IDEAL CLASSES AND RELATIVE INTEGERS

KEITH CONRAD

The ring of integers of a number field is free as a Z-module. It is a module not just over
Z, but also over any intermediate ring of integers. That is, if ¥ D F' D Q we can consider
Op as an Op-module. Since O is finitely generated over Z, it is also finitely generated over
OF (just a larger ring of scalars), but O may or may not have a basis over Op.

When we treat Og as a module over O, rather than over Z, we speak about a relative
extension of integers. If O is a PID then O will be a free Op-module, so O will have a
basis over Op. Such a basis is called a relative integral basis for E over F. The next three
examples illustrate some possibilities when O is not a PID.

Example 1. Let F' = Q(v/—5) and E = Q(i,+/—5) = F(i). Although Op = Z[y/—5] is not
a PID, O is a free Op-module with relative integral basis {1, @}

Example 2. Let F' = Q(v/—15) and E = Q(v/—15,v/26) = F(/26). Then h(F) = 2, so
Op is not a PID, but it turns out that O = Op & Opv/26, so Of is a free Op-module.

Example 3. Let ' = Q(v/—6) and E = Q(v/—6,v/—3) = F(v/=3). Then h(F) = 2, so
Op is not a PID, and it turns out that

(1) Op = Ore1 @ pes,

where e; = 1+‘2/j3, ey = \/%—3, and p = (3,v/—6). (Although es is not in O, there isn’t a
problem with the direct sum decomposition (1) for O over Of since the coefficients of ey
run not over Op but over the ideal p, which doesn’t include 1, so ex & pes.) Equation (1)
says that as an Op-module, Op = O ®p. The ideal p is not principal and this suggests Og
is not a free Op-module, although that does require an argument. To reinforce this point,
p @ p does not look like a free Op-module, since p is not principal, but p @ p has a second
direct sum decomposition that admits an O g-basis, so a direct sum of two non-free modules
can be free. We will see how in Example 9 below.

What we are after is a classification of finitely generated torsion-free modules over a
Dedekind domain, which will then be applied in the number field setting to describe O as
an Op-module. The extent to which O could fail to have an Op-basis will be related to
ideal classes in F'.

A technical concept we need to describe modules over a Dedekind domain is projective
modules.

Definition 4. Let A be any commutative ring. An A-module P is called projective if every
surjective linear map f: M — P from any A-module M onto P looks like a projection out
of a direct sum: there is an isomorphism h: M = P & N for some A-module N such that
h(m) = (f(m),*) for all m € M.

The isomorphism A is not unique. For example, taking A =2, P=Z,and M =Z & Z
with f(a,b) = a — 2b, we can use h: M — P & Z by h(a,b) = (a — 2b,b) or h(a,b) =
1
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(a — 2b,a — b). Each of these works since the first coordinate of h(a,b) is f(a,b) and h is
obviously invertible.

The complementary summand N in the definition of a projective module is isomorphic to
the kernel of f. Indeed, the condition h(m) = (f(m), %) means f(m) = 0 if and only if h(m)
is in {0} @© N, which means h restricts to an isomorphism between ker f and {0} & N = N.

It is easy to give examples of non-projective modules. For instance, if P is a projective
A-module with n generators there is a surjective A-linear map A™ — P, so A" = P& (Q for
some A-module (). When A is a domain, any submodule of A™ is torsion-free, so a finitely
generated projective module over a domain is torsion-free. Therefore a finitely generated
module over a domain that has torsion is not projective: Z @ Z/(2) is not a projective
Z-module. More importantly for us, though, is that fractional ideals in a Dedekind domain
are projective modules.

Lemma 5. For a domain A, any invertible fractional A-ideal is a projective A-module. In
particular, when A is a Dedekind domain all fractional A-ideals are projective A-modules.

Proof. Let a be an invertible fractional A-ideal. Then Zle ziy; = 1 for some x; € a and
y; € a~!. For each z € a,

r=1-z=mx(z)x)+ -+ zp(x)x)

and iz € ala = A, s0a C Y8 | Az; C a, 50 a = Azy + - + Azg. In a similar way,
a~! = Ay, + -+ Ayi. Suppose f: M —» a is a surjective A-linear map. Choose m; € M
such that f(m;) = x;. Define g: a — M by g(x) = Z:'le(fcyl)mZ Note zy; € aa~! = A for
all 7, so g(x) makes sense and g is A-linear. Then

k n n
Flo(@) =Y (wya) flme) = (wy)wi =z migs = w
i=1 i=1 i=1
Check the A-linear map h: M — ad@ker f given by the formula h(m) = (f(m), m—g(f(m)))
has inverse (z,y) — g(z) + y. ]

Here is the main structure theorem.

