IDEAL CLASSES AND RELATIVE INTEGERS

KEITH CONRAD

The ring of integers of a number field is free as a **Z**-module. It is a module not just over **Z**, but also over any intermediate ring of integers. That is, if $E \supset F \supset \mathbf{Q}$ we can consider \mathcal{O}_E as an \mathcal{O}_F -module. Since \mathcal{O}_E is finitely generated over **Z**, it is also finitely generated over \mathcal{O}_F (just a larger ring of scalars), but \mathcal{O}_E may or may not have a basis over \mathcal{O}_F .

When we treat \mathcal{O}_E as a module over \mathcal{O}_F , rather than over \mathbf{Z} , we speak about a *relative* extension of integers. If \mathcal{O}_F is a PID then \mathcal{O}_E will be a free \mathcal{O}_F -module, so \mathcal{O}_E will have a basis over \mathcal{O}_F . Such a basis is called a *relative integral basis* for E over F. The next three examples illustrate some possibilities when \mathcal{O}_F is not a PID.

Example 1. Let $F = \mathbf{Q}(\sqrt{-5})$ and $E = \mathbf{Q}(i, \sqrt{-5}) = F(i)$. Although $\mathcal{O}_F = \mathbf{Z}[\sqrt{-5}]$ is not a PID, \mathcal{O}_E is a free \mathcal{O}_F -module with relative integral basis $\{1, \frac{i+\sqrt{-5}}{2}\}$.

Example 2. Let $F = \mathbf{Q}(\sqrt{-15})$ and $E = \mathbf{Q}(\sqrt{-15}, \sqrt{26}) = F(\sqrt{26})$. Then h(F) = 2, so \mathcal{O}_F is not a PID, but it turns out that $\mathcal{O}_E = \mathcal{O}_F \oplus \mathcal{O}_F \sqrt{26}$, so \mathcal{O}_E is a free \mathcal{O}_F -module.

Example 3. Let $F = \mathbf{Q}(\sqrt{-6})$ and $E = \mathbf{Q}(\sqrt{-6}, \sqrt{-3}) = F(\sqrt{-3})$. Then h(F) = 2, so \mathcal{O}_F is not a PID, and it turns out that

(1)
$$\mathcal{O}_E = \mathcal{O}_F e_1 \oplus \mathfrak{p} e_2,$$

where $e_1 = \frac{1+\sqrt{-3}}{2}$, $e_2 = \frac{1}{\sqrt{-3}}$, and $\mathfrak{p} = (3, \sqrt{-6})$. (Although e_2 is not in \mathcal{O}_E , there isn't a problem with the direct sum decomposition (1) for \mathcal{O}_E over \mathcal{O}_F since the coefficients of e_2 run not over \mathcal{O}_F but over the ideal \mathfrak{p} , which doesn't include 1, so $e_2 \notin \mathfrak{p} e_2$.) Equation (1) says that as an \mathcal{O}_F -module, $\mathcal{O}_E \cong \mathcal{O}_F \oplus \mathfrak{p}$. The ideal \mathfrak{p} is not principal and this suggests \mathcal{O}_E is not a free \mathcal{O}_F -module, although that does require an argument. To reinforce this point, $\mathfrak{p} \oplus \mathfrak{p}$ does not look like a free \mathcal{O}_F -module, since \mathfrak{p} is not principal, but $\mathfrak{p} \oplus \mathfrak{p}$ has a second direct sum decomposition that admits an \mathcal{O}_F -basis, so a direct sum of two non-free modules can be free. We will see how in Example 9 below.

What we are after is a classification of finitely generated torsion-free modules over a Dedekind domain, which will then be applied in the number field setting to describe \mathcal{O}_E as an \mathcal{O}_F -module. The extent to which \mathcal{O}_E could fail to have an \mathcal{O}_F -basis will be related to ideal classes in F.

A technical concept we need to describe modules over a Dedekind domain is projective modules.

Definition 4. Let A be any commutative ring. An A-module P is called *projective* if every surjective linear map $f: M \twoheadrightarrow P$ from any A-module M onto P looks like a projection out of a direct sum: there is an isomorphism $h: M \cong P \oplus N$ for some A-module N such that h(m) = (f(m), *) for all $m \in M$.

