
SELMER’S EXAMPLE

KEITH CONRAD

1. Introduction

Selmer’s cubic is 3x3 + 4y3 + 5z3. It is a famous example of an irreducible polynomial
that has no nontrivial rational zero (that is, no rational zero other than (0, 0, 0)), but it has
a nontrivial real and p-adic zero for all p.

Theorem 1 (Selmer [4]). The equation 3x3 + 4y3 + 5z3 = 0 has only the solution (0, 0, 0)
over Q, but it has a nonzero solution over R and every Qp.

We will first build solutions in all the completions, relying for the most part on Hensel’s
lemma, and then use algebraic number theory to look for solutions in Q.

2. Local solutions

In R we have the solution ( 3
√

5/3, 0,−1). To show there is a solution besides (0, 0, 0) in
each Qp we follow a method I learned from Kevin Buzzard. The basic idea is to show there
is a nonzero solution modulo p and then lift that solution p-adically by Hensel’s lemma. We
will separately treat the cases p = 3, p = 5, and p 6= 3 or 5.

To find a 3-adic solution, set x = 0 and z = −1, making the equation 4y3 − 5 = 0, or
y3 = 5/4. Although 5/4 ≡ −1 mod 9 and −1 is a 3-adic cube, this congruence modulo 9
isn’t sharp enough to conclude by Hensel’s lemma that 5/4 is a 3-adic cube: to use Hensel’s
lemma (in the form |f(α)|3 < |f ′(α)|23), we seek an α ∈ Z×3 such that |α3 − 5/4|3 < 1/9,
i.e., α3 ≡ 5/4 mod 27. The choice α = 2 works, so 5/4 is a 3-adic cube and we can solve
Selmer’s equation in Q3 as (0, y,−1) where y3 = 5/4 in Z3.

If p 6= 3 and the p-adic integer a is a nonzero cube mod p then a is a cube in Z×p by

Hensel’s lemma for X3 − a. In particular, for p = 5, set y = −1 and z = −1 to make
Selmer’s equation 3x3 − 4 − 5 = 0, or x3 = 3. Since 3 ≡ 23 mod 5, by Hensel’s lemma for
X3− 3 with approximate solution 2 we see that 3 is a 5-adic cube. We get a 5-adic solution
to Selmer’s equation as (x,−1,−1) where x3 = 3 in Z5.

From now on let p be a prime other than 3 or 5 (this includes allowing p = 2). Then
3, 5 6≡ 0 mod p. We are going to look at the group (Z/(p))×, which is cyclic of order p− 1.
What proportion of the group is filled up by cubes?

• If p ≡ 1 mod 3 then the cubes in (Z/(p))× are a subgroup of index 3.
• If p 6≡ 1 mod 3 then (3, p− 1) = 1, so every number in (Z/(p))× is a cube.

If 3 mod p is a cube then 3 is a cube in Zp by Hensel’s lemma for X3− 3, so we can solve
Selmer’s equation as (x,−1,−1) where x3 = 3 in Qp.

If 3 mod p is not a cube then not all numbers in (Z/(p))× are cubes. Thus p ≡ 1 mod
3, so the nonzero cubes mod p are a subgroup of (Z/(p))× that has index 3 and coset
representatives {1, 3, 9}: for every a 6≡ 0 mod p we have a ≡ b3, 3b3, or 9b3 mod p for some
b 6≡ 0 mod p. We will apply this with a = 5.
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• If 5 ≡ b3 mod p then 5 is a cube in Zp by Hensel’s lemma for X3 − 5, and we can
solve Selmer’s equation as (−y, y,−1) where y3 = 5 in Zp.
• If 5 ≡ 3b3 mod p then 5/3 is a cube in Zp by Hensel’s lemma and we can solve

Selmer’s equation as (x, 0,−1) where x3 = 5/3.
• If 5 ≡ 9b3 mod p then 5 · 3 = 15 is a cube in Zp by Hensel’s lemma and we can solve

Selmer’s equation as (3t, 5,−7) where t3 = 15. That is, 3a3 + 4b3 + 5c3 = 0 where
a = 3t, b = 5, and c = −7. By homogeneity there is a solution (3t/7, 5/7,−1) too.

