cube then 3 is a cube in \mathbf{Z}_{p} by Hensel's lemma for $X^{3}-3$, so we can solve Selmer's equation as $(x,-1,-1)$ where $x^{3}=3$ in \mathbf{Q}_{p}.

If $3 \bmod p$ is not a cube then not all numbers in $(\mathbf{Z} /(p))^{\times}$are cubes. Thus $p \equiv 1 \bmod$ 3 , so the nonzero cubes mod p are a subgroup of $(\mathbf{Z} /(p))^{\times}$that has index 3 and coset representatives $\{1,3,9\}$: for every $a \not \equiv 0 \bmod p$ we have $a \equiv b^{3}, 3 b^{3}$, or $9 b^{3} \bmod p$ for some $b \not \equiv 0 \bmod p$. We will apply this with $a=5$.

- If $5 \equiv b^{3} \bmod p$ then 5 is a cube in \mathbf{Z}_{p} by Hensel's lemma for $X^{3}-5$, and we can solve Selmer's equation as $(-y, y,-1)$ where $y^{3}=5$ in \mathbf{Z}_{p}.
- If $5 \equiv 3 b^{3} \bmod p$ then $5 / 3$ is a cube in \mathbf{Z}_{p} by Hensel's lemma and we can solve Selmer's equation as $(x, 0,-1)$ where $x^{3}=5 / 3$.
- If $5 \equiv 9 b^{3} \bmod p$ then $5 \cdot 3=15$ is a cube in \mathbf{Z}_{p} by Hensel's lemma and we can solve Selmer's equation as $(3 t, 5,-7)$ where $t^{3}=15$. That is, $3 a^{3}+4 b^{3}+5 c^{3}=0$ where $a=3 t, b=5$, and $c=-7$. By homogeneity there is a solution $(3 t / 7,5 / 7,-1)$ too.
This completes the proof that Selmer's equation has local solutions everywhere

3. No global solutions

To prove $3 x^{3}+4 y^{3}+5 z^{3}=0$ has no rational solution besides $(0,0,0)$, assume there is a rational solution (x, y, z). Multiplying through by 2 and rearranging terms, we get $(2 y)^{3}+6 x^{3}=10(-z)^{3}$. We will show the only rational solution to the equation

$$
\begin{equation*}
X^{3}+6 Y^{3}=10 Z^{3} \tag{3.1}
\end{equation*}
$$

is $(0,0,0)$, which implies the only rational solution to Selmer's equation is $(0,0,0)$.
By clearing denominators in (3.1), we may assume X, Y, and Z are integers. Suppose they are not all 0 , so none are 0 since the coefficient ratios 6,10 , and $10 / 6$ are not cubes in \mathbf{Q}. If a prime p divides two of X, Y, or Z then it also divides the third since the coefficients 6 and 10 in (3.1) aren't divisible by the cube of a prime. Then we can divide through all the terms in (3.1) by p^{3} to get a smaller integral solution of the same equation. Hence without loss of generality X, Y, and Z are pairwise relatively prime. Since 6 and 10 are each even, necessarily X is even. If either Y or Z were also even then both would be even (since 6 and 10 are each divisible by 2 just once), but X, Y, and Z can't all be even. Thus Y and Z are both odd. We can also conclude from (3.1) that
X and Z are not divisible by 3 and X and Y are not divisible by 5 .
Factor the left side of (3.1) in $\mathbf{Z}[\sqrt[3]{6}]$: writing $\alpha=\sqrt[3]{6}$, (3.1) is equivalent to

$$
\begin{equation*}
(X+Y \alpha)\left(X^{2}-X Y \alpha+Y^{2} \alpha^{2}\right)=10 Z^{3} . \tag{3.2}
\end{equation*}
$$

