THE p-ADIC EXPANSION OF RATIONAL NUMBERS

KEITH CONRAD

1. INTRODUCTION

In the positive real numbers, the decimal expansion of every positive rational number is
eventually periodic! (e.g., 21/55 = .381 = .3818181...) and, conversely, every eventually
periodic decimal expansion is a positive rational number. We will prove the set of all rational
numbers can be characterized among the p-adic numbers a similar way: they are the p-adic
numbers with eventually periodic p-adic expansions.

Example 1.1. In Q3
2 R
E = 11210 = 1121012101210... ..

where the initial one-digit block “1” is followed by the repeating block 1210. Let’s check
this is correct:

17210 = 1121012101210. ..
= 1+ 3(121012101210...)
= 14+3(14+2-3+3H1+34+3%+324...)

= 1+3(16) ) 3"
k>0
48
1— 34
48

= 1——
80

32
80
2

5-
As above, throughout this note we will use the convention of writing p-adic expansions
with the lowest-order terms on the left, in the same way power series are written (ag+ajz+
azz? + - --). For example, in Q, we write

—1=(p-1)+@-p+{p-1)p*+ -
rather than —1 = -+ (p — )p®> 4+ (p — 1)p + (p — 1). When writing positive integers in
base p, we will write them with lowest-order terms on the right in order to match the way
positive integers are written in base 10, and we’ll include a subscript for the base. For
example, 58 in base 3 is 20113 since 58 = 2-3% +0-32 4 1-3 + 1, but the 3-adic expansion
of 58 is written in reverse order as 1102 and that means 1 +1-3 +0-32 4233,

= 1+

IThis characterization of Q-0 inside R is not affected by some numbers having more than one decimal
expansion, such as .5 = .49999. .., which are both eventually periodic: eventually all 0 or eventually all 9.
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Multiplying and dividing a p-adic number by powers of p shifts the digits, but does not
affect the property of having an eventually periodic p-adic expansion. Therefore it suffices to
focus for the most part on numbers with p-adic absolute value 1, which are p-adic expansions
of the form c¢o + ¢1p + cap? + - -+ where 0 < ¢; < p— 1 and ¢ #0.

2. PURELY PERIODIC EXPANSIONS
As a warm-up, let’s describe p-adic numbers with purely periodic p-adic expansions.

Theorem 2.1. A rational number with p-adic absolute value 1 has a purely periodic p-adic
expansion if and only if it lies in the real interval [—1,0).

Proof. A purely periodic p-adic expansion having p-adic absolute value 1 with a repeating
block of k digits looks like mgmy - .- g1, where 0 < n; < p—1 and ng # 0. We can evaluate
this as a fraction by summing geometric series in Z,:

non .. . Np—1 = 1(n0n1...nk_1)—i—pk(nonl...nk_l)—i—p%(nonl...nk_l)+---

= (nony...mp—)(L+p"+pF +-)
nony...Nkg—1
(2.1) = "
The p-adic expansion in the numerator of (2.1), which is the base p number (ng_; - - -nin9g),
with digits in reverse order, is an integer between 1 and p* — 1 (it is not 0 since ny # 0),
and we are dividing it by 1 —p* = —(p* — 1), so this purely periodic expansion is a rational
number lying in the interval [—1,0).

Conversely, let 7 be a rational number with p-adic absolute value 1 that lies in [—1,0).
We will show 7 can be written in the form (2.1), and then the calculations that led to (2.1)
can be read in reverse to see r has a purely periodic p-adic expansion.

Since |r|, = 1 and r < 0 we can write r = a/b with numerator a < 0 and denominator
b > 1 that are both not divisible by p. Since p and b are relatively prime, from elementary
number theory we have p* = 1 mod b for some k > 1. Thus p* = 1 + bb’ for some positive
integer b’, so

a abl  —ab

b b 1—ph

Set N = —ab'. Since a < 0, N € Z*. From —1 <7 < 0 we get —1 < N/(1 —p*) < 0, so
0 < N < pF —1. Thus N in base p has at most k digits: N = ng+nip+--- + np_1p"
where the digits n; are between 0 and p — 1. Hence r has the form (2.1). Since a and V' are
not divisible by p, |[N|, =1 so ng # 0. O

Remark 2.2. This theorem is not saying rationals in [—1,0) have purely periodic p-adic
expansions. It says rationals in [—1,0) with p-adic absolute value 1 have purely periodic
expansions.