The isomorphism h is not unique. For example, taking $A = \mathbf{Z}$, $P = \mathbf{Z}$, and $M = \mathbf{Z} \oplus \mathbf{Z}$ with f(a,b) = a - 2b, we can use $h: M \to P \oplus \mathbf{Z}$ by h(a,b) = (a - 2b,b) or h(a,b) =

KEITH CONRAD

(a-2b, a-b). Each of these works since the first coordinate of h(a, b) is f(a, b) and h is obviously invertible.

The complementary summand N in the definition of a projective module is isomorphic to the kernel of f. Indeed, the condition h(m) = (f(m), *) means f(m) = 0 if and only if h(m) is in $\{0\} \oplus N$, which means h restricts to an isomorphism between ker f and $\{0\} \oplus N \cong N$.

It is easy to give examples of non-projective modules. For instance, if P is a projective A-module with n generators there is a surjective A-linear map $A^n \to P$, so $A^n \cong P \oplus Q$ for some A-module Q. When A is a domain, any submodule of A^n is torsion-free, so a finitely generated projective module over a domain is torsion-free. Therefore a finitely generated module over a domain that has torsion is not projective: $\mathbf{Z} \oplus \mathbf{Z}/(2)$ is not a projective \mathbf{Z} -module. More importantly for us, though, is that fractional ideals in a Dedekind domain are projective modules.

Lemma 5. For a domain A, any invertible fractional A-ideal is a projective A-module. In particular, when A is a Dedekind domain all fractional A-ideals are projective A-modules.

Proof. Let \mathfrak{a} be an invertible fractional A-ideal. Then $\sum_{i=1}^{k} x_i y_i = 1$ for some $x_i \in \mathfrak{a}$ and $y_i \in \mathfrak{a}^{-1}$. For each $x \in \mathfrak{a}$,

$$x = 1 \cdot x = x_1(x'_1x) + \dots + x_k(x'_kx)$$

and $x'_i x \in \mathfrak{a}^{-1}\mathfrak{a} = A$, so $\mathfrak{a} \subset \sum_{i=1}^k Ax_i \subset \mathfrak{a}$, so $\mathfrak{a} = Ax_1 + \cdots + Ax_k$. In a similar way, $\mathfrak{a}^{-1} = Ay_1 + \cdots + Ay_k$. Suppose $f: M \twoheadrightarrow \mathfrak{a}$ is a surjective A-linear map. Choose $m_i \in M$ such that $f(m_i) = x_i$. Define $g: \mathfrak{a} \to M$ by $g(x) = \sum_{i=1}^k (xy_i)m_i$. Note $xy_i \in \mathfrak{a}\mathfrak{a}^{-1} = A$ for all i, so g(x) makes sense and g is A-linear. Then

$$f(g(x)) = \sum_{i=1}^{k} (xy_i) f(m_i) = \sum_{i=1}^{n} (xy_i) x_i = x \sum_{i=1}^{n} x_i y_i = x.$$

Check the A-linear map $h: M \to \mathfrak{a} \oplus \ker f$ given by the formula h(m) = (f(m), m - g(f(m))) has inverse $(x, y) \mapsto g(x) + y$.

Here is the main structure theorem.

Theorem 6. Every finitely generated torsion-free module over a Dedekind domain A is isomorphic to a direct sum of ideals in A.

Proof. Let M be a finitely generated torsion-free A-module. We can assume $M \neq 0$ and will show there is an embedding $M \hookrightarrow A^d$ for some $d \ge 1$ such that the image of M intersects each standard coordinate axis of A^d .

Let F be the fraction field of A and x_1, \ldots, x_n be a generating set for M as an A-module. We will show n is an upper bound on the size of any A-linearly independent subset of M. Let $f: A^n \to M$ be the linear map where $f(e_i) = x_i$ for all i. (By e_1, \ldots, e_n we mean the standard basis of A^n .) Let y_1, \ldots, y_k be linearly independent in M, so their A-span is isomorphic to A^k . Write $y_j = \sum_{i=1}^n a_{ij}x_i$ with $a_{ij} \in A$. We pull the y_j 's back to A^n by setting $v_j = (a_{1j}, \ldots, a_{nj})$, so $f(v_j) = y_j$. A linear dependence relation on the v_j 's is transformed by f into a linear dependence relation on the y_j 's, which is a trivial relation by their linear independence. Therefore v_1, \ldots, v_k is A-linearly independent in A^n , hence F-linearly independent in F^n . By linear algebra over fields, $k \leq n$.

