THE p-ADIC EXPANSION OF RATIONAL NUMBERS

KEITH CONRAD

1. Introduction

In the positive real numbers, the decimal expansion of every positive rational number is eventually periodic ${ }^{1}$ (e.g., $21 / 55=.3 \overline{81}=.3818181 \ldots$) and, conversely, every eventually periodic decimal expansion is a positive rational number. We will prove the set of all rational numbers can be characterized among the p-adic numbers a similar way: they are the p-adic numbers with eventually periodic p-adic expansions.

Example 1.1. In \mathbf{Q}_{3}

$$
\frac{2}{5}=1 \overline{1210}=1121012101210 \ldots
$$

where the initial one-digit block " 1 " is followed by the repeating block 1210. Let's check this is correct:

$$
\begin{aligned}
\overline{121210} & =1121012101210 \ldots \\
& =1+3(121012101210 \ldots) \\
& =1+3\left(1+2 \cdot 3+3^{2}\right)\left(1+3^{4}+3^{8}+3^{12}+\cdots\right) \\
& =1+3(16) \sum_{k \geq 0} 3^{4 k} \\
& =1+\frac{48}{1-3^{4}} \\
& =1-\frac{48}{80} \\
& =\frac{32}{80} \\
& =\frac{2}{5}
\end{aligned}
$$

As above, throughout this note we will use the convention of writing p-adic expansions with the lowest-order terms on the left, in the same way power series are written $\left(a_{0}+a_{1} x+\right.$ $\left.a_{2} x^{2}+\cdots\right)$. For example, in \mathbf{Q}_{p} we write

$$
-1=(p-1)+(p-1) p+(p-1) p^{2}+\cdots
$$

rather than $-1=\cdots+(p-1) p^{2}+(p-1) p+(p-1)$. When writing positive integers in base p, we will write them with lowest-order terms on the right in order to match the way positive integers are written in base 10, and we'll include a subscript for the base. For example, 58 in base 3 is 2011_{3} since $58=2 \cdot 3^{3}+0 \cdot 3^{2}+1 \cdot 3+1$, but the 3 -adic expansion of 58 is written in reverse order as 1102 and that means $1+1 \cdot 3+0 \cdot 3^{2}+2 \cdot 3^{3}$.

[^0]Multiplying and dividing a p-adic number by powers of p shifts the digits, but does not affect the property of having an eventually periodic p-adic expansion. Therefore it suffices to focus for the most part on numbers with p-adic absolute value 1 , which are p-adic expansions of the form $c_{0}+c_{1} p+c_{2} p^{2}+\cdots$ where $0 \leq c_{i} \leq p-1$ and $c_{0} \neq 0$.

2. Purely periodic expansions

As a warm-up, let's describe p-adic numbers with purely periodic p-adic expansions.
Theorem 2.1. A rational number with p-adic absolute value 1 has a purely periodic p-adic expansion if and only if it lies in the real interval $[-1,0)$.

Proof. A purely periodic p-adic expansion having p-adic absolute value 1 with a repeating block of k digits looks like $\overline{n_{0} n_{1} \ldots n_{k-1}}$, where $0 \leq n_{i} \leq p-1$ and $n_{0} \neq 0$. We can evaluate this as a fraction by summing geometric series in \mathbf{Z}_{p} :

$$
\begin{align*}
\overline{n_{0} n_{1} \ldots n_{k-1}} & =1\left(n_{0} n_{1} \ldots n_{k-1}\right)+p^{k}\left(n_{0} n_{1} \ldots n_{k-1}\right)+p^{2 k}\left(n_{0} n_{1} \ldots n_{k-1}\right)+\cdots \\
& =\left(n_{0} n_{1} \ldots n_{k-1}\right)\left(1+p^{k}+p^{2 k}+\cdots\right) \\
& =\frac{n_{0} n_{1} \ldots n_{k-1}}{1-p^{k}} . \tag{2.1}
\end{align*}
$$

The p-adic expansion in the numerator of (2.1), which is the base p number $\left(n_{k-1} \cdots n_{1} n_{0}\right)_{p}$ with digits in reverse order, is an integer between 1 and $p^{k}-1$ (it is not 0 since $n_{0} \neq 0$), and we are dividing it by $1-p^{k}=-\left(p^{k}-1\right)$, so this purely periodic expansion is a rational number lying in the interval $[-1,0)$.

Conversely, let r be a rational number with p-adic absolute value 1 that lies in $[-1,0)$. We will show r can be written in the form (2.1), and then the calculations that led to (2.1) can be read in reverse to see r has a purely periodic p-adic expansion.

