PRIME POWERS UNITS AND FINITE SUBGROUPS OF $\text{GL}_n(\mathbb{Q})$

KEITH CONRAD

1. Introduction

For an integer $m \geq 2$, write $(\mathbb{Z}/m)^\times$ for the units modulo m: these are the numbers mod m with multiplicative inverses. We have $a \text{ mod } m \in (\mathbb{Z}/m)^\times$ if and only if $\gcd(a, m) = 1$. When m is a prime power p^k with $k \geq 1$, the units modulo p^k are all residues mod p^k besides the multiples of p, since being relatively prime to p^k is the same as not being divisible by p. Therefore

$|(\mathbb{Z}/p^k)^\times| = |\{0, 1, 2, \ldots, p^k - 1\} - \{0, p, 2p, 3p, \ldots, (p^k - 1)p\}| = p^k - p^k - 1 = p^k - 1(p - 1)$.

A fundamental result in number theory, going back to Gauss, is that the group $(\mathbb{Z}/p)^\times$ is cyclic for every prime p: there is an element of $(\mathbb{Z}/p)^\times$ with order $p - 1$. When p is an odd prime, there is a similar result for powers of p.

Theorem 1.1. For an odd prime p and integer $k \geq 2$, the group $(\mathbb{Z}/p^k)^\times$ is cyclic.

This is false for 2^k when $k \geq 3$, e.g. $(\mathbb{Z}/8)^\times = \{1, 3, 5, 7 \mod 8\}$ has order 4 and each unit modulo 8 squares to 1, so no unit modulo 8 has order 4.

A proof that all groups $(\mathbb{Z}/p)^\times$ are cyclic is in Section A. Building on that, we will show how to prove Theorem 1.1 using p-adic numbers. Then, using p-adic numbers in another way, we will apply Theorem 1.1 to compute a bound on the order of finite subgroups of $\text{GL}_n(\mathbb{Q})$.

2. The groups $(\mathbb{Z}/(p^k))^\times$ are cyclic

We will prove Theorem 1.1 by using a Teichmüller representative to lift a generator of $(\mathbb{Z}/p)^\times$ multiplicatively into the p-adics.

Proof. By Theorem A.6, $(\mathbb{Z}/p)^\times$ is cyclic. Let a generator of it be $g \text{ mod } p$ and let $\omega(g) \in \mathbb{Z}_p^\times$ be the Teichmüller representative for g, so $\omega(g)^{p - 1} = 1$ and $\underbrace{\omega(g) \equiv g \text{ mod } p}$. Integers modulo p^k and p-adic integers modulo p^k amount to the same thing. In the language of algebra, \mathbb{Z}/p^k and \mathbb{Z}_p/p^k are isomorphic rings in a natural way.

We are going to show the product $(1 + p)\omega(g)$ is a generator of $(\mathbb{Z}/p^k)^\times$ for all k. That is, if a is an integer such that $a \equiv (1 + p)\omega(g) \text{ mod } p^k$ then $a \text{ mod } p^k$ generates $(\mathbb{Z}/p^k)^\times$.

Since $(\mathbb{Z}/p^k)^\times$ has size $p^{k - 1}(p - 1)$, it suffices to prove $((1 + p)\omega(g))^m \equiv 1 \text{ mod } p^k$ only if m is divisible by $p^{k - 1}(p - 1)$.

Congruences mod p^k remain valid as congruences mod p, so

$$((1 + p)\omega(g))^m \equiv 1 \text{ mod } p^k \implies ((1 + p)\omega(g))^m \equiv 1 \text{ mod } p \implies g^m \equiv 1 \text{ mod } p,$$

so $(p - 1 | m)$ since $g \text{ mod } p$ is a generator of $(\mathbb{Z}/p)^\times$. Thus

$$((1 + p)\omega(g))^m = (1 + p)^m \omega(g)^m = (1 + p)^m,$$
For every positive integer m and $b \in 1 + p\mathbb{Z}_p$, we have $|b^m - 1|_p = |m|_p |b - 1|_p$, which holds when $b = 1 + p$.

Therefore $|1 + p|^m - 1|_p \leq 1/p^k$.

\[|(1 + p)^m - 1|_p = |m|^1p |(1 + p) - 1|_p = \frac{|m|_p}{p^k}. \]

From $(p-1) \mid m$ and $p^{k-1} \mid m$ we get $p^{k-1}(p-1) \mid m$ since $p-1$ and p^{k-1} are relatively prime. That completes the proof.

Corollary 2.1. If p is an odd prime and $a \equiv \omega(\bar{a}) \equiv u \pmod{p^2}$ is a generator of $(\mathbb{Z}/p^2)^\times$ then a is a generator of $(\mathbb{Z}/p^k)^\times$ for all $k \geq 2$.

Proof. In \mathbb{Z}_p^\times, set $a = \omega(a)u$, where $\omega(a)$ is the Teichmuller representative of a, so $u \in 1 + p\mathbb{Z}_p$ (since $a \equiv \omega(a) \pmod{p}$). Let $1 \equiv \omega(a) \pmod{p}$. Let d be the order of $a \pmod{p}$, so $d \mid (p-1).$ We want to prove $d = p-1$. From $\omega(a) \equiv a^d \equiv 1 \pmod{p}$, raising both sides to the pth power gives $\omega(a)^p \equiv 1 \pmod{p^2}$.

Claim: $\omega(a)$ has order $p-1$ and $|u - 1|_p = p$ (i.e., $u \in 1 + p\mathbb{Z}_p$ and $u \notin 1 + p^2\mathbb{Z}_p$).

