IDEAL CLASSES AND RELATIVE INTEGERS

KEITH CONRAD

The ring of integers of a number field is free as a Z-module. It is a module not just over \mathbf{Z}, but also over any intermediate ring of integers. That is, if $E \supset F \supset \mathbf{Q}$ we can consider \mathcal{O}_{E} as an \mathcal{O}_{F}-module. Since \mathcal{O}_{E} is finitely generated over \mathbf{Z}, it is also finitely generated over \mathcal{O}_{F} (just a larger ring of scalars), but \mathcal{O}_{E} may or may not have a basis over \mathcal{O}_{F}.

When we treat \mathcal{O}_{E} as a module over \mathcal{O}_{F}, rather than over \mathbf{Z}, we speak about a relative extension of integers. If \mathcal{O}_{F} is a PID then \mathcal{O}_{E} will be a free \mathcal{O}_{F}-module, so \mathcal{O}_{E} will have a basis over \mathcal{O}_{F}. Such a basis is called a relative integral basis for E over F. The next three examples illustrate some possibilities when \mathcal{O}_{F} is not a PID.
Example 1. Let $F=\mathbf{Q}(\sqrt{-5})$ and $E=\mathbf{Q}(i, \sqrt{-5})=F(i)$. Although $\mathcal{O}_{F}=\mathbf{Z}[\sqrt{-5}]$ is not a PID, \mathcal{O}_{E} is a free \mathcal{O}_{F}-module with relative integral basis $\left\{1, \frac{i+\sqrt{-5}}{2}\right\}$.
Example 2. Let $F=\mathbf{Q}(\sqrt{-15})$ and $E=\mathbf{Q}(\sqrt{-15}, \sqrt{26})=F(\sqrt{26})$. Then $h(F)=2$, so \mathcal{O}_{F} is not a PID, but it turns out that $\mathcal{O}_{E}=\mathcal{O}_{F} \oplus \mathcal{O}_{F} \sqrt{26}$, so \mathcal{O}_{E} is a free \mathcal{O}_{F}-module.
Example 3. Let $F=\mathbf{Q}(\sqrt{-6})$ and $E=\mathbf{Q}(\sqrt{-6}, \sqrt{-3})=F(\sqrt{-3})$. Then $h(F)=2$, so \mathcal{O}_{F} is not a PID, and it turns out that

$$
\begin{equation*}
\mathcal{O}_{E}=\mathcal{O}_{F} e_{1} \oplus \mathfrak{p} e_{2}, \tag{1}
\end{equation*}
$$

where $e_{1}=\frac{1+\sqrt{-3}}{2}, e_{2}=\frac{1}{\sqrt{-3}}$, and $\mathfrak{p}=(3, \sqrt{-6})$. (Although e_{2} is not in \mathcal{O}_{E}, there isn't a problem with the direct sum decomposition (1) for \mathcal{O}_{E} over \mathcal{O}_{F} since the coefficients of e_{2} run not over \mathcal{O}_{F} but over the ideal \mathfrak{p}, which doesn't include 1, so $e_{2} \notin \mathfrak{p} e_{2}$.) Equation (1) says that as an \mathcal{O}_{F}-module, $\mathcal{O}_{E} \cong \mathcal{O}_{F} \oplus \mathfrak{p}$. The ideal \mathfrak{p} is not principal and this suggests \mathcal{O}_{E} is not a free \mathcal{O}_{F}-module, although that does require an argument. To reinforce this point, $\mathfrak{p} \oplus \mathfrak{p}$ does not look like a free \mathcal{O}_{F}-module, since \mathfrak{p} is not principal, but $\mathfrak{p} \oplus \mathfrak{p}$ has a second direct sum decomposition that admits an \mathcal{O}_{F}-basis, so a direct sum of two non-free modules can be free. We will see how in Example 9 below.

What we are after is a classification of finitely generated torsion-free modules over a Dedekind domain, which will then be applied in the number field setting to describe \mathcal{O}_{E} as an \mathcal{O}_{F}-module. The extent to which \mathcal{O}_{E} could fail to have an \mathcal{O}_{F}-basis will be related to ideal classes in F.

