IRREDUCIBILITY OF TRUNCATED EXPONENTIALS

KEITH CONRAD

We will use algebraic number theory (prime ideal factorizations) to prove the irreducibility
in Q[X] of each truncated exponential series
X? X"
L+ X+ e
2! n!
where n > 1. In fact, we will prove more than this.

Theorem 1 (Schur, 1929). Any polynomial

X2 Xn—l xn
1+C1X+62?+"‘+Cn_1(n_1)! Zl:F

with ¢; € Z is irreducible in Q[X].

We can’t let the constant term be a general integer. For example, cg + X + %X 2 is
reducible when ¢y = —2b(b+ 1) for b € Z.

The proof of Theorem 1 will require an extension of Bertrand’s Postulate. In its original
form, conjectured by Bertrand and proved by Chebyshev, the “postulate” says that for every
positive integer k there is a prime number p satisfying k < p < 2k. Here is a generalization.

Lemma 2. The product of k consecutive integers that are all greater than k contains a
prime factor that is greater than k. That is, for positive integers k < £, at least one of the
numbers in the list

C+1,0+2,....0+k

s divisible by a prime number > k.

Proof. This was independently proved by Schur [3] and Sylvester [6], and later reproved by
Erdos [2]. O

When k = /¢ this lemma says some number from k£ 4 1 to 2k is divisible by a prime > k.
In that range, a number divisible by a prime > k is prime, so Bertrand’s postulate is a
special case of Lemma 2.

Now we prove Theorem 1.

Proof. Multiply the polynomial by n! to clear denominators: set

n
! ,
F(X)= Z n,—"ciX’ =+ X"+ ncpy, 1 X" '+ -+ 0l X +nl.
il
i=0

To prove F(X) is irreducible in Q[X], we will assume it is reducible and get a contradiction
by investigating the prime ideal factorization of each coefficient of F'(X) in the number field
generated by a suitable root of F'(X).

Since F'(X) is in Z[X] with leading coefficient 41, it has to have an irreducible monic

factor A(X) € Z[X] of degree m < n/2. Write
AX)=X" 4 aym 1 X" 4+ a1 X + ag.

Step 1: We show each prime factor of —%—~ =n(n —1)---(n —m+ 1) divides ap. This

(n—m)!
will just be some algebra, no algebraic number theory.
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Let p be a prime factor of —%—~. For 0 < i < n — m, the coefficient of X? in F(X) is a
(n—m)!

pry
multiple of ’;‘—,', and %’ is divisible by p. Therefore F(X) mod p is divisible by X"+,

Write F'(X) = A(X)B(X), so B(X) has degree n —m in Z[X] with leading coefficient
+1. Reducing mod p, X" ™+ | A(X)B(X) in F,[X]. Since B(X) has degree n — m, we
must have X | A(X). This means the constant term A(0) is 0, which means p | ao.

Step 2: Each prime factor of ag is < m.

Let p be a prime factor of ag and let a be a root of A(X). Set K = Q(«), so [K : Q] = m.

Since A(X) is monic in Z[X], o € Ok. Its norm down to Q is

Ng/q(a) = £ag = 0 mod p.
Since the ideal (a) in O has norm | Ng/q(a)|, which is divisible by p, some prime ideal p
in Ok lying over p divides («). Pull out the largest powers of p from («) and (p):
(@) =p%a, (p) =p°D,
where d and e are positive integers and a and b are not divisible by p. Note e = e(p|p) < m.
Since F'(a) = 0,
0==4a" +ncp_1a" '+ +nleja +nl,

SO

n—1
nl .
(0.1) —nl=4+a"+nc,_ 10"+ -+ nleja = +a” + Z ,—'Cia’.
0!
i=1
We will look at the highest power of p and p in factorials. For a positive integer r, Legendre
showed the highest power of p dividing 7! is

ST::Z[;} <pil'

Jj1

Therefore ordy (r!) = eord,(r!) = es,. The left side of (0.1) is n!, which has p-adic valuation
€sp, so at least one of the terms on the right side of (0.1) has p-adic valuation < es,. That
is, for some 7 from 1 to n (where we set ¢, = 1), ¢; # 0 and

n!
ord, ﬁcial < esy,.

