IRREDUCIBILITY OF TRUNCATED EXPONENTIALS

KEITH CONRAD

We will use algebraic number theory (prime ideal factorizations) to prove the irreducibility in $\mathbb{Q}[X]$ of any truncated exponential series

$$1 + X + \frac{X^2}{2!} + \cdots + \frac{X^n}{n!}$$

where $n \geq 1$. In fact, we will prove more than this.

Theorem 1 (Schur, 1929). Any polynomial

$$1 + c_1 X + \frac{c_2 X^2}{2!} + \cdots + \frac{c_{n-1} X^{n-1}}{(n-1)!} \pm \frac{X^n}{n!}$$

with $c_i \in \mathbb{Z}$ is irreducible in $\mathbb{Q}[X]$.

We can’t let the constant term be a general integer. For example, $c_0 + X + \frac{1}{2}X^2$ is reducible when $c_0 = -2b(b+1)$ for $b \in \mathbb{Z}$.

The proof of Theorem 1 will require an extension of Bertrand’s Postulate. In its original form, conjectured by Bertrand and proved by Chebyshev, the “postulate” says that for any positive integer k there is a prime number p satisfying $k < p \leq 2k$. Here is a generalization.

Lemma 1. The product of any k consecutive integers which are all greater than k contains a prime factor that is greater than k. That is, for positive integers $k \leq \ell$, at least one of the numbers in the list

$$\ell + 1, \ell + 2, \ldots, \ell + k$$

is divisible by a prime number $> k$.

Proof. This was independently proved by Schur [3] and Sylvester [6], and later reproved by Erdos [2].

When $k = \ell$ this lemma says some number from $k + 1$ to $2k$ is divisible by a prime $> k$. In that range, a number divisible by a prime $> k$ is prime, so Bertrand’s postulate is a special case of Lemma 1.

Now we prove Theorem 1.

Proof. Multiply the polynomial by $n!$ to clear denominators: set

$$F(X) = n! \sum_{i=0}^{n} \frac{n!}{i!} c_i X^i = \pm X^n + nc_{n-1}X^{n-1} + \cdots + n!c_1X + n!.$$

To prove $F(X)$ is irreducible in $\mathbb{Q}[X]$, we will assume it is reducible and get a contradiction by investigating the prime ideal factorization of each coefficient of $F(X)$ in the number field generated by a suitable root of $F(X)$.

Since $F(X)$ is in $\mathbb{Z}[X]$ with leading coefficient ± 1, it has to have an irreducible monic factor $A(X) \in \mathbb{Z}[X]$ of degree $m \leq n/2$. Write

$$A(X) = X^m + a_{m-1}X^{m-1} + \cdots + a_1X + a_0.$$

Step 1: We show each prime factor of $\frac{n!}{(n-m)!} = n(n-1)\cdots(n-m+1)$ divides a_0. This will just be some algebra, no algebraic number theory.
Let p be a prime factor of $\frac{n!}{m!}$. For $0 \leq i \leq n - m$, the coefficient of X^i in $F(X)$ is a multiple of $\frac{n!}{i!}$, and $\frac{n!}{i!}$ is divisible by p. Therefore $F(X) \mod p$ is divisible by X^{n-m+1}.

Write $F(X) = A(X)B(X)$, so $B(X)$ has degree $n - m$ in $\mathbb{Z}[X]$ with leading coefficient ± 1. Reducing mod p, $X^{n-m+1} | \overline{A(X)}B(X)$ in $\mathbb{F}_p[X]$. Since $\overline{B(X)}$ has degree $n - m$, we must have $X | \overline{A(X)}$. This means the constant term $\overline{A}(0)$ is 0, which means $p \mid a_0$.

Step 2: Each prime factor of a_0 is at most m.

Let p be a prime factor of a_0 and let α be a root of $A(X)$. Set $K = \mathbb{Q}(\alpha)$, so $[K : \mathbb{Q}] = m$. Since $A(X)$ is monic in $\mathbb{Z}[X]$, $\alpha \in \mathcal{O}_K$. Its norm down to \mathbb{Q} is

$$N_{K/\mathbb{Q}}(\alpha) = \pm a_0 \equiv 0 \mod p.$$

Since the ideal (α) in \mathcal{O}_K has norm $|N_{K/\mathbb{Q}}(\alpha)|$, which is divisible by p, some prime ideal \mathfrak{p} in \mathcal{O}_K lying over p divides (α). Pull out the largest powers of \mathfrak{p} from (α) and (p):

$$(\alpha) = \mathfrak{p}^da, \quad (p) = \mathfrak{p}^eb,$$

where d and e are positive integers and a and b are not divisible by p. Note $e = e(p|p) \leq m$.