A technical concept we need to describe modules over a Dedekind domain is projective modules.

Definition 4. Let A be any commutative ring. An A-module P is called projective if every surjective linear map $f: M \rightarrow P$ from any A-module M onto P looks like a projection out of a direct sum: there is an isomorphism $h: M \cong P \oplus N$ for some A-module N such that $h(m)=(f(m), *)$ for all $m \in M$.

The isomorphism h is not unique. For example, taking $A=\mathbf{Z}, P=\mathbf{Z}$, and $M=\mathbf{Z} \oplus \mathbf{Z}$ with $f(a, b)=a-2 b$, we can use $h: M \rightarrow P \oplus \mathbf{Z}$ by $h(a, b)=(a-2 b, b)$ or $h(a, b)=$
$(a-2 b, a-b)$. Each of these works since the first coordinate of $h(a, b)$ is $f(a, b)$ and h is obviously invertible.

The complementary summand N in the definition of a projective module is isomorphic to the kernel of f. Indeed, the condition $h(m)=(f(m), *)$ means $f(m)=0$ if and only if $h(m)$ is in $\{0\} \oplus N$, which means h restricts to an isomorphism between $\operatorname{ker} f$ and $\{0\} \oplus N \cong N$.

It is easy to give examples of non-projective modules. For instance, if P is a projective A-module with n generators there is a surjective A-linear map $A^{n} \rightarrow P$, so $A^{n} \cong P \oplus Q$ for some A-module Q. When A is a domain, any submodule of A^{n} is torsion-free, so a finitely generated projective module over a domain is torsion-free. Therefore a finitely generated module over a domain that has torsion is not projective: $\mathbf{Z} \oplus \mathbf{Z} /(2)$ is not a projective Z-module. More importantly for us, though, is that fractional ideals in a Dedekind domain are projective modules.

Lemma 5. For a domain A, any invertible fractional A-ideal is a projective A-module. In particular, when A is a Dedekind domain all fractional A-ideals are projective A-modules.

Proof. Let \mathfrak{a} be an invertible fractional A-ideal. Then $\sum_{i=1}^{k} x_{i} y_{i}=1$ for some $x_{i} \in \mathfrak{a}$ and $y_{i} \in \mathfrak{a}^{-1}$. For each $x \in \mathfrak{a}$,

$$
x=1 \cdot x=x_{1}\left(x_{1}^{\prime} x\right)+\cdots+x_{k}\left(x_{k}^{\prime} x\right)
$$

and $x_{i}^{\prime} x \in \mathfrak{a}^{-1} \mathfrak{a}=A$, so $\mathfrak{a} \subset \sum_{i=1}^{k} A x_{i} \subset \mathfrak{a}$, so $\mathfrak{a}=A x_{1}+\cdots+A x_{k}$. In a similar way, $\mathfrak{a}^{-1}=A y_{1}+\cdots+A y_{k}$. Suppose $f: M \rightarrow \mathfrak{a}$ is a surjective A-linear map. Choose $m_{i} \in M$ such that $f\left(m_{i}\right)=x_{i}$. Define $g: \mathfrak{a} \rightarrow M$ by $g(x)=\sum_{i=1}^{k}\left(x y_{i}\right) m_{i}$. Note $x y_{i} \in \mathfrak{a a}^{-1}=A$ for all i, so $g(x)$ makes sense and g is A-linear. Then

$$
f(g(x))=\sum_{i=1}^{k}\left(x y_{i}\right) f\left(m_{i}\right)=\sum_{i=1}^{n}\left(x y_{i}\right) x_{i}=x \sum_{i=1}^{n} x_{i} y_{i}=x .
$$

Check the A-linear map $h: M \rightarrow \mathfrak{a} \oplus \operatorname{ker} f$ given by the formula $h(m)=(f(m), m-g(f(m)))$ has inverse $(x, y) \mapsto g(x)+y$.