Since

.
ord, (T,l"cia2> = es, — es; +ordy(c;) +id > es,, — es; +id,
1.

we have es,, — es; + id < es,, for some %, so

id<es; <e

21:>(p—1)d<e§m:p§m.

Step 1 tells us all the prime factors of the numbers from n down to n — m + 1 divide ag

and Step 2 tells us all these prime factors are at most m. Son,n—1,....n—m+1is a
list of m consecutive integers all greater than m that have no prime factor greater than m.
This contradicts Lemma 2. ]

Corollary 3. For all n > 1, the polynomials

2 2n
Cn(X) = 1—X+---+(—1)"()2(n)!,

2!
which are truncations of the power series for cos X, are irreducible in Q[X].
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Corollary 4. For all n > 0, the polynomials

X3 X2n+1
1+ X -2 4 (m )
LR TH R Sl G oY
and 3 2n+1
X x-en
1—X 4+ —... =
LT T G

which are truncations of the power series for 1 + sin X, are irreducible in Q[X].

Schur [4] used similar ideas to prove irreducibility over Q of the truncations of eX — 1
and sin X after a factor of X is removed:

E,(X)—-1 X xn-t
S el T

X R

Sn(X) X? X2
=1-—+ -4+ (-1)"—-.
X ZTRRN Se Ol oo

He proved more generally that polynomials of the form
X X2 anl Xn
Lhergy teagr + e 0

with ¢; € Z are irreducible over Q except perhaps if n = 2% — 1 for k > 2 when it might be
a product of X + 2 and an irreducible polynomial of degree n — 1, or n = 8 when it might
be a product of irreducibles of degrees 2 and 6.

For the truncated exponential polynomial E,,(X) =1+ X + X2/2! + .-+ X"/n!, Schur
showed its Galois group over Q is as large as possible: S, when n % 0 mod 4 and A,
when n = 0 mod 4. (The discriminant of E,(X) is (—1)"("=1/2p!" which is a square when
n = 0 mod 4 but not otherwise.) Coleman [1] reproved the irreducibility of E, (X) and the
computation of its Galois group over Q using Newton polygons and Bertrand’s postulate
(not the more general Lemma 2), but this doesn’t prove the irreducibility of the general
polynomials in Theorem 1.

*
8

Tm=—3/

m=—1/2

F1GURE 1. The 2-adic and 3-adic Newton polygon of Eg(X),

Figure 1 is the 2-adic and 3-adic Newton polygons of Eg(X), and Figures 2 and 3 are
the 2-adic and 3-adic Newton polygons of F12(X). Coleman’s basic observation is that
for each prime p dividing n, the different slopes of the p-adic Newton polygon of E, (X)
are fractions whose denominator (in reduced form) is divisible by the highest power of p
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.
8

m=—3/4

FIGURE 2. The 2-adic Newton polygon of Ej2(X).

m=—1/3

FIGURE 3. The 3-adic Newton polygon of Ej2(X).

dividing n, say p™.! The connection between Newton polygons and p-adic valuations of

roots of polynomials tells us that the irreducible factors of E,(X) in Q,[X] have degree
divisible by p™. An irreducible factor f(X) of F,(X) in Q[X] is a product of irreducible
factors of E,(X) in Q,[X], so f(X) is a product of polynomials in Q,[X] whose degrees
are each divisible by p"». Thus p™ | deg f(X) for each p dividing n. Letting p run over the
prime factors of n, we get n | deg f(X). Since E,(X) has degree n, E,(X) is irreducible in

Q[X].

More precisely, the denominators of the slopes are the different powers of p that appear in the base p
expansion of n, e.g., the base 2 and base 3 expansions 6 = 2 + 4 = 2 - 3 are related to the denominators 2,
4, and 3 of the slopes in Figure 1.
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