
FACTORING IN QUADRATIC FIELDS

KEITH CONRAD

1. Introduction

For a squarefree integer d other than 1, let

K = Q[
√
d] = {x+ y

√
d : x, y ∈ Q}.

This is called a quadratic field and it has degree 2 over Q. Similarly, set

Z[
√
d] = {a+ b

√
d : a, b ∈ Z}.

This is a subring of Q[
√
d].

We will define a concept of “integers” for K, which will play the same role in K as the
ordinary integers Z do in Q. The integers of K will contain Z[

√
d] but may be larger.

Unique factorization in the integers of K does not always hold, but we can recover unique
factorization if we broaden our view of what we should be trying to factor.

2. Conjugation

In addition to the basic field operations, a quadratic field has an additional operation of
conjugation, which generalizes complex conjugation. For α = x+y

√
d ∈ K, set its conjugate

to be
α = x− y

√
d.

It is left to the reader to check by a direct calculation that conjugation has the following
properties:

(2.1) α+ β = α+ β, αβ = α · β, α = α,

and also

(2.2) α = α⇐⇒ α ∈ Q.

In terms of Galois theory, conjugation is the nontrivial element of Gal(K/Q).
For α ∈ K, α+α and αα are rational, either because α+α and αα are fixed by conjugation

(use the algebraic properties in (2.1) to check that) or because one can explicitly compute

(2.3) α+ α = 2x, αα = x2 − dy2

where α = x+ y
√
d.

Definition 2.1. For α ∈ K, set Tr(α) = α+ α and N(α) = αα. These are called the trace
and norm of α.

Explicit formulas for the trace and norm are in (2.3). Note Tr: K → Q and N: K → Q.
For q ∈ Q, Tr(q) = 2q and N(q) = q2.

Theorem 2.2. The trace is additive and the norm is multiplicative. That is, Tr(α+ β) =
Tr(α) + Tr(β) and N(αβ) = N(α) N(β).
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Proof. Just compute. �

Every α ∈ K is the root of a monic polynomial of degree 2 with rational coefficients:

(2.4) (X − α)(X − α) = X2 − (α+ α)X + αα = X2 − Tr(α)X + N(α).

This has α and α as its two roots, and the coefficients are the trace (up to sign) and the
norm. The coefficients of (2.4) might not be in Z: if α = 1/2 then (2.4) is X2 −X + 1/4.

3. Integers in a quadratic field

Restricting attention to those elements of K whose polynomial in (2.4) has coefficients
in Z will define for us what the integers of K are.

Definition 3.1. An element α ∈ K is called an integer of K if the polynomial (2.4) has
coefficients in Z. Equivalently, α is an integer of K precisely when its trace and norm are
in Z.

Example 3.2. If α lies in Z[
√
d] then (2.4) has integer coefficients, so α is an integer of K.

Example 3.3. If d ≡ 1 mod 4 then 1+
√
d

2 is not in Z[
√
d] but it is an integer of Q[

√
d] since

it is a root of X2 −X + 1−d
4 , whose coefficients are in Z.

Theorem 3.4. The integers of K are

{a+ b
√
d : a, b ∈ Z} if d 6≡ 1 mod 4

and {
a+ b

(
1 +
√
d

2

)
: a, b ∈ Z

}
if d ≡ 1 mod 4.

Proof. A direct calculation shows that both of the sets consist of integers in K. (To treat

the second case, write the elements as (a+ b
2) + b

2

√
d to calculate the trace and norm using

(2.3).) We have to show, conversely, that every integer of K has the indicated form.

Let α = x + y
√
d be an integer of K, so 2x ∈ Z and x2 − dy2 ∈ Z. The first condition

means x is half an ordinary integer (x = 1
2(2x)), so either x ∈ Z or x is half an odd number.

The importance of d being squarefree is that if dr2 ∈ Z for some r ∈ Q then r ∈ Z.
Indeed, if r has a prime factor p in its (reduced form) denominator then dr2 6∈ Z since p2 is
not canceled by d in dr2. So dr2 ∈ Z implies r has no prime in its denominator, i.e., r ∈ Z.

Suppose x is half an odd number, so x = a/2 with a odd. We will show y is also half an
odd number and d ≡ 1 mod 4. Since x2−dy2 = a2/4−dy2 is in Z, multiplying by 4 implies

(3.1) a2 − d(2y)2 ∈ 4Z

Thus d(2y)2 ∈ Z, so 2y ∈ Z since d is squarefree. Either y ∈ Z or y is half an odd number.
If y ∈ Z then a2−d(2y)2 = a2−4dy2 is odd (recall a is odd), which contradicts (3.1). Thus
y = b/2 for an odd b ∈ Z, so x2 − dy2 = (a2 − db2)/4 ∈ Z, which implies a2 ≡ db2 mod 4.
All odd squares are 1 mod 4, so the congruence implies d ≡ 1 mod 4. Returning to α,

α = x+ y
√
d =

a

2
+
b

2

√
d =

a− b
2

+ b

(
1 +
√
d

2

)
,

which has the necessary form because a− b is even.
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We are done when d ≡ 1 mod 4. When d 6≡ 1 mod 4 we can’t have x be half an odd
number, so x ∈ Z. From x2 − dy2 ∈ Z it follows that dy2 ∈ Z, so from d being squarefree
we get y ∈ Z. Therefore α has the necessary form, with a = x and b = y. �

To unify the notation, set

ω =

{√
d, if d 6≡ 1 mod 4,

1+
√
d

2 , if d ≡ 1 mod 4.

Then ω is an integer of K, and the set of all integers of K takes the form

Z[ω] = {a+ bω : a, b ∈ Z}
in all cases. They form a subring of K.

We will denote the integers of K as OK , so OK = Z[ω]. Table 1 gives some examples.

K Q[i] Q[
√

2] Q[
√

5] Q[
√
−5] Q[

√
−14]

OK Z[i] Z[
√

2] Z[(1 +
√

5)/2] Z[
√
−5] Z[

√
−14]

Table 1. Integers in Quadratic Fields

Remember that Z[
√
d] ⊂ OK , but when d ≡ 1 mod 4 the set OK is strictly larger than

Z[
√
d].

We defined the integers of K to be those α such that the particular polynomial (2.4)
has coefficients in Z. Here is a more abstract characterization of OK . It is closer to the
definition needed when K is replaced by a finite extension of Q with degree greater than 2
and is used in the second proof of Theorem 5.4 below (but is not used elsewhere here).

Theorem 3.5. An element α ∈ K is in OK if and only if it is the root of some monic
polynomial X2 +mX + n ∈ Z[X].

Proof. If α ∈ OK then (2.4) is a polynomial of the desired type. Conversely, suppose
α2 +mα+ n = 0 for some m and n in Z.

Case 1: α ∈ Q. Write α in reduced form as α = a/b where a, b ∈ Z and (a, b) = 1. Then
(a/b)2 + m(a/b) + n = 0, so a2 + mab + nb2 = 0. Thus a2 = −mab− nb2 = b(−ma− nb),
so b | a2. Since (a, b) = 1 it follows that b = ±1, so α = a/b = ±a ∈ Z ⊂ OK .

Case 2: α 6∈ Q. In addition to the relation α2 + mα + n = 0 we have the relation
α2−Tr(α)α+N(α) = 0 from (2.4), where Tr(α) and N(α) are in Q. Subtracting the second
relation from the first, the α2 terms cancel and we obtain

(3.2) (m+ Tr(α))α+ (n−N(α)) = 0.

If m + Tr(α) 6= 0 then we can solve for α in (3.2) to get α ∈ Q, but we are not in that
case. Therefore m + Tr(α) = 0, so n − N(α) = 0. This implies Tr(α) = −m ∈ Z and
N(α) = n ∈ Z, so α is an integer of K by definition. �

Theorem 3.6. For m ∈ Z and α = a+ bω ∈ Z[ω], m | α in Z[ω] if and only if m | a and
m | b in Z.

Proof. Ifm | a andm | b in Z then easilym | α. Conversely, ifm | α then a+bω = m(a′+b′ω)
for some a′ and b′ in Z. Therefore a = ma′ and b = mb′, so m | a and m | b in Z. �

We will use Theorem 3.6 often without comment in numerical examples, e.g., 5 +
√
−6

is not divisible by 3 in Z[
√
−6].
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Theorem 3.7. For each quadratic field K, OK ∩Q = Z and every element of K is a ratio
of elements from OK .

Proof. Each element of OK is a + bω with a and b in Z. Since ω 6∈ Q, if a + bω ∈ Q then
b = 0, so a+ bω = a ∈ Z.

To show every element of K can be written as the ratio of two elements of OK , if
α = x + y

√
d with rational x and y and we write the fractions x and y with a common

denominator, say x = a/c and y = b/c for some c ∈ Z, then

(3.3) x+ y
√
d =

a+ b
√
d

c
.

Since Z[
√
d] ⊂ OK , we’re done. �

Theorem 3.7 says (in part) that the notion of an integer in a quadratic field does not
introduce unexpected new integers inside of Q: the rational numbers that are integers in
K are the plain integers Z.

Theorem 3.8. If α ∈ OK then α ∈ OK .