This completes the proof that Selmer’s equation has local solutions everywhere

3. No global solutions

To prove 3x3 + 4y3 + 5z3 = 0 has no rational solution besides (0, 0, 0), assume there
is a rational solution (x, y, z). Multiplying through by 2 and rearranging terms, we get
(2y)3 + 6x3 = 10(−z)3. We will show the only rational solution to the equation

(3.1) X3 + 6Y 3 = 10Z3

is (0, 0, 0), which implies the only rational solution to Selmer’s equation is (0, 0, 0).
By clearing denominators in (3.1), we may assume X, Y , and Z are integers. Suppose

they are not all 0, so none are 0 since the coefficient ratios 6, 10, and 10/6 are not cubes
in Q. If a prime p divides two of X, Y , or Z then it also divides the third since the co-
efficients 6 and 10 in (3.1) aren’t divisible by the cube of a prime. Then we can divide
through all the terms in (3.1) by p3 to get a smaller integral solution of the same equa-
tion. Hence without loss of generality X, Y , and Z are pairwise relatively prime. Since

6 and 10 are each even, necessarily X is even . If either Y or Z were also even then
both would be even (since 6 and 10 are each divisible by 2 just once), but X, Y , and Z

can’t all be even. Thus Y and Z are both odd . We can also conclude from (3.1) that

X and Z are not divisible by 3 and X and Y are not divisible by 5 .

Factor the left side of (3.1) in Z[ 3
√

6]: writing α = 3
√

6, (3.1) is equivalent to

(3.2) (X + Y α)(X2 −XY α+ Y 2α2) = 10Z3.

Claim 1: Z[α] is the ring of integers in Q[α].
Proof of claim. For non-cube integers d,

disc(Z[
3
√
d]) = −27d2 = [O

Q(
3√
d)

: Z[
3
√
d]]2 disc(O

Q(
3√
d)

),

so the index of Z[ 3
√
d] in the ring of integers of Q( 3

√
d) divides 3d. In particular, the index

of Z[ 3
√

6] in the integers of Q( 3
√

6) divides 18. Since T 3 − 6 is Eisenstein at 2 and 3, the
index of Z[ 3

√
6] in the integers of Q( 3

√
6) is not divisible by 2 or 3, so the index is 1.

Passing from the equation of elements (3.2) to an equation of principal ideals in Z[α],

(3.3) (X + Y α)(X2 −XY α+ Y 2α2) = (10)(Z)3.

To derive information about the prime ideal factorization of (X + Y α) from (3.3), we need
to determine how the ideal (10) factors. How do (2) and (5) factor?

The way a prime p factors in Z[α] ∼= Z[T ]/(T 3 − 6) matches how T 3 − 6 factors mod p.
The following table shows how the ideals (2) and (5) decompose, so (10) = p32p5p25.

p T 3 − 6 mod p (p)

2 T 3 p32
5 (T − 1)(T 2 + T + 1) p5p25
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Writing N for the field norm NQ(α)/Q, we have for each integer k that N(α+ k) = k3 + 6.
The table below collects a few norm values.

k −2 −1 0 1 2 4

k3 + 6 −2 5 6 7 14 70

Since there are unique prime ideals of norm 2 and 5, p2 = (α− 2) and p5 = (α− 1) . We

will use the other norm values later.

Claim 2: The principal ideal (X + Y α) decomposes in Z[α] as

(3.4) (X + Y α) = p2p5b
3 = (α− 2)(α− 1)b3

for some ideal b.
Proof of claim. (This proof, which involves a careful analysis of ideal factorizations in

Z[α], is a bit tedious and could be skipped first to see how the claim gets used.)
By (3.3), (X +Y α)(X2−XY α+Y 2α2) is divisible by p32p5p25. How much are (X +Y α)

and (X2 −XY α+ Y 2α2) divisible by p2, p5, and p25?
First we’ll show p2 and p5 divide (X + Y α). Since (α)3 = (6) = p32(3), p2 | (α). Since

X is even, X + Y α ≡ 0 mod p2, so p2 | (X + Y α). From X3 + 6Y 3 = 10Z3 we have
X3 ≡ (−Y )3 mod 5. Cubing is a bijection on Z/(5), so X ≡ −Y mod 5. Since p5 = (α− 1)
we have α ≡ 1 mod p5, so X + Y α ≡ X + Y ≡ 0 mod p5. Thus p5 | (X + Y α).