Theorem 6. Every finitely generated torsion-free module over a Dedekind domain A is
isomorphic to a direct sum of ideals in A.

Proof. Let M be a finitely generated torsion-free A-module. We can assume M # 0 and will
show there is an embedding M — A? for some d > 1 such that the image of M intersects
each standard coordinate axis of A%

Let F be the fraction field of A and x4, ..., x, be a generating set for M as an A-module.
We will show n is an upper bound on the size of any A-linearly independent subset of M.
Let f: A™ — M be the linear map where f(e;) = z; for all i. (By eq,...,e, we mean
the standard basis of A™.) Let y1,...,yx be linearly independent in M, so their A-span
is isomorphic to A*. Write yj = Yoiq aijz; with a;; € A. We pull the y;’s back to A”

by setting v; = (a1j,...,an;), so f(v;) = y;. A linear dependence relation on the v;’s is
transformed by f into a linear dependence relation on the y;’s, which is a trivial relation
by their linear independence. Therefore vy, ...,v; is A-linearly independent in A™, hence

F-linearly independent in F™. By linear algebra over fields, k < n.
From the bound k£ < n, there is a linearly independent subset of M with maximal
size, say t1,...,tq. Then Z;-lzl Aty = A? by identifying t; with the jth standard basis
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vector in A%, We will find a scalar multiple of M inside E?:l At;. For any x € M,
the set {x,t1,...,tq5} is linearly dependent by maximality of d, so there is a nontrivial
linear relation a,x + Z?:l a;t; = 0, necessarily with a, # 0 in A. Thus a,x € Z;-lzl At;.
Letting = run through the spanning set x1,...,x,, we have ax; € Z?Zl At; for all 7 where

a=ag, - az, #0. Thus aM C Z;l:l At;. Multiplying by a is an isomorphism of M with
aM , so we have the sequence of A-linear maps

d
M —aM <) At; — A%,
j=1

where the first and last maps are A-module isomorphisms. In the above composite map,
t; € M is mapped to ae; in A?_ 50 this composite map is an embedding M — A< such that
M meets each standard coordinate axis of A? in a nonzero vector. Compose this linear map
with projection A4 — A onto the last coordinate in the standard basis:

aije] + - --+ aqgeq — aq.

Denote the restriction of this to a map M — A as ¢, so a := p(M) is a nonzero ideal in
A. With ¢ we get a surjective map M — a, so Lemma 5 (the first time we need A to
be a Dedekind domain, not just an integral domain) tells us M = a @ ker ¢. Obviously
ker C A1 @ 0= A9 50 ker ¢ is a finitely generated (and torsion-free) A-module with
at most d — 1 A-linearly independent elements. Using induction on the largest number of
linearly independent elements in the module, ker ¢ is a direct sum of ideals in A. [ |

Remark 7. Using equations rather than isomorphisms, Theorem 6 says M = M1 ®---® My
where each M; is isomorphic to an ideal in A. Those ideals need not be principal, so M;
need not have the form Am;. If M is inside a vector space over the fraction field of A, then
M = @?:1 a;e; for some linearly independent e;’s, but be careful: if a; is a proper ideal
in A then e; is not in M since 1 € a;. The e;’s are not a spanning set for M as a module
since their coefficients are not running through A. The decomposition of the integers of
Q(+v/—6,+/=3) as a module over Z[y/—6] in Example 3 illustrates this point.

How much does a direct sum a; & - - - ® ag4, as a module, depend on the individual a;’s?

Lemma 8. Let A be a Dedekind domain. For fractional A-ideals a and b, there is an
A-module isomorphism a® b = A P ab.

Proof. Both sides of the isomorphism are unchanged up to A-module isomorphism when
we scale a and b, so without loss of generality a and b are nonzero ideals in A. We can
further scale so a and b are relatively prime. Indeed, let a=! ~ ag where ay C A. Using the
Chinese remainder theorem in A, there is a nonzero ideal ¢ such that agc is principal and
ged(c, b) = (1). Since ¢ ~ a5 ~ a, we can replace a by ¢ without changing a © b or A @ ab
up to A-module isomorphism.