Proof. Since α and α have the same trace and the same norm, the integrality of α is
immediate from Definition 3.1. For an alternate proof, show the sets described by Theorem
3.4 are preserved by conjugation. �

Although both the trace and norm will be important, the norm will play a more dominant
role. The reason is that we are going to be interested in multiplicative questions (like
factoring), and the norm turns multiplicative relations in OK into multiplicative relations
in Z, where we are more comfortable. The next two theorems illustrate this idea.

Let O×K denote the unit group of OK . Examples of units include i in Z[i] and 1 +
√

2

(with inverse
√

2− 1) in Z[
√

2].

Theorem 3.9. For each quadratic field K, O×K = {α ∈ OK : N(α) = ±1} and O×K ∩Q =
{±1}.

Proof. Let α ∈ OK . If α is a unit, then αβ = 1 for some β ∈ OK . Taking norms of both
sides, N(α) N(β) = N(1) = 1 in Z, so N(α) = ±1. Conversely, assume N(α) = ±1. Since
N(α) = αα, we get αα = ±1. Therefore ±α is an inverse for α, and this lies in OK by
Theorem 3.8.

To show O×K ∩Q = {±1}, the inclusion ⊃ is obvious. For the inclusion ⊂, let q ∈ O×K ∩Q.

Then N(q) = ±1 since q ∈ O×K , so q2 = ±1 since q is rational. Thus q = ±1. �

Example 3.10. The units in Z[
√
−14] are ±1: for a, b ∈ Z, a+ b

√
−14 has norm a2 +14b2,

which is never −1 and is 1 only for a = ±1 and b = 0.

We say a nonzero α ∈ OK is irreducible if α is not a unit and every factorization α = βγ
in OK requires β or γ is a unit in OK .

Theorem 3.11. If α ∈ OK has a norm that is prime in Z then α is irreducible in OK .

Proof. Suppose α = βγ with β and γ in OK . Then taking norms of both sides gives us
N(α) = N(β) N(γ) in Z. Since N(α) is prime, either N(β) or N(γ) is ±1, so (by Theorem
3.9) either β or γ is a unit in OK . Thus α doesn’t have a nontrivial factorization in OK , so
it is irreducible. �

Example 3.12. In Z[
√
−14], 3+

√
−14 has norm 23, so 3+

√
−14 is irreducible in Z[

√
−14].
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Remark 3.13. Negative primes are allowed in Theorem 3.11. For instance, in Z[
√

3] the
norm of 1 + 2

√
3 is −11, so 1 + 2

√
3 is irreducible.

The criterion in Theorem 3.11 is sufficient to show an element of OK is irreducible, but
it is not necessary.

Example 3.14. In Z[
√
−14], N(3) = 9 is not prime in Z, but 3 is irreducible in Z[

√
−14].

Indeed, suppose 3 = αβ in Z[
√
−14] with non-units α and β. Taking norms of both sides,

9 = N(α) N(β) in Z. The norms of α and β must be 3 (they are positive since norms look
like a2+14b2, and they are not 1 since α and β are not units), but the equation 3 = a2+14b2

has no solutions in Z, so there are no elements with norm 3.
Similarly, since N(5) = 25 and 5 is not a norm from Z[

√
−14], 5 is irreducible in Z[

√
−14].

Example 3.15. The norm of 1+
√
−14 is 15, which factors in Z, but 1+

√
−14 is irreducible

in Z[
√
−14]. To see why, write 1 +

√
−14 = αβ and take norms to get 15 = N(α) N(β) in Z.

Since 3 and 5 are not norms from Z[
√
−14], one of α or β has norm 1, so α or β is a unit.

Theorem 3.16. Every nonzero non-unit in OK is a product of irreducibles in OK .

Proof. We argue by induction on |N(α)|, where α runs over nonzero non-units in OK . If
|N(α)| = 2 then α has prime norm so α is irreducible and thus is its own irreducible
factorization. Suppose |N(α)| = n ≥ 3 and all elements with norm of absolute value from 2
to n− 1 admit a factorization into irreducibles. If α is irreducible then it has an irreducible
factorization. If α is not irreducible then we can write α = βγ where β and γ are not units.
Therefore |N(β)| and |N(γ)| are both less than |N(α)|, so by the inductive hypothesis we
have

β = π1 · · ·πr, γ = π′1 · · ·π′r′ ,
where πi and π′j are irreducible in OK . Thus

α = βγ = π1 · · ·πrπ′1 · · ·π′r′
is a product of irreducibles. �

For some quadratic fields (such as Q[i] and Q[
√

2]), their integers have unique factoriza-
tion into irreducibles. But very often OK does not have unique factorization.

Example 3.17. In Z[
√
−14], 15 has the two factorizations

(3.4) 3 · 5 = (1 +
√
−14)(1−

√
−14).

These are irreducible factorizations by Examples 3.14 and 3.15. No factor in one product
is a unit multiple of a factor in the other product since the units in Z[

√
−14] are ±1.

The irreducible element 3 divides (1 +
√
−14)(1 −

√
−14), but it does not divide either

factor. This is not like the behavior of primes p in Z, where p | ab always implies p | a or
p | b.

Example 3.18. Here is a much more striking instance of non-unique factorization in
Z[
√
−14]:

(3.5) 3 · 3 · 3 · 3 = (5 + 2
√
−14)(5− 2

√
−14).

What makes (3.5) more interesting than (3.4) is that the number of irreducible factors on
both sides is not the same. To see that 5 + 2

√
−14 is irreducible in Z[

√
−14], if it has a

non-unit proper factor then that factor has norm properly dividing N(5 +
√
−14) = 81, so
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the norm is 3, 9, or 27. No element has norm 3 or 27, and the elements of norm 9 are ±3,
neither of which are factors of 5 + 2

√
−14. The same proof shows 5− 2

√
−14 is irreducible.

Example 3.19. In Z, when relatively prime numbers have a product that is a perfect
square, the two numbers are squares up to multiplication by ±1. This is proved using unique
factorization in Z. In Z[

√
−14], where there is no unique factorization, the corresponding

result is false. Let’s take a look at a simple example.
Consider the equation

2 · (−7) =
√
−14

2
.

The factors on the left have no common factor in Z[
√
−14] besides ±1 (if δ | 2 and δ | (−7)

then δ divides −7(−1)− 3 · 2 = 1, so δ is a unit), and their product is a perfect square, but
neither factor is a square up to a unit multiple: if 2 = ±(a + b

√
−14)2 = ±(a2 − 14b2 +

2ab
√
−14) then ab = 0 so a or b is 0, but then 2 6= ±(a2−14b2). Similarly, 7 is not a square

up to unit multiple.

4. Ideals

Instead of working with elements in OK , where unique factorization can fail, we will
develop a multiplicative theory for the ideals of OK . We will generally denote ideals with
small gothic letters like a and b.

Theorem 4.1. Every ideal in OK is finitely generated, with at most two generators.

Proof. An ideal in OK is a subgroup of OK . As an additive group, OK
∼= Z2. Therefore

by the classification of finitely generated abelian groups, each subgroup of OK is zero or is
isomorphic to Z or to Z2. This implies that an ideal (a special kind of subgroup of OK) has
at most 2 generators as a Z-module, so it has at most 2 generators as an ideal (i.e., as an
OK-module). �

For a finite set of elements α1, . . . , αm in OK , the ideal they generate is denoted

(α1, . . . , αm) := {α1γ1 + · · ·+ αmγm : γi ∈ OK}
= α1OK + · · ·+ αmOK .

The order in which we write down the generators of an ideal doesn’t matter, e.g.,
(α1, α2, α3) = (α3, α1, α2). What is much more important to remember, though, is that
different finite sets can produce the same ideal.

Example 4.2. In Z[
√
−14], we will show

(17 + 2
√
−14, 20 +

√
−14) = (3−

√
−14).

In Z[
√
−14]/(3 −

√
−14),

√
−14 = 3. Squaring, −14 = 9, so 23 = 0. Therefore 17 +

2
√
−14 = 17 + 6 = 0 and 20 +

√
−14 = 23 = 0, so 3 −

√
−14 divides 17 + 2

√
−14

and 20 +
√
−14. This implies the ideal on the right is inside the ideal on the left. In

Z[
√
−14]/(17+2

√
−14, 20+

√
−14) we have

√
−14 = −20 and 17 = −2

√
−14. Substituting

the first equation into the second, 17 = 40, so 23 = 0. Therefore 3 −
√
−14 = 23 = 0, so

the ideal on the right is in the ideal on the left.

Example 4.3. We show the ideal (2,
√
−14) in Z[

√
−14] is not principal, by contradiction.

Say (2,
√
−14) = (α). Then, since 2 ∈ (2,

√
−14) we have 2 ∈ (α), so α | 2 in Z[

√
−14].

Writing 2 = αβ in Z[
√
−14] and taking norms, 4 = N(α) N(β) in Z, so N(α) | 4 in Z.

Similarly, since
√
−14 ∈ (α) we get N(α) | 14 in Z. Thus N(α) is a common divisor of 4
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and 14, so N(α) is 1 or 2. The norm’s values are x2 + 14y2 with x, y ∈ Z, which is never
2. Therefore N(α) = 1, so α is a unit and (α) = (1). But that means 1 ∈ (2,

√
−14),

contradicting the fact that every element of (2,
√
−14) has even norm. Hence (2,

√
−14) is

not principal.