Claim 1: $\mathbf{Z}[\alpha]$ is the ring of integers in $\mathbf{Q}[\alpha]$.
Proof of claim. For non-cube integers d,

$$
\operatorname{disc}(\mathbf{Z}[\sqrt[3]{d}])=-27 d^{2}=\left[\mathcal{O}_{\mathbf{Q}(\sqrt[3]{d})}: \mathbf{Z}[\sqrt[3]{d}]\right]^{2} \operatorname{disc}\left(\mathcal{O}_{\mathbf{Q}(\sqrt[3]{d})}\right)
$$

so the index of $\mathbf{Z}[\sqrt[3]{d}]$ in the ring of integers of $\mathbf{Q}(\sqrt[3]{d})$ divides $3 d$. In particular, the index of $\mathbf{Z}[\sqrt[3]{6}]$ in the integers of $\mathbf{Q}(\sqrt[3]{6})$ divides 18 . Since $T^{3}-6$ is Eisenstein at 2 and 3 , the index of $\mathbf{Z}[\sqrt[3]{6}]$ in the integers of $\mathbf{Q}(\sqrt[3]{6})$ is not divisible by 2 or 3 , so the index is 1 .

Passing from the equation of elements (3.2) to an equation of principal ideals in $\mathbf{Z}[\alpha]$,

$$
\begin{equation*}
(X+Y \alpha)\left(X^{2}-X Y \alpha+Y^{2} \alpha^{2}\right)=(10)(Z)^{3} \tag{3.3}
\end{equation*}
$$

To derive information about the prime ideal factorization of ($X+Y \alpha$) from (3.3), we need to determine how the ideal (10) factors. How do (2) and (5) factor?

The way a prime p factors in $\mathbf{Z}[\alpha] \cong \mathbf{Z}[T] /\left(T^{3}-6\right)$ matches how $T^{3}-6$ factors mod p. The following table shows how the ideals (2) and (5) decompose, so (10) $=\mathfrak{p}_{2}^{3} \mathfrak{p}_{5} \mathfrak{p}_{25}$.

p	$T^{3}-6 \bmod p$	(p)
2	T^{3}	\mathfrak{p}_{2}^{3}
5	$(T-1)\left(T^{2}+T+1\right)$	$\mathfrak{p}_{5} \mathfrak{p}_{25}$

Writing N for the field norm $\mathrm{N}_{\mathbf{Q}(\alpha) / \mathbf{Q}}$, we have for each integer k that $\mathrm{N}(\alpha+k)=k^{3}+6$. The table below collects a few norm values.

$$
\begin{array}{c|cccccc}
k & -2 & -1 & 0 & 1 & 2 & 4 \\
\hline k^{3}+6 & -2 & 5 & 6 & 7 & 14 & 70
\end{array}
$$

Since there are unique prime ideals of norm 2 and $5, \mathfrak{p}_{2}=(\alpha-2)$ and $\mathfrak{p}_{5}=(\alpha-1)$. We will use the other norm values later.

Claim 2: The principal ideal $(X+Y \alpha)$ decomposes in $\mathbf{Z}[\alpha]$ as

$$
\begin{equation*}
(X+Y \alpha)=\mathfrak{p}_{2} \mathfrak{p}_{5} \mathfrak{b}^{3}=(\alpha-2)(\alpha-1) \mathfrak{b}^{3} \tag{3.4}
\end{equation*}
$$

for some ideal \mathfrak{b}.
Proof of claim. (This proof, which involves a careful analysis of ideal factorizations in $\mathbf{Z}[\alpha]$, is a bit tedious and could be skipped first to see how the claim gets used.)

By (3.3), $(X+Y \alpha)\left(X^{2}-X Y \alpha+Y^{2} \alpha^{2}\right)$ is divisible by $\mathfrak{p}_{2}^{3} \mathfrak{p}_{5} \mathfrak{p}_{25}$. How much are $(X+Y \alpha)$ and $\left(X^{2}-X Y \alpha+Y^{2} \alpha^{2}\right)$ divisible by $\mathfrak{p}_{2}, \mathfrak{p}_{5}$, and \mathfrak{p}_{25} ?