If p25 | (X + Y α) then the product p5p25 = (5) divides (X + Y α), so 5 is a factor of
X + Y α in Z[α], which implies X and Y are divisible by 5 in Z. However X and Y are not
divisible by 5. Therefore p25 - (X + Y α), so (3.3) tells us p25 | (X2 −XY α+ Y 2α2).

Since X,α ≡ 0 mod p2, X
2 −XY α+ Y 2α2 ≡ 0 mod p22. So p22 | (X2 −XY α+ Y 2α2).

Now we can write

(X + Y α) = p2p5a and (X2 −XY α+ Y 2α2) = p22p25a
′

for some ideals a and a′. Multiplying these together, (X3 + 6Y 3) = (10)aa′ = (10)(Z)3

so aa′ = (Z)3. Since Z is odd, a and a′ are not divisible by p2. We’ll show a and a′ are
relatively prime, so by unique factorization of ideals, a (as well as a′) must be a cube, say
a = b3. That would prove (3.4).

To show a and a′ are relatively prime, we’ll show the only common prime ideal factor of
(X + Y α) and (X2 −XY α+ α2) is p2, which we already know is not a factor of a or a′.

Let p be a prime ideal such that

(3.5) p | (X + Y α) and p | (X2 −XY α+ Y 2α2),

so

X + Y α ≡ 0 mod p and X2 −XY α+ Y 2α2 ≡ 0 mod p.

Since X2 −XY α+ Y 2α2 = (X + Y α)2 − 3XY α, 3XY α ≡ 0 mod p, so p | (3)(X)(Y )(α).

• If p | (3) then p - (10), so p | (Z)3. However, Z is not divisible by 3, so (Z) and (3)
are relatively prime. Thus p - (3).
• If p | (X) then Y α ≡ 0 mod p since X + Y α ≡ 0 mod p, which implies p | (Y )(α).

From relative primality of X and Y , p can’t divide (Y ) (otherwise X and Y would
be divisible by whatever prime number p divides), so p | (α).
• If p | (Y ) then X ≡ 0 mod p since X + Y α ≡ 0 mod p, but that means p | (X),

which contradicts the relative primality of X and Y . So p - (Y ).

We have shown a prime ideal p satisfying (3.5) divides (α) and not (3). Since (α)3 =
(6) = (2)(3), p divides (2), so p = p2. That concludes the proof of Claim 2.
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Claim 3: Q(α) has class number 1.
Proof of claim. The Minkowski bound for Q(α) = Q( 3

√
6) is(

4

π

)r2 n!

nn

√
| disc(Z[

3
√

6])| = 4

π

6

27

√
27 · 62 =

16
√

3

π
≈ 8.82.

Therefore the class group is generated by the ideal classes of primes with norm at most 8.
We have already seen that there is a unique prime ideal of norm 2, namely p2 = (α − 2),
and no prime ideal of norm 4 or 8 since (2) = p32. To factor (3), from T 3 − 6 ≡ T 3 mod 3
we obtain (3) = p33. Since N(α) = 6, we have (α) = p2p3 = (α − 2)p3, so p3 is principal.
The only ideal of norm 5 is p5 = (α− 1), which is principal. It remains to factor (7). Since
T 3−6 ≡ (T +1)(T +2)(T +4) mod 7, we have (7) = p7p

′
7p
′′
7 where these prime ideals satisfy

p7 | (α + 1), p′7 | (α + 2), and p′′7 | (α + 4). From the table of norm values before Claim 2
we have N(α+ 1) = 7, N(α+ 2) = 14, and N(α+ 4) = 70, so (α+ 1) = p7, (α+ 2) = p2p

′
7,

and (α + 4) = p2p5p
′′
7. Since p2 and p5 are principal, the prime ideals dividing (7) are all

principal. Thus the class number of Q(α) is 1.

By Claim 3, the ideal b in Claim 2 is principal, say b = (β), so equation (3.4) leads to
an equation of elements:

(3.6) X + Y α = (α− 2)(α− 1)β3u

for some unit u in Z[α]. In this equation the unit u only matters modulo multiplication by
unit cubes since unit cubes can be absorbed into β.

Claim 4: The units in Z[α] modulo unit cubes are represented by (1 − 6α + 3α2)k for
k = 0, 1, and 2.

