
THE p-ADIC EXPANSION OF RATIONAL NUMBERS

KEITH CONRAD

1. Introduction

In the positive real numbers, the decimal expansion of every positive rational number is
eventually periodic1 (e.g., 21/55 = .381 = .3818181 . . .) and, conversely, every eventually
periodic decimal expansion is a positive rational number. We will prove the set of all rational
numbers can be characterized among the p-adic numbers a similar way: they are the p-adic
numbers with eventually periodic p-adic expansions.

Example 1.1. In Q3
2

5
= 11210 = 1121012101210 . . . .

where the initial one-digit block “1” is followed by the repeating block 1210. Let’s check
this is correct:

11210 = 1121012101210 . . .

= 1 + 3(121012101210 . . .)

= 1 + 3(1 + 2 · 3 + 32)(1 + 34 + 38 + 312 + · · · )
= 1 + 3(16)

∑
k≥0

34k

= 1 +
48

1− 34

= 1− 48

80

=
32

80

=
2

5
.

As above, throughout this note we will use the convention of writing p-adic expansions
with the lowest-order terms on the left, in the same way power series are written (a0+a1x+
a2x

2 + · · · ). For example, in Qp we write

−1 = (p− 1) + (p− 1)p + (p− 1)p2 + · · ·
rather than −1 = · · · + (p − 1)p2 + (p − 1)p + (p − 1). When writing positive integers in
base p, we will write them with lowest-order terms on the right in order to match the way
positive integers are written in base 10, and we’ll include a subscript for the base. For
example, 58 in base 3 is 20113 since 58 = 2 · 33 + 0 · 32 + 1 · 3 + 1, but the 3-adic expansion
of 58 is written in reverse order as 1102 and that means 1 + 1 · 3 + 0 · 32 + 2 · 33.

1This characterization of Q>0 inside R>0 is not affected by some numbers having more than one decimal
expansion, such as .5 = .49999. . . , which are both eventually periodic: eventually all 0 or eventually all 9.
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Multiplying and dividing a p-adic number by powers of p shifts the digits, but does not
affect the property of having an eventually periodic p-adic expansion. Therefore it suffices to
focus for the most part on numbers with p-adic absolute value 1, which are p-adic expansions
of the form c0 + c1p + c2p

2 + · · · where 0 ≤ ci ≤ p− 1 and c0 6= 0.

2. Purely periodic expansions

As a warm-up, let’s describe p-adic numbers with purely periodic p-adic expansions.

Theorem 2.1. A rational number with p-adic absolute value 1 has a purely periodic p-adic
expansion if and only if it lies in the real interval [−1, 0).

Proof. A purely periodic p-adic expansion having p-adic absolute value 1 with a repeating
block of k digits looks like n0n1 . . . nk−1, where 0 ≤ ni ≤ p−1 and n0 6= 0. We can evaluate
this as a fraction by summing geometric series in Zp:

n0n1 . . . nk−1 = 1(n0n1 . . . nk−1) + pk(n0n1 . . . nk−1) + p2k(n0n1 . . . nk−1) + · · ·
= (n0n1 . . . nk−1)(1 + pk + p2k + · · · )

=
n0n1 . . . nk−1

1− pk
.(2.1)

The p-adic expansion in the numerator of (2.1), which is the base p number (nk−1 · · ·n1n0)p
with digits in reverse order, is an integer between 1 and pk − 1 (it is not 0 since n0 6= 0),
and we are dividing it by 1− pk = −(pk− 1), so this purely periodic expansion is a rational
number lying in the interval [−1, 0).

Conversely, let r be a rational number with p-adic absolute value 1 that lies in [−1, 0).
We will show r can be written in the form (2.1), and then the calculations that led to (2.1)
can be read in reverse to see r has a purely periodic p-adic expansion.