Since $|r|_{p}=1$ and $r<0$ we can write $r=a / b$ with numerator $a<0$ and denominator $b \geq 1$ that are both not divisible by p. Since p and b are relatively prime, from elementary number theory we have $p^{k} \equiv 1 \bmod b$ for some $k \geq 1$. Thus $p^{k}=1+b b^{\prime}$ for some positive integer b^{\prime}, so

$$
r=\frac{a}{b}=\frac{a b^{\prime}}{b b^{\prime}}=\frac{-a b^{\prime}}{1-p^{k}} .
$$

Set $N=-a b^{\prime}$. Since $a<0, N \in \mathbf{Z}^{+}$. From $-1 \leq r<0$ we get $-1 \leq N /\left(1-p^{k}\right)<0$, so $0<N \leq p^{k}-1$. Thus N in base p has at most k digits: $N=n_{0}+n_{1} p+\cdots+n_{k-1} p^{k-1}$ where the digits n_{i} are between 0 and $p-1$. Hence r has the form (2.1). Since a and b^{\prime} are not divisible by $p,|N|_{p}=1$ so $n_{0} \neq 0$.

Remark 2.2. This theorem is not saying rationals in $[-1,0)$ have purely periodic p-adic expansions. It says rationals in $[-1,0)$ with p-adic absolute value 1 have purely periodic expansions.

Example 2.3. Let's work out the 3 -adic expansion of $-5 / 11$, which is in $[-1,0)$ with 3 -adic absolute value 1 . The least ${ }^{2} k \geq 1$ making $3^{k} \equiv 1 \bmod 11$ is $k=5$, with $3^{5}-1=11 \cdot 22$, so

$$
-\frac{5}{11}=-\frac{5 \cdot 22}{11 \cdot 22}=-\frac{110}{3^{5}-1}=\frac{110}{1-3^{5}} .
$$

[^1]In base $3,110=3^{4}+3^{3}+2=11002_{3}$. Its 3 -adic expansion from left to right is 20011 , so

$$
-\frac{5}{11}=\frac{11002_{3}}{1-3^{5}}=\frac{20011}{1-3^{5}}=\overline{20011}=2001120011 \ldots
$$

As a check that this calculation is correct, add up the terms in the 3 -adic expansion and get back $-5 / 11$:

$$
\begin{aligned}
2001120011 \ldots & =2 \sum_{i \geq 0} 3^{5 i}+3^{3} \sum_{i \geq 0} 3^{5 i}+3^{4} \sum_{i \geq 0} 3^{5 i} \\
& =\frac{2}{1-3^{5}}+\frac{27}{1-3^{5}}+\frac{81}{1-3^{5}} \\
& =\frac{2+27+81}{-242} \\
& =-\frac{110}{242} \\
& =-\frac{11 \cdot 10}{11 \cdot 22} \\
& =-\frac{5}{11} .
\end{aligned}
$$

We can get the p-adic expansion of a rational number in the real interval $(0,1)$ having p-adic absolute value 1 by using Theorem 2.1 to get the expansion of its negative and then negating the result. Recall the simple rule for negating a nonzero p-adic expansion: if $x=c_{d} p^{d}+c_{d+1} p^{d+1}+\cdots+c_{i} p^{i}+\cdots$ where the c_{i} are digits and $c_{d} \neq 0$, then

$$
\begin{equation*}
-x=\left(p-c_{d}\right) p^{d}+\left(p-1-c_{d+1}\right) p^{d+1}+\cdots+\left(p-1-c_{i}\right) p^{i}+\cdots . \tag{2.2}
\end{equation*}
$$

In the expansion of $-x$, note the first digit is affected differently from the rest: $p-c_{d}$ compared to $p-1-c_{i}$ for $i>d$.

Example 2.4. Let's derive the 3 -adic expansion of $2 / 5$, which was pulled out of nowhere in Example 1.1. We will use the proof of Theorem 2.1 to find the expansion of $-2 / 5$ and then negate the result.

To make $3^{k} \equiv 1 \bmod 5$ we can use $k=4$. Then $3^{k}-1=5 \cdot 16$, so

$$
-\frac{2}{5}=-\frac{2 \cdot 16}{5 \cdot 16}=\frac{32}{1-3^{4}}
$$

In base $3,32=3^{3}+3+2=1012_{3}$, so

$$
-\frac{2}{5}=\frac{1012_{3}}{1-3^{4}}=\frac{2101}{1-3^{4}}=\overline{2101}=210121012101 \ldots
$$

which is purely periodic. Negating and using (2.2) with $p=3$, we get

$$
\frac{2}{5}=-210121012101 \ldots=112101210121 \ldots=1 \overline{1210}
$$

which is eventually periodic rather than purely periodic.