First we'll show \mathfrak{p}_{2} and \mathfrak{p}_{5} divide $(X+Y \alpha)$. Since $(\alpha)^{3}=(6)=\mathfrak{p}_{2}^{3}(3), \mathfrak{p}_{2} \mid(\alpha)$. Since X is even, $X+Y \alpha \equiv 0 \bmod \mathfrak{p}_{2}$, so $\mathfrak{p}_{2} \mid(X+Y \alpha)$. From $X^{3}+6 Y^{3}=10 Z^{3}$ we have $X^{3} \equiv(-Y)^{3} \bmod 5$. Cubing is a bijection on $\mathbf{Z} /(5)$, so $X \equiv-Y \bmod 5$. Since $\mathfrak{p}_{5}=(\alpha-1)$ we have $\alpha \equiv 1 \bmod \mathfrak{p}_{5}$, so $X+Y \alpha \equiv X+Y \equiv 0 \bmod \mathfrak{p}_{5}$. Thus $\mathfrak{p}_{5} \mid(X+Y \alpha)$.

If $\mathfrak{p}_{25} \mid(X+Y \alpha)$ then the product $\mathfrak{p}_{5} \mathfrak{p}_{25}=(5)$ divides $(X+Y \alpha)$, so 5 is a factor of $X+Y \alpha$ in $\mathbf{Z}[\alpha]$, which implies X and Y are divisible by 5 in \mathbf{Z}. However X and Y are not divisible by 5 . Therefore $\mathfrak{p}_{25} \nmid(X+Y \alpha)$, so (3.3) tells us $\mathfrak{p}_{25} \mid\left(X^{2}-X Y \alpha+Y^{2} \alpha^{2}\right)$.

Since $X, \alpha \equiv 0 \bmod \mathfrak{p}_{2}, X^{2}-X Y \alpha+Y^{2} \alpha^{2} \equiv 0 \bmod \mathfrak{p}_{2}^{2}$. So $\mathfrak{p}_{2}^{2} \mid\left(X^{2}-X Y \alpha+Y^{2} \alpha^{2}\right)$.
Now we can write

$$
(X+Y \alpha)=\mathfrak{p}_{2} \mathfrak{p}_{5} \mathfrak{a} \quad \text { and } \quad\left(X^{2}-X Y \alpha+Y^{2} \alpha^{2}\right)=\mathfrak{p}_{2}^{2} \mathfrak{p}_{25} \mathfrak{a}^{\prime}
$$

for some ideals \mathfrak{a} and \mathfrak{a}^{\prime}. Multiplying these together, $\left(X^{3}+6 Y^{3}\right)=(10) \mathfrak{a a ^ { \prime }}=(10)(Z)^{3}$ so $\mathfrak{a a ^ { \prime }}=(Z)^{3}$. Since Z is odd, \mathfrak{a} and \mathfrak{a}^{\prime} are not divisible by \mathfrak{p}_{2}. We'll show \mathfrak{a} and \mathfrak{a}^{\prime} are relatively prime, so by unique factorization of ideals, \mathfrak{a} (as well as \mathfrak{a}^{\prime}) must be a cube, say $\mathfrak{a}=\mathfrak{b}^{3}$. That would prove (3.4).

To show \mathfrak{a} and \mathfrak{a}^{\prime} are relatively prime, we'll show the only common prime ideal factor of $(X+Y \alpha)$ and $\left(X^{2}-X Y \alpha+\alpha^{2}\right)$ is \mathfrak{p}_{2}, which we already know is not a factor of \mathfrak{a} or \mathfrak{a}^{\prime}.

Let \mathfrak{p} be a prime ideal such that

$$
\begin{equation*}
\mathfrak{p} \mid(X+Y \alpha) \quad \text { and } \quad \mathfrak{p} \mid\left(X^{2}-X Y \alpha+Y^{2} \alpha^{2}\right) \tag{3.5}
\end{equation*}
$$

so

$$
X+Y \alpha \equiv 0 \bmod \mathfrak{p} \quad \text { and } \quad X^{2}-X Y \alpha+Y^{2} \alpha^{2} \equiv 0 \bmod \mathfrak{p}
$$

Since $X^{2}-X Y \alpha+Y^{2} \alpha^{2}=(X+Y \alpha)^{2}-3 X Y \alpha, 3 X Y \alpha \equiv 0 \bmod \mathfrak{p}$, so $\mathfrak{p} \mid(3)(X)(Y)(\alpha)$.