Example 2.3. Let’s work out the 3-adic expansion of —5/11, which is in [—1, 0) with 3-adic
absolute value 1. The least? k£ > 1 making 3* = 1 mod 11 is k = 5, with 3° — 1 = 11-22, so

) 5-22 110 110

11 11220 P _1 1-3

2t is not important to pick k minimal, but to do otherwise makes the periodic digit block appear longer,
like writing 12 as 1212.
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In base 3, 110 = 3% 4+ 3% + 2 = 110023. Its 3-adic expansion from left to right is 20011, so

5 110023 20011
—— = = = 20011 = 2001120011....
11 1-—-35 1-35 00 0011200
As a check that this calculation is correct, add up the terms in the 3-adic expansion and
get back —5/11:

2001120011... = 2 3% 4+3%) 3% 43 " 37
i>0 i>0 i>0
2 n 27 n 81
1-3 1-3 1-3°
2427481
—242
110
242
11-10
11-22
_5
11
We can get the p-adic expansion of a rational number in the real interval (0, 1) having
p-adic absolute value 1 by using Theorem 2.1 to get the expansion of its negative and then
negating the result. Recall the simple rule for negating a nonzero p-adic expansion: if
x = cgp® + cd+1pd+1 4+ -+ 4 ¢ip"+ - - - where the ¢; are digits and ¢4 # 0, then

(2.2) —z=p—cp’+(p-1—cay)p™ "+ +p—1—c)p'+---.

In the expansion of —z, note the first digit is affected differently from the rest: p — ¢4
compared to p — 1 — ¢; for i > d.

Example 2.4. Let’s derive the 3-adic expansion of 2/5, which was pulled out of nowhere
in Example 1.1. We will use the proof of Theorem 2.1 to find the expansion of —2/5 and
then negate the result.

To make 3¥ =1 mod 5 we can use k = 4. Then 3F — 1 =75-16, so

2 2.16 32

5  5-16 1-—3%
In base 3, 32 = 3% + 3 +2 = 10123, so

2 10123 2101
_c_ - — 2101 = 210121012101 . ..
5 1—-3% 1-34 0 0121012101,

which is purely periodic. Negating and using (2.2) with p = 3, we get

2 S
E= —210121012101 ... = 112101210121 ... = 11210,
which is eventually periodic rather than purely periodic.

3. EVENTUALLY PERIODIC EXPANSIONS

Theorem 3.1. In Q,, the numbers with eventually periodic p-adic expansions are precisely
the rational numbers.
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Proof. We begin by showing every eventually periodic p-adic expansion is rational. This
will generalize the calculations at the start of the proof of Theorem 2.1. An eventually
periodic p-adic expansion with absolute value 1 looks like

(3.1) momy - - Mij—1Neny - - - Nkg—1 = Moy -+ - Myj—_1MoN1 -+ - Ng—1NoN1 - Ngg—1 -+ -,

a first block of j digits mgmy - - - m;_1 followed by a repeating block of k digits ngni - - - ng_1.
(If the expansion is purely periodic then the initial block can be taken as empty and set
j =0.) Write (3.1) in series form as

mo+ - +miap’ T+ (nop? + -+ e p ) 4 (nop T T

Using geometric series, we evaluate (3.1):

Mo ... Mj_1My M= = mo...mj_1+ (ng...ng_1)(p’ +p T+ p 4
- mO---mj—l+pj(n0...nk,1)<1—|—pk—|—p2k_|_...)
MO .. Mfp—1
= mg..mj_1+p ——m7F—
J ].*pk
A\ MNp—1...NY
= (mj'_l...mg)p—i—p](l_pk)p’

which is a rational number. (This generalizes the calculations that led to (2.1), which is the
special case j = 0.) Allowing multiplication or division by powers of p, we have shown all
eventually periodic p-adic expansions are rational numbers.

To prove the converse, that every rational number r has an eventually periodic p-adic
expansion, we will, perhaps surprisingly, focus on negative r. The p-adic expansion of a
positive rational number can be obtained from its negative by negating with (2.2), which
clearly shows the negation of an eventually periodic p-adic expansion is eventually periodic.
(If » € Z™ there’s really no need to negate first: the base p expansion of r is its p-adic
expansion. )

Case 1: r € Z with r < 0. Write r = —R with R € Z". There is a 5 > 1 such that
R < p?. Then

r=-R=(/ - R) -

Since p/ — R is an integer in {1,...,p’ — 1} we can write it in base p as co + - - - + ijlpj_l.
Then

j—1
r=@ -R) -p => cp'+> (p—1)p,
i=0 i>j
which is eventually periodic since its digits eventually all equal p — 1.