3. Eventually periodic expansions

Theorem 3.1. In \mathbf{Q}_{p}, the numbers with eventually periodic p-adic expansions are precisely the rational numbers.

Proof. We begin by showing every eventually periodic p-adic expansion is rational. This will generalize the calculations at the start of the proof of Theorem 2.1. An eventually periodic p-adic expansion with absolute value 1 looks like

$$
\begin{equation*}
m_{0} m_{1} \cdots m_{j-1} \overline{\bar{n}_{0} n_{1} \cdots n_{k-1}}=m_{0} m_{1} \cdots m_{j-1} n_{0} n_{1} \cdots n_{k-1} n_{0} n_{1} \cdots n_{k-1} \cdots, \tag{3.1}
\end{equation*}
$$

a first block of j digits $m_{0} m_{1} \cdots m_{j-1}$ followed by a repeating block of k digits $n_{0} n_{1} \cdots n_{k-1}$. (If the expansion is purely periodic then the initial block can be taken as empty and set $j=0$.) Write (3.1) in series form as

$$
m_{0}+\cdots+m_{j-1} p^{j-1}+\left(n_{0} p^{j}+\cdots+n_{k-1} p^{j+k-1}\right)+\left(n_{0} p^{j+k}+\cdots+n_{k-1} p^{j+2 k-1}\right)+\cdots
$$

Using geometric series, we evaluate (3.1):

$$
\begin{aligned}
m_{0} \ldots m_{j-1} \overline{n_{0} \ldots n_{k-1}} & =m_{0} \ldots m_{j-1}+\left(n_{0} \ldots n_{k-1}\right)\left(p^{j}+p^{j+k}+p^{j+2 k}+\cdots\right) \\
& =m_{0} \ldots m_{j-1}+p^{j}\left(n_{0} \ldots n_{k-1}\right)\left(1+p^{k}+p^{2 k}+\cdots\right) \\
& =m_{0} \ldots m_{j-1}+p^{j} \frac{n_{0} \ldots n_{k-1}}{1-p^{k}} \\
& =\left(m_{j-1} \ldots m_{0}\right)_{p}+p^{j} \frac{\left(n_{k-1} \ldots n_{0}\right)_{p}}{1-p^{k}},
\end{aligned}
$$

which is a rational number. (This generalizes the calculations that led to (2.1), which is the special case $j=0$.) Allowing multiplication or division by powers of p, we have shown all eventually periodic p-adic expansions are rational numbers.

To prove the converse, that every rational number r has an eventually periodic p-adic expansion, we will, perhaps surprisingly, focus on negative r. The p-adic expansion of a positive rational number can be obtained from its negative by negating with (2.2), which clearly shows the negation of an eventually periodic p-adic expansion is eventually periodic. (If $r \in \mathbf{Z}^{+}$there's really no need to negate first: the base p expansion of r is its p-adic expansion.)

Case 1: $r \in \mathbf{Z}$ with $r<0$. Write $r=-R$ with $R \in \mathbf{Z}^{+}$. There is a $j \geq 1$ such that $R<p^{j}$. Then

$$
r=-R=\left(p^{j}-R\right)-p^{j} .
$$

Since $p^{j}-R$ is an integer in $\left\{1, \ldots, p^{j}-1\right\}$ we can write it in base p as $c_{0}+\cdots+c_{j-1} p^{j-1}$. Then

$$
r=\left(p^{j}-R\right)-p^{j}=\sum_{i=0}^{j-1} c_{i} p^{i}+\sum_{i \geq j}(p-1) p^{i},
$$

which is eventually periodic since its digits eventually all equal $p-1$.
Case 2: $r \in \mathbf{Q} \cap \mathbf{Z}_{p}^{\times} \cap(-1,0)$. The p-adic expansion of r is purely periodic by Theorem 2.1, and the proof of that theorem shows how to obtain the expansion.

Case 3: $r \in \mathbf{Q} \cap \mathbf{Z}_{p} \cap(-1,0)$. Write $r=p^{n} u$ with $u \in \mathbf{Z}_{p}^{\times}$. Then $u=r / p^{n}$ is rational, of p adic absolute value 1 , and is in the interval $\left(-1 / p^{n}, 0\right) \subset(-1,0)$, so u has a purely periodic p-adic expanion by Case 2 . Therefore $r=p^{n} u$ has the same purely periodic expansion except for starting n positions further to the right.