The linear map f: a® b — a+ b = A given by f(a,b) = a — b is surjective and ker f =
{(a,a) :a €anb} = anb, which is ab since ged(a,b) = (1). Applying Lemma 5 to the
fractional A-ideal A, a® b= Adker f = AP ab. [

Example 9. For A = Z[/=5], let p2 = (2,1 + v/=5), so pz is not principal but p3 = 24
is principal. Then there is an A-module isomorphism py @ ps = A @ p3 =2 A @ A. That is
intriguing: po does not have an A-basis but po @ pa does! Working through the proof of
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Lemma 8 will show you how to write down a basis of pa @ po explicitly. In a similar way,
p @ p in Example 3 is a free Z[/—6]-module since p? is principal.

Theorem 10. Let A be a Dedekind domain. For fractional A-ideals ay,...,aq, there is an
A-module isomorphism a1 @ --- ® ag = AT @ay---ag.

Proof. Induct on d and use Lemma 8. [ |

Corollary 11. Let E/F be a finite extension of number fields with [E : F] = n. As an
Op-module, O = (‘)?{1 @ a for some nonzero ideal a in Op.

Proof. Since O is a finitely generated Z-module it is a finitely generated Op-module and
obviously has no torsion, so Theorems 6 and 10 imply Op = Oifl @ a for some d > 1
and nonzero ideal a in Op. Letting m = [F' : Q], both Op and a are free of rank m over
Z, while O is free of rank mn over Z. Computing the rank of O and (‘)%_1 @ a over Z,
mn =m(d—1) +m =md, so d = n. ]

Thus O is almost a free O p-module. If a is principal then Og is free. As an Op-module
up to isomorphism, (f);?1 @ a only depends on a through its ideal class, since a and any
za (r € F*) are isomorphic Op-modules. Does O% ' @ a, as an Op-module, depend on
a exactly through its ideal class? That is, if O%*l Da (97}71 @ b as Op-modules, does
[a] = [b] in CI(F)? The next two theorems together say the answer is yes.

Theorem 12. Let A be a domain with fraction field F. For fractional A-ideals a and b in
F, a2=2b as A-modules if and only if a = xb for some x € F*.

Here F' is any field, not necessarily a number field.

Proof. (<): Multiplication by z is an A-module isomorphism from b to a.

(=): Suppose f: a — b is an A-module isomorphism. We want an x € F* such that
f(t) = xt for all t € a. For this to be possible, f(t)/t has to be independent of the choice
of nonzero ¢. Then we could define = to be this common ratio, so f(t) = =t for all ¢t in a
(including ¢t = 0).

For any nonzero t; and t, in a,

f(t1) 2 f(t)

ot
You may be tempted to pull the ¢o and t; inside on the right, confirming the equality, but
that is bogus because f is A-linear and we don’t know if ¢; and ¢9 are in A (they are just

in F'). This is easy to fix. Since a is a fractional A-ideal, it has a denominator: da C A for
some nonzero d € A. Then dty,dts € A, so

taf(t1) Z t1f(t2) < dtaf(t1) < dt1 f(t2) <= f(dtaty)

— taf(h) = t1f(ta).

< f(dtita).

Theorem 13. For nonzero ideals ai,...,0,, and by,...,b, in a Dedekind domain A,we
have a1 ®- - -Bay, = b1d- - Db, as A-modules if and only if m = n and [a; - - - ay,] = [b1 - - - by,
in C1(A).

Proof. The “if” direction follows from Theorems 10 and 12: a1 ®---®a,, = A™ '@a; - - - ap,
soif m =mn and [a;---ay) = [b1---by,] in CI(A) then

Am_l@al"'amgAm_l@bl"'bmgbl@"'@bm-
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Turning to the “only if” direction, we show m is determined by the A-module structure
of ay @ - - Day,: it is the largest number of A-linearly independent elements in this module.
Picking a nonzero a; € a;, the m-tuples (...,0,a;,0,...) for 1 <i < m are easily A-linearly
independent, so @;~, a; has m linearly independent members. Since a1 & -+ @ a,,, C F™,
where F' is the fraction field of A, any set of more than m members of a; & --- $ a,, has a
nontrivial F-linear relation in /', which can be scaled to a nontrivial A-linear relation in
;" a; by clearing a common denominator in the coefficients. Therefore if a1 & - - - & a,, =
by @& - ® b, as A-modules we must have m = n by computing the maximal number of
A-linearly independent elements in both modules.