- If $\mathfrak{p} \mid(3)$ then $\mathfrak{p} \nmid(10)$, so $\mathfrak{p} \mid(Z)^{3}$. However, Z is not divisible by 3 , so (Z) and (3) are relatively prime. Thus $\mathfrak{p} \nmid(3)$.
- If $\mathfrak{p} \mid(X)$ then $Y \alpha \equiv 0 \bmod \mathfrak{p}$ since $X+Y \alpha \equiv 0 \bmod \mathfrak{p}$, which implies $\mathfrak{p} \mid(Y)(\alpha)$. From relative primality of X and Y, \mathfrak{p} can't divide (Y) (otherwise X and Y would be divisible by whatever prime number \mathfrak{p} divides), so $\mathfrak{p} \mid(\alpha)$.
- If $\mathfrak{p} \mid(Y)$ then $X \equiv 0 \bmod \mathfrak{p}$ since $X+Y \alpha \equiv 0 \bmod \mathfrak{p}$, but that means $\mathfrak{p} \mid(X)$, which contradicts the relative primality of X and Y. So $\mathfrak{p} \nmid(Y)$.
We have shown a prime ideal \mathfrak{p} satisfying (3.5) divides (α) and not (3). Since $(\alpha)^{3}=$ $(6)=(2)(3), \mathfrak{p}$ divides (2), so $\mathfrak{p}=\mathfrak{p}_{2}$. That concludes the proof of Claim 2.

Claim 3: $\mathbf{Q}(\alpha)$ has class number 1.
Proof of claim. The Minkowski bound for $\mathbf{Q}(\alpha)=\mathbf{Q}(\sqrt[3]{6})$ is

$$
\left(\frac{4}{\pi}\right)^{r_{2}} \frac{n!}{n^{n}} \sqrt{|\operatorname{disc}(\mathbf{Z}[\sqrt[3]{6}])|}=\frac{4}{\pi} \frac{6}{27} \sqrt{27 \cdot 6^{2}}=\frac{16 \sqrt{3}}{\pi} \approx 8.82
$$

Therefore the class group is generated by the ideal classes of primes with norm at most 8 . We have already seen that there is a unique prime ideal of norm 2 , namely $\mathfrak{p}_{2}=(\alpha-2)$, and no prime ideal of norm 4 or 8 since $(2)=\mathfrak{p}_{2}^{3}$. To factor (3), from $T^{3}-6 \equiv T^{3} \bmod 3$ we obtain $(3)=\mathfrak{p}_{3}^{3}$. Since $N(\alpha)=6$, we have $(\alpha)=\mathfrak{p}_{2} \mathfrak{p}_{3}=(\alpha-2) \mathfrak{p}_{3}$, so \mathfrak{p}_{3} is principal. The only ideal of norm 5 is $\mathfrak{p}_{5}=(\alpha-1)$, which is principal. It remains to factor (7). Since $T^{3}-6 \equiv(T+1)(T+2)(T+4) \bmod 7$, we have $(7)=\mathfrak{p}_{7} \mathfrak{p}_{7}^{\prime} \mathfrak{p}_{7}^{\prime \prime}$ where these prime ideals satisfy $\mathfrak{p}_{7}\left|(\alpha+1), \mathfrak{p}_{7}^{\prime}\right|(\alpha+2)$, and $\mathfrak{p}_{7}^{\prime \prime} \mid(\alpha+4)$. From the table of norm values before Claim 2 we have $\mathrm{N}(\alpha+1)=7, \mathrm{~N}(\alpha+2)=14$, and $\mathrm{N}(\alpha+4)=70$, so $(\alpha+1)=\mathfrak{p}_{7},(\alpha+2)=\mathfrak{p}_{2} \mathfrak{p}_{7}^{\prime}$, and $(\alpha+4)=\mathfrak{p}_{2} \mathfrak{p}_{5} \mathfrak{p}_{7}^{\prime \prime}$. Since \mathfrak{p}_{2} and \mathfrak{p}_{5} are principal, the prime ideals dividing (7) are all principal. Thus the class number of $\mathbf{Q}(\alpha)$ is 1 .