Case 4: $r \in \mathbf{Q} \cap \mathbf{Z}_{p}, r \notin \mathbf{Z}$, and $r<-1$. The number r lies strictly between two negative integers: $-(N+1)<r<-N$ for some positive integer N, so $-1<r+N<0$. Since $r+N \in \mathbf{Z}_{p}$, by Case 3 the p-adic expansion of $r+N$ is purely periodic, although not
necessarily starting at the p^{0}-digit (since $r+N$ might not be in \mathbf{Z}_{p}^{\times}), so we can write

$$
\begin{equation*}
r+N=\sum_{i \geq 0} a_{i} p^{i} \tag{3.2}
\end{equation*}
$$

where $a_{i} \in\{0,1, \ldots, p-1\}$ and the a_{i} are purely periodic after a possible initial string of zero digits. Since $r+N$ is not a positive integer, the p-adic expansion (3.2) has infinitely many nonzero a_{i}. Thus the partial sums $a_{0}+a_{1} p+\cdots+a_{j-1} p^{j-1}$ become arbitrarily large in the usual sense as j grows, so there is a j such that

$$
\begin{equation*}
a_{0}+a_{1} p+\cdots+a_{j-1} p^{j-1}>N \tag{3.3}
\end{equation*}
$$

Let j be the smallest choice fitting this inequality, so $a_{j-1} \neq 0$. Then

$$
r+N=\left(a_{0}+a_{1} p+\cdots+a_{j-1} p^{j-1}\right)+\sum_{i \geq j} a_{i} p^{i}
$$

so

$$
\begin{equation*}
r=\left(a_{0}+a_{1} p+\cdots+a_{j-1} p^{j-1}-N\right)+\sum_{i \geq j} a_{i} p^{i} \tag{3.4}
\end{equation*}
$$

and the difference $a_{0}+a_{1} p+\cdots+a_{j-1} p^{j-1}-N$ is a positive integer by (3.3) that is less than $(p-1)+(p-1) p+\cdots+(p-1) p^{j-1}=p^{j}-1$, so we can write the difference in base p :

$$
a_{0}+a_{1} p+\cdots+a_{j-1} p^{j-1}-N=a_{0}^{\prime}+a_{1}^{\prime} p+\cdots+a_{j-1}^{\prime} p^{j-1}
$$

with $0 \leq a_{i}^{\prime} \leq p-1$, so (3.4) becomes

$$
r=\left(a_{0}^{\prime}+a_{1}^{\prime} p+\cdots+a_{j-1}^{\prime} p^{j-1}\right)+\sum_{i \geq j} a_{i} p^{i}
$$

This is an eventually periodic p-adic expansion since the a_{i} for $i \geq j$ are eventually periodic.
Case 5: $r \in \mathbf{Q}, r \notin \mathbf{Z}_{p}, r<0$. Since $p^{e} r \in \mathbf{Z}_{p}$ for large e, we can use a previous case on $p^{e} r$ and then divide by p^{e}.

4. Examples

The proof of Theorem 3.1 gives an algorithm to compute the p-adic expansion of any rational number in \mathbf{Z}_{p} :
(1) Assume $r<0$. (If $r>0$, apply the rest of the algorithm to $-r$ and then negate with (2.2) to get the expansion for r.)
(2) If $r \in \mathbf{Z}_{<0}$ then write $r=-R$ and pick $j \geq 1$ such that $R<p^{j}$. Then $r=$ $\left(p^{j}-R\right)-p^{j}=\left(p^{j}-R\right)+\sum_{i \geq j}(p-1) p^{i}$ and $p^{j}-R$ has a base p expansion not going beyond the p^{j-1}-digit.
(3) If $-1<r<0$ let $r=p^{n} u$ with $u \in \mathbf{Z}_{p}^{\times}$. Then $u \in(-1,0)$ and the p-adic expanion of u is purely periodic using the proof of Theorem 2.1. Multiplying it by p^{n} gives the (purely periodic) p-adic expansion of r.
(4) If $-(N+1)<r<-N$ for an integer $N \geq 1$ then $-1<r+N<0$, so the expansion of $r+N$ is obtained by the previous step, say $r+N=\sum_{i \geq 0} a_{i} p^{i}$. Pick the first truncation $a_{0}+a_{1} p+\cdots+a_{j-1} p^{j-1}$ in this expansion that exceeds N, so $r=\left(\sum_{i=0}^{j-1} a_{i} p^{i}-N\right)+\sum_{i \geq j} a_{i} p^{i}$. The difference in parentheses is a positive integer and its base p expansion has the form $\sum_{i=0}^{j-1} a_{i}^{\prime} p^{i}$, so $r=\sum_{i=0}^{j-1} a_{i}^{\prime} p^{i}+\sum_{i \geq j} a_{i} p^{i}$.