To show ;" a; = P, b; = a1 ---a,, and by - - - by, are scalar multiples, we can collect
ideals by multiplication into the last summands: it is enough to show A" '@a = A™ b =
a and b are scalar multiples. Let p: A" '@ a — A™ 1 @ b be an A-module isomorphism.
Viewing A™ ! @ a and A ! @ b as column vectors of length m with the last coordinate
in a or b, ¢ can be represented as an m x m matrix of A-linear maps (y;;), where g;;
has domain A or a and target A or b. The proof of Theorem 12 shows any A-linear map
from one fractional A-ideal to another (not necessarily injective or surjective) is a scaling
function. Therefore ¢ is described by an m x m matrix of numbers, say M, acting in the
usual way on column vectors.

For any a € a, let D, = diag(1,...,1,«) be the diagonal m x m matrix with « in the
lower right entry. Then D, (A™ '@ A) C A™ L@ a, so MD, maps A™ 1@ A to A 1 ab.
This means the bottom row of MD,, has all entries in b, so det(MD,) € b. Since D, has
determinant « and « is arbitrary in a, det(M)a C b. In the same way, det(M~1)b C a, so
det(M)a = b. |

Example 14. Let’s return to Example 3: F = Q(v/—6), E = F(v/-3), and Og = Op @ p,
where p = (3,1/—6). We can show Of is not a free O p-module: if it were free then O = O%,
0 Op®p =2 O0p & Op as Op-modules. Then Theorem 13 implies p = Op as Op-modules,
so p is principal, but p is nonprincipal. This is a contradiction.

We can now associate to any finite extension of number fields E/F a canonical ideal class
in CI(F), namely [a] where O = 0% ! @ a as Op-modules. Theorem 13 assures us [a] is
well-defined. Since the construction of [a] is due to Steinitz (1912), [a] is called the Steinitz
class of E/F.

Example 15. By Example 14, when F' = Q(y/—6) the nontrivial member of CI(F’) is the
Steinitz class of the quadratic extension F'(v/—3)/F.

Since the ideal class group of a number field F is finite, as E varies over all extensions of
F with a fixed degree n > 2 the different Og’s have finitely many possible O p-module struc-
tures, in fact at most h(F') of them. There are infinitely many nonisomorphic extensions of
F with degree n, so it is natural to ask if each ideal class is realized among them: for any
[a] € CI(F) and integer n > 2 is there some extension E/F of degree n whose Steinitz class
is [a], i.e., Op & O’}_l @ a as Op-modules?

The answer is yes for n = 2, 3,4, and 5 [1] (see [2] for n = 2 and 3). More precisely, the field
extensions F/F of degree n with Galois closure having Galois group S,, are equidistributed
in terms of their Steinitz classes in CI(F'). In particular, each ideal class in CI(F) is a
Steinitz class for infinitely many nonisomorphic degree n extensions of F when n = 2,3, 4,
and 5. The extension to general degrees is still an open problem in general.

We have focused on the description of a single finitely generated torsion-free module over
a Dedekind domain. What if we want to compare such a module and a submodule? If A
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is a PID, M is a finite free A-module and M’ is a submodule then we can align M and
M’ in the sense that there is a basis e, ..., e, of M and nonzero scalars ai,...,a;, in A
(where m < n) such that M = @;_; Ae; and M' = @}, Ae;. This has an analogue over
Dedekind domains, but it doesn’t use bases. If A is a Dedekind domain, M is a finitely
generated torsion-free A-module, and M’ is a submodule of M, then we can align M and
M’ in the sense that we can write

n m
M=FM ad M= M,
i=1 j=1

where m < n, each M; is isomorphic to a nonzero ideal in A, and each a; is a nonzero
ideal in A. It is generally false that such an alignment is compatible with an isomorphism
M = A" 1@a. That is, such an isomorphism need not restrict to M’ to give an isomorphism
M' = A" 1 @ o with  C a, even for A = Z. Consider, for instance, M = Z @& Z and
M' = aZ&aZ for a > 1 (som =n = 2). We can’t write M = Ze1®Zey and M’ = Zey BbZe,
for some integer b since that would imply M /M’ = Z /bZ is cyclic, whereas M /M’ = (Z/aZ)?
is not cyclic.
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