
IDEAL CLASSES AND RELATIVE INTEGERS

KEITH CONRAD

The ring of integers of a number field is free as a Z-module. It is a module not just over
Z, but also over any intermediate ring of integers. That is, if E ⊃ F ⊃ Q we can consider
OE as an OF -module. Since OE is finitely generated over Z, it is also finitely generated over
OF (just a larger ring of scalars), but OE may or may not have a basis over OF .

When we treat OE as a module over OF , rather than over Z, we speak about a relative
extension of integers. If OF is a PID then OE will be a free OF -module, so OE will have a
basis over OF . Such a basis is called a relative integral basis for E over F . The next three
examples illustrate some possibilities when OF is not a PID.

Example 1. Let F = Q(
√
−5) and E = Q(i,

√
−5) = F (i). Although OF = Z[

√
−5] is not

a PID, OE is a free OF -module with relative integral basis {1, i+
√
−5

2 }.

Example 2. Let F = Q(
√
−15) and E = Q(

√
−15,

√
26) = F (

√
26). Then h(F ) = 2, so

OF is not a PID, but it turns out that OE = OF ⊕ OF
√

26, so OE is a free OF -module.

Example 3. Let F = Q(
√
−6) and E = Q(

√
−6,
√
−3) = F (

√
−3). Then h(F ) = 2, so

OF is not a PID, and it turns out that

(1) OE = OF e1 ⊕ pe2,

where e1 = 1+
√
−3

2 , e2 = 1√
−3 , and p = (3,

√
−6). (Although e2 is not in OE , there isn’t a

problem with the direct sum decomposition (1) for OE over OF since the coefficients of e2
run not over OF but over the ideal p, which doesn’t include 1, so e2 6∈ pe2.) Equation (1)
says that as an OF -module, OE ∼= OF ⊕p. The ideal p is not principal and this suggests OE
is not a free OF -module, although that does require an argument. To reinforce this point,
p ⊕ p does not look like a free OF -module, since p is not principal, but p ⊕ p has a second
direct sum decomposition that admits an OF -basis, so a direct sum of two non-free modules
can be free. We will see how in Example 9 below.

What we are after is a classification of finitely generated torsion-free modules over a
Dedekind domain, which will then be applied in the number field setting to describe OE as
an OF -module. The extent to which OE could fail to have an OF -basis will be related to
ideal classes in F .

A technical concept we need to describe modules over a Dedekind domain is projective
modules.

Definition 4. Let A be any commutative ring. An A-module P is called projective if every
surjective linear map f : M � P from any A-module M onto P looks like a projection out
of a direct sum: there is an isomorphism h : M ∼= P ⊕N for some A-module N such that
h(m) = (f(m), ∗) for all m ∈M .

The isomorphism h is not unique. For example, taking A = Z, P = Z, and M = Z⊕ Z
with f(a, b) = a − 2b, we can use h : M → P ⊕ Z by h(a, b) = (a − 2b, b) or h(a, b) =

1
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(a − 2b, a − b). Each of these works since the first coordinate of h(a, b) is f(a, b) and h is
obviously invertible.

The complementary summand N in the definition of a projective module is isomorphic to
the kernel of f . Indeed, the condition h(m) = (f(m), ∗) means f(m) = 0 if and only if h(m)
is in {0}⊕N , which means h restricts to an isomorphism between ker f and {0}⊕N ∼= N .

It is easy to give examples of non-projective modules. For instance, if P is a projective
A-module with n generators there is a surjective A-linear map An � P , so An ∼= P ⊕Q for
some A-module Q. When A is a domain, any submodule of An is torsion-free, so a finitely
generated projective module over a domain is torsion-free. Therefore a finitely generated
module over a domain that has torsion is not projective: Z ⊕ Z/(2) is not a projective
Z-module. More importantly for us, though, is that fractional ideals in a Dedekind domain
are projective modules.