Example 4.1. Let's work out the p-adic expansion of $77 / 18$ in $\mathbf{Q}_{2}, \mathbf{Q}_{3}, \mathbf{Q}_{5}$, and \mathbf{Q}_{7}.
Expansion of $77 / 18$ in \mathbf{Q}_{2} : Since $77 / 18=(1 / 2)(77 / 9)$ and $|77 / 9|_{2}=1$, we will get the 2 -adic expansion of $77 / 9$ and then divide through by 2 . And since $77 / 9>0$, we will first get the 2 -adic expansion of $-77 / 9$ and then negate what we find.

Let $r=-77 / 9$. Since $-9<r<-8$, set $N=8$. Since $-1<r+8<0$ and $r+8=$ $-5 / 9 \in \mathbf{Z}_{2}^{\times} \cap(-1,0)$ we will find the 2 -adic expansion of $-5 / 9$ by Theorem 2.1. The least k making $2^{k} \equiv 1 \bmod 9$ is $k=6$:

$$
2^{6}-1=63=9 \cdot 7 \Longrightarrow-\frac{5}{9}=-\frac{5 \cdot 7}{63}=\frac{35}{1-2^{6}} .
$$

In base $2,35=2^{5}+2+1=100011_{2}$, and its 2 -adic expansion is $1+2+2^{5}=110001$, so

$$
\frac{35}{1-2^{6}}=\frac{100011_{2}}{1-2^{6}}=\frac{110001}{1-2^{6}}=\overline{110001}=110001110001110001 \ldots
$$

The first truncation of this that exceeds $N=8$ is $110001=35$, so

$$
r=-8-\frac{5}{9}=-8+110001+000000 \overline{\overline{110001}}=(35-8)+000000 \overline{\overline{110001}}
$$

Since $35-8=27=2^{4}+2^{3}+2+1=11011_{2}$, which has 2 -adic expansion $1+2+2^{3}+2^{4}=11011$ (it is palindromic, a coincidence), we get

$$
r=-\frac{77}{9}=11011+000000 \overline{110001}=110110 \overline{110001}
$$

Thus

$$
\frac{77}{9}=-110110 \overline{\overline{110001}}=101001 \overline{001110}
$$

so

$$
\frac{77}{18}=\frac{101001 \overline{001110}}{2}=\frac{1}{2}+01001 \overline{001110}
$$

Let's check: in \mathbf{Q}_{2},

$$
\frac{1}{2}+01001 \overline{001110}=\frac{1}{2}+(2+16)+2^{5} \frac{4+8+16}{1-2^{6}}=\frac{1}{2}+18+32 \frac{28}{1-64}=\frac{37}{2}-\frac{32 \cdot 4}{9} \stackrel{\vee}{=} \frac{77}{18} .
$$

Expansion of $77 / 18$ in \mathbf{Q}_{3} : Since $77 / 18=(1 / 9)(77 / 2)$, first we will figure out the 3-adic expansion of $77 / 2$ and then divide it by 9 . Since $77 / 2>0$, first we will compute the 3 -adic expansion of $-77 / 2$ and then negate.

Let $r=-77 / 2$, so $-39<r<-38$. We have $r+38=-1 / 2$, which is easy to expand 3 -adically:

$$
-\frac{1}{2}=\frac{1}{1-3}=\overline{1}=111 \ldots
$$

and the first truncation of this 3 -adic expansion that exceeds 38 is $1111=40$, so

$$
r=-38-\frac{1}{2}=-38+1111+0000 \overline{1}=(40-38)+0000 \overline{1}=2000 \overline{1} .
$$

Therefore

$$
\frac{77}{2}=-2000 \overline{1}=1222 \overline{1}
$$

so

$$
\frac{77}{18}=\frac{1222 \overline{1}}{9}=\frac{1}{9}+\frac{2}{3}+22 \overline{1} .
$$

