IRREDUCIBILITY OF TRUNCATED EXPONENTIALS

KEITH CONRAD

We will use algebraic number theory (prime ideal factorizations) to prove the irreducibility in $\mathbf{Q}[X]$ of each truncated exponential series

$$
1+X+\frac{X^{2}}{2!}+\cdots+\frac{X^{n}}{n!}
$$

where $n \geq 1$. In fact, we will prove more than this.
Theorem 1 (Schur, 1929). Any polynomial

$$
1+c_{1} X+c_{2} \frac{X^{2}}{2!}+\cdots+c_{n-1} \frac{X^{n-1}}{(n-1)!} \pm \frac{X^{n}}{n!}
$$

with $c_{i} \in \mathbf{Z}$ is irreducible in $\mathbf{Q}[X]$.
We can't let the constant term be a general integer. For example, $c_{0}+X+\frac{1}{2} X^{2}$ is reducible when $c_{0}=-2 b(b+1)$ for $b \in \mathbf{Z}$.

The proof of Theorem 1 will require an extension of Bertrand's Postulate. In its original form, conjectured by Bertrand and proved by Chebyshev, the "postulate" says that for every positive integer k there is a prime number p satisfying $k<p \leq 2 k$. Here is a generalization.

Lemma 2. The product of k consecutive integers that are all greater than k contains a prime factor that is greater than k. That is, for positive integers $k \leq \ell$, at least one of the numbers in the list

$$
\ell+1, \ell+2, \ldots, \ell+k
$$

is divisible by a prime number $>k$.
Proof. This was independently proved by Schur [3] and Sylvester [6], and later reproved by Erdos [2].

When $k=\ell$ this lemma says some number from $k+1$ to $2 k$ is divisible by a prime $>k$. In that range, a number divisible by a prime $>k$ is prime, so Bertrand's postulate is a special case of Lemma 2.

Now we prove Theorem 1.
Proof. Multiply the polynomial by n ! to clear denominators: set

$$
F(X)=\sum_{i=0}^{n} \frac{n!}{i!} c_{i} X^{i}= \pm X^{n}+n c_{n-1} X^{n-1}+\cdots+n!c_{1} X+n!.
$$

To prove $F(X)$ is irreducible in $\mathbf{Q}[X]$, we will assume it is reducible and get a contradiction by investigating the prime ideal factorization of each coefficient of $F(X)$ in the number field generated by a suitable root of $F(X)$.

Since $F(X)$ is in $\mathbf{Z}[X]$ with leading coefficient ± 1, it has to have an irreducible monic factor $A(X) \in \mathbf{Z}[X]$ of degree $m \leq n / 2$. Write

$$
A(X)=X^{m}+a_{m-1} X^{m-1}+\cdots+a_{1} X+a_{0} .
$$

Step 1: We show each prime factor of $\frac{n!}{(n-m)!}=n(n-1) \cdots(n-m+1)$ divides a_{0}. This will just be some algebra, no algebraic number theory.

Let p be a prime factor of $\frac{n!}{(n-m)!}$. For $0 \leq i \leq n-m$, the coefficient of X^{i} in $F(X)$ is a multiple of $\frac{n!}{i!}$, and $\frac{n!}{i!}$ is divisible by p. Therefore $F(X) \bmod p$ is divisible by X^{n-m+1}.

Write $F(X)=A(X) B(X)$, so $B(X)$ has degree $n-m$ in $\mathbf{Z}[X]$ with leading coefficient ± 1. Reducing mod p, $X^{n-m+1} \mid \bar{A}(X) \bar{B}(X)$ in $\mathbf{F}_{p}[X]$. Since $\bar{B}(X)$ has degree $n-m$, we must have $X \mid \bar{A}(X)$. This means the constant term $\bar{A}(0)$ is 0 , which means $p \mid a_{0}$.