Proof of claim. Since Q(α) has r1 = 1 and r2 = 1 by Dirichlet’s unit theorem Z[α]× =
±εZ for some ε, so Z[α]×/(Z[α]×)3 is cyclic of order 3. Therefore a unit that is not a cube
generates the units modulo cubes. (That is, a non-identity element in a group of prime
order is a generator.) To find a noncube unit, observe that (2) = p32 = (α− 2)3, so

(α− 2)3

2
=
α3 − 6α2 + 12α− 8

2
=
−2 + 12α− 6α2

2
= −1 + 6α− 3α2 ≈ −.00306

is a unit. Its negative 1− 6α+ 3α2 is also a unit. To check this is not a cube of a unit, we
verify it is not a cube in some residue field. For the ideal p7 = (α + 1), Z[α]/p7 ∼= Z/(7)
and

1− 6α+ 3α2 ≡ 1− 6(−1) + 3(1) = 10 ≡ 3 mod p7,

and this is not a cube since 3 is not a cube in Z/(7).

Remark 1. The unit 1− 6α+ 3α2 is actually a generator of Z[α]× (modulo ±1), but that
takes more effort to prove and Claim 4 is sufficient information for us about units in Z[α].

Since

1− 6α+ 3α2 = −(α− 2)3

2
=

(2− α)3

2
,

by Claim 4 the unit u in equation (3.6) is ((2−α)3/2)kv3 = ((2−α)kv)3/2k where v ∈ Z[α]×

and k is 0, 1, or 2. Multiplying through (3.6) by 2k, absorb ((2− α)kv)3 into β3 to get

(3.7) 2kX + 2kY α = (α− 2)(α− 1)γ3

for nonzero γ ∈ Z[α]. Write γ = A+Bα+Cα2, where A, B, and C are in Z and not all 0.
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Compute (α− 2)(α− 1)γ3 as a Z-linear combination of 1, α, and α2 and then equate the
coefficients of α2 on both sides of equation (3.7) to get

(3.8) 0 = A3 + 6B3 + 36C3 + 36ABC− 9(A2B+ 6AC2 + 6B2C) + 6(AB2 +A2C + 6BC2).

In this equation each term other than A3 is a multiple of 3, so 0 ≡ A3 mod 3. Thus
3 | A, which makes each term in (3.8) other than the second term 6B3 divisible by 9, so
0 ≡ 6B3 mod 9. That implies 3 | B, which forces each term in (3.8) other than the third
term 36C3 to be divisible by 27, so 0 ≡ 36C3 mod 27. Thus 3 | C.

We have shown A, B, and C in (3.8) are each divisible by 3. The right side of (3.8) is
homogeneous of degree 3 in A, B, and C, so we can remove a common factor of 27 from
all the terms and obtain another equation (3.8) where A, B, and C are one-third as large.
Repeating this infinitely often forces A, B, and C to equal 0, which is a contradiction. This
completes the proof that Selmer’s equation has no rational solution other than (0, 0, 0).

Corollary 1. The equation 3x3 + 4y3 = 5 has a solution in R and every Qp but has no
solution in Q.

Proof. We showed in Section 2 that in R and each Qp there is a solution to 3x3+4y3+5z3 = 0
where z = −1, and for such a solution we have 3x3 + 4y3 = 5. If we can solve 3x3 + 4y3 = 5
in Q then we can solve 3x3 +4y3 +5z3 = 0 in Q with z = −1, contradicting Theorem 1. �

Our treatment of Selmer’s equation is based on [3, pp. 220–222], where the analogue of
our equation (3.8) on the top of p. 222 has one incorrect coefficient on the right side.

Other examples of homogeneous cubics fitting the conditions of Selmer’s theorem are

x3 + 5y3 + 12z3, x3 + 4y3 + 15z3, x3 + 3y3 + 20z3, x3 + 3y3 + 22z3.

(The last polynomial is from [3, p. 222].) A different class of examples that are analyzed
without algebraic number theory are in [1].

Remark 2. Just as counterexamples to unique factorization in number fields can acquire a
positive interpretation as non-trivial elements in an ideal class group (that is, such phenom-
ena are associated to non-principal ideals), Selmer’s example has a positive interpretation:
it represents a non-trivial element in the Tate-Shafarevich group of an elliptic curve over
Q, specifically the elliptic curve x3 + y3 + 60z3 = 0. The lack of rational solutions besides
(0, 0, 0) to 3x3 + 4y3 + 5z3 = 0 can be proved more simply using elliptic curves instead of
purely by algebraic number theory. See [2, pp. 86–87].
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