Lemma 5. For a domain A, any invertible fractional A-ideal is a projective A-module. In
particular, when A is a Dedekind domain all fractional A-ideals are projective A-modules.

Proof. Let a be an invertible fractional A-ideal. Then
∑k

i=1 xiyi = 1 for some xi ∈ a and
yi ∈ a−1. For each x ∈ a,

x = 1 · x = x1(x
′
1x) + · · ·+ xk(x

′
kx)

and x′ix ∈ a−1a = A, so a ⊂
∑k

i=1Axi ⊂ a, so a = Ax1 + · · · + Axk. In a similar way,
a−1 = Ay1 + · · · + Ayk. Suppose f : M � a is a surjective A-linear map. Choose mi ∈ M
such that f(mi) = xi. Define g : a→M by g(x) =

∑k
i=1(xyi)mi. Note xyi ∈ aa−1 = A for

all i, so g(x) makes sense and g is A-linear. Then

f(g(x)) =

k∑
i=1

(xyi)f(mi) =

n∑
i=1

(xyi)xi = x

n∑
i=1

xiyi = x.

Check the A-linear map h : M → a⊕ker f given by the formula h(m) = (f(m),m−g(f(m)))
has inverse (x, y) 7→ g(x) + y.

Here is the main structure theorem.

Theorem 6. Every finitely generated torsion-free module over a Dedekind domain A is
isomorphic to a direct sum of ideals in A.

Proof. Let M be a finitely generated torsion-free A-module. We can assume M 6= 0 and will
show there is an embedding M ↪→ Ad for some d > 1 such that the image of M intersects
each standard coordinate axis of Ad.

Let F be the fraction field of A and x1, . . . , xn be a generating set for M as an A-module.
We will show n is an upper bound on the size of any A-linearly independent subset of M .
Let f : An → M be the linear map where f(ei) = xi for all i. (By e1, . . . , en we mean
the standard basis of An.) Let y1, . . . , yk be linearly independent in M , so their A-span
is isomorphic to Ak. Write yj =

∑n
i=1 aijxi with aij ∈ A. We pull the yj ’s back to An

by setting vj = (a1j , . . . , anj), so f(vj) = yj . A linear dependence relation on the vj ’s is
transformed by f into a linear dependence relation on the yj ’s, which is a trivial relation
by their linear independence. Therefore v1, . . . , vk is A-linearly independent in An, hence
F -linearly independent in Fn. By linear algebra over fields, k 6 n.

From the bound k 6 n, there is a linearly independent subset of M with maximal

size, say t1, . . . , td. Then
∑d

j=1Atj
∼= Ad by identifying tj with the jth standard basis
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vector in Ad. We will find a scalar multiple of M inside
∑d

j=1Atj . For any x ∈ M ,

the set {x, t1, . . . , td} is linearly dependent by maximality of d, so there is a nontrivial

linear relation axx +
∑d

i=1 aiti = 0, necessarily with ax 6= 0 in A. Thus axx ∈
∑d

j=1Atj .

Letting x run through the spanning set x1, . . . , xn, we have axi ∈
∑d

j=1Atj for all i where

a = ax1 · · · axn 6= 0. Thus aM ⊂
∑d

j=1Atj . Multiplying by a is an isomorphism of M with
aM , so we have the sequence of A-linear maps

M → aM ↪→
d∑
j=1

Atj → Ad,

where the first and last maps are A-module isomorphisms. In the above composite map,
tj ∈M is mapped to aej in Ad, so this composite map is an embedding M ↪→ Ad such that

M meets each standard coordinate axis of Ad in a nonzero vector. Compose this linear map
with projection Ad → A onto the last coordinate in the standard basis:

a1e1 + · · ·+ aded 7→ ad.