Here is the main structure theorem.
Theorem 6. Every finitely generated torsion-free module over a Dedekind domain A is isomorphic to a direct sum of ideals in A.

Proof. Let M be a finitely generated torsion-free A-module. We can assume $M \neq 0$ and will show there is an embedding $M \hookrightarrow A^{d}$ for some $d \geqslant 1$ such that the image of M intersects each standard coordinate axis of A^{d}.

Let F be the fraction field of A and x_{1}, \ldots, x_{n} be a generating set for M as an A-module. We will show n is an upper bound on the size of any A-linearly independent subset of M. Let $f: A^{n} \rightarrow M$ be the linear map where $f\left(e_{i}\right)=x_{i}$ for all i. (By e_{1}, \ldots, e_{n} we mean the standard basis of A^{n}.) Let y_{1}, \ldots, y_{k} be linearly independent in M, so their A-span is isomorphic to A^{k}. Write $y_{j}=\sum_{i=1}^{n} a_{i j} x_{i}$ with $a_{i j} \in A$. We pull the y_{j} 's back to A^{n} by setting $v_{j}=\left(a_{1 j}, \ldots, a_{n j}\right)$, so $f\left(v_{j}\right)=y_{j}$. A linear dependence relation on the v_{j} 's is transformed by f into a linear dependence relation on the y_{j} 's, which is a trivial relation by their linear independence. Therefore v_{1}, \ldots, v_{k} is A-linearly independent in A^{n}, hence F-linearly independent in F^{n}. By linear algebra over fields, $k \leqslant n$.

From the bound $k \leqslant n$, there is a linearly independent subset of M with maximal size, say t_{1}, \ldots, t_{d}. Then $\sum_{j=1}^{d} A t_{j} \cong A^{d}$ by identifying t_{j} with the j th standard basis
vector in A^{d}. We will find a scalar multiple of M inside $\sum_{j=1}^{d} A t_{j}$. For any $x \in M$, the set $\left\{x, t_{1}, \ldots, t_{d}\right\}$ is linearly dependent by maximality of d, so there is a nontrivial linear relation $a_{x} x+\sum_{i=1}^{d} a_{i} t_{i}=0$, necessarily with $a_{x} \neq 0$ in A. Thus $a_{x} x \in \sum_{j=1}^{d} A t_{j}$. Letting x run through the spanning set x_{1}, \ldots, x_{n}, we have $a x_{i} \in \sum_{j=1}^{d} A t_{j}$ for all i where $a=a_{x_{1}} \cdots a_{x_{n}} \neq 0$. Thus $a M \subset \sum_{j=1}^{d} A t_{j}$. Multiplying by a is an isomorphism of M with $a M$, so we have the sequence of A-linear maps

$$
M \rightarrow a M \hookrightarrow \sum_{j=1}^{d} A t_{j} \rightarrow A^{d},
$$

where the first and last maps are A-module isomorphisms. In the above composite map, $t_{j} \in M$ is mapped to $a e_{j}$ in A^{d}, so this composite map is an embedding $M \hookrightarrow A^{d}$ such that M meets each standard coordinate axis of A^{d} in a nonzero vector. Compose this linear map with projection $A^{d} \rightarrow A$ onto the last coordinate in the standard basis:

$$
a_{1} e_{1}+\cdots+a_{d} e_{d} \mapsto a_{d}
$$

Denote the restriction of this to a map $M \rightarrow A$ as φ, so $\mathfrak{a}:=\varphi(M)$ is a nonzero ideal in A. With φ we get a surjective map $M \rightarrow \mathfrak{a}$, so Lemma 5 (the first time we need A to be a Dedekind domain, not just an integral domain) tells us $M \cong \mathfrak{a} \oplus \operatorname{ker} \varphi$. Obviously $\operatorname{ker} \varphi \subset A^{d-1} \oplus 0 \cong A^{d-1}$, so $\operatorname{ker} \varphi$ is a finitely generated (and torsion-free) A-module with at most $d-1 A$-linearly independent elements. Using induction on the largest number of linearly independent elements in the module, $\operatorname{ker} \varphi$ is a direct sum of ideals in A.