By Claim 3, the ideal \mathfrak{b} in Claim 2 is principal, say $\mathfrak{b}=(\beta)$, so equation (3.4) leads to an equation of elements:

$$
\begin{equation*}
X+Y \alpha=(\alpha-2)(\alpha-1) \beta^{3} u \tag{3.6}
\end{equation*}
$$

for some unit u in $\mathbf{Z}[\alpha]$. In this equation the unit u only matters modulo multiplication by unit cubes since unit cubes can be absorbed into β.

Claim 4: The units in $\mathbf{Z}[\alpha]$ modulo unit cubes are represented by $\left(1-6 \alpha+3 \alpha^{2}\right)^{k}$ for $k=0,1$, and 2 .

Proof of claim. Since $\mathbf{Q}(\alpha)$ has $r_{1}=1$ and $r_{2}=1$ by Dirichlet's unit theorem $\mathbf{Z}[\alpha]^{\times}=$ $\pm \varepsilon^{\mathbf{Z}}$ for some ε, so $\mathbf{Z}[\alpha]^{\times} /\left(\mathbf{Z}[\alpha]^{\times}\right)^{3}$ is cyclic of order 3. Therefore a unit that is not a cube generates the units modulo cubes. (That is, a non-identity element in a group of prime order is a generator.) To find a noncube unit, observe that $(2)=\mathfrak{p}_{2}^{3}=(\alpha-2)^{3}$, so

$$
\frac{(\alpha-2)^{3}}{2}=\frac{\alpha^{3}-6 \alpha^{2}+12 \alpha-8}{2}=\frac{-2+12 \alpha-6 \alpha^{2}}{2}=-1+6 \alpha-3 \alpha^{2} \approx-.00306
$$

is a unit. Its negative $1-6 \alpha+3 \alpha^{2}$ is also a unit. To check this is not a cube of a unit, we verify it is not a cube in some residue field. For the ideal $\mathfrak{p}_{7}=(\alpha+1), \mathbf{Z}[\alpha] / \mathfrak{p}_{7} \cong \mathbf{Z} /(7)$ and

$$
1-6 \alpha+3 \alpha^{2} \equiv 1-6(-1)+3(1)=10 \equiv 3 \bmod \mathfrak{p}_{7}
$$

and this is not a cube since 3 is not a cube in $\mathbf{Z} /(7)$.
Remark 1. The unit $1-6 \alpha+3 \alpha^{2}$ is actually a generator of $\mathbf{Z}[\alpha]^{\times}$(modulo ± 1), but that takes more effort to prove and Claim 4 is sufficient information for us about units in $\mathbf{Z}[\alpha]$.

Since

$$
1-6 \alpha+3 \alpha^{2}=-\frac{(\alpha-2)^{3}}{2}=\frac{(2-\alpha)^{3}}{2}
$$

by Claim 4 the unit u in equation (3.6) is $\left((2-\alpha)^{3} / 2\right)^{k} v^{3}=\left((2-\alpha)^{k} v\right)^{3} / 2^{k}$ where $v \in \mathbf{Z}[\alpha]^{\times}$ and k is 0,1 , or 2 . Multiplying through (3.6) by 2^{k}, absorb $\left((2-\alpha)^{k} v\right)^{3}$ into β^{3} to get

$$
\begin{equation*}
2^{k} X+2^{k} Y \alpha=(\alpha-2)(\alpha-1) \gamma^{3} \tag{3.7}
\end{equation*}
$$

for nonzero $\gamma \in \mathbf{Z}[\alpha]$. Write $\gamma=A+B \alpha+C \alpha^{2}$, where A, B, and C are in \mathbf{Z} and not all 0 .