Case 2: r € QN Z,; N (—1,0). The p-adic expansion of r is purely periodic by Theorem
2.1, and the proof of that theorem shows how to obtain the expansion.

Case 3: r € QNZ,N(—1,0). Write r = p"u with u € Z). Then u = r/p" is rational, of p-
adic absolute value 1, and is in the interval (—1/p™,0) C (—1,0), so u has a purely periodic
p-adic expanion by Case 2. Therefore » = p™u has the same purely periodic expansion
except for starting n positions further to the right.

Case 4: r € QNZy, r € Z, and r < —1. The number r lies strictly between two negative
integers: —(N + 1) < r < —N for some positive integer N, so —1 < r + N < 0. Since
r+ N € Z,, by Case 3 the p-adic expansion of r + N is purely periodic, although not
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necessarily starting at the p-digit (since » + N might not be in Z;), so we can write
(3.2) r+ N = Z a;p’
i>0

where a; € {0,1,...,p — 1} and the a; are purely periodic after a possible initial string of
zero digits. Since r + N is not a positive integer, the p-adic expansion (3.2) has infinitely
many nonzero a;. Thus the partial sums ag +a1p+---+ aj_lpjf1 become arbitrarily large
in the usual sense as j grows, so there is a j such that

(3.3) ao+a1p+~--+aj_1p7'71 > N.
Let j be the smallest choice fitting this inequality, so aj—1 # 0. Then

r+N=(a+ap+-+ap )+ ap

127

SO

(3.4) r=(a+ap+-+a1p =N+ ap’
i>j

and the difference ag + aip + - + aj_1p? ! — N is a positive integer by (3.3) that is less
than (p—1)+(p—1D)p+---+(p—1)p~! = p/ — 1, so we can write the difference in base p:

ag+ap+--+ajap =N =ay+alp+---+aj_p
with 0 < a} <p—1, so (3.4) becomes

r=(ag+ajp+---+a;_p )+ Zaipi.
(2]
This is an eventually periodic p-adic expansion since the a; for ¢ > j are eventually periodic.
Case 5: 1€ Q, r € Z,, r < 0. Since p°r € Z, for large e, we can use a previous case on
p®r and then divide by p°. O

4. EXAMPLES

The proof of Theorem 3.1 gives an algorithm to compute the p-adic expansion of any
rational number in Z,:

(1) Assume r < 0. (If » > 0, apply the rest of the algorithm to —r and then negate
with (2.2) to get the expansion for r.)

(2) If r € Zo then write r = —R and pick j > 1 such that R < p/. Then r =
(P —R)—p' = (" — R) + doisi(p— 1)p* and p’ — R has a base p expansion not
going beyond the p?~!-digit.

(3) If =1 <r <0let r=p"u with u € Z). Then u € (~1,0) and the p-adic expanion
of u is purely periodic using the proof of Theorem 2.1. Multiplying it by p™ gives
the (purely periodic) p-adic expansion of 7.

(4) If =(N+1) < r < —N for an integer N > 1 then —1 < r+ N < 0, so the
expansion of 7 + IV is obtained by the previous step, say r + N =) .., a;p'. Pick
the first truncation ag + a1p + --- + aj_lpj ~1in this expansion that exceeds N, so
r=( g;& a;p' — N) + Do y a;p'. The difference in parentheses is a positive integer

and its base p expansion has the form Zf;é alp', sor = Zf;é apt + 3. j a;p'.
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Example 4.1. Let’s work out the p-adic expansion of 77/18 in Q2, Qs, Qs, and Q7.
Expansion of 77/18 in Qg: Since 77/18 = (1/2)(77/9) and |77/9|2 = 1, we will get the
2-adic expansion of 77/9 and then divide through by 2. And since 77/9 > 0, we will first
get the 2-adic expansion of —77/9 and then negate what we find.
Let r = —=77/9. Since —9 < r < —8,set N = 8. Since -1 <r+8 < 0and r+8 =
—5/9 € Z5 N (—1,0) we will find the 2-adic expansion of —5/9 by Theorem 2.1. The least
k making 2 =1 mod 9 is k = 6:

) 57 35
26 _1-=63=9. ST LT
63=9-7T—= 9 63 136

In base 2, 35 = 2% + 2+ 1 = 1000115, and its 2-adic expansion is 1 + 2 + 25 = 110001, so

35 100011, 110001 —
= = = 110001 = 110001110001110001 . ..
1-—26 1-—26 1-—26

The first truncation of this that exceeds N = 8 is 110001 = 35, so

r=—-8— g = —8+ 110001 + 000000110001 = (35 — 8) -+ 000000110001.