Since ideals can be described with different sets of generators, we will avoid defining
concepts related to ideals in terms of a choice of generators. However, since it is the
generator description that we always make computations with, we will always try to check
how a new definition looks in terms of generators for the ideals involved.

Theorem 4.4. Let a = (α1, . . . , αm) and b = (β1, . . . , βn) be two ideals in OK . Then the
following are equivalent:

(a) a ⊂ b,
(b) each αi is in b,
(c) each αi is an OK-linear combination of the βj’s.

Proof. If a ⊂ b then each αi belongs to b, which means each αi is an OK-linear combination
of the βj ’s. This shows (a)⇒ (b)⇒ (c). Finally, if each αi is an OK-linear combination of
the βj ’s then each αi is in b, so (since b is closed under OK-scaling and addition) all sums
of OK-multiples of the different αi’s are in b. That is what a typical element of a looks like,
so a ⊂ b. �

Corollary 4.5. In the notation of Theorem 4.4, we have a = b if and only if every αi is an
OK-linear combination of the βj’s and every βj is an OK-linear combination of the αi’s.

Proof. To say a = b means a ⊂ b and b ⊂ a. Use Theorem 4.4 to interpret these inclusions
in terms of linear combinations. �

Example 4.6. For α1 and α2 in OK , (α1, α2) = (α1, α2 + γα1) for all γ ∈ OK .

Example 4.7. In Z[
√
−14], (2, 1 +

√
−14) = (1) because in Z[

√
−14]/(2, 1 +

√
−14) we

have 2 = 1 +
√
−14, so

√
−14 = 1. Squaring, −14 = 1, so 15 = 0. Since also 2 = 0,

so 14 = 0, we have 1 = 15 − 14 = 0 so the quotient ring is the zero ring, which means
(2, 1 +

√
−14) = Z[

√
−14] = (1).

Example 4.8. In Z[
√
−14] we will show

(2 +
√
−14, 7 + 2

√
−14) = (3, 1−

√
−14).

In Z[
√
−14]/(2 +

√
−14, 7 + 2

√
−14) we have

√
−14 = −2, so 0 = 7 + 2

√
−14 = 3 and

1 −
√
−14 = 1 − (−2) = 3 = 0. Thus (3, 1 −

√
−14) vanishes in the quotient ring, so

(3, 1−
√
−14) ⊂ (2+

√
−14, 7+2

√
−14). For the reverse inclusion, in Z[

√
−14]/(3, 1−

√
−14)

we have
√
−14 = 1 and 3 = 0, so 2 +

√
−14 = 3 = 0 and 7 + 2

√
−14 = 9 = 0.

Is (3, 1−
√
−14) the unit ideal? No, because as in Example 4.3 a calculation shows every

element of (3, 1−
√
−14) has norm divisible by 3, so 1 6∈ (3, 1 +

√
−14).

Example 4.9. In Z[
√
−14],

(4 +
√
−14, 2−

√
−14, 7− 2

√
−14, 7 +

√
−14) = (3, 1 +

√
−14).

To see this, we work in Z[
√
−14]/(3, 1 +

√
−14). In this ring,

√
−14 = −1 and 3 = 0. Each

generator in the ideal on the left vanishes in this ring, so the ideal on the left is contained
in the ideal on the right. For the reverse inclusion, −2(2−

√
−14) + (7− 2

√
−14) = 3 and

2(4 +
√
−14)− (7 +

√
−14) = 1 +

√
−14.
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Theorem 4.10. If an ideal in OK contains two elements of Z that are relatively prime then
the ideal is the unit ideal. In particular, an ideal is the unit ideal if it contains two elements
whose norms are relatively prime in Z.

Proof. Let a be an ideal and a and b be elements of a that are in Z and relatively prime.
We can write 1 = ax+ by for some x and y in Z. The right side is in a, so 1 ∈ a, so a = (1).

Since the norm of each α ∈ a is also in a (because N(α) is a multiple of α and ideals
contain each multiple of their elements), two relatively prime norms of elements in a are
themselves elements of a. So a = (1) by the previous paragraph. �

Theorem 4.11. An ideal in OK that has a set of generators from Z is a principal ideal.

Proof. Let a = (a1, . . . , am) where ai ∈ Z. Let a be the greatest common divisor of the ai’s in
Z. Then every ai is a Z-multiple of d, so each element of a is divisible by a in OK . This shows
a ⊂ (a) = aOK . Conversely, since Z is a PID it is possible to write a = c1a1 + · · ·+ cmam
for some ci ∈ Z, so each OK-multiple of a is an OK-linear combination of the ai’s. This
shows (a) ⊂ a, so a = (a). �

The point of Theorem 4.11 is that it tells us that if we happen to find an ideal with
generators all taken from Z, we can write the ideal in a much simpler form with a single
generator from Z. This will play a role in the key theorem about ideals (Theorem 5.4).

Theorem 4.12. For α and β in OK , (α) = (β) if and only if α and β are equal up to
multiplication by a unit in OK .

Proof. Equality of (α) and (β) is equivalent to α | β and β | α, which is equivalent to α and
β being unit multiples, by cancellation. This includes the case when they are both 0. �

Now we define multiplication of ideals.

Definition 4.13. For ideals a and b in OK , the product ab is the set of all finite sums∑r
k=1 xkyk, with r ≥ 1, xk ∈ a and yk ∈ b.

Where does this definition come from? Well, whatever the product of a and b ought to
mean, it should at least be an ideal containing the pairwise products xy where x ∈ a and
y ∈ b. Then, since an ideal has to be closed under addition, the product of a and b should
include all finite sums

∑r
k=1 xkyk with xk ∈ a and yk ∈ b. This is exactly what Definition

4.13 is about, and ab is an ideal in OK . The following theorem describes multiplication of
ideals in terms of generators.

Theorem 4.14. If a = (α1, . . . , αm) and b = (β1, . . . , βn) then

ab = (α1β1, . . . , αiβj , . . . , αmβn).

In particular, (α)(β) = (αβ).

Proof. Every element of ab has the form x1y1 + · · · + xryr where xk ∈ a and yk ∈ b.
We can write each xk as an OK-linear combination of the αi’s and each yk as an OK-
linear combination of the βj ’s. Multiplying out the product xkyk shows it is an OK-linear
combination of the αiβj ’s. Then a sum of such products is another OK-linear combination of
the αiβj ’s, so the elements of ab do lie in the ideal (α1β1, . . . , αiβj , . . . , αmβn). Conversely,
every element of this ideal is an OK-linear combination of the αiβj ’s, so it is a sum

(4.1)
m∑
i=1

n∑
j=1

γijαiβj



FACTORING IN QUADRATIC FIELDS 9

where γij ∈ OK . Since γijαi ∈ a and βj ∈ b, the sum (4.1) is of the form
∑r

k=1 xkyk with
xk ∈ a and yk ∈ b, so the sum belongs to ab. �

Notice that even though we know all ideals require at most two generators (Theorem
4.1), the simplest description of generators for a product of ideals will use more than two
generators. This is why our treatment of ideals has to allow generating sets of size greater
than 2.

Example 4.15. We compute a product of ideals in Z[
√
−14]. Let a = (5+

√
−14, 2+

√
−14)

and b = (4 +
√
−14, 2−

√
−14). Then

ab = (5 +
√
−14, 2 +

√
−14)(4 +

√
−14, 2−

√
−14)

= (6 + 9
√
−14,−6 + 6

√
−14, 24− 3

√
−14, 18).

It is left as an exercise to show this ideal equals (6, 3
√
−14).

Corollary 4.16. For ideals a and b, ab = (0) if and only if a = (0) or b = (0).

Proof. If a = (0) or b = (0) then the product ab is (0) from the formula in Theorem 4.14. If
a 6= (0) and b 6= (0), then a has a nonzero element x and b has a nonzero element y. Then
ab contains xy, which is not zero, so ab 6= (0). �

Theorem 4.17. Multiplication of ideals is commutative and associative. That is, for ideals
a, b, and c in OK ,

ab = ba, (ab)c = a(bc).

The unit ideal (1) is a multiplicative identity.

Proof. The product ab is the ideal with generators xy where x ∈ a and y ∈ b. The product
ba has generators yx for y ∈ b and x ∈ a. These are the same sets of generators, so ab = ba.
The rest of the proof is left to the reader. �

Corollary 4.18. For an ideal a = (α1, . . . , αm) and a principal ideal (γ),

(γ)a = (γα1, . . . , γαm).

Proof. Left to the reader. �

Example 4.19. In Example 4.3 we showed the ideal (2,
√
−14) in Z[

√
−14] is not principal.

We will show this in a different way now. Squaring the ideal,

(2,
√
−14)2 = (2,

√
−14)(2,

√
−14) = (4, 2

√
−14,−14) = (2)(2,

√
−14,−7).

Since 2 and 7 are relatively prime in Z, (2,
√
−14,−7) = (1) by Theorem 4.10. Therefore

(4.2) (2,
√
−14)2 = (2)(1) = (2).

If (2,
√
−14) = (α) then (2) = (α)2 = (α2), so α2 = ±2. Taking norms, N(α)2 = 4, so

N(α) = 2. But no element of Z[
√
−14] has norm 2, so we have a contradiction.

Definition 4.20. For an ideal a, its conjugate ideal is a := {α : α ∈ a}.