Compute $(\alpha-2)(\alpha-1) \gamma^{3}$ as a \mathbf{Z}-linear combination of $1, \alpha$, and α^{2} and then equate the coefficients of α^{2} on both sides of equation (3.7) to get
(3.8) $0=A^{3}+6 B^{3}+36 C^{3}+36 A B C-9\left(A^{2} B+6 A C^{2}+6 B^{2} C\right)+6\left(A B^{2}+A^{2} C+6 B C^{2}\right)$.

In this equation each term other than A^{3} is a multiple of 3 , so $0 \equiv A^{3} \bmod 3$. Thus $3 \mid A$, which makes each term in (3.8) other than the second term $6 B^{3}$ divisible by 9 , so $0 \equiv 6 B^{3} \bmod 9$. That implies $3 \mid B$, which forces each term in (3.8) other than the third term $36 C^{3}$ to be divisible by 27 , so $0 \equiv 36 C^{3} \bmod 27$. Thus $3 \mid C$.

We have shown A, B, and C in (3.8) are each divisible by 3 . The right side of (3.8) is homogeneous of degree 3 in A, B, and C, so we can remove a common factor of 27 from all the terms and obtain another equation (3.8) where A, B, and C are one-third as large. Repeating this infinitely often forces A, B, and C to equal 0 , which is a contradiction. This completes the proof that Selmer's equation has no rational solution other than ($0,0,0$).

Corollary 1. The equation $3 x^{3}+4 y^{3}=5$ has a solution in \mathbf{R} and every \mathbf{Q}_{p} but has no solution in \mathbf{Q}.
Proof. We showed in Section 2 that in \mathbf{R} and each \mathbf{Q}_{p} there is a solution to $3 x^{3}+4 y^{3}+5 z^{3}=0$ where $z=-1$, and for such a solution we have $3 x^{3}+4 y^{3}=5$. If we can solve $3 x^{3}+4 y^{3}=5$ in \mathbf{Q} then we can solve $3 x^{3}+4 y^{3}+5 z^{3}=0$ in \mathbf{Q} with $z=-1$, contradicting Theorem 1 .

Our treatment of Selmer's equation is based on [3, pp. 220-222], where the analogue of our equation (3.8) on the top of p .222 has one incorrect coefficient on the right side.

Other examples of homogeneous cubics fitting the conditions of Selmer's theorem are

$$
x^{3}+5 y^{3}+12 z^{3}, \quad x^{3}+4 y^{3}+15 z^{3}, \quad x^{3}+3 y^{3}+20 z^{3}, \quad x^{3}+3 y^{3}+22 z^{3} .
$$

(The last polynomial is from [3, p. 222].) A different class of examples that are analyzed without algebraic number theory are in [1].

Remark 2. Just as counterexamples to unique factorization in number fields can acquire a positive interpretation as non-trivial elements in an ideal class group (that is, such phenomena are associated to non-principal ideals), Selmer's example has a positive interpretation: it represents a non-trivial element in the Tate-Shafarevich group of an elliptic curve over \mathbf{Q}, specifically the elliptic curve $x^{3}+y^{3}+60 z^{3}=0$. The lack of rational solutions besides $(0,0,0)$ to $3 x^{3}+4 y^{3}+5 z^{3}=0$ can be proved more simply using elliptic curves instead of purely by algebraic number theory. See [2, pp. 86-87].

References

[1] W. Aitken and F. Lemmermeyer, Simple Counterexamples to the Local-Global Principle. URL http: //public.csusm.edu/aitken_html/m372/diophantine.pdf.
[2] J. W. S. Cassels, "Lectures on Elliptic Curves," Cambridge Univ. Press, Cambridge, 1991.
[3] J. W. S. Cassels, "Local Fields," Cambridge Univ. Press, Cambridge, 1986.
[4] E. Selmer, The Diophantine equation $a x^{3}+b y^{3}+c z^{3}=0$, Acta Mathematica 85 (1951), 203-362.