Denote the restriction of this to a map M → A as ϕ, so a := ϕ(M) is a nonzero ideal in
A. With ϕ we get a surjective map M � a, so Lemma 5 (the first time we need A to
be a Dedekind domain, not just an integral domain) tells us M ∼= a ⊕ kerϕ. Obviously
kerϕ ⊂ Ad−1 ⊕ 0 ∼= Ad−1, so kerϕ is a finitely generated (and torsion-free) A-module with
at most d − 1 A-linearly independent elements. Using induction on the largest number of
linearly independent elements in the module, kerϕ is a direct sum of ideals in A.

Remark 7. Using equations rather than isomorphisms, Theorem 6 says M = M1⊕· · ·⊕Md

where each Mi is isomorphic to an ideal in A. Those ideals need not be principal, so Mi

need not have the form Ami. If M is inside a vector space over the fraction field of A, then

M =
⊕d

i=1 aiei for some linearly independent ei’s, but be careful: if ai is a proper ideal
in A then ei is not in M since 1 6∈ ai. The ei’s are not a spanning set for M as a module
since their coefficients are not running through A. The decomposition of the integers of
Q(
√
−6,
√
−3) as a module over Z[

√
−6] in Example 3 illustrates this point.

How much does a direct sum a1 ⊕ · · · ⊕ ad, as a module, depend on the individual ai’s?

Lemma 8. Let A be a Dedekind domain. For fractional A-ideals a and b, there is an
A-module isomorphism a⊕ b ∼= A⊕ ab.

Proof. Both sides of the isomorphism are unchanged up to A-module isomorphism when
we scale a and b, so without loss of generality a and b are nonzero ideals in A. We can
further scale so a and b are relatively prime. Indeed, let a−1 ∼ a0 where a0 ⊂ A. Using the
Chinese remainder theorem in A, there is a nonzero ideal c such that a0c is principal and
gcd(c, b) = (1). Since c ∼ a−10 ∼ a, we can replace a by c without changing a⊕ b or A⊕ ab
up to A-module isomorphism.

The linear map f : a ⊕ b → a + b = A given by f(a, b) = a − b is surjective and ker f =
{(a, a) : a ∈ a ∩ b} ∼= a ∩ b, which is ab since gcd(a, b) = (1). Applying Lemma 5 to the
fractional A-ideal A, a⊕ b ∼= A⊕ ker f ∼= A⊕ ab.

Example 9. For A = Z[
√
−5], let p2 = (2, 1 +

√
−5), so p2 is not principal but p22 = 2A

is principal. Then there is an A-module isomorphism p2 ⊕ p2 ∼= A ⊕ p22
∼= A ⊕ A. That is

intriguing: p2 does not have an A-basis but p2 ⊕ p2 does! Working through the proof of
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Lemma 8 will show you how to write down a basis of p2 ⊕ p2 explicitly. In a similar way,
p⊕ p in Example 3 is a free Z[

√
−6]-module since p2 is principal.

Theorem 10. Let A be a Dedekind domain. For fractional A-ideals a1, . . . , ad, there is an
A-module isomorphism a1 ⊕ · · · ⊕ ad ∼= Ad−1 ⊕ a1 · · · ad.

Proof. Induct on d and use Lemma 8.

Corollary 11. Let E/F be a finite extension of number fields with [E : F ] = n. As an
OF -module, OE ∼= On−1F ⊕ a for some nonzero ideal a in OF .

Proof. Since OE is a finitely generated Z-module it is a finitely generated OF -module and
obviously has no torsion, so Theorems 6 and 10 imply OE ∼= Od−1F ⊕ a for some d > 1
and nonzero ideal a in OF . Letting m = [F : Q], both OF and a are free of rank m over

Z, while OE is free of rank mn over Z. Computing the rank of OE and Od−1F ⊕ a over Z,
mn = m(d− 1) +m = md, so d = n.

Thus OE is almost a free OF -module. If a is principal then OE is free. As an OF -module
up to isomorphism, On−1F ⊕ a only depends on a through its ideal class, since a and any

xa (x ∈ F×) are isomorphic OF -modules. Does On−1F ⊕ a, as an OF -module, depend on

a exactly through its ideal class? That is, if On−1F ⊕ a ∼= On−1F ⊕ b as OF -modules, does
[a] = [b] in Cl(F )? The next two theorems together say the answer is yes.