From the bound $k \leq n$, there is a linearly independent subset of M with maximal size, say t_1, \ldots, t_d . Then $\sum_{j=1}^d At_j \cong A^d$ by identifying t_j with the *j*th standard basis

vector in A^d . We will find a scalar multiple of M inside $\sum_{j=1}^d At_j$. For any $x \in M$, the set $\{x, t_1, \ldots, t_d\}$ is linearly dependent by maximality of d, so there is a nontrivial linear relation $a_x x + \sum_{i=1}^d a_i t_i = 0$, necessarily with $a_x \neq 0$ in A. Thus $a_x x \in \sum_{j=1}^d At_j$. Letting x run through the spanning set x_1, \ldots, x_n , we have $ax_i \in \sum_{j=1}^d At_j$ for all i where $a = a_{x_1} \cdots a_{x_n} \neq 0$. Thus $aM \subset \sum_{j=1}^d At_j$. Multiplying by a is an isomorphism of M with aM, so we have the sequence of A-linear maps

$$M \to aM \hookrightarrow \sum_{j=1}^d At_j \to A^d,$$

where the first and last maps are A-module isomorphisms. In the above composite map, $t_j \in M$ is mapped to ae_j in A^d , so this composite map is an embedding $M \hookrightarrow A^d$ such that M meets each standard coordinate axis of A^d in a nonzero vector. Compose this linear map with projection $A^d \to A$ onto the last coordinate in the standard basis:

$$a_1e_1 + \dots + a_de_d \mapsto a_d.$$

Denote the restriction of this to a map $M \to A$ as φ , so $\mathfrak{a} := \varphi(M)$ is a *nonzero* ideal in A. With φ we get a surjective map $M \twoheadrightarrow \mathfrak{a}$, so Lemma 5 (the first time we need A to be a Dedekind domain, not just an integral domain) tells us $M \cong \mathfrak{a} \oplus \ker \varphi$. Obviously $\ker \varphi \subset A^{d-1} \oplus 0 \cong A^{d-1}$, so $\ker \varphi$ is a finitely generated (and torsion-free) A-module with at most d-1 A-linearly independent elements. Using induction on the largest number of linearly independent elements in the module, $\ker \varphi$ is a direct sum of ideals in A.

Remark 7. Using equations rather than isomorphisms, Theorem 6 says $M = M_1 \oplus \cdots \oplus M_d$ where each M_i is isomorphic to an ideal in A. Those ideals need not be principal, so M_i need not have the form Am_i . If M is inside a vector space over the fraction field of A, then $M = \bigoplus_{i=1}^{d} \mathfrak{a}_i e_i$ for some linearly independent e_i 's, but be careful: if \mathfrak{a}_i is a proper ideal in A then e_i is not in M since $1 \notin \mathfrak{a}_i$. The e_i 's are not a spanning set for M as a module since their coefficients are not running through A. The decomposition of the integers of $\mathbf{Q}(\sqrt{-6}, \sqrt{-3})$ as a module over $\mathbf{Z}[\sqrt{-6}]$ in Example 3 illustrates this point.

How much does a direct sum $\mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_d$, as a module, depend on the individual \mathfrak{a}_i 's?

Lemma 8. Let A be a Dedekind domain. For fractional A-ideals \mathfrak{a} and \mathfrak{b} , there is an A-module isomorphism $\mathfrak{a} \oplus \mathfrak{b} \cong A \oplus \mathfrak{a}\mathfrak{b}$.