Remark 7. Using equations rather than isomorphisms, Theorem 6 says $M=M_{1} \oplus \cdots \oplus M_{d}$ where each M_{i} is isomorphic to an ideal in A. Those ideals need not be principal, so M_{i} need not have the form $A m_{i}$. If M is inside a vector space over the fraction field of A, then $M=\bigoplus_{i=1}^{d} \mathfrak{a}_{i} e_{i}$ for some linearly independent e_{i} 's, but be careful: if \mathfrak{a}_{i} is a proper ideal in A then e_{i} is not in M since $1 \notin \mathfrak{a}_{i}$. The e_{i} 's are not a spanning set for M as a module since their coefficients are not running through A. The decomposition of the integers of $\mathbf{Q}(\sqrt{-6}, \sqrt{-3})$ as a module over $\mathbf{Z}[\sqrt{-6}]$ in Example 3 illustrates this point.

How much does a direct sum $\mathfrak{a}_{1} \oplus \cdots \oplus \mathfrak{a}_{d}$, as a module, depend on the individual \mathfrak{a}_{i} 's?
Lemma 8. Let A be a Dedekind domain. For fractional A-ideals \mathfrak{a} and \mathfrak{b}, there is an A-module isomorphism $\mathfrak{a} \oplus \mathfrak{b} \cong A \oplus \mathfrak{a b}$.

Proof. Both sides of the isomorphism are unchanged up to A-module isomorphism when we scale \mathfrak{a} and \mathfrak{b}, so without loss of generality \mathfrak{a} and \mathfrak{b} are nonzero ideals in A. We can further scale so \mathfrak{a} and \mathfrak{b} are relatively prime. Indeed, let $\mathfrak{a}^{-1} \sim \mathfrak{a}_{0}$ where $\mathfrak{a}_{0} \subset A$. Using the Chinese remainder theorem in A, there is a nonzero ideal \mathfrak{c} such that $\mathfrak{a}_{0} \mathfrak{c}$ is principal and $\operatorname{gcd}(\mathfrak{c}, \mathfrak{b})=(1)$. Since $\mathfrak{c} \sim \mathfrak{a}_{0}^{-1} \sim \mathfrak{a}$, we can replace \mathfrak{a} by \mathfrak{c} without changing $\mathfrak{a} \oplus \mathfrak{b}$ or $A \oplus \mathfrak{a b}$ up to A-module isomorphism.

The linear map $f: \mathfrak{a} \oplus \mathfrak{b} \rightarrow \mathfrak{a}+\mathfrak{b}=A$ given by $f(a, b)=a-b$ is surjective and $\operatorname{ker} f=$ $\{(a, a): a \in \mathfrak{a} \cap \mathfrak{b}\} \cong \mathfrak{a} \cap \mathfrak{b}$, which is $\mathfrak{a b}$ since $\operatorname{gcd}(\mathfrak{a}, \mathfrak{b})=$ (1). Applying Lemma 5 to the fractional A-ideal $A, \mathfrak{a} \oplus \mathfrak{b} \cong A \oplus \operatorname{ker} f \cong A \oplus \mathfrak{a b}$.

Example 9. For $A=\mathbf{Z}[\sqrt{-5}]$, let $\mathfrak{p}_{2}=(2,1+\sqrt{-5})$, so \mathfrak{p}_{2} is not principal but $\mathfrak{p}_{2}^{2}=2 A$ is principal. Then there is an A-module isomorphism $\mathfrak{p}_{2} \oplus \mathfrak{p}_{2} \cong A \oplus \mathfrak{p}_{2}^{2} \cong A \oplus A$. That is intriguing: \mathfrak{p}_{2} does not have an A-basis but $\mathfrak{p}_{2} \oplus \mathfrak{p}_{2}$ does! Working through the proof of

Lemma 8 will show you how to write down a basis of $\mathfrak{p}_{2} \oplus \mathfrak{p}_{2}$ explicitly. In a similar way, $\mathfrak{p} \oplus \mathfrak{p}$ in Example 3 is a free $\mathbf{Z}[\sqrt{-6}]$-module since \mathfrak{p}^{2} is principal.
Theorem 10. Let A be a Dedekind domain. For fractional A-ideals $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{d}$, there is an A-module isomorphism $\mathfrak{a}_{1} \oplus \cdots \oplus \mathfrak{a}_{d} \cong A^{d-1} \oplus \mathfrak{a}_{1} \cdots \mathfrak{a}_{d}$.

