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We will use algebraic number theory (prime ideal factorizations) to prove the irreducibility
in Q[X] of each truncated exponential series

1 +X +
X2

2!
+ · · ·+ Xn

n!
where n ≥ 1. In fact, we will prove more than this.

Theorem 1 (Schur, 1929). Any polynomial

1 + c1X + c2
X2

2!
+ · · ·+ cn−1

Xn−1

(n− 1)!
± Xn

n!

with ci ∈ Z is irreducible in Q[X].

We can’t let the constant term be a general integer. For example, c0 + X + 1
2X

2 is
reducible when c0 = −2b(b+ 1) for b ∈ Z.

The proof of Theorem 1 will require an extension of Bertrand’s Postulate. In its original
form, conjectured by Bertrand and proved by Chebyshev, the “postulate” says that for every
positive integer k there is a prime number p satisfying k < p ≤ 2k. Here is a generalization.

Lemma 2. The product of k consecutive integers that are all greater than k contains a
prime factor that is greater than k. That is, for positive integers k ≤ `, at least one of the
numbers in the list

`+ 1, `+ 2, . . . , `+ k

is divisible by a prime number > k.

Proof. This was independently proved by Schur [3] and Sylvester [6], and later reproved by
Erdos [2]. �

When k = ` this lemma says some number from k + 1 to 2k is divisible by a prime > k.
In that range, a number divisible by a prime > k is prime, so Bertrand’s postulate is a
special case of Lemma 2.

Now we prove Theorem 1.

Proof. Multiply the polynomial by n! to clear denominators: set

F (X) =
n∑

i=0

n!

i!
ciX

i = ±Xn + ncn−1X
n−1 + · · ·+ n!c1X + n!.

To prove F (X) is irreducible in Q[X], we will assume it is reducible and get a contradiction
by investigating the prime ideal factorization of each coefficient of F (X) in the number field
generated by a suitable root of F (X).

Since F (X) is in Z[X] with leading coefficient ±1, it has to have an irreducible monic
factor A(X) ∈ Z[X] of degree m ≤ n/2. Write

A(X) = Xm + am−1X
m−1 + · · ·+ a1X + a0.

Step 1: We show each prime factor of n!
(n−m)! = n(n− 1) · · · (n−m+ 1) divides a0. This

will just be some algebra, no algebraic number theory.
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Let p be a prime factor of n!
(n−m)! . For 0 ≤ i ≤ n−m, the coefficient of Xi in F (X) is a

multiple of n!
i! , and n!

i! is divisible by p. Therefore F (X) mod p is divisible by Xn−m+1.
Write F (X) = A(X)B(X), so B(X) has degree n −m in Z[X] with leading coefficient

±1. Reducing mod p, Xn−m+1 | A(X)B(X) in Fp[X]. Since B(X) has degree n −m, we

must have X | A(X). This means the constant term A(0) is 0, which means p | a0.
Step 2: Each prime factor of a0 is ≤ m.
Let p be a prime factor of a0 and let α be a root of A(X). Set K = Q(α), so [K : Q] = m.

Since A(X) is monic in Z[X], α ∈ OK . Its norm down to Q is

NK/Q(α) = ±a0 ≡ 0 mod p.

Since the ideal (α) in OK has norm |NK/Q(α)|, which is divisible by p, some prime ideal p
in OK lying over p divides (α). Pull out the largest powers of p from (α) and (p):

(α) = pda, (p) = peb,

where d and e are positive integers and a and b are not divisible by p. Note e = e(p|p) ≤ m.
Since F (α) = 0,

0 = ±αn + ncn−1α
n−1 + · · ·+ n!c1α+ n!,

so

(0.1) − n! = ±αn + ncn−1α
n−1 + · · ·+ n!c1α = ±αn +

n−1∑
i=1

n!

i!
ciα

i.

We will look at the highest power of p and p in factorials. For a positive integer r, Legendre
showed the highest power of p dividing r! is

sr :=
∑
j≥1

[
r

pj

]
<

r

p− 1
.

Therefore ordp(r!) = e ordp(r!) = esr. The left side of (0.1) is n!, which has p-adic valuation
esn, so at least one of the terms on the right side of (0.1) has p-adic valuation ≤ esn. That
is, for some i from 1 to n (where we set cn = ±1), ci 6= 0 and

ordp

(
n!

i!
ciα

i

)
≤ esn.