Proof. Both sides of the isomorphism are unchanged up to A-module isomorphism when we scale \mathfrak{a} and \mathfrak{b} , so without loss of generality \mathfrak{a} and \mathfrak{b} are nonzero ideals in A. We can further scale so \mathfrak{a} and \mathfrak{b} are relatively prime. Indeed, let $\mathfrak{a}^{-1} \sim \mathfrak{a}_0$ where $\mathfrak{a}_0 \subset A$. Using the Chinese remainder theorem in A, there is a nonzero ideal \mathfrak{c} such that $\mathfrak{a}_0\mathfrak{c}$ is principal and $\operatorname{gcd}(\mathfrak{c},\mathfrak{b}) = (1)$. Since $\mathfrak{c} \sim \mathfrak{a}_0^{-1} \sim \mathfrak{a}$, we can replace \mathfrak{a} by \mathfrak{c} without changing $\mathfrak{a} \oplus \mathfrak{b}$ or $A \oplus \mathfrak{a}\mathfrak{b}$ up to A-module isomorphism.

The linear map $f: \mathfrak{a} \oplus \mathfrak{b} \to \mathfrak{a} + \mathfrak{b} = A$ given by f(a, b) = a - b is surjective and ker $f = \{(a, a) : a \in \mathfrak{a} \cap \mathfrak{b}\} \cong \mathfrak{a} \cap \mathfrak{b}$, which is $\mathfrak{a}\mathfrak{b}$ since $gcd(\mathfrak{a}, \mathfrak{b}) = (1)$. Applying Lemma 5 to the fractional A-ideal A, $\mathfrak{a} \oplus \mathfrak{b} \cong A \oplus \ker f \cong A \oplus \mathfrak{a}\mathfrak{b}$.

Example 9. For $A = \mathbb{Z}[\sqrt{-5}]$, let $\mathfrak{p}_2 = (2, 1 + \sqrt{-5})$, so \mathfrak{p}_2 is not principal but $\mathfrak{p}_2^2 = 2A$ is principal. Then there is an A-module isomorphism $\mathfrak{p}_2 \oplus \mathfrak{p}_2 \cong A \oplus \mathfrak{p}_2^2 \cong A \oplus A$. That is intriguing: \mathfrak{p}_2 does not have an A-basis but $\mathfrak{p}_2 \oplus \mathfrak{p}_2$ does! Working through the proof of

KEITH CONRAD

Lemma 8 will show you how to write down a basis of $\mathfrak{p}_2 \oplus \mathfrak{p}_2$ explicitly. In a similar way, $\mathfrak{p} \oplus \mathfrak{p}$ in Example 3 is a free $\mathbb{Z}[\sqrt{-6}]$ -module since \mathfrak{p}^2 is principal.

Theorem 10. Let A be a Dedekind domain. For fractional A-ideals $\mathfrak{a}_1, \ldots, \mathfrak{a}_d$, there is an A-module isomorphism $\mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_d \cong A^{d-1} \oplus \mathfrak{a}_1 \cdots \mathfrak{a}_d$.

Proof. Induct on d and use Lemma 8.

Corollary 11. Let E/F be a finite extension of number fields with [E : F] = n. As an \mathcal{O}_F -module, $\mathcal{O}_E \cong \mathcal{O}_F^{n-1} \oplus \mathfrak{a}$ for some nonzero ideal \mathfrak{a} in \mathcal{O}_F .

Proof. Since \mathcal{O}_E is a finitely generated **Z**-module it is a finitely generated \mathcal{O}_F -module and obviously has no torsion, so Theorems 6 and 10 imply $\mathcal{O}_E \cong \mathcal{O}_F^{d-1} \oplus \mathfrak{a}$ for some $d \ge 1$ and nonzero ideal \mathfrak{a} in \mathcal{O}_F . Letting $m = [F : \mathbf{Q}]$, both \mathcal{O}_F and \mathfrak{a} are free of rank m over **Z**, while \mathcal{O}_E is free of rank mn over **Z**. Computing the rank of \mathcal{O}_E and $\mathcal{O}_F^{d-1} \oplus \mathfrak{a}$ over **Z**, mn = m(d-1) + m = md, so d = n.