Since |r|p = 1 and r < 0 we can write r = a/b with numerator a < 0 and denominator
b ≥ 1 that are both not divisible by p. Since p and b are relatively prime, from elementary
number theory we have pk ≡ 1 mod b for some k ≥ 1. Thus pk = 1 + bb′ for some positive
integer b′, so

r =
a

b
=

ab′

bb′
=
−ab′

1− pk
.

Set N = −ab′. Since a < 0, N ∈ Z+. From −1 ≤ r < 0 we get −1 ≤ N/(1 − pk) < 0, so
0 < N ≤ pk − 1. Thus N in base p has at most k digits: N = n0 + n1p + · · · + nk−1p

k−1

where the digits ni are between 0 and p− 1. Hence r has the form (2.1). Since a and b′ are
not divisible by p, |N |p = 1 so n0 6= 0. �

Remark 2.2. This theorem is not saying rationals in [−1, 0) have purely periodic p-adic
expansions. It says rationals in [−1, 0) with p-adic absolute value 1 have purely periodic
expansions.

Example 2.3. Let’s work out the 3-adic expansion of −5/11, which is in [−1, 0) with 3-adic
absolute value 1. The least2 k ≥ 1 making 3k ≡ 1 mod 11 is k = 5, with 35 − 1 = 11 · 22, so

− 5

11
= − 5 · 22

11 · 22
= − 110

35 − 1
=

110

1− 35
.

2It is not important to pick k minimal, but to do otherwise makes the periodic digit block appear longer,
like writing 12 as 1212.



THE p-ADIC EXPANSION OF RATIONAL NUMBERS 3

In base 3, 110 = 34 + 33 + 2 = 110023. Its 3-adic expansion from left to right is 20011, so

− 5

11
=

110023
1− 35

=
20011

1− 35
= 20011 = 2001120011 . . . .

As a check that this calculation is correct, add up the terms in the 3-adic expansion and
get back −5/11:

2001120011 . . . = 2
∑
i≥0

35i + 33
∑
i≥0

35i + 34
∑
i≥0

35i

=
2

1− 35
+

27

1− 35
+

81

1− 35

=
2 + 27 + 81

−242

= −110

242

= −11 · 10

11 · 22

= − 5

11
.

We can get the p-adic expansion of a rational number in the real interval (0, 1) having
p-adic absolute value 1 by using Theorem 2.1 to get the expansion of its negative and then
negating the result. Recall the simple rule for negating a nonzero p-adic expansion: if
x = cdp

d + cd+1p
d+1 + · · ·+ cip

i + · · · where the ci are digits and cd 6= 0, then

(2.2) − x = (p− cd)pd + (p− 1− cd+1)p
d+1 + · · ·+ (p− 1− ci)p

i + · · · .

In the expansion of −x, note the first digit is affected differently from the rest: p − cd
compared to p− 1− ci for i > d.

Example 2.4. Let’s derive the 3-adic expansion of 2/5, which was pulled out of nowhere
in Example 1.1. We will use the proof of Theorem 2.1 to find the expansion of −2/5 and
then negate the result.

To make 3k ≡ 1 mod 5 we can use k = 4. Then 3k − 1 = 5 · 16, so

−2

5
= −2 · 16

5 · 16
=

32

1− 34
.

In base 3, 32 = 33 + 3 + 2 = 10123, so

−2

5
=

10123
1− 34

=
2101

1− 34
= 2101 = 210121012101 . . . ,

which is purely periodic. Negating and using (2.2) with p = 3, we get

2

5
= −210121012101 . . . = 112101210121 . . . = 11210,

which is eventually periodic rather than purely periodic.