Proof. Induct on d and use Lemma 8.
Corollary 11. Let E / F be a finite extension of number fields with $[E: F]=n$. As an \mathcal{O}_{F}-module, $\mathcal{O}_{E} \cong \mathcal{O}_{F}^{n-1} \oplus \mathfrak{a}$ for some nonzero ideal \mathfrak{a} in \mathcal{O}_{F}.

Proof. Since \mathcal{O}_{E} is a finitely generated \mathbf{Z}-module it is a finitely generated \mathcal{O}_{F}-module and obviously has no torsion, so Theorems 6 and 10 imply $\mathcal{O}_{E} \cong \mathcal{O}_{F}^{d-1} \oplus \mathfrak{a}$ for some $d \geqslant 1$ and nonzero ideal \mathfrak{a} in \mathcal{O}_{F}. Letting $m=[F: \mathbf{Q}]$, both \mathcal{O}_{F} and \mathfrak{a} are free of rank m over \mathbf{Z}, while \mathcal{O}_{E} is free of rank $m n$ over \mathbf{Z}. Computing the rank of \mathcal{O}_{E} and $\mathcal{O}_{F}^{d-1} \oplus \mathfrak{a}$ over \mathbf{Z}, $m n=m(d-1)+m=m d$, so $d=n$.

Thus \mathcal{O}_{E} is almost a free \mathcal{O}_{F}-module. If \mathfrak{a} is principal then \mathcal{O}_{E} is free. As an \mathcal{O}_{F}-module up to isomorphism, $\mathcal{O}_{F}^{n-1} \oplus \mathfrak{a}$ only depends on \mathfrak{a} through its ideal class, since \mathfrak{a} and any $x \mathfrak{a}\left(x \in F^{\times}\right)$are isomorphic \mathcal{O}_{F}-modules. Does $\mathcal{O}_{F}^{n-1} \oplus \mathfrak{a}$, as an \mathcal{O}_{F}-module, depend on \mathfrak{a} exactly through its ideal class? That is, if $\mathcal{O}_{F}^{n-1} \oplus \mathfrak{a} \cong \mathcal{O}_{F}^{n-1} \oplus \mathfrak{b}$ as \mathcal{O}_{F}-modules, does $[\mathfrak{a}]=[\mathfrak{b}]$ in $\mathrm{Cl}(F)$? The next two theorems together say the answer is yes.
Theorem 12. Let A be a domain with fraction field F. For fractional A-ideals \mathfrak{a} and \mathfrak{b} in $F, \mathfrak{a} \cong \mathfrak{b}$ as A-modules if and only if $\mathfrak{a}=x \mathfrak{b}$ for some $x \in F^{\times}$.

Here F is any field, not necessarily a number field.
Proof. (\Leftarrow) : Multiplication by x is an A-module isomorphism from \mathfrak{b} to \mathfrak{a}.
(\Rightarrow) : Suppose $f: \mathfrak{a} \rightarrow \mathfrak{b}$ is an A-module isomorphism. We want an $x \in F^{\times}$such that $f(t)=x t$ for all $t \in \mathfrak{a}$. For this to be possible, $f(t) / t$ has to be independent of the choice of nonzero t. Then we could define x to be this common ratio, so $f(t)=x t$ for all t in \mathfrak{a} (including $t=0$).