Thus \mathcal{O}_E is almost a free \mathcal{O}_F -module. If \mathfrak{a} is principal then \mathcal{O}_E is free. As an \mathcal{O}_F -module up to isomorphism, $\mathcal{O}_F^{n-1} \oplus \mathfrak{a}$ only depends on \mathfrak{a} through its ideal class, since \mathfrak{a} and any $x\mathfrak{a}$ ($x \in F^{\times}$) are isomorphic \mathcal{O}_F -modules. Does $\mathcal{O}_F^{n-1} \oplus \mathfrak{a}$, as an \mathcal{O}_F -module, depend on \mathfrak{a} exactly through its ideal class? That is, if $\mathcal{O}_F^{n-1} \oplus \mathfrak{a} \cong \mathcal{O}_F^{n-1} \oplus \mathfrak{b}$ as \mathcal{O}_F -modules, does $[\mathfrak{a}] = [\mathfrak{b}]$ in $\mathrm{Cl}(F)$? The next two theorems together say the answer is yes.

Theorem 12. Let A be a domain with fraction field F. For fractional A-ideals \mathfrak{a} and \mathfrak{b} in F, $\mathfrak{a} \cong \mathfrak{b}$ as A-modules if and only if $\mathfrak{a} = x\mathfrak{b}$ for some $x \in F^{\times}$.

Here F is any field, not necessarily a number field.

Proof. (\Leftarrow): Multiplication by x is an A-module isomorphism from \mathfrak{b} to \mathfrak{a} .

 (\Rightarrow) : Suppose $f: \mathfrak{a} \to \mathfrak{b}$ is an A-module isomorphism. We want an $x \in F^{\times}$ such that f(t) = xt for all $t \in \mathfrak{a}$. For this to be possible, f(t)/t has to be independent of the choice of nonzero t. Then we could define x to be this common ratio, so f(t) = xt for all t in \mathfrak{a} (including t = 0).

For any nonzero t_1 and t_2 in \mathfrak{a} ,

$$\frac{f(t_1)}{t_1} \stackrel{?}{=} \frac{f(t_2)}{t_2} \iff t_2 f(t_1) \stackrel{?}{=} t_1 f(t_2).$$

You may be tempted to pull the t_2 and t_1 inside on the right, confirming the equality, but that is bogus because f is A-linear and we don't know if t_1 and t_2 are in A (they are just in F). This is easy to fix. Since \mathfrak{a} is a fractional A-ideal, it has a denominator: $d\mathfrak{a} \subset A$ for some nonzero $d \in A$. Then $dt_1, dt_2 \in A$, so

$$t_2f(t_1) \stackrel{?}{=} t_1f(t_2) \iff dt_2f(t_1) \stackrel{?}{=} dt_1f(t_2) \iff f(dt_2t_1) \stackrel{\checkmark}{=} f(dt_1t_2).$$

Theorem 13. For nonzero ideals $\mathfrak{a}_1, \ldots, \mathfrak{a}_m$ and $\mathfrak{b}_1, \ldots, \mathfrak{b}_n$ in a Dedekind domain A, we have $\mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_m \cong \mathfrak{b}_1 \oplus \cdots \oplus \mathfrak{b}_n$ as A-modules if and only if m = n and $[\mathfrak{a}_1 \cdots \mathfrak{a}_m] = [\mathfrak{b}_1 \cdots \mathfrak{b}_n]$ in Cl(A).

Proof. The "if" direction follows from Theorems 10 and 12: $\mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_m \cong A^{m-1} \oplus \mathfrak{a}_1 \cdots \mathfrak{a}_m$, so if m = n and $[\mathfrak{a}_1 \cdots \mathfrak{a}_m] = [\mathfrak{b}_1 \cdots \mathfrak{b}_m]$ in $\operatorname{Cl}(A)$ then

$$A^{m-1} \oplus \mathfrak{a}_1 \cdots \mathfrak{a}_m \cong A^{m-1} \oplus \mathfrak{b}_1 \cdots \mathfrak{b}_m \cong \mathfrak{b}_1 \oplus \cdots \oplus \mathfrak{b}_m.$$