3. Eventually periodic expansions

Theorem 3.1. In Qp, the numbers with eventually periodic p-adic expansions are precisely
the rational numbers.
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Proof. We begin by showing every eventually periodic p-adic expansion is rational. This
will generalize the calculations at the start of the proof of Theorem 2.1. An eventually
periodic p-adic expansion with absolute value 1 looks like

(3.1) m0m1 · · ·mj−1n0n1 · · ·nk−1 = m0m1 · · ·mj−1n0n1 · · ·nk−1n0n1 · · ·nk−1 . . . ,

a first block of j digits m0m1 · · ·mj−1 followed by a repeating block of k digits n0n1 · · ·nk−1.
(If the expansion is purely periodic then the initial block can be taken as empty and set
j = 0.) Write (3.1) in series form as

m0 + · · ·+ mj−1p
j−1 + (n0p

j + · · ·+ nk−1p
j+k−1) + (n0p

j+k + · · ·+ nk−1p
j+2k−1) + · · · .

Using geometric series, we evaluate (3.1):

m0 . . .mj−1n0 . . . nk−1 = m0 . . .mj−1 + (n0 . . . nk−1)(p
j + pj+k + pj+2k + · · · )

= m0 . . .mj−1 + pj(n0 . . . nk−1)(1 + pk + p2k + · · · )

= m0 . . .mj−1 + pj
n0 . . . nk−1

1− pk

= (mj−1 . . .m0)p + pj
(nk−1 . . . n0)p

1− pk
,

which is a rational number. (This generalizes the calculations that led to (2.1), which is the
special case j = 0.) Allowing multiplication or division by powers of p, we have shown all
eventually periodic p-adic expansions are rational numbers.

To prove the converse, that every rational number r has an eventually periodic p-adic
expansion, we will, perhaps surprisingly, focus on negative r. The p-adic expansion of a
positive rational number can be obtained from its negative by negating with (2.2), which
clearly shows the negation of an eventually periodic p-adic expansion is eventually periodic.
(If r ∈ Z+ there’s really no need to negate first: the base p expansion of r is its p-adic
expansion.)

Case 1: r ∈ Z with r < 0. Write r = −R with R ∈ Z+. There is a j ≥ 1 such that
R < pj . Then

r = −R = (pj −R)− pj .

Since pj −R is an integer in {1, . . . , pj − 1} we can write it in base p as c0 + · · ·+ cj−1p
j−1.

Then

r = (pj −R)− pj =

j−1∑
i=0

cip
i +
∑
i≥j

(p− 1)pi,

which is eventually periodic since its digits eventually all equal p− 1.
Case 2: r ∈ Q ∩ Z×p ∩ (−1, 0). The p-adic expansion of r is purely periodic by Theorem

2.1, and the proof of that theorem shows how to obtain the expansion.
Case 3: r ∈ Q∩Zp∩(−1, 0). Write r = pnu with u ∈ Z×p . Then u = r/pn is rational, of p-

adic absolute value 1, and is in the interval (−1/pn, 0) ⊂ (−1, 0), so u has a purely periodic
p-adic expanion by Case 2. Therefore r = pnu has the same purely periodic expansion
except for starting n positions further to the right.

Case 4: r ∈ Q∩Zp, r 6∈ Z, and r < −1. The number r lies strictly between two negative
integers: −(N + 1) < r < −N for some positive integer N , so −1 < r + N < 0. Since
r + N ∈ Zp, by Case 3 the p-adic expansion of r + N is purely periodic, although not
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necessarily starting at the p0-digit (since r + N might not be in Z×p ), so we can write

(3.2) r + N =
∑
i≥0

aip
i

where ai ∈ {0, 1, . . . , p − 1} and the ai are purely periodic after a possible initial string of
zero digits. Since r + N is not a positive integer, the p-adic expansion (3.2) has infinitely
many nonzero ai. Thus the partial sums a0 + a1p+ · · ·+ aj−1p

j−1 become arbitrarily large
in the usual sense as j grows, so there is a j such that

(3.3) a0 + a1p + · · ·+ aj−1p
j−1 > N.