Since

ordp

(
n!

i!
ciα

i

)
= esn − esi + ordp(ci) + id ≥ esn − esi + id,

we have esn − esi + id ≤ esn for some i, so

id ≤ esi < e
i

p− 1
=⇒ (p− 1)d < e ≤ m =⇒ p ≤ m.

Step 1 tells us all the prime factors of the numbers from n down to n−m+ 1 divide a0
and Step 2 tells us all these prime factors are at most m. So n, n − 1, . . . , n −m + 1 is a
list of m consecutive integers all greater than m that have no prime factor greater than m.
This contradicts Lemma 2. �

Corollary 3. For all n ≥ 1, the polynomials

Cn(X) = 1− X2

2!
+ · · ·+ (−1)n

X2n

(2n)!
,

which are truncations of the power series for cosX, are irreducible in Q[X].
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Corollary 4. For all n ≥ 0, the polynomials

1 +X − X3

3!
+ · · ·+ (−1)n

X2n+1

(2n+ 1)!

and

1−X +
X3

3!
− · · ·+ (−1)n−1 X2n+1

(2n+ 1)!
,

which are truncations of the power series for 1± sinX, are irreducible in Q[X].

Schur [4] used similar ideas to prove irreducibility over Q of the truncations of eX − 1
and sinX after a factor of X is removed:

En(X)− 1

X
= 1 +

X

2!
+ · · ·+ Xn−1

n!
,

Sn(X)

X
= 1− X2

3!
+ · · ·+ (−1)n

X2n

(2n+ 1)!
.

He proved more generally that polynomials of the form

1 + c1
X

2!
+ c2

X2

3!
+ · · ·+ cn−1

Xn−1

n!
± Xn

(n+ 1)!

with ci ∈ Z are irreducible over Q except perhaps if n = 2k − 1 for k ≥ 2 when it might be
a product of X ± 2 and an irreducible polynomial of degree n− 1, or n = 8 when it might
be a product of irreducibles of degrees 2 and 6.

For the truncated exponential polynomial En(X) = 1 +X +X2/2! + · · ·+Xn/n!, Schur
showed its Galois group over Q is as large as possible: Sn when n 6≡ 0 mod 4 and An

when n ≡ 0 mod 4. (The discriminant of En(X) is (−1)n(n−1)/2n!n, which is a square when
n ≡ 0 mod 4 but not otherwise.) Coleman [1] reproved the irreducibility of En(X) and the
computation of its Galois group over Q using Newton polygons and Bertrand’s postulate
(not the more general Lemma 2), but this doesn’t prove the irreducibility of the general
polynomials in Theorem 1.
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Figure 1. The 2-adic and 3-adic Newton polygon of E6(X),

Figure 1 is the 2-adic and 3-adic Newton polygons of E6(X), and Figures 2 and 3 are
the 2-adic and 3-adic Newton polygons of E12(X). Coleman’s basic observation is that
for each prime p dividing n, the different slopes of the p-adic Newton polygon of En(X)
are fractions whose denominator (in reduced form) is divisible by the highest power of p
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Figure 2. The 2-adic Newton polygon of E12(X).
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Figure 3. The 3-adic Newton polygon of E12(X).

dividing n, say pnp .1 The connection between Newton polygons and p-adic valuations of
roots of polynomials tells us that the irreducible factors of En(X) in Qp[X] have degree
divisible by pnp . An irreducible factor f(X) of En(X) in Q[X] is a product of irreducible
factors of En(X) in Qp[X], so f(X) is a product of polynomials in Qp[X] whose degrees
are each divisible by pnp . Thus pnp | deg f(X) for each p dividing n. Letting p run over the
prime factors of n, we get n | deg f(X). Since En(X) has degree n, En(X) is irreducible in
Q[X].

1More precisely, the denominators of the slopes are the different powers of p that appear in the base p
expansion of n, e.g., the base 2 and base 3 expansions 6 = 2 + 4 = 2 · 3 are related to the denominators 2,
4, and 3 of the slopes in Figure 1.
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