Since 35—8 = 27 = 244234241 = 110115, which has 2-adic expansion 14+2+234+2% = 11011
(it is palindromic, a coincidence), we get

r= —% = 11011 4 000000110001 = 110110110001.

Thus

g = —110110110001 = 101001001110,

SO

77 101001001110 1 __
— = ————— = —+401001001110.
18 2 2 *

Let’s check: in Qo,

54+8+16 1 28 37 32-4 ,77
L T A SR e RV 9 18
Expansion of 77/18 in Qs: Since 77/18 = (1/9)(77/2), first we will figure out the 3-adic
expansion of 77/2 and then divide it by 9. Since 77/2 > 0, first we will compute the 3-adic
expansion of —77/2 and then negate.
Let r = —=77/2, so —39 < r < —38. We have r + 38 = —1/2, which is easy to expand
3-adically:

1 1
B + 01001001110 = B +(2+16)

1 1 -
o= =T=111...
2 1-3

and the first truncation of this 3-adic expansion that exceeds 38 is 1111 = 40, so
1 _ _ _
r=—38 — 3= —38 4+ 1111 4+ 00001 = (40 — 38) + 00001 = 20001.

Therefore

%7 — _2000T = 12221

SO _
77T 12221 1 2

— = — 4+ = 4+ 221.
18 9 9+3+
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Let’s check: in Qg,

1 2 1 2 9 7 9 14+18-8—81 , 77
42 =424 (242:3)F—— =—-+8— - = L
93" gty tEF2 g =g+8-5 18 18

Expansion of 77/18 in Q5: We’ll get the expansion for —77/18 and then negate.

Let r = —77/18. Since —5 < r < —4, set N =4. Then -1 <r+4 < 0and r+4 =
—5/18 = 5(—1/18) = 5u where u = —1/18 € Z; N(—1,0). We will get the 5-adic expansion
of —1/18 using Theorem 2.1 and then multiply through by 5.

The least k£ making 5* = 1 mod 18 is k = 6:

1 868 868
50 1 =15624 =18 - 868 — —— = — = )
18 15624 1 — 56

In base 5, 868 = 5* + 53 +4 .52+ 3.5+ 3 = 114335, whose 5-adic expansion is 33411, so
868 114335 33411

=186 " 1-56 1-56 334110 = 33411033411033411 .. ..

u

Thus 5
BT = bu = 033411.

The first truncation of this that exceeds N = 4 is 03, which is 15, so
5

r=—4-— 8= —4 + 03 + 00341103 = (15 — 4) 4+ 00341103.
Since 15 —4 =11 =2-5+41 = 215, which has 5-adic expansion 1 +2-5 = 12, we have
r= —I—; =12+ 00341103 = 12341103.
Thus
7
8= —12341103 = 42103341.
Let’s check: in Qs,
S 14+3-52+3-53+4-5'4+5° 6076 7T .77
42103341 =442 -5+ 5> =144+2——=14-25— = —.
+ + 1—56 + 1—56 18 18
Expansion of 77/18 in Q7: We'll get the expansion for —11/18 and then multiply by —7.
Let r = —11/18. It lies in Z5 N (—1,0) so we can compute its 7-adic expansion from

Theorem 2.1.
The least k& making 7 = 1 mod 18 is k = 3:
11 11-19 209
3
—1=342=18-1 - = = ,
7 Hz=18-19 =~ 312 1-7
In base 7, 209 = 4 - 72 + 7+ 6 = 4167, which has 7-adic expansion 6 + 7+ 4 - 72 = 614, so

209 4167 614 S

= = — = =614 = 614614614 . ..
A R C R €
Therefore 1
E = —614614614 ... = 152052052... = 1520
SO

77 11 _
2 =17(=) =01520.
5 7(18> 01520
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Let’s make our final check: in Q7,
19 49 77
1-73 7 9342 7 18 18
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