Let j be the smallest choice fitting this inequality, so aj−1 6= 0. Then

r + N = (a0 + a1p + · · ·+ aj−1p
j−1) +

∑
i≥j

aip
i

so

(3.4) r = (a0 + a1p + · · ·+ aj−1p
j−1 −N) +

∑
i≥j

aip
i

and the difference a0 + a1p + · · · + aj−1p
j−1 − N is a positive integer by (3.3) that is less

than (p− 1) + (p− 1)p+ · · ·+ (p− 1)pj−1 = pj − 1, so we can write the difference in base p:

a0 + a1p + · · ·+ aj−1p
j−1 −N = a′0 + a′1p + · · ·+ a′j−1p

j−1

with 0 ≤ a′i ≤ p− 1, so (3.4) becomes

r = (a′0 + a′1p + · · ·+ a′j−1p
j−1) +

∑
i≥j

aip
i.

This is an eventually periodic p-adic expansion since the ai for i ≥ j are eventually periodic.
Case 5: r ∈ Q, r 6∈ Zp, r < 0. Since per ∈ Zp for large e, we can use a previous case on

per and then divide by pe. �

4. Examples

The proof of Theorem 3.1 gives an algorithm to compute the p-adic expansion of any
rational number in Zp:

(1) Assume r < 0. (If r > 0, apply the rest of the algorithm to −r and then negate
with (2.2) to get the expansion for r.)

(2) If r ∈ Z<0 then write r = −R and pick j ≥ 1 such that R < pj . Then r =
(pj − R) − pj = (pj − R) +

∑
i≥j(p − 1)pi and pj − R has a base p expansion not

going beyond the pj−1-digit.
(3) If −1 < r < 0 let r = pnu with u ∈ Z×p . Then u ∈ (−1, 0) and the p-adic expanion

of u is purely periodic using the proof of Theorem 2.1. Multiplying it by pn gives
the (purely periodic) p-adic expansion of r.

(4) If −(N + 1) < r < −N for an integer N ≥ 1 then −1 < r + N < 0, so the
expansion of r + N is obtained by the previous step, say r + N =

∑
i≥0 aip

i. Pick

the first truncation a0 + a1p + · · · + aj−1p
j−1 in this expansion that exceeds N , so

r = (
∑j−1

i=0 aip
i−N) +

∑
i≥j aip

i. The difference in parentheses is a positive integer

and its base p expansion has the form
∑j−1

i=0 a
′
ip

i, so r =
∑j−1

i=0 a
′
ip

i +
∑

i≥j aip
i.
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Example 4.1. Let’s work out the p-adic expansion of 77/18 in Q2, Q3, Q5, and Q7.
Expansion of 77/18 in Q2: Since 77/18 = (1/2)(77/9) and |77/9|2 = 1, we will get the

2-adic expansion of 77/9 and then divide through by 2. And since 77/9 > 0, we will first
get the 2-adic expansion of −77/9 and then negate what we find.

Let r = −77/9. Since −9 < r < −8, set N = 8. Since −1 < r + 8 < 0 and r + 8 =
−5/9 ∈ Z×2 ∩ (−1, 0) we will find the 2-adic expansion of −5/9 by Theorem 2.1. The least
k making 2k ≡ 1 mod 9 is k = 6:

26 − 1 = 63 = 9 · 7 =⇒ −5

9
= −5 · 7

63
=

35

1− 26
.

In base 2, 35 = 25 + 2 + 1 = 1000112, and its 2-adic expansion is 1 + 2 + 25 = 110001, so

35

1− 26
=

1000112
1− 26

=
110001

1− 26
= 110001 = 110001110001110001 . . .

The first truncation of this that exceeds N = 8 is 110001 = 35, so

r = −8− 5

9
= −8 + 110001 + 000000110001 = (35− 8) + 000000110001.

Since 35−8 = 27 = 24+23+2+1 = 110112, which has 2-adic expansion 1+2+23+24 = 11011
(it is palindromic, a coincidence), we get

r = −77

9
= 11011 + 000000110001 = 110110110001.

Thus
77

9
= −110110110001 = 101001001110,

so
77

18
=

101001001110

2
=

1

2
+ 01001001110.