This is an ideal since it’s closed under addition, and for c ∈ OK and α ∈ a we have
cα = cα, with cα ∈ a. The next theorem gives generators of a in terms of generators of a.

Theorem 4.21. If a = (α1, . . . , αm) then a = (α1, . . . , αm). In particular, if a = (α) is
principal then a = (α) is also principal. For all ideals a and b, ab = ab and a = a.
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Proof. Each element of a has the form
∑m

i=1 γiαi with γi ∈ OK . Its conjugate is
∑m

i=1 γiαi,
so a ⊂ (α1, . . . , αm). Every element of (α1, . . . , αm) is a sum

∑m
i=1 δiαi, which is the

conjugate of
∑m

i=1 δiαi ∈ a, so (α1, . . . , αm) ⊂ a. Thus a = (α1, . . . , αm).
The rest of the theorem is left to the reader to prove. �

Example 4.22. When an element of OK is equal to its conjugate then it is in Z. But when
an ideal in OK is equal to its conjugate, it need not be an ideal with generators from Z. For

instance, in Z[
√
−14] we have (2,

√
−14) = (2,−

√
−14) = (2,

√
−14), so the ideal (2,

√
−14)

is equal to its conjugate. This ideal does not have a set of generators from Z, since if it did
then it would be a principal ideal (Theorem 4.11) and we know this ideal is not principal
(Example 4.3).

Example 4.23. We will prove that the ideal (3, 1+
√
−14) in Z[

√
−14] is not principal and

not equal to its conjugate ideal. To begin, we check that

(4.3) (3, 1 +
√
−14)(3, 1−

√
−14) = (3).

Multiplying together the generators,

(3, 1 +
√
−14)(3, 1−

√
−14) = (9, 3− 3

√
−14, 3 + 3

√
−14, 15)

= (3)(3, 1−
√
−14, 1 +

√
−14, 5),

and the second ideal on the right contains 3 and 5, which are relatively prime in Z, so the
second ideal is (1). Thus (3, 1+

√
−14)(3, 1−

√
−14) = (3)(1) = (3) and (4.3) is established.

Suppose, to argue by contradiction, that (3, 1 +
√
−14) = (α) is a principal ideal. Then

(4.3) becomes (α)(α) = (3). The product (α)(α) is (αα) = (N(α)), so for this to be (3)
requires N(α) = ±3. But norms on Z[

√
−14] are positive and never equal 3. (The equation

x2 + 14y2 = 3 has no solutions in Z.) Hence we have a contradiction and (3, 1 +
√
−14) is

not principal.
To show (3, 1 +

√
−14) does not equal its conjugate ideal, assume otherwise. Then (4.3)

becomes (3, 1 +
√
−14)2 = (3). But we can compute the square of that ideal independently:

(3, 1 +
√
−14)2 = (3, 1 +

√
−14)(3, 1 +

√
−14)

= (9, 3 + 3
√
−14,−13 + 2

√
−14).

This is not (3) since −13 + 2
√
−14 6∈ (3): multiples of 3 in Z[

√
−14] have the coefficients of

1 and
√
−14 both divisible by 3.

Having spent some time with multiplication of ideals, we turn to divisibility of ideals.

Definition 4.24. Set a | b if b = ac for some ideal c. We say a divides b and that b is a
multiple of a, or that a is a factor or divisor of b.

The first important property of ideal divisibility is that, on principal ideals, it exactly
reflects divisibility of the generators as elements of OK .

Theorem 4.25. For α and β in OK , (α) | (β) if and only if α | β.

Proof. Suppose α | β in OK . Then β = αγ for some γ ∈ OK , so (β) = (αγ) = (α)(γ). Thus
(α) | (β). Conversely, if (α) | (β) then (β) = (α)c for some ideal c. Write c = (γ1, . . . , γr),
so

(β) = (αγ1, . . . , αγr).
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Then β is an OK-linear combination of the products αγk:

β =
r∑

k=1

δkαγk = α
r∑

k=1

δkγk,

so α | β in OK . �

Theorem 4.26. For α ∈ OK and ideal b = (β1, . . . , βm) in OK , the following are equivalent:

• (α) | b,
• α | βj for all j,
• (α) ⊃ b.

Proof. If (α) | b then b = (α)c for some ideal c. Write c = (γ1, . . . , γn), so b = (αγ1, . . . , αγn).
It follows that every element of b is divisible by α, so in particular α | βj for each j. Therefore
βj ∈ (α) for all j, so b ⊂ (α). Finally, from this inclusion we can write each βj as a multiple
of α, so b has the ideal (α) as a factor. �

Theorem 4.27. For ideals a and b, if a | b then a ⊃ b. In particular, if a | b and b | a
then a = b.

Proof. Suppose a | b, say b = ac. Ideals are OK-modules, so ac ⊂ a. �

Let’s summarize the situation right now. We have replaced multiplication and divisibility
among elements of OK with multiplication and divisibility among ideals in OK . Insofar as
elements of OK are concerned, their multiplicative and divisibility relations are accurately
reflected in the behavior of the principal ideals they generate. This is what the end of
Theorem 4.14 and Theorem 4.25 tell us. (Moreover, by Theorem 4.12, replacing elements
with principal ideals lets us suppress unit multiple ambiguities.) What do we gain by using
ideals in place of elements? We can save unique factorization!

Example 4.28. Let p = (3, 1 +
√
−14) and q = (5, 1 +

√
−14). We saw in (4.3) that

(3) = pp. In a similar way, (5) = qq, pq = (1 +
√
−14), and pq = (1 −

√
−14). Then the

principal ideal (15) can be factored as

(15) = (3)(5) = ppqq

and as

(15) = (1 +
√
−14)(1−

√
−14) = pqpq.

From the viewpoint of factoring the element 15, (3.4) shows it has non-unique irreducible
factorizations. But if we replace those irreducible factors by the principal ideals they gen-
erate, they no longer look irreducible (each of the principal ideals (3), (5), (1 +

√
−14), and

(1 −
√
−14) factors into a product of ideals as described just above with p, q, and their

conjugate ideals) and in fact the non-unique factorization disappears: all that is happening
on the level of ideals is that certain (non-principal) ideals are being multiplied in different
ways. Similarly, (3.5) is not strange on the level of ideal factorizations, since (3)4 = p4p4,
(5 + 2

√
−14) = p4, and (5− 2

√
−14) = p4 for p as above. (It is left to the reader to check

these formulas for p4 and p4. As a first step, check p2 = (9, 2−
√
−14).)

Example 4.29. In Z[
√
−14], 2 · (−7) =

√
−14

2
is a perfect square and 2 and −7 have no

common factors, but 2 and −7 are not perfect squares up to unit multiple (Example 3.19).
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This mysterious state of affairs is explained when we pass to ideals. Let a = (2,
√
−14) and

b = (7,
√
−14). Then (2) = a2 (see (4.2)), (−7) = (7) = b2, and

ab = (14, 2
√
−14, 7

√
−14,−14) = (

√
−14)(

√
−14, 2, 7,

√
−14) = (

√
−14),

so passing from elements to the principal ideals they generate turns the equation 2 · (−7) =√
−14

2
into a2b2 = (ab)2, and now what we expect should be squares are squares, as ideals.

Our main goal is to show that nonzero ideals in OK admit unique factorization into
prime ideals. The first step, in the next section, is to establish an analogue for ideals of the
cancellation law for non-zero integers.

5. Cancelling ideals

Definition 5.1. An ideal c in OK is called cancelable if whenever ac = bc for ideals a and
b in OK we have a = b.

Obviously the zero ideal (0) is not cancelable, for the same reason the element 0 can’t be
cancelled.

Theorem 5.2. Nonzero principal ideals are cancelable. That is, for nonzero γ in OK and
ideals a and b, if a(γ) = b(γ) then a = b.

Proof. We will show a ⊂ b. The reverse inclusion is handled similarly.
It is not hard to see that a(γ) = γa is the set of multiples of a by γ. Since we can cancel γ

as a common factor in products, the relations γa = γb and a = b are clearly equivalent. �

Corollary 5.3. Each nonzero ideal in OK with a nonzero principal multiple is cancelable.

Proof. Let c be an ideal with a nonzero principal multiple, say cc′ = (γ) with γ 6= 0. Then
if ac = bc, multiply both sides by c′ to get a(γ) = b(γ), so a = b by Theorem 5.2. �

It turns out that every nonzero ideal in OK has a nonzero principal multiple, so by
Corollary 5.3 every nonzero ideal in OK is cancelable. We’re going to show ideals have
principal multiples using conjugate ideals. Here is the key result, which by Corollary 5.3
implies that all nonzero ideals in OK are cancelable. It will be proved after Theorem 5.9.

Theorem 5.4. For each ideal a in OK , the product aa is a principal ideal.

Up to this point, we have not used Theorem 3.4, which explicitly describes all of the
integers of K. For instance, we could have done everything so far in Z[

√
d] (defining

ideals in Z[
√
d] using Z[

√
d]-linear combinations, principal ideals, conjugate ideals, and

ideal multiplication), even when OK 6= Z[
√
d] , without running into a problem. But to

prove Theorem 5.4 we are going to construct some elements about which all we know is
that they are in OK . If OK 6= Z[

√
d] then Theorem 5.4 is false for Z[

√
d].