For any nonzero t_{1} and t_{2} in \mathfrak{a},

$$
\frac{f\left(t_{1}\right)}{t_{1}} \stackrel{?}{=} \frac{f\left(t_{2}\right)}{t_{2}} \Longleftrightarrow t_{2} f\left(t_{1}\right) \stackrel{?}{=} t_{1} f\left(t_{2}\right)
$$

You may be tempted to pull the t_{2} and t_{1} inside on the right, confirming the equality, but that is bogus because f is A-linear and we don't know if t_{1} and t_{2} are in A (they are just in $F)$. This is easy to fix. Since \mathfrak{a} is a fractional A-ideal, it has a denominator: $d \mathfrak{a} \subset A$ for some nonzero $d \in A$. Then $d t_{1}, d t_{2} \in A$, so

$$
t_{2} f\left(t_{1}\right) \stackrel{?}{=} t_{1} f\left(t_{2}\right) \Longleftrightarrow d t_{2} f\left(t_{1}\right) \stackrel{?}{=} d t_{1} f\left(t_{2}\right) \Longleftrightarrow f\left(d t_{2} t_{1}\right) \stackrel{\vee}{=} f\left(d t_{1} t_{2}\right) .
$$

Theorem 13. For nonzero ideals $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{m}$ and $\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}$ in a Dedekind domain A, we have $\mathfrak{a}_{1} \oplus \cdots \oplus \mathfrak{a}_{m} \cong \mathfrak{b}_{1} \oplus \cdots \oplus \mathfrak{b}_{n}$ as A-modules if and only if $m=n$ and $\left[\mathfrak{a}_{1} \cdots \mathfrak{a}_{m}\right]=\left[\mathfrak{b}_{1} \cdots \mathfrak{b}_{n}\right]$ in $\mathrm{Cl}(A)$.
Proof. The "if" direction follows from Theorems 10 and 12: $\mathfrak{a}_{1} \oplus \cdots \oplus \mathfrak{a}_{m} \cong A^{m-1} \oplus \mathfrak{a}_{1} \cdots \mathfrak{a}_{m}$, so if $m=n$ and $\left[\mathfrak{a}_{1} \cdots \mathfrak{a}_{m}\right]=\left[\mathfrak{b}_{1} \cdots \mathfrak{b}_{m}\right]$ in $\mathrm{Cl}(A)$ then

$$
A^{m-1} \oplus \mathfrak{a}_{1} \cdots \mathfrak{a}_{m} \cong A^{m-1} \oplus \mathfrak{b}_{1} \cdots \mathfrak{b}_{m} \cong \mathfrak{b}_{1} \oplus \cdots \oplus \mathfrak{b}_{m}
$$

Turning to the "only if" direction, we show m is determined by the A-module structure of $\mathfrak{a}_{1} \oplus \cdots \oplus \mathfrak{a}_{m}$: it is the largest number of A-linearly independent elements in this module. Picking a nonzero $a_{i} \in \mathfrak{a}_{i}$, the m-tuples $\left(\ldots, 0, a_{i}, 0, \ldots\right)$ for $1 \leqslant i \leqslant m$ are easily A-linearly independent, so $\bigoplus_{i=1}^{m} \mathfrak{a}_{i}$ has m linearly independent members. Since $\mathfrak{a}_{1} \oplus \cdots \oplus \mathfrak{a}_{m} \subset F^{m}$, where F is the fraction field of A, any set of more than m members of $\mathfrak{a}_{1} \oplus \cdots \oplus \mathfrak{a}_{m}$ has a nontrivial F-linear relation in F^{m}, which can be scaled to a nontrivial A-linear relation in $\bigoplus_{i=1}^{m} \mathfrak{a}_{i}$ by clearing a common denominator in the coefficients. Therefore if $\mathfrak{a}_{1} \oplus \cdots \oplus \mathfrak{a}_{m} \cong$ $\mathfrak{b}_{1} \oplus \cdots \oplus \mathfrak{b}_{n}$ as A-modules we must have $m=n$ by computing the maximal number of A-linearly independent elements in both modules.