4

Turning to the "only if" direction, we show m is determined by the A-module structure of $\mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_m$: it is the largest number of A-linearly independent elements in this module. Picking a nonzero $a_i \in \mathfrak{a}_i$, the m-tuples $(\ldots, 0, a_i, 0, \ldots)$ for $1 \leq i \leq m$ are easily A-linearly independent, so $\bigoplus_{i=1}^m \mathfrak{a}_i$ has m linearly independent members. Since $\mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_m \subset F^m$, where F is the fraction field of A, any set of more than m members of $\mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_m$ has a nontrivial F-linear relation in F^m , which can be scaled to a nontrivial A-linear relation in $\bigoplus_{i=1}^m \mathfrak{a}_i$ by clearing a common denominator in the coefficients. Therefore if $\mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_m \cong$ $\mathfrak{b}_1 \oplus \cdots \oplus \mathfrak{b}_n$ as A-modules we must have m = n by computing the maximal number of A-linearly independent elements in both modules.

To show $\bigoplus_{i=1}^{\hat{m}} \mathfrak{a}_i \cong \bigoplus_{i=1}^{m} \mathfrak{b}_i \Rightarrow \mathfrak{a}_1 \cdots \mathfrak{a}_m$ and $\mathfrak{b}_1 \cdots \mathfrak{b}_m$ are scalar multiples, we can collect ideals by multiplication into the last summands: it is enough to show $A^{m-1} \oplus \mathfrak{a} \cong A^{m-1} \oplus \mathfrak{b} \Rightarrow$ \mathfrak{a} and \mathfrak{b} are scalar multiples. Let $\varphi: A^{m-1} \oplus \mathfrak{a} \to A^{m-1} \oplus \mathfrak{b}$ be an A-module isomorphism. Viewing $A^{m-1} \oplus \mathfrak{a}$ and $A^{m-1} \oplus \mathfrak{b}$ as column vectors of length m with the last coordinate in \mathfrak{a} or \mathfrak{b} , φ can be represented as an $m \times m$ matrix of A-linear maps (φ_{ij}) , where φ_{ij} has domain A or \mathfrak{a} and target A or \mathfrak{b} . The proof of Theorem 12 shows any A-linear map from one fractional A-ideal to another (not necessarily injective or surjective) is a scaling function. Therefore φ is described by an $m \times m$ matrix of numbers, say \mathcal{M} , acting in the usual way on column vectors.

For any $\alpha \in \mathfrak{a}$, let $D_{\alpha} = \operatorname{diag}(1, \ldots, 1, \alpha)$ be the diagonal $m \times m$ matrix with α in the lower right entry. Then $D_{\alpha}(A^{m-1} \oplus A) \subset A^{m-1} \oplus \mathfrak{a}$, so $\mathcal{M}D_{\alpha}$ maps $A^{m-1} \oplus A$ to $A^{m-1} \oplus \mathfrak{b}$. This means the bottom row of $\mathcal{M}D_{\alpha}$ has all entries in \mathfrak{b} , so $\det(\mathcal{M}D_{\alpha}) \in \mathfrak{b}$. Since D_{α} has determinant α and α is arbitrary in \mathfrak{a} , $\det(\mathcal{M})\mathfrak{a} \subset \mathfrak{b}$. In the same way, $\det(\mathcal{M}^{-1})\mathfrak{b} \subset \mathfrak{a}$, so $\det(\mathcal{M})\mathfrak{a} = \mathfrak{b}$.

Example 14. Let's return to Example 3: $F = \mathbf{Q}(\sqrt{-6}), E = F(\sqrt{-3})$, and $\mathcal{O}_E \cong \mathcal{O}_F \oplus \mathfrak{p}$, where $\mathfrak{p} = (3, \sqrt{-6})$. We can show \mathcal{O}_E is not a free \mathcal{O}_F -module: if it were free then $\mathcal{O}_E \cong \mathcal{O}_F^2$, so $\mathcal{O}_F \oplus \mathfrak{p} \cong \mathcal{O}_F \oplus \mathcal{O}_F$ as \mathcal{O}_F -modules. Then Theorem 13 implies $\mathfrak{p} \cong \mathcal{O}_F$ as \mathcal{O}_F -modules, so \mathfrak{p} is principal, but \mathfrak{p} is nonprincipal. This is a contradiction.