Example 5.5. When d ≡ 1 mod 4, so OK 6= Z[
√
d], we have the following equality of ideals

in Z[
√
d]:

(2, 1 +
√
d)(2, 1 +

√
d) = (4, 2(1 +

√
d), d+ 1 + 2

√
d)

= (2)(2, 1 +
√
d, (d− 1)/2 + 1 +

√
d)

= (2)(2, 1 +
√
d),

where we can omit the term (d−1)/2+1+
√
d from the second ideal on the right since it is a

Z-linear combination of 2 and 1+
√
d (as (d−1)/2 is even). If Theorem 5.4 were true for the



FACTORING IN QUADRATIC FIELDS 13

ideal (2, 1+
√
d) in the ring Z[

√
d] then Corollary 5.3 would imply that this ideal in Z[

√
d] is

cancelable. But then when we cancel this ideal in the equation (2, 1+
√
d)2 = (2)(2, 1+

√
d)

we’d get (2, 1 +
√
d) = (2), which is false since 1 +

√
d 6∈ 2Z[

√
d].

If we work with the ideal (2, 1 +
√
d) from the bigger ring OK = Z[(1 +

√
d)/2] then the

non-cancelable aspect above goes away because in OK , (2, 1+
√
d) = (2)(1, (1+

√
d)/2) = (2).

Our approach to Theorem 5.4 relies on the following theorem, which is the heart of the
approach and is the first time we need the trace in the context of ideals.

Theorem 5.6. Let a = (α, β) be an ideal in OK with two generators. Then

aa = (N(α),Tr(αβ),N(β)).

Proof. If α or β is 0 then the theorem is easy. We may assume α and β are nonzero.
By a direct computation,

aa = (α, β)(α, β) = (αα, αβ, βα, ββ) = (N(α), αβ, αβ,N(β)).

We want to show

(N(α), αβ, αβ,N(β)) = (N(α),Tr(αβ),N(β)).

Since Tr(αβ) = αβ + αβ, the ideal on the right is inside the ideal on the left. For the
reverse inclusion, we need to show αβ and αβ are in the ideal on the right. We will give
the argument for αβ, in two different ways.

Our first method is based on [1, p. 276]. Let g be the greatest common divisor of
N(α),Tr(αβ), and N(β) in Z. So g is a factor of all three numbers and, moreover, it is a
Z-linear combination of them. Therefore (N(α),Tr(αβ),N(β)) = (g), so we need to show
αβ ∈ (g) = gOK , or equivalently αβ/g ∈ OK . To do this, following Definition 3.1, we check
that αβ/g has trace and norm in Z. It trace is

Tr

(
αβ

g

)
=
αβ + αβ

g
=

Tr(αβ)

g
,

which is in Z since g is a factor of Tr(αβ). Its norm is

N

(
αβ

g

)
=
αβαβ

g2
=

N(α)

g

N(β)

g
,

which is in Z since g is a factor of the norms of α and β.
Our second proof that αβ ∈ (N(α),Tr(αβ),N(β)) will follow notes of Stark [3], which

were meant to be Chapter 9 of [2] if a second edition of [2] ever appeared. Let γ = α/β ∈
K = Q[

√
d]. It is a root of

(X − γ)(X − γ) = X2 − (γ + γ)X + γγ

= X2 −
(
αβ + αβ

ββ

)
X +

N(α)

N(β)

= X2 − Tr(αβ)

N(β)
X +

N(α)

N(β)
.

Let ` be the least common denominator of Tr(αβ)/N(β) and N(α)/N(β) and write

N(α)

N(β)
=
a

`
,

Tr(αβ)

N(β)
=
b

`
,
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where a, b, ` ∈ Z have no common factor greater than 1. Then

N(α) = ka, Tr(αβ) = kb, N(β) = k`

for some integer k, so

(5.1) (N(α),Tr(αβ),N(β)) = (ka, kb, k`) = (k)(a, b, `) = (k)(1) = (k).

Since

γ2 − b

`
γ +

a

`
= 0 =⇒ (`γ)2 − b(`γ) + a` = 0,

`γ = `α/β is the root of a quadratic with integer coefficients and leading coefficient 1.
Therefore `α/β ∈ OK by Theorem 3.5. At the same time, `α/β = `αβ/N(β) = αβ/k, so
αβ ∈ kOK = (k). By (5.1), αβ ∈ (N(α),Tr(αβ),N(β)). �

Remark 5.7. It is important in Theorem 5.6 that we work in the ring OK . When d ≡
1 mod 4, the formula for aa from the theorem isn’t true when a = (2, 1 +

√
d) in Z[

√
d].

We have a = (2, 1−
√
d) = (2, 1 +

√
d) since 1 +

√
d and 1−

√
d have sum 2, so aa = a2 =

(2, 1 +
√
d)2 = (2)a by Example 5.5. Using α = 2 and β = 1 +

√
d,

(N(α),Tr(αβ),N(β)) = (N(2),Tr(2− 2
√
d),N(1 +

√
d)) = (4, 4, 1− d) = (4)

since 4 | (1− d), and (4) 6= (2)a since a 6= (2). So aa 6= (N(α),Tr(αβ),N(β)).

Remark 5.8. Theorem 5.6 makes essential use of the conjugation operation on ideals in OK .
The integers in higher-degree fields over Q need not have anything like this operation. For
example, in Q( 3

√
2), its integers are Z[ 3

√
2] = Z+Z 3

√
2 +Z 3

√
4 but there is no “conjugation”

on elements or on ideals in Z[ 3
√

2]. There is no simple version of Theorem 5.4 in Z[ 3
√

2].
If you know Galois theory, there is an analogue of Theorem 5.4 for ideals in the integers
of a Galois extension of Q, but for non-Galois extensions like Q( 3

√
2) the situation is more

complicated.

Here is a generalization of Theorem 5.6 to ideals described by more than two generators.
(No ideal in OK needs more than two generators, but ideals that arise from a calculation
might have more than two generators.)

Theorem 5.9. If the ideal a = (α1, . . . , αm) in OK has m generators then aa is generated

by the m integers N(α1), . . . ,N(αm) and m(m−1)
2 integers Tr(αiαj) where i < j.

Proof. The case m = 1 is easy. The case m = 2 is Theorem 5.6. We will use the case m = 2
to handle more generators. By a direct calculation,

aa = (α1, . . . , αm)(α1, . . . , αm)

= (N(α1), . . . ,N(αm), α1α2, α2α1, . . . , αiαj , αjαi, . . . ),

where i < j. By Theorem 5.6, the four numbers N(αi), αiαj , αjαi,N(αj) and the three
numbers N(αi),Tr(αiαj),N(αj) are OK-linear combinations of each other. Therefore we
can replace αiαj and αjαi with Tr(αiαj) in the generating set for aa, and that concludes
the proof. �

Now we can prove Theorem 5.4 very quickly.

Proof. By Theorem 5.9, aa has a set of generators from Z. Therefore aa is principal by
Theorem 4.11. �

Here is a simple but useful application of Theorem 5.4.
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Theorem 5.10. For ideals a and b in OK , a | b if and only if a ⊃ b.

Proof. When a = (0), we have (0) | b ⇔ b = (0) ⇔ (0) ⊃ b. So we may suppose a 6= (0).
By Theorem 4.27, a | b ⇒ a ⊃ b. Now assume a ⊃ b. Then aa ⊃ ba. Write aa = (a) (by
Theorem 5.4), so (a) ⊃ ba. By Theorem 4.26, (a) | ba, so (a)c = ba. Now multiply by a:
(a)ca = b(a). Cancelling (a), which is not (0), gives ac = b, so a | b. �

The slogan to remember Theorem 5.10 by is “to contain is to divide.” This is especially
useful to keep in mind because the divisibility and inclusion relations are reversed: the
factor is the larger ideal.

Corollary 5.11. The divisors of an ideal a in OK are precisely the ideals d satisfying d ⊃ a.
In particular, α ∈ a if and only if a | (α).

Proof. This is immediate from Theorem 5.10. �

Since the ideals dividing a are the ideals containing a, it is very easy to create divisors
of a: if a = (α1, . . . , αm) and α 6∈ a, then (α1, . . . , αm, α) is an ideal properly containing a,
so this ideal is a proper factor of a. Of course, if we’re not careful this factor is likely to be
(1).

Definition 5.12. The sum of two ideals a and b is

a + b = {x+ y : x ∈ a, y ∈ b}.
This is easily checked to be an ideal. The next theorem describes a + b in terms of

generators.

Theorem 5.13. If a = (α1, . . . , αm) and b = (β1, . . . , βn) then

a + b = (α1, . . . , αm, β1, . . . , βn).

Proof. This is left to the reader. Look at the proof of Theorem 4.14 for inspiration if any
is needed. �

Theorem 5.14. For ideals a and b in OK , the ideal a + b is a common divisor of a and b
that all other common divisors divide.

Proof. Since a ⊂ a+ b and b ⊂ a+ b, a+ b is a divisor of both a and b because “to contain
is to divide.” For an ideal d dividing both a and b we have a ⊂ d and b ⊂ d. As d is closed
under addition of its elements, we get by Definition 5.12 that a + b ⊂ d, so d is a divisor of
a + b by Corollary 5.11. �

We call a+b the greatest common divisor of a and b since Theorem 5.14 shows that it has
exactly the same feature as the usual greatest common divisor of (positive) integers. Because
divisibility of ideals is the same as reverse containment, the greatest common divisor of two
ideals is actually the “smallest” ideal containing both a and b, in the sense of inclusions of
ideals.