To show $\bigoplus_{i=1}^{m} \mathfrak{a}_{i} \cong \bigoplus_{i=1}^{m} \mathfrak{b}_{i} \Rightarrow \mathfrak{a}_{1} \cdots \mathfrak{a}_{m}$ and $\mathfrak{b}_{1} \cdots \mathfrak{b}_{m}$ are scalar multiples, we can collect ideals by multiplication into the last summands: it is enough to show $A^{m-1} \oplus \mathfrak{a} \cong A^{m-1} \oplus \mathfrak{b} \Rightarrow$ \mathfrak{a} and \mathfrak{b} are scalar multiples. Let $\varphi: A^{m-1} \oplus \mathfrak{a} \rightarrow A^{m-1} \oplus \mathfrak{b}$ be an A-module isomorphism. Viewing $A^{m-1} \oplus \mathfrak{a}$ and $A^{m-1} \oplus \mathfrak{b}$ as column vectors of length m with the last coordinate in \mathfrak{a} or \mathfrak{b}, φ can be represented as an $m \times m$ matrix of A-linear maps $\left(\varphi_{i j}\right)$, where $\varphi_{i j}$ has domain A or \mathfrak{a} and target A or \mathfrak{b}. The proof of Theorem 12 shows any A-linear map from one fractional A-ideal to another (not necessarily injective or surjective) is a scaling function. Therefore φ is described by an $m \times m$ matrix of numbers, say \mathcal{M}, acting in the usual way on column vectors.

For any $\alpha \in \mathfrak{a}$, let $D_{\alpha}=\operatorname{diag}(1, \ldots, 1, \alpha)$ be the diagonal $m \times m$ matrix with α in the lower right entry. Then $D_{\alpha}\left(A^{m-1} \oplus A\right) \subset A^{m-1} \oplus \mathfrak{a}$, so $\mathcal{M} D_{\alpha}$ maps $A^{m-1} \oplus A$ to $A^{m-1} \oplus \mathfrak{b}$. This means the bottom row of $\mathcal{M} D_{\alpha}$ has all entries in \mathfrak{b}, so $\operatorname{det}\left(\mathcal{M} D_{\alpha}\right) \in \mathfrak{b}$. Since D_{α} has determinant α and α is arbitrary in \mathfrak{a}, $\operatorname{det}(\mathcal{M}) \mathfrak{a} \subset \mathfrak{b}$. In the same way, $\operatorname{det}\left(\mathcal{M}^{-1}\right) \mathfrak{b} \subset \mathfrak{a}$, so $\operatorname{det}(\mathcal{M}) \mathfrak{a}=\mathfrak{b}$.
Example 14. Let's return to Example 3: $F=\mathbf{Q}(\sqrt{-6}), E=F(\sqrt{-3})$, and $\mathcal{O}_{E} \cong \mathcal{O}_{F} \oplus \mathfrak{p}$, where $\mathfrak{p}=(3, \sqrt{-6})$. We can show \mathcal{O}_{E} is not a free \mathcal{O}_{F}-module: if it were free then $\mathcal{O}_{E} \cong \mathcal{O}_{F}^{2}$, so $\mathcal{O}_{F} \oplus \mathfrak{p} \cong \mathcal{O}_{F} \oplus \mathcal{O}_{F}$ as \mathcal{O}_{F}-modules. Then Theorem 13 implies $\mathfrak{p} \cong \mathcal{O}_{F}$ as \mathcal{O}_{F}-modules, so \mathfrak{p} is principal, but \mathfrak{p} is nonprincipal. This is a contradiction.

We can now associate to any finite extension of number fields E / F a canonical ideal class in $\mathrm{Cl}(F)$, namely [a] where $\mathcal{O}_{E} \cong \mathcal{O}_{F}^{n-1} \oplus \mathfrak{a}$ as \mathcal{O}_{F}-modules. Theorem 13 assures us [a] is well-defined. Since the construction of $[\mathfrak{a}]$ is due to Steinitz (1912), $[\mathfrak{a}]$ is called the Steinitz class of E / F.
Example 15. By Example 14, when $F=\mathbf{Q}(\sqrt{-6})$ the nontrivial member of $\mathrm{Cl}(F)$ is the Steinitz class of the quadratic extension $F(\sqrt{-3}) / F$.