Let’s check: in Q2,

1

2
+ 01001001110 =

1

2
+ (2 + 16) + 25

4 + 8 + 16

1− 26
=

1

2
+ 18 + 32

28

1− 64
=

37

2
− 32 · 4

9

X
=

77

18
.

Expansion of 77/18 in Q3: Since 77/18 = (1/9)(77/2), first we will figure out the 3-adic

expansion of 77/2 and then divide it by 9. Since 77/2 > 0, first we will compute the 3-adic
expansion of −77/2 and then negate.

Let r = −77/2, so −39 < r < −38. We have r + 38 = −1/2, which is easy to expand
3-adically:

−1

2
=

1

1− 3
= 1 = 111 . . .

and the first truncation of this 3-adic expansion that exceeds 38 is 1111 = 40, so

r = −38− 1

2
= −38 + 1111 + 00001 = (40− 38) + 00001 = 20001.

Therefore
77

2
= −20001 = 12221

so
77

18
=

12221

9
=

1

9
+

2

3
+ 221.
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Let’s check: in Q3,

1

9
+

2

3
+ 221 =

1

9
+

2

3
+ (2 + 2 · 3) +

9

1− 3
=

7

9
+ 8− 9

2
=

14 + 18 · 8− 81

18

X
=

77

18
.

Expansion of 77/18 in Q5: We’ll get the expansion for −77/18 and then negate.

Let r = −77/18. Since −5 < r < −4, set N = 4. Then −1 < r + 4 < 0 and r + 4 =
−5/18 = 5(−1/18) = 5u where u = −1/18 ∈ Z×5 ∩ (−1, 0). We will get the 5-adic expansion
of −1/18 using Theorem 2.1 and then multiply through by 5.

The least k making 5k ≡ 1 mod 18 is k = 6:

56 − 1 = 15624 = 18 · 868 =⇒ − 1

18
= − 868

15624
=

868

1− 56
.

In base 5, 868 = 54 + 53 + 4 · 52 + 3 · 5 + 3 = 114335, whose 5-adic expansion is 33411, so

u =
868

1− 56
=

114335
1− 56

=
33411

1− 56
= 334110 = 33411033411033411 . . .

Thus

− 5

18
= 5u = 033411.

The first truncation of this that exceeds N = 4 is 03, which is 15, so

r = −4− 5

18
= −4 + 03 + 00341103 = (15− 4) + 00341103.

Since 15− 4 = 11 = 2 · 5 + 1 = 215, which has 5-adic expansion 1 + 2 · 5 = 12, we have

r = −77

18
= 12 + 00341103 = 12341103.

Thus
77

18
= −12341103 = 42103341.

Let’s check: in Q5,

42103341 = 4 + 2 · 5 + 52
1 + 3 · 52 + 3 · 53 + 4 · 54 + 55

1− 56
= 14 + 25

6076

1− 56
= 14− 25

7

18

X
=

77

18
.

Expansion of 77/18 in Q7: We’ll get the expansion for −11/18 and then multiply by −7.

Let r = −11/18. It lies in Z×7 ∩ (−1, 0) so we can compute its 7-adic expansion from
Theorem 2.1.

The least k making 7k ≡ 1 mod 18 is k = 3:

73 − 1 = 342 = 18 · 19 =⇒ −11

18
= −11 · 19

342
=

209

1− 73
.

In base 7, 209 = 4 · 72 + 7 + 6 = 4167, which has 7-adic expansion 6 + 7 + 4 · 72 = 614, so

r =
209

1− 73
=

4167
1− 73

=
614

1− 73
= 614 = 614614614 . . .

Therefore
11

18
= −614614614 . . . = 152052052 . . . = 1520

so
77

18
= 7

(
11

18

)
= 01520.
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Let’s make our final check: in Q7,

01520 = 7 + 72
5 + 2 · 7
1− 73

= 7− 49
19

342
= 7− 49

18

X
=

77

18
.
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