Example 5.15. Among the ideals of Z[
√
−14], the principal ideals (3) and (1 +

√
−14)

have greatest common divisor (3) + (1 +
√
−14) = (3, 1 +

√
−14), which is a non-principal

ideal. That is, d | (3) and d | (1 +
√
−14) if and only if d | (3, 1 +

√
−14).

Since every ideal in OK has the form (α1, . . . , αm), every ideal in OK is the greatest
common divisor of principal ideals because

(α1, . . . , αm) = α1OK + · · ·+ αmOK = (α1) + · · ·+ (αm).

This shows how the principal ideals “control” all the ideals in OK .
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6. Ideal norms

For a nonzero ideal a, Theorem 5.9 says aa is generated by elements of Z, so it is principal
with a generator in Z. The generator can be chosen in Z+ by changing its sign if necessary.
(Easily (a) = (−a).) This generator is unique, because if a and b are in Z+ and (a) = (b)
as ideals in OK then a = bu for some u ∈ O×K ∩Q = {±1} (Theorem 3.9), so u = 1 since a
and b are positive.

Definition 6.1. For a nonzero ideal a in OK , set Na to be the positive integer that generates
aa:

aa = (Na), Na ∈ Z+.

We call Na the (ideal) norm of a.

Example 6.2. By (4.3), in Z[
√
−14] the ideal (3, 1 +

√
−14) has norm 3.

Theorem 6.3. The ideal norm on OK is compatible with the element norm on principal
ideals: if a = (α) then Na = |N(α)|.

Proof. We have aa = (α)(α) = (αα) = (N(α)) = (|N(α)|). This equals (Na), so Na =
|N(α)| since both are positive integers. �

Theorem 6.4. For nonzero ideals a and b in OK , N(ab) = NaNb.

Proof. We have

(N(ab)) = abab = abab = aabb = (Na)(Nb) = (NaNb).

Therefore the positive integers N(ab) and NaNb each generate the same principal ideal in
OK , so they are equal. �

Corollary 6.5. For nonzero ideals a and b in OK , if a | b then Na | Nb in Z.

Proof. Write b = ac and take norms of both sides. �

The converse of Corollary 6.5 is false: The ideals a = (1 +
√
−14) and b = (1 −

√
−14)

in Z[
√
−14] have equal norm but a does not divide b.

Note Na = 1 if and only if a = (1). In one direction, it is trivial that N((1)) = 1.
Conversely, if Na = 1 then aa = (1), so a | (1). Therefore a ⊃ (1) = OK , so a = (1). Thus
each ideal a 6= (1) has Na > 1. This will be important later when we prove theorems about
ideal factorization by induction on the ideal norm.

We did not define the norm of the ideal (0), but it is perfectly natural to set N((0)) = 0.
All results about ideal norms so far now extend to the zero ideal, but the next property is
specific to nonzero ideals.

Corollary 6.6. For a nonzero ideal a in OK , every ideal factor of a other than a has norm
less than Na.

Proof. Let b be a factor of a other than a, so a = bc and c 6= (1). Since Na = NbNc with
Na 6= (0) and Nc > 1, Nb < Na. �

In practice, how do we compute the norm of an ideal a in OK? Theorem 5.9 provides an
algorithm: for a set of generators for a, compute the greatest common divisor (in Z) of the
norms and “cross-traces” of the generators as described in the statement of Theorem 5.9.
That number is the norm. Let’s look at some examples in Z[

√
−14].
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Example 6.7. Let a = (3, 1 +
√
−14). The ideal aa is generated by N(3),Tr(3(1−

√
−14)),

and N(1 +
√
−14), which are 9, 6, and 15. Their greatest common divisor is 3, so we get

N(3, 1 +
√
−14) = 3.

Example 6.8. Let a = (1 +
√
−14, 1−

√
−14). The norm is the greatest common divisor

of N(1±
√
−14) = 15 and Tr((1 +

√
−14)2) = −26. Since 15 and −26 are relatively prime,

Na = 1. Therefore a = (1). Notice in particular that Na is not the greatest common divisor
of the norms of a set of generators; we needed the trace term as well.

Example 6.9. Let a = (4+
√
−14, 2−

√
−14). From N(4+

√
−14) = 30, N(2−

√
−14) = 18,

and Tr((4 +
√
−14)(2 +

√
−14)) = −12, we get Na = 6.

7. Prime ideals and unique factorization

We will factor nonzero ideals into products of prime ideals after working out some prop-
erties of prime ideals.

Theorem 7.1. If an ideal in OK is prime then its conjugate ideal is prime.

Proof. The rings OK/p and OK/p are isomorphic by applying conjugation to congruence
classes. Therefore one ring is an integral domain if and only if the other ring is. �

Lemma 7.2. For each nonzero ideal a in OK , OK/a is finite.

Proof. Pick α ∈ a with α 6= 0. The number N(α) = αα is nonzero and lies in a, so there
is a natural ring homomorphism OK/(N(α)) → OK/a, which is surjective. We will show
OK/(N(α)) is finite, so OK/a is finite too.

For all nonzero n ∈ Z, OK/(n) = Z[ω]/(n) is finite since, as an additive group, it is
isomorphic to Z2/nZ2 ∼= (Z/nZ)2. �

Theorem 7.3. For a proper ideal p in OK , the following are equivalent:

(1) p is a nonzero prime ideal,
(2) p is a maximal ideal,
(3) p 6= (0) and we can’t write p = ab where a and b are not (0) and (1).

Proof. If p is a nonzero prime ideal then OK/p is a finite integral domain, and thus is a
field, so p is a maximal ideal. Thus (1) implies (2), and obviously (2) implies (1).

If p is maximal, then p 6= (0). If p = ab, then a and b are not (0). Since p ⊂ a, a = (1) or
a = p. If a = p then p = pb, so b = (1) since p is cancelable (Corollary 5.3, Theorem 5.4).
So (2) implies (3).

To show (3) implies (2), we prove the contrapositive. If p is not maximal then (since
p 6= (1)) we have p ⊂ a for an ideal a where a 6= (1) and a 6= p. We get a | p by Theorem
5.10, so p = ab for some ideal b. Since p 6= a we have b 6= (1). If p 6= (0) then a and b are
not (0). �

Here is a numerical criterion to recognize a prime ideal.

Theorem 7.4. An ideal in OK whose norm is prime in Z is a prime ideal.

Proof. Let Na = p be prime. If a = bc, then taking norms shows p = NbNc. Since p is
prime, either b or c has norm 1, so either b or c is (1). �

Example 7.5. In Z[
√
−14], the ideal (3, 1 +

√
−14) has norm 3, so it is a prime ideal.

Similarly, (3, 1−
√
−14), (5, 1 +

√
−14), and (5, 1−

√
−14) are prime ideals.
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The converse to Theorem 7.4 is false: an ideal can be prime without having prime norm.

Example 7.6. In Z[
√
−14], we will show the ideal (11), whose norm is 121, is prime.

Assume (11) = ab with a 6= (1) and b 6= (1). Then taking norms implies 121 = NaNb, so
Na = 11. Write a = (α1, . . . , αm). Since αi ∈ a we have a | (αi) by Theorem 5.10, so taking
norms gives 11 | N(αi). Which elements of Z[

√
−14] have norm divisible by 11?

If x+y
√
−14 satisfies x2 +14y2 ≡ 0 mod 11 then x2 ≡ −3y2 mod 11. Since −3 mod 11 is

not a square we must have y ≡ 0 mod 11 and then x ≡ 0 mod 11. That implies x+ y
√
−14

is divisible by 11 in Z[
√
−14].

Returning to the setup where (11) = ab, the previous paragraph implies that each element
of a is a multiple of 11. Factoring 11 from each generator gives a = (11)c for some ideal c.
But then Na is divisible by 121, while Na = 11. This is a contradiction, so (11) is a prime
ideal in Z[

√
−14].

To prove unique factorization in the positive integers, there are three steps:

• show prime numbers satisfy the property p | ab⇒ p | a or p | b in Z,
• show by induction that every positive integer > 1 has a prime factorization,
• show by induction that the prime factorization is unique, using the first step and

cancellation to reduce to a smaller case.

The following theorem is the analogue of the first step above. The corresponding formu-
lation for irreducible elements is false (Example 3.17).

Theorem 7.7. If p is a nonzero prime ideal in OK and p | ab then p | a or p | b.

Proof. We will assume p does not divide a and prove p | b. The ideal p + a is a common
divisor of p and a (Theorem 5.14). The only divisors of p are p and (1) since p is prime
(Theorem 7.3). Because p does not divide a, p+ a 6= p. Therefore p+ a = (1), so 1 = x+α
for some x ∈ p and α ∈ a. Then for each β ∈ b,

β = 1 · β = xβ + αβ ∈ p + ab ⊂ p,

which shows b ⊂ p. Thus p | b (Corollary 5.11). �

Corollary 7.8. If p is a nonzero prime ideal in OK and p | a1 · · · ar then p | ai for some i.

Proof. Induct on r. �

Now we work out the analogue of the second step towards unique factorization.