Theorem 12. Let A be a domain with fraction field F . For fractional A-ideals a and b in
F , a ∼= b as A-modules if and only if a = xb for some x ∈ F×.

Here F is any field, not necessarily a number field.

Proof. (⇐): Multiplication by x is an A-module isomorphism from b to a.
(⇒): Suppose f : a → b is an A-module isomorphism. We want an x ∈ F× such that

f(t) = xt for all t ∈ a. For this to be possible, f(t)/t has to be independent of the choice
of nonzero t. Then we could define x to be this common ratio, so f(t) = xt for all t in a
(including t = 0).

For any nonzero t1 and t2 in a,

f(t1)

t1

?
=
f(t2)

t2
⇐⇒ t2f(t1)

?
= t1f(t2).

You may be tempted to pull the t2 and t1 inside on the right, confirming the equality, but
that is bogus because f is A-linear and we don’t know if t1 and t2 are in A (they are just
in F ). This is easy to fix. Since a is a fractional A-ideal, it has a denominator: da ⊂ A for
some nonzero d ∈ A. Then dt1, dt2 ∈ A, so

t2f(t1)
?
= t1f(t2) ⇐⇒ dt2f(t1)

?
= dt1f(t2) ⇐⇒ f(dt2t1)

X
= f(dt1t2).

Theorem 13. For nonzero ideals a1, . . . , am and b1, . . . , bn in a Dedekind domain A,we
have a1⊕· · ·⊕am ∼= b1⊕· · ·⊕bn as A-modules if and only if m = n and [a1 · · · am] = [b1 · · · bn]
in Cl(A).

Proof. The “if” direction follows from Theorems 10 and 12: a1⊕· · ·⊕am ∼= Am−1⊕a1 · · · am,
so if m = n and [a1 · · · am] = [b1 · · · bm] in Cl(A) then

Am−1 ⊕ a1 · · · am ∼= Am−1 ⊕ b1 · · · bm ∼= b1 ⊕ · · · ⊕ bm.
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Turning to the “only if” direction, we show m is determined by the A-module structure
of a1⊕· · ·⊕am: it is the largest number of A-linearly independent elements in this module.
Picking a nonzero ai ∈ ai, the m-tuples (. . . , 0, ai, 0, . . . ) for 1 6 i 6 m are easily A-linearly
independent, so

⊕m
i=1 ai has m linearly independent members. Since a1 ⊕ · · · ⊕ am ⊂ Fm,

where F is the fraction field of A, any set of more than m members of a1 ⊕ · · · ⊕ am has a
nontrivial F -linear relation in Fm, which can be scaled to a nontrivial A-linear relation in⊕m

i=1 ai by clearing a common denominator in the coefficients. Therefore if a1⊕ · · ·⊕ am ∼=
b1 ⊕ · · · ⊕ bn as A-modules we must have m = n by computing the maximal number of
A-linearly independent elements in both modules.

To show
⊕m

i=1 ai
∼=

⊕m
i=1 bi ⇒ a1 · · · am and b1 · · · bm are scalar multiples, we can collect

ideals by multiplication into the last summands: it is enough to showAm−1⊕a ∼= Am−1⊕b⇒
a and b are scalar multiples. Let ϕ : Am−1 ⊕ a→ Am−1 ⊕ b be an A-module isomorphism.
Viewing Am−1 ⊕ a and Am−1 ⊕ b as column vectors of length m with the last coordinate
in a or b, ϕ can be represented as an m × m matrix of A-linear maps (ϕij), where ϕij
has domain A or a and target A or b. The proof of Theorem 12 shows any A-linear map
from one fractional A-ideal to another (not necessarily injective or surjective) is a scaling
function. Therefore ϕ is described by an m ×m matrix of numbers, say M, acting in the
usual way on column vectors.