Since the ideal class group of a number field F is finite, as E varies over all extensions of F with a fixed degree $n \geqslant 2$ the different \mathcal{O}_{E} 's have finitely many possible \mathcal{O}_{F}-module structures, in fact at most $h(F)$ of them. There are infinitely many nonisomorphic extensions of F with degree n, so it is natural to ask if each ideal class is realized among them: for any $[\mathfrak{a}] \in \mathrm{Cl}(F)$ and integer $n \geqslant 2$ is there some extension E / F of degree n whose Steinitz class is [a], i.e., $\mathcal{O}_{E} \cong \mathcal{O}_{F}^{n-1} \oplus \mathfrak{a}$ as \mathcal{O}_{F}-modules?

The answer is yes for $n=2,3,4$, and 5 [1] (see [2] for $n=2$ and 3). More precisely, the field extensions E / F of degree n with Galois closure having Galois group S_{n} are equidistributed in terms of their Steinitz classes in $\mathrm{Cl}(F)$. In particular, each ideal class in $\mathrm{Cl}(F)$ is a Steinitz class for infinitely many nonisomorphic degree n extensions of F when $n=2,3,4$, and 5. The extension to general degrees is still an open problem in general.

We have focused on the description of a single finitely generated torsion-free module over a Dedekind domain. What if we want to compare such a module and a submodule? If A
is a PID, M is a finite free A-module and M^{\prime} is a submodule then we can align M and M^{\prime} in the sense that there is a basis e_{1}, \ldots, e_{n} of M and nonzero scalars a_{1}, \ldots, a_{m} in A (where $m \leqslant n$) such that $M=\bigoplus_{i=1}^{n} A e_{i}$ and $M^{\prime}=\bigoplus_{j=1}^{m} A e_{j}$. This has an analogue over Dedekind domains, but it doesn't use bases. If A is a Dedekind domain, M is a finitely generated torsion-free A-module, and M^{\prime} is a submodule of M, then we can align M and M^{\prime} in the sense that we can write

$$
M=\bigoplus_{i=1}^{n} M_{i} \quad \text { and } \quad M^{\prime}=\bigoplus_{j=1}^{m} \mathfrak{a}_{j} M_{j}
$$

where $m \leqslant n$, each M_{i} is isomorphic to a nonzero ideal in A, and each \mathfrak{a}_{j} is a nonzero ideal in A. It is generally false that such an alignment is compatible with an isomorphism $M \cong A^{n-1} \oplus \mathfrak{a}$. That is, such an isomorphism need not restrict to M^{\prime} to give an isomorphism $M^{\prime} \cong A^{m-1} \oplus \mathfrak{a}^{\prime}$ with $\mathfrak{a}^{\prime} \subset \mathfrak{a}$, even for $A=\mathbf{Z}$. Consider, for instance, $M=\mathbf{Z} \oplus \mathbf{Z}$ and $M^{\prime}=a \mathbf{Z} \oplus a \mathbf{Z}$ for $a>1$ (so $m=n=2$). We can't write $M=\mathbf{Z} e_{1} \oplus \mathbf{Z} e_{2}$ and $M^{\prime}=\mathbf{Z} e_{1} \oplus b \mathbf{Z} e_{2}$ for some integer b since that would imply $M / M^{\prime} \cong \mathbf{Z} / b \mathbf{Z}$ is cyclic, whereas $M / M^{\prime} \cong(\mathbf{Z} / a \mathbf{Z})^{2}$ is not cyclic.

References

[1] M. Bhargava, A. Shankar, and X. Wang, Geometry-of-numbers methods over global fields I: Prehomogeneous vector spaces, preprint (2015), https://arxiv.org/abs/1512.03035.
[2] A. C. Kable and D. J. Wright, Uniform distribution of the Steinitz invariants of quadratic and cubic extensions, Compositio Math. 142 (2006), 84-100.