Since $F(\alpha) = 0$,

$$0 = \pm \alpha^n + nc_{n-1}\alpha^{n-1} + \cdots + n!c_1\alpha + n!,$$

so

$$-n! = \pm \alpha^n + nc_{n-1}\alpha^{n-1} + \cdots + n!c_1\alpha = \pm \alpha^n + \sum_{i=1}^{n-1} \frac{n!}{i!}c_i\alpha^i. \tag{1}$$

We will look at the highest power of p and \mathfrak{p} in factorials. For any positive integer r, Legendre showed the highest power of p dividing $r!$ is

$$s_r := \sum_{j \geq 1} \left\lfloor \frac{r}{p^j} \right\rfloor < \frac{r}{p-1}.$$

Therefore $\text{ord}_p(r!) = e\text{ord}_p(r!) = es_r$. The left side of (1) is $n!$, which has p-adic valuation es_n, so at least one of the terms on the right side of (1) has p-adic valuation $\leq es_n$. That is, for some i from 1 to n (where we set $c_n = \pm 1$), $c_i \neq 0$ and

$$\text{ord}_p\left(\frac{n!}{i!}c_i\alpha^i\right) \leq es_n.$$

Since

$$\text{ord}_p\left(\frac{n!}{i!}c_i\alpha^i\right) = es_n - es_i + \text{ord}_p(c_i) + id \geq es_n - es_i + id,$$

we have $es_n - es_i + id \leq es_n$ for some i, so

$$id \leq es_i < \frac{e}{p-1} \implies (p-1)d < e \implies p \leq m.$$

Step 1 tells us all the prime factors of the numbers from n down to $n - m + 1$ divide a_0 and Step 2 tells us all these prime factors are at most m. So $n, n-1, \ldots, n-m+1$ is a list of m consecutive integers all greater than m which have no prime factor greater than m. This contradicts Lemma 1. \qed

For the truncated exponential polynomial of degree n, Schur went further [5] and showed its Galois group over \mathbb{Q} is as large as possible: S_n when $n \not\equiv 0 \mod 4$ and A_n when $n \equiv 0 \mod 4$. (The discriminant of the polynomial is $(-1)^{(n-1)/2}n!^n$, which is a perfect square when $n \equiv 0 \mod 4$ but not otherwise.) Coleman [1] reproved the irreducibility of the truncated exponential polynomials and the computation of their Galois groups using Newton polygons and Bertrand’s postulate (not the more general Lemma 1), but this didn’t recover the irreducibility of more general polynomials in Theorem 1.
Corollary 1. For all $n \geq 1$, the polynomials
\[C_n(X) = 1 - \frac{X^2}{2!} + \cdots + (-1)^n \frac{X^{2n}}{(2n)!}, \]
which are truncations of the power series for $\cos X$, are irreducible in $\mathbb{Q}[X]$.

Corollary 2. For all $n \geq 0$, the polynomials
\[1 + X - \frac{X^3}{3!} + \cdots + (-1)^n \frac{X^{2n+1}}{(2n+1)!} \]
and
\[1 - X + \frac{X^3}{3!} - \cdots + (-1)^{n-1} \frac{X^{2n+1}}{(2n+1)!}, \]
which are truncations of the power series for $1 \pm \sin X$, are irreducible in $\mathbb{Q}[X]$.

Schur [4] used similar ideas to prove irreducibility over \mathbb{Q} of the truncations of $e^X - 1$ and $\sin X$ after a factor of X is removed:
\[\frac{E_n(X) - 1}{X} = 1 + \frac{X^2}{2!} + \cdots + \frac{X^{n-1}}{n!}, \]
\[\frac{S_n(X)}{X} = 1 - \frac{X^2}{3!} + \cdots + (-1)^n \frac{X^{2n}}{(2n+1)!}. \]
He proved more generally that polynomials of the form
\[1 + c_1 \frac{X}{2!} + c_2 \frac{X^2}{3!} + \cdots + c_{n-1} \frac{X^{n-1}}{n!} \pm \frac{X^n}{(n+1)!} \]
with $c_i \in \mathbb{Z}$ are irreducible over \mathbb{Q} except perhaps if $n = 2^k - 1$ for $k \geq 2$ when it might be a product of $X \pm 2$ and an irreducible polynomial of degree $n - 1$, or $n = 8$ when it might be a product of irreducibles of degrees 2 and 6.

References