For any α ∈ a, let Dα = diag(1, . . . , 1, α) be the diagonal m ×m matrix with α in the
lower right entry. Then Dα(Am−1⊕A) ⊂ Am−1⊕ a, so MDα maps Am−1⊕A to Am−1⊕ b.
This means the bottom row of MDα has all entries in b, so det(MDα) ∈ b. Since Dα has
determinant α and α is arbitrary in a, det(M)a ⊂ b. In the same way, det(M−1)b ⊂ a, so
det(M)a = b.

Example 14. Let’s return to Example 3: F = Q(
√
−6), E = F (

√
−3), and OE ∼= OF ⊕ p,

where p = (3,
√
−6). We can show OE is not a free OF -module: if it were free then OE ∼= O2

F ,
so OF ⊕ p ∼= OF ⊕ OF as OF -modules. Then Theorem 13 implies p ∼= OF as OF -modules,
so p is principal, but p is nonprincipal. This is a contradiction.

We can now associate to any finite extension of number fields E/F a canonical ideal class
in Cl(F ), namely [a] where OE ∼= On−1F ⊕ a as OF -modules. Theorem 13 assures us [a] is
well-defined. Since the construction of [a] is due to Steinitz (1912), [a] is called the Steinitz
class of E/F .

Example 15. By Example 14, when F = Q(
√
−6) the nontrivial member of Cl(F ) is the

Steinitz class of the quadratic extension F (
√
−3)/F .

Since the ideal class group of a number field F is finite, as E varies over all extensions of
F with a fixed degree n > 2 the different OE ’s have finitely many possible OF -module struc-
tures, in fact at most h(F ) of them. There are infinitely many nonisomorphic extensions of
F with degree n, so it is natural to ask if each ideal class is realized among them: for any
[a] ∈ Cl(F ) and integer n > 2 is there some extension E/F of degree n whose Steinitz class
is [a], i.e., OE ∼= On−1F ⊕ a as OF -modules?

The answer is yes for n = 2, 3, 4, and 5 [1] (see [2] for n = 2 and 3). More precisely, the field
extensions E/F of degree n with Galois closure having Galois group Sn are equidistributed
in terms of their Steinitz classes in Cl(F ). In particular, each ideal class in Cl(F ) is a
Steinitz class for infinitely many nonisomorphic degree n extensions of F when n = 2, 3, 4,
and 5. The extension to general degrees is still an open problem in general.

We have focused on the description of a single finitely generated torsion-free module over
a Dedekind domain. What if we want to compare such a module and a submodule? If A
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is a PID, M is a finite free A-module and M ′ is a submodule then we can align M and
M ′ in the sense that there is a basis e1, . . . , en of M and nonzero scalars a1, . . . , am in A
(where m 6 n) such that M =

⊕n
i=1Aei and M ′ =

⊕m
j=1Aej . This has an analogue over

Dedekind domains, but it doesn’t use bases. If A is a Dedekind domain, M is a finitely
generated torsion-free A-module, and M ′ is a submodule of M , then we can align M and
M ′ in the sense that we can write

M =

n⊕
i=1

Mi and M ′ =

m⊕
j=1

ajMj

where m 6 n, each Mi is isomorphic to a nonzero ideal in A, and each aj is a nonzero
ideal in A. It is generally false that such an alignment is compatible with an isomorphism
M ∼= An−1⊕a. That is, such an isomorphism need not restrict to M ′ to give an isomorphism
M ′ ∼= Am−1 ⊕ a′ with a′ ⊂ a, even for A = Z. Consider, for instance, M = Z ⊕ Z and
M ′ = aZ⊕aZ for a > 1 (so m = n = 2). We can’t write M = Ze1⊕Ze2 and M ′ = Ze1⊕bZe2
for some integer b since that would implyM/M ′ ∼= Z/bZ is cyclic, whereasM/M ′ ∼= (Z/aZ)2

is not cyclic.
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