We can now associate to any finite extension of number fields E/F a canonical ideal class in $\operatorname{Cl}(F)$, namely $[\mathfrak{a}]$ where $\mathcal{O}_E \cong \mathcal{O}_F^{n-1} \oplus \mathfrak{a}$ as \mathcal{O}_F -modules. Theorem 13 assures us $[\mathfrak{a}]$ is well-defined. Since the construction of $[\mathfrak{a}]$ is due to Steinitz (1912), $[\mathfrak{a}]$ is called the *Steinitz* class of E/F.

Example 15. By Example 14, when $F = \mathbf{Q}(\sqrt{-6})$ the nontrivial member of $\operatorname{Cl}(F)$ is the Steinitz class of the quadratic extension $F(\sqrt{-3})/F$.

Since the ideal class group of a number field F is finite, as E varies over all extensions of F with a fixed degree $n \ge 2$ the different \mathcal{O}_E 's have finitely many possible \mathcal{O}_F -module structures, in fact at most h(F) of them. There are infinitely many nonisomorphic extensions of F with degree n, so it is natural to ask if each ideal class is realized among them: for any $[\mathfrak{a}] \in \operatorname{Cl}(F)$ and integer $n \ge 2$ is there some extension E/F of degree n whose Steinitz class is $[\mathfrak{a}]$, *i.e.*, $\mathcal{O}_E \cong \mathcal{O}_F^{n-1} \oplus \mathfrak{a}$ as \mathcal{O}_F -modules?

The answer is yes for n = 2, 3, 4, and 5 [1] (see [2] for n = 2 and 3). More precisely, the field extensions E/F of degree n with Galois closure having Galois group S_n are equidistributed in terms of their Steinitz classes in Cl(F). In particular, each ideal class in Cl(F) is a Steinitz class for infinitely many nonisomorphic degree n extensions of F when n = 2, 3, 4, and 5. The extension to general degrees is still an open problem in general.

We have focused on the description of a single finitely generated torsion-free module over a Dedekind domain. What if we want to compare such a module and a submodule? If A

KEITH CONRAD

is a PID, M is a finite free A-module and M' is a submodule then we can align M and M' in the sense that there is a basis e_1, \ldots, e_n of M and nonzero scalars a_1, \ldots, a_m in A (where $m \leq n$) such that $M = \bigoplus_{i=1}^n Ae_i$ and $M' = \bigoplus_{j=1}^m Ae_j$. This has an analogue over Dedekind domains, but it doesn't use bases. If A is a Dedekind domain, M is a finitely generated torsion-free A-module, and M' is a submodule of M, then we can align M and M' in the sense that we can write

$$M = \bigoplus_{i=1}^{n} M_i$$
 and $M' = \bigoplus_{j=1}^{m} \mathfrak{a}_j M_j$

where $m \leq n$, each M_i is isomorphic to a nonzero ideal in A, and each \mathfrak{a}_j is a nonzero ideal in A. It is generally false that such an alignment is compatible with an isomorphism $M \cong A^{n-1} \oplus \mathfrak{a}$. That is, such an isomorphism need not restrict to M' to give an isomorphism $M' \cong A^{m-1} \oplus \mathfrak{a}'$ with $\mathfrak{a}' \subset \mathfrak{a}$, even for $A = \mathbb{Z}$. Consider, for instance, $M = \mathbb{Z} \oplus \mathbb{Z}$ and $M' = a\mathbb{Z} \oplus a\mathbb{Z}$ for a > 1 (so m = n = 2). We can't write $M = \mathbb{Z}e_1 \oplus \mathbb{Z}e_2$ and $M' = \mathbb{Z}e_1 \oplus b\mathbb{Z}e_2$ for some integer b since that would imply $M/M' \cong \mathbb{Z}/b\mathbb{Z}$ is cyclic, whereas $M/M' \cong (\mathbb{Z}/a\mathbb{Z})^2$ is not cyclic.

References

- M. Bhargava, A. Shankar, and X. Wang, Geometry-of-numbers methods over global fields I: Prehomogeneous vector spaces, preprint (2015), https://arxiv.org/abs/1512.03035.
- [2] A. C. Kable and D. J. Wright, Uniform distribution of the Steinitz invariants of quadratic and cubic extensions, *Compositio Math.* 142 (2006), 84–100.