Theorem 7.9. Every nonzero ideal 6= (1) in OK admits a prime ideal factorization.

Proof. Mimic the proof of Theorem 3.16 by using induction on the ideal norm. Note a
nonzero proper ideal that is not prime is a product of two nonzero proper ideals by Theorem
7.3(3). �

Theorem 7.10. The prime ideal factorization of a nonzero proper ideal in OK is unique
up to the order of the factors. That is, for each nonzero a 6= (1), if

a = p1 · · · pr = q1 · · · qs

where the pi’s and qj’s are nonzero prime ideals, then the number of prime ideals in both
factorizations is the same and pi = qi after a suitable relabelling of the indices.
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Proof. We argue by induction on the norm of the ideal. A nonzero prime ideal has no
factorization into a product of nonzero prime ideals except itself, so unique factorization
is settled for nonzero prime ideals. This includes ideals with norm 2 (Theorem 7.4). For
n ≥ 3, suppose all ideals with norm from 2 to n− 1 have unique prime ideal factorization.
Let a be an ideal with norm n and two prime ideal factorizations:

a = p1 · · · pr = q1 · · · qs.
Here we may take r > 1 and s > 1 since we may suppose a is not a prime ideal.

Because p1 | a we can say p1 | q1 · · · qs. By Corollary 7.8, p1 divides some qj . Since ideal
multiplication is commutative, we can relabel the qj ’s so that p1 | q1. Then since q1 is prime
we must have p1 = q1 (since p1 6= (1)). Because all nonzero ideals in OK are cancelable, we
can remove p1 from the two prime factorizations:

p2 · · · pr = q2 · · · qs.
This is a prime ideal factorization of an ideal with norm Na/Np1 < Na = n, so the inductive
hypothesis applies: the number of prime ideals on both sides is the same (so r− 1 = s− 1,
hence r = s) and after a suitable relabelling pi = qi for i = 2, . . . , r. We have p1 = q1
already, so we are done. �

We will work out examples of prime ideal factorizations in Section 9.

Remark 7.11. That we prove theorems about ideals by induction on their norm does not
actually mean every positive integer is the norm of some ideal. For instance, there are no
ideals in Z[

√
−14] with norm 11, as we saw in Example 7.6. That means some cases of these

induction arguments are actually empty cases.

The next theorem shows that non-principal ideals in OK are the obstruction to unique
factorization of elements in OK .

Theorem 7.12. There is unique factorization of elements of OK if and only if every ideal
in OK is principal.

Proof. First suppose OK has unique factorization of elements.
Step 1: For irreducible π in OK , the principal ideal (π) is prime.
Let a be an ideal dividing (π), so a ⊃ (π). We want to show a is (1) or (π). Suppose

a 6= (π), so there is an α ∈ a with α 6∈ (π). Writing (π) = ab, b | (π) and for every β ∈ b
we have αβ ∈ ab = (π), so π | αβ. By unique factorization of elements, π is an irreducible
factor of either α or β. Since π does not divide α, we must have π | β, so β ∈ (π). This
holds for all β ∈ b, so b ⊂ (π). Since b | (π) and (π) | b, b = (π). Therefore (π) = a(π), so
a = (1).

Step 2: Every prime ideal in OK is principal.
Let p be a prime ideal. The zero ideal is principal (and prime), so we can assume p is

not (0). Then p | (a) for some nonzero a ∈ Z, such as Np. Factor a into irreducibles in OK

(Theorem 3.16), say a = π1 · · ·πr. Then (a) = (π1) · · · (πr), so p divides some (πi). Since
(πi) is prime by Step 1, p = (πi).

Step 3: Every ideal in OK is principal.
The zero ideal is obviously principal. Every nonzero ideal is a product of nonzero prime

ideals, which are principal by Step 2, so their product is principal.
This concludes the “only if” direction.
Now assume every ideal in OK is principal. We want to show OK has unique factoriza-

tion of elements. The existence of factorization into irreducibles is Theorem 3.16. To get
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uniqueness, we just need to show for each irreducible π that when π | αβ in OK either
π | α or π | β. (The analogue of this property for prime ideals in Theorem 7.7 was used
to prove uniqueness of prime ideal factorizations.) Suppose π | αβ and π does not divide
α. We want to show π | β. The only factors of π are units and unit multiples of π, so the
only common factors of π and α are units. The ideal (π, α) is principal by hypothesis, say
(π, α) = (δ), so δ is a common factor of π and α. Thus δ is a unit, so (π, α) = (1). That
means πx + αy = 1 for some x and y in OK . Multiplying through by β, πβx + αβy = β.
Since π | αβ, we conclude that π | β. �

8. Constructing prime ideals

We have met examples of prime ideals, like (3, 1+
√
−14) and (11) in Z[

√
−14]. What does

a general prime ideal in OK look like? We will describe them in terms of prime numbers.

Theorem 8.1. Every nonzero prime ideal in OK divides a unique prime number. That is,
if p is a nonzero prime ideal then p | (p) for one prime p in Z+.

Proof. The ideal pp = (Np) is divisible by p and has a generator in Z+. Since p 6= (1),
Np > 1. Factor Np into primes in Z+, say

Np = p1p2 · · · pr.
Then pp = (p1p2 . . . pr) = (p1) · · · (pr), so p divides some (pi) by Corollary 7.8.

For the uniqueness, assume p | (p) and p | (q) for two different prime numbers p and q.
Then p ∈ p and q ∈ p. Since p and q are relatively prime, p contains a pair of relatively
prime integers, so p = (1). This is a contradiction. �

Corollary 8.2. Every nonzero prime ideal in OK has norm p or p2 for a prime number p.

Proof. Let p be a nonzero prime ideal in OK . Then there is a prime number p such that
p | (p). Taking ideal norms, Np | N((p)). Since N((p)) = |N(p)| = p2, Np is p or p2. �

There are two ways to characterize the unique prime number p such that p | (p): p is the
only prime number in p and Np is a power of p.

The importance of Theorem 8.1 is that it says we can discover every nonzero prime ideal in
OK by factoring prime numbers in OK . For instance, in Z[

√
−14] we know (2) = (2,

√
−14)2

and (3) = (3, 1 +
√
−14)(3, 1 −

√
−14). Therefore (2,

√
−14) is the only prime ideal with

2-power norm and (3, 1 +
√
−14) and (3, 1−

√
−14) are the only prime ideals with 3-power

norm. (By Example 4.23, (3, 1 +
√
−14) 6= (3, 1−

√
−14).)

The next theorem shows how each prime number (really, the principal ideal generated
by each prime number) factors in OK , and thus shows what the nonzero prime ideals of OK

look like.

Theorem 8.3. Let K = Q[
√
d] be a quadratic field with squarefree d and OK = Z[ω], with

f(X) the quadratic polynomial having ω and ω as roots:

f(X) =

{
X2 − d, if d 6≡ 1 mod 4,

X2 −X + 1−d
4 , if d ≡ 1 mod 4.

For each prime number p, how (p) factors in OK matches how f(X) factors modulo p:

(1) If f(X) mod p is irreducible then (p) is prime in OK with norm p2.
(2) If f(X) ≡ (X − c)(X − c′) mod p with c 6≡ c′ mod p then (p) = pp where p 6= p and

the conjugate ideals p and p have norm p.
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(3) If f(X) ≡ (X − c)2 mod p then (p) = p2 and Np = p.

In particular, prime ideals in OK have prime norm except for principal primes (p) where
p is a prime number such that f(X) mod p is irreducible.

Note the exponent of p in the norms of prime ideals dividing (p) matches the degrees of
the irreducible factors of f(X) mod p.

Proof. Since OK = Z[ω] ∼= Z[X]/(f(X)), OK/(p) ∼= Z[X]/(p, f(X)) ∼= (Z/pZ)[X]/(f(X)).
That is the key. We will compare the ring structures of OK/(p) and (Z/pZ)[X]/(f(X)) to
see that the way (p) factors in OK resembles the way f(X) factors in (Z/pZ)[X].

If f(X) mod p is irreducible then (Z/pZ)[X]/(f(X)) is a field. If f(X) ≡ (X − c)(X −
c′) mod p with c 6≡ c′ mod p then

(Z/pZ)[X]/(f(X)) ∼= (Z/pZ)[X]/(X − c)× (Z/pZ)[X]/(X − c′)
∼= (Z/pZ)× (Z/pZ)

is a direct product of two fields, which is not a field and has no nonzero nilpotent elements.
If f(X) ≡ (X − c)2 mod p then (Z/pZ)[X]/(X − c)2 has a nonzero nilpotent element:
X − c mod (X − c)2. Thus the way f(X) factors in (Z/pZ)[X] is reflected in the ring
structure of (Z/pZ)[X]/(f(X)).

The ring OK/(p) is a field if and only if (p) is a maximal ideal, which is equivalent to
(p) being prime (since (p) 6= (0)). Therefore, by the previous paragraph, f(X) mod p is
irreducible if and only if (p) is prime in OK .