Step 2: Each prime factor of a_{0} is $\leq m$.
$\overline{\text { Let } p}$ be a prime factor of a_{0} and let α be a root of $A(X)$. Set $K=\mathbf{Q}(\alpha)$, so $[K: \mathbf{Q}]=m$. Since $A(X)$ is monic in $\mathbf{Z}[X], \alpha \in \mathcal{O}_{K}$. Its norm down to \mathbf{Q} is

$$
\mathrm{N}_{K / \mathbf{Q}}(\alpha)= \pm a_{0} \equiv 0 \bmod p
$$

Since the ideal (α) in \mathcal{O}_{K} has norm $\left|\mathrm{N}_{K / \mathbf{Q}}(\alpha)\right|$, which is divisible by p, some prime ideal \mathfrak{p} in \mathcal{O}_{K} lying over p divides (α). Pull out the largest powers of \mathfrak{p} from (α) and (p) :

$$
(\alpha)=\mathfrak{p}^{d} \mathfrak{a}, \quad(p)=\mathfrak{p}^{e} \mathfrak{b}
$$

where d and e are positive integers and \mathfrak{a} and \mathfrak{b} are not divisible by \mathfrak{p}. Note $e=e(\mathfrak{p} \mid p) \leq m$.
Since $F(\alpha)=0$,

$$
0= \pm \alpha^{n}+n c_{n-1} \alpha^{n-1}+\cdots+n!c_{1} \alpha+n!
$$

so

$$
\begin{equation*}
-n!= \pm \alpha^{n}+n c_{n-1} \alpha^{n-1}+\cdots+n!c_{1} \alpha= \pm \alpha^{n}+\sum_{i=1}^{n-1} \frac{n!}{i!} c_{i} \alpha^{i} . \tag{0.1}
\end{equation*}
$$

We will look at the highest power of p and \mathfrak{p} in factorials. For a positive integer r, Legendre showed the highest power of p dividing r ! is

$$
s_{r}:=\sum_{j \geq 1}\left[\frac{r}{p^{j}}\right]<\frac{r}{p-1} .
$$

Therefore $\operatorname{ord}_{\mathfrak{p}}(r!)=e \operatorname{ord}_{p}(r!)=e s_{r}$. The left side of (0.1) is $n!$, which has \mathfrak{p}-adic valuation $e s_{n}$, so at least one of the terms on the right side of (0.1) has \mathfrak{p}-adic valuation $\leq e s_{n}$. That is, for some i from 1 to n (where we set $c_{n}= \pm 1$), $c_{i} \neq 0$ and

$$
\operatorname{ord}_{\mathfrak{p}}\left(\frac{n!}{i!} c_{i} \alpha^{i}\right) \leq e s_{n} .
$$

Since

$$
\operatorname{ord}_{\mathfrak{p}}\left(\frac{n!}{i!} c_{i} \alpha^{i}\right)=e s_{n}-e s_{i}+\operatorname{ord}_{\mathfrak{p}}\left(c_{i}\right)+i d \geq e s_{n}-e s_{i}+i d
$$

we have $e s_{n}-e s_{i}+i d \leq e s_{n}$ for some i, so

$$
i d \leq e s_{i}<e \frac{i}{p-1} \Longrightarrow(p-1) d<e \leq m \Longrightarrow p \leq m
$$

Step 1 tells us all the prime factors of the numbers from n down to $n-m+1$ divide a_{0} and Step 2 tells us all these prime factors are at most m. So $n, n-1, \ldots, n-m+1$ is a list of m consecutive integers all greater than m that have no prime factor greater than m. This contradicts Lemma 2.

Corollary 3. For all $n \geq 1$, the polynomials

$$
C_{n}(X)=1-\frac{X^{2}}{2!}+\cdots+(-1)^{n} \frac{X^{2 n}}{(2 n)!},
$$

which are truncations of the power series for $\cos X$, are irreducible in $\mathbf{Q}[X]$.

Corollary 4. For all $n \geq 0$, the polynomials

$$
1+X-\frac{X^{3}}{3!}+\cdots+(-1)^{n} \frac{X^{2 n+1}}{(2 n+1)!}
$$

and

$$
1-X+\frac{X^{3}}{3!}-\cdots+(-1)^{n-1} \frac{X^{2 n+1}}{(2 n+1)!}
$$

which are truncations of the power series for $1 \pm \sin X$, are irreducible in $\mathbf{Q}[X]$.
Schur [4] used similar ideas to prove irreducibility over \mathbf{Q} of the truncations of $e^{X}-1$ and $\sin X$ after a factor of X is removed:

$$
\begin{gathered}
\frac{E_{n}(X)-1}{X}=1+\frac{X}{2!}+\cdots+\frac{X^{n-1}}{n!}, \\
\frac{S_{n}(X)}{X}=1-\frac{X^{2}}{3!}+\cdots+(-1)^{n} \frac{X^{2 n}}{(2 n+1)!} .
\end{gathered}
$$

He proved more generally that polynomials of the form

$$
1+c_{1} \frac{X}{2!}+c_{2} \frac{X^{2}}{3!}+\cdots+c_{n-1} \frac{X^{n-1}}{n!} \pm \frac{X^{n}}{(n+1)!}
$$

with $c_{i} \in \mathbf{Z}$ are irreducible over \mathbf{Q} except perhaps if $n=2^{k}-1$ for $k \geq 2$ when it might be a product of $X \pm 2$ and an irreducible polynomial of degree $n-1$, or $n=8$ when it might be a product of irreducibles of degrees 2 and 6 .