Let's check: in \mathbf{Q}_{3},

$$
\frac{1}{9}+\frac{2}{3}+22 \overline{1}=\frac{1}{9}+\frac{2}{3}+(2+2 \cdot 3)+\frac{9}{1-3}=\frac{7}{9}+8-\frac{9}{2}=\frac{14+18 \cdot 8-81}{18} \stackrel{\vee 7}{18} .
$$

Expansion of $77 / 18$ in \mathbf{Q}_{5} : We'll get the expansion for $-77 / 18$ and then negate.
Let $r=-77 / 18$. Since $-5<r<-4$, set $N=4$. Then $-1<r+4<0$ and $r+4=$ $-5 / 18=5(-1 / 18)=5 u$ where $u=-1 / 18 \in \mathbf{Z}_{5}^{\times} \cap(-1,0)$. We will get the 5 -adic expansion of $-1 / 18$ using Theorem 2.1 and then multiply through by 5 .

The least k making $5^{k} \equiv 1 \bmod 18$ is $k=6$:

$$
5^{6}-1=15624=18 \cdot 868 \Longrightarrow-\frac{1}{18}=-\frac{868}{15624}=\frac{868}{1-5^{6}}
$$

In base $5,868=5^{4}+5^{3}+4 \cdot 5^{2}+3 \cdot 5+3=11433_{5}$, whose 5 -adic expansion is 33411 , so

$$
u=\frac{868}{1-5^{6}}=\frac{11433_{5}}{1-5^{6}}=\frac{33411}{1-5^{6}}=\overline{334110}=33411033411033411 \ldots
$$

Thus

$$
-\frac{5}{18}=5 u=\overline{033411} .
$$

The first truncation of this that exceeds $N=4$ is 03 , which is 15 , so

$$
r=-4-\frac{5}{18}=-4+03+00 \overline{341103}=(15-4)+00 \overline{341103} .
$$

Since $15-4=11=2 \cdot 5+1=21_{5}$, which has 5 -adic expansion $1+2 \cdot 5=12$, we have

$$
r=-\frac{77}{18}=12+00 \overline{341103}=12 \overline{341103} .
$$

Thus

$$
\frac{77}{18}=-12 \overline{341103}=42 \overline{103341}
$$

Let's check: in \mathbf{Q}_{5},
$42 \overline{103341}=4+2 \cdot 5+5^{2} \frac{1+3 \cdot 5^{2}+3 \cdot 5^{3}+4 \cdot 5^{4}+5^{5}}{1-5^{6}}=14+25 \frac{6076}{1-5^{6}}=14-25 \frac{7}{18} \stackrel{y}{=} \frac{77}{18}$.
Expansion of $77 / 18$ in \mathbf{Q}_{7} : We'll get the expansion for $-11 / 18$ and then multiply by -7 .
Let $r=-11 / 18$. It lies in $\mathbf{Z}_{7}^{\times} \cap(-1,0)$ so we can compute its 7 -adic expansion from Theorem 2.1.

The least k making $7^{k} \equiv 1 \bmod 18$ is $k=3$:

$$
7^{3}-1=342=18 \cdot 19 \Longrightarrow-\frac{11}{18}=-\frac{11 \cdot 19}{342}=\frac{209}{1-7^{3}}
$$

In base $7,209=4 \cdot 7^{2}+7+6=416_{7}$, which has 7 -adic expansion $6+7+4 \cdot 7^{2}=614$, so

$$
r=\frac{209}{1-7^{3}}=\frac{416_{7}}{1-7^{3}}=\frac{614}{1-7^{3}}=\overline{614}=614614614 \ldots
$$

Therefore

$$
\frac{11}{18}=-614614614 \ldots=152052052 \ldots=1 \overline{520}
$$

so

$$
\frac{77}{18}=7\left(\frac{11}{18}\right)=01 \overline{520}
$$

Let's make our final check: in \mathbf{Q}_{7},

$$
01 \overline{520}=7+7^{2} \frac{5+2 \cdot 7}{1-7^{3}}=7-49 \frac{19}{342}=7-\frac{49}{18} \stackrel{\vee}{=} \frac{77}{18} .
$$

[^0]: ${ }^{1}$ This characterization of $\mathbf{Q}_{>0}$ inside $\mathbf{R}_{>0}$ is not affected by some numbers having more than one decimal expansion, such as $.5=.49999 \ldots$, which are both eventually periodic: eventually all 0 or eventually all 9 .

[^1]: ${ }^{2}$ It is not important to pick k minimal, but to do otherwise makes the periodic digit block appear longer, like writing $\overline{12}$ as $\overline{1212}$.