If (p) is not prime then (p) = ab where a and b are not (1). Taking norms, p2 = NaNb,
so a and b both have norm p and therefore are prime ideals. In fact, since Na = p we
have (p) = (Na) = aa, so by unique prime ideal factorization we must have b = a. Write
a as p, since it is a prime ideal. The factorization of (p) is pp, where p may or may not
equal p. If p = p then OK/(p) = OK/p

2 has a nonzero nilpotent element (the coset of
an element of p − p2), so f(X) ≡ (X − c)2 mod p for some c by the previous paragraph.
If p 6= p then OK/(p) = OK/pp is not a field and has no nonzero nilpotent elements:
if xm ≡ 0 mod pp then p and p both divide (xm) = (x)m, so both divide (x) by their
primality, so pp | (x) because p 6= p. Therefore x ≡ 0 mod pp. By the previous paragraph,
we must have f(X) ≡ (X − c)(X − c′) mod p with c 6≡ c′ mod p in this case. �

Corollary 8.4. If (p) is not prime in OK then f(X) mod p has a root. For a root c mod p,
(p, ω − c) is one of the prime ideals dividing (p).

Proof. By Theorem 8.3, (p) = pp for a prime ideal p. Set a = (p, ω− c). Since p ∈ a, a | (p).
Because ω − c 6∈ (p), a 6= (p), so either a is one of the prime ideals dividing (p) or a = (1).
We want to show a 6= (1), so we will look at Na. The norm of a is the greatest common
divisor of N(p) = p2, Tr(p(ω− c)) = pTr(ω− c), and N(ω− c) = f(c) ≡ 0 mod p. These are
all divisible by p, so p | Na. Hence a 6= (1), so a is p or p. The roles of p and p have so far
been symmetric, so we can set p = a = (p, ω − c). �

Example 8.5. How does (2) factor in the integers of Q[
√
−39]? Although X2 + 39 ≡

(X + 1)2 mod 2, it is incorrect to conclude that (2) = p2 because the integers of Q[
√
−39]

are not Z[
√
−39]. The relevant polynomial is not X2 + 39, but rather X2 −X + 10 (which

has (1+
√
−39)/2 as a root). Since X2−X+10 ≡ X(X−1) mod 2, the correct factorization

of (2) is pp.
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When p 6= 2, how the quadratic polynomial f(X) factors modulo p is determined by its
discriminant: there are two different roots if the discriminant is a nonzero square mod p, no
roots if the discriminant is not a square mod p, and a repeated root if the discriminant is
0 mod p. The two formulas for f(X) are X2 − d and X2 −X + 1−d

4 , which have respective
discriminants 4d and d, so how f(X) mod p factors is determined by the Legendre symbol
(dp). (This Legendre symbol is 0 when p | d.) What can we say when p = 2? The way

f(X) mod 2 factors depends on d mod 8. We can translate the results of Theorem 8.3 into
simple formulas based on (dp) and d mod 8, which we record in Tables 2 and 3. The second

column in each table describes how (p) factors into prime ideals in the integers of Q[
√
d].

In both tables, we write p when p 6= p. In Table 2, c mod p is a root of f(X) mod p.

(dp) (p) p

1 pp (p, ω − c)
−1 p (p)
0 p2 (p, ω − c)
Table 2. p 6= 2

d mod 8 (2) p

1 pp (2, 1+
√
d

2 )
5 p (2)

3, 7 p2 (2,
√
d− 1)

even p2 (2,
√
d)

Table 3. p = 2

In Theorem 4.1, we noted that each ideal in OK requires at most two generators (over
OK), for the simple reason that OK

∼= Z2 as abelian groups and each subgroup of Z2 requires
at most 2 generators (over Z, and thus also over OK). In other words, although ideals are
rather special kinds of subgroups of OK , the proof of Theorem 4.1 paid no attention to
this. However, there is something special about generators for ideals that doesn’t hold for
generators of subgroups of Z2. In a subgroup of Z2, not every nonzero element has to be
part of a 2-element generating set (over Z). For instance, the only elements of Z2 that can
be part of a 2-element generating set of Z2 itself are those vectors with relatively prime
coordinates. Compare that with the next result.

Theorem 8.6. If a is a nonzero ideal in OK and α is a nonzero element of a then a = (α, β)
for a suitably chosen β ∈ a.

The proof of Theorem 8.6 requires an analogue of the Chinese remainder theorem for
OK , building on unique factorization of ideals, and is omitted.

9. Worked examples

We will compute some prime ideal factorizations in Z[
√
−14]. First we specialize Tables

2 and 3 to small primes in Z[
√
−14]. See Table 4.
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p (p) p

2 p22 p2 = (2,
√
−14)

3 p3p3 p3 = (3,
√
−14 + 1)

5 p5p5 p5 = (5,
√
−14 + 1)

7 p27 p7 = (7,
√
−14)

11 (11) (11)
13 p13p13 p13 = (13,

√
−14 + 5)

17 (17) (17)
19 p19p19 p19 = (19,

√
−14 + 9)

23 p23p23 p23 = (
√
−14 + 3)

Table 4. Factoring (p) in Z[
√
−14]

The way (p) factors in Z[
√
−14] is determined by the way X2 + 14 factors mod p, and

that is determined by (−14p ) if p 6= 2. If (−14p ) = 1 then (p) is a product of two different

(conjugate) ideals with norm p. When −14 ≡ c2 mod p, one of the prime factors p is
(p,
√
−14− c). If (−14p ) = −1 then (p) is a prime ideal with norm p2. If p = 2 or 7 then (p)

is the square of a prime ideal with norm p. The first odd p such that (−14p ) = 1 are 3, 5, 13,

and 19. Therefore we have the factorizations in Table 4, where we leave a principal ideal
unfactored if it stays prime (e.g., p = 11). The last ideal, p23, should be (23,

√
−14 + 3)

according to the general methods for computing prime ideals. But in this particular case
23 = (3 +

√
−14)(3−

√
−14), so we can drop 23 as a generator of the ideal. The prime ideal

factors of 2, 3, 5, 7, 13, and 19 in the table are non-principal since the equation x2+14y2 = p
has no solution for these values of p.

With this information we can start factoring ideals with generators not in Z. The central
idea is to compute the norm of the ideal and use our knowledge of prime factorization of
the norm in Z to help us. Remember that prime ideals only have prime-power norm.

Example 9.1. We will factor (1 +
√
−14). The ideal has norm 15. Writing (1 +

√
−14)

as a product of prime ideals, the product of their norms is 15, so (1 +
√
−14) must be the

product of a prime ideal of norm 3 and a prime ideal of norm 5. Since 1 +
√
−14 ∈ p3 and

1 +
√
−14 ∈ p5, (1 +

√
−14) is divisible by p3 and p5. Hence (1 +

√
−14) = p3p5.

Example 9.2. We will factor (5 + 2
√
−14), which was left to the reader at the end of

Example 4.28. Since N(5+2
√
−14) = 81, the only possible prime ideal factors of (5+2

√
−14)

are p3 and p3. It can’t be divisible by both, since then it would be divisible by p3p3 = (3),
and (3) doesn’t divide (5 + 2

√
−14) because 3 doesn’t divide 5 + 2

√
−14 in Z[

√
−14].

Therefore (5 + 2
√
−14) is a power of p3 or a power of p3. Which is it?

In Z[
√
−14]/p3 ∼= Z/3Z we have 1+

√
−14 ≡ 0, so 5+2

√
−14 ≡ 3 ≡ 0. Thus (5+2

√
−14)

is a power of p3. Since the norm of (5 + 2
√
−14) is 81, (5 + 2

√
−14) = p43.

Example 9.3. The ideal a = (2 + 3
√
−14) has norm 130 = 2 · 5 · 13. Therefore p2 | a. Does

p5 or p5 divide a? The ideal (1 +
√
−14) is divisible by p5 and not by p5, so let’s look at

the greatest common divisor of a and (1 +
√
−14), which is (2 + 3

√
−14, 1 +

√
−14). Its

norm is 1, so p5 | a. To decide if p13 or p13 divides a, look at (2 + 3
√
−14, 5 +

√
−14),

which is the greatest common divisor of a and (5 +
√
−14); it is p13 or (1). By a calculation

(2 + 3
√
−14, 5 +

√
−14) has norm 13, so p13 | a. Thus a = p2p5p13.
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Example 9.4. The ideal a = (7 + 3
√
−14) has norm 175 = 52 · 7. Therefore p7 | a. Either

p5 or p5 divides a (but not both, since otherwise their product (5) divides a, which is not
the case). The ideal (7 + 3

√
−14, 1 +

√
−14) has norm 1, so p5 does not divide a. Therefore

a = p25p7.

As exercises, verify the prime ideal factorizations in Table 5. The first step is to compute
the norm of each ideal to obtain a list of possible prime ideal factors from Table 4.

Ideal Factorization

(5 +
√
−14) p3p13

(2 +
√
−14) p2p

2
3

(4 +
√
−14) p2p3p5

(7 +
√
−14) p23p7

(7 + 2
√
−14) p3p5p7

(17 + 2
√
−14) p3p5p23

(20 +
√
−14) p2p

2
3p23

Table 5. Factoring ideals in Z[
√
−14]

These factorizations provide new ways of working out the ideal calculations in examples
from Section 4. For instance, to redo Example 4.15 with Table 5, (5 +

√
−14, 2 +

√
−14) =

p3 and (4 +
√
−14, 2 −

√
−14) = p2p3 (note p2 = p2), so the product of these ideals is

p2p3p3 = p2(3) = (2,
√
−14)(3) = (6, 3

√
−14).
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