For the truncated exponential polynomial $E_{n}(X)=1+X+X^{2} / 2!+\cdots+X^{n} / n!$, Schur showed its Galois group over \mathbf{Q} is as large as possible: S_{n} when $n \not \equiv 0 \bmod 4$ and A_{n} when $n \equiv 0 \bmod 4$. (The discriminant of $E_{n}(X)$ is $(-1)^{n(n-1) / 2} n!^{n}$, which is a square when $n \equiv 0 \bmod 4$ but not otherwise.) Coleman [1] reproved the irreducibility of $E_{n}(X)$ and the computation of its Galois group over \mathbf{Q} using Newton polygons and Bertrand's postulate (not the more general Lemma 2), but this doesn't prove the irreducibility of the general polynomials in Theorem 1.

Figure 1. The 2-adic and 3-adic Newton polygon of $E_{6}(X)$,
Figure 1 is the 2-adic and 3 -adic Newton polygons of $E_{6}(X)$, and Figures 2 and 3 are the 2 -adic and 3 -adic Newton polygons of $E_{12}(X)$. Coleman's basic observation is that for each prime p dividing n, the different slopes of the p-adic Newton polygon of $E_{n}(X)$ are fractions whose denominator (in reduced form) is divisible by the highest power of p

Figure 2. The 2-adic Newton polygon of $E_{12}(X)$.

Figure 3. The 3-adic Newton polygon of $E_{12}(X)$.
dividing n, say $p^{n_{p}} .{ }^{1}$ The connection between Newton polygons and p-adic valuations of roots of polynomials tells us that the irreducible factors of $E_{n}(X)$ in $\mathbf{Q}_{p}[X]$ have degree divisible by $p^{n_{p}}$. An irreducible factor $f(X)$ of $E_{n}(X)$ in $\mathbf{Q}[X]$ is a product of irreducible factors of $E_{n}(X)$ in $\mathbf{Q}_{p}[X]$, so $f(X)$ is a product of polynomials in $\mathbf{Q}_{p}[X]$ whose degrees are each divisible by $p^{n_{p}}$. Thus $p^{n_{p}} \mid \operatorname{deg} f(X)$ for each p dividing n. Letting p run over the prime factors of n, we get $n \mid \operatorname{deg} f(X)$. Since $E_{n}(X)$ has degree $n, E_{n}(X)$ is irreducible in $\mathbf{Q}[X]$.

[^0]
References

[1] R. Coleman, On the Galois groups of the exponential Taylor polynomials, Enseign. Math. 33 (1987), 183-189.
[2] P. Erdos, A theorem of Sylvester and Schur, J. London Math. Soc. 9 (1934), 282-288.
[3] I. Schur, Einige Sätze über Primzahlen mit Anwendungen auf Irreduzibilitätsfragen I, Sitzungsberichte Preuss. Akad. Wiss. Phys.-Math. Klasse (1929), 125-136. Also in Gesammelte Abhandlungen, Band III, 140-151.
[4] I. Schur, Einige Sätze über Primzahlen mit Anwendungen auf Irreduzibilitätsfragen II, Sitzungsberichte Preuss. Akad. Wiss. Phys.-Math. Klasse (1929), 370-391. Also in Gesammelte Abhandlungen, Band III, 152-173.
[5] I. Schur, Gleichungen ohne Affekt, Sitzungsberichte Preuss. Akad. Wiss. Phys.-Math. Klasse (1930), 443-449. Also in Gesammelte Abhandlungen, Band III, 191-197.
[6] J. Sylvester, On arithmetical series, Messenger of Math. 21 (1892), 1-19, 87-120. Also in Mathematical Papers 4 (1912), 687-731.

[^0]: ${ }^{1}$ More precisely, the denominators of the slopes are the different powers of p that appear in the base p expansion of n, e.g., the base 2 and base 3 expansions $6=2+4=2 \cdot 3$ are related to the denominators 2 , 4 , and 3 of the slopes in Figure 1.