Proof of claim: Let $d \geq 1$ be the order of $a \pmod{p}$, so $d \mid (p-1).$ We want to prove $d = p-1$. From $a^d \equiv 1 \pmod{p}$, raising both sides to the pth power gives $a^d \equiv 1 \pmod{p^2}$ with the modulus “improved” to p^2. Therefore $p(p-1) \mid dp$, so $(p-1) \mid d.$ We noted earlier that $d \mid (p-1)$ too, so $d = p-1$. The order of $a \pmod{p}$ and $\omega(a)$ are the same, so $\omega(a)$ has order $p-1$.

Since $|u - 1|_p \leq 1/p$, if $|u - 1|_p \neq 1/p$ then $|u - 1|_p \leq 1/p^2$, so $u \equiv 1 \pmod{p^2}$. Then $a = \omega(a) \equiv u \pmod{p}$, so $a^{p-1} \equiv \omega(a)^{p-1} \equiv 1 \pmod{p^2}$, which contradicts $a \pmod{p^2}$ being a generator of $(\mathbb{Z}/p^2)^\times$. Thus $|u - 1|_p = 1/p$. This finishes the proof of the claim.

When we proved in Theorem 1.1 that $(1 + p)\omega(\bar{a}) \equiv (1 + p)^{p-1} \equiv 1 \pmod{p^2}$, the properties we used about g and $1 + p$ were that $g \pmod{p}$ has order $p-1$ and $(1 + p) - 1 \equiv 1/p$. Since $\omega(a)$ has order $p-1$ and $|u - 1|_p = 1/p$, the arguments used for $(1 + p)\omega(\bar{a})$ can be applied word for word to $\omega(a) = a$, so $a \pmod{p^k}$ generates $(\mathbb{Z}/p^k)^\times$ for all $k \geq 2$.

Remark 2.2. Here is a more conceptual description of what is going on in terms of p-adic quotient groups. We can view $(\mathbb{Z}/p^k)^\times$ as an isomorphic group built from p-adic units:

\[(\mathbb{Z}/p^k)^\times \cong (\mathbb{Z}/p^{k-1})^\times \cong \mathbb{Z}/p^k(1 + p^k\mathbb{Z}_p). \]

The second isomorphism arises because elements of $(\mathbb{Z}/p^k)^\times$ are represented by p-adic units, and when u and v are p-adic units we have

\[u = v \pmod{1 + p^k\mathbb{Z}_p} \iff \frac{u}{v} \in 1 + p^k\mathbb{Z}_p \iff u = v \pmod{1 + p^k\mathbb{Z}_p}. \]

What makes $\mathbb{Z}_p^\times/(1 + p^k\mathbb{Z}_p)$ a nice model for the multiplicative group $(\mathbb{Z}/p^k)^\times$ is that it is an actual quotient of multiplicative groups. This can’t be done working in the integers alone, where the only units are ± 1.

Writing $a = \omega(a)u$ provides a direct product decomposition $\mathbb{Z}_p^\times \cong \mu_{p-1} \times (1 + p\mathbb{Z}_p)$, where μ_{p-1} is the (cyclic) group of $(p-1)$th roots of unity in the p-adic integers. Thus

\[\mathbb{Z}_p^\times/(1 + p^k\mathbb{Z}_p) \cong (\mu_{p-1} \times (1 + p\mathbb{Z}_p))/(1 + p^k\mathbb{Z}_p) \cong \mu_{p-1} \times (1 + p\mathbb{Z}_p)/(1 + p^k\mathbb{Z}_p). \]

\[1 \text{In general for } x \text{ and } y \text{ in } \mathbb{Z}_p, \text{ if } x \equiv y \pmod{p} \text{ then } x^p \equiv y^p \pmod{p^2}. \text{ More generally, if } x \equiv y \pmod{p^k} \text{ then } x^p \equiv y^p \pmod{p^{k+1}}. \]
We can figure out what the multiplicative quotient group \((1 + p\mathbb{Z}_p)/(1 + p^k\mathbb{Z}_p)\) looks like concretely by using the \(p\)-adic logarithm to turn it into an additive quotient group. Since \(p \neq 2\), the function \(\log: 1 + p\mathbb{Z}_p \to p\mathbb{Z}_p\) is an isomorphism, and since the \(p\)-adic logarithm is an isometry we get \(\log(1 + p^k\mathbb{Z}_p) = p^k\mathbb{Z}_p\). Thus

\[
(1 + p\mathbb{Z}_p)/(1 + p^k\mathbb{Z}_p) \cong p\mathbb{Z}_p/p^k\mathbb{Z}_p \cong \mathbb{Z}_p/p^{k-1} \cong \mathbb{Z}/p^{k-1} = \text{cyclic group of order } p^{k-1}.
\]

Therefore

\[
(\mathbb{Z}/p^k)\times \cong \mathbb{Z}_p^\times/(1 + p^k\mathbb{Z}_p) \cong \mu_{p-1} \times (1 + p\mathbb{Z}_p)/(1 + p^k\mathbb{Z}_p) \cong \mathbb{Z}/(p - 1) \times \mathbb{Z}/p^{k-1}.
\]

This is a direct product of cyclic groups of orders \(p - 1\) and \(p^{k-1}\), which are relatively prime, so the direct product is also cyclic.

The structure of the group \((\mathbb{Z}/2^k)\times\) can be studied similarly to the case of odd \(p\), but for \(k \geq 3\) these groups will turn out not to be cyclic. They are almost cyclic: there is a cyclic subgroup of order equal to half the size of the group.

Theorem 2.3. For \(k \geq 3\), \((\mathbb{Z}/2^k)\times = \langle -1, 5 \bmod 2^k \rangle = \{ \pm 5^j \bmod 2^k : j \geq 0 \}\).

Proof. The group \((\mathbb{Z}/2^k)\times\) has order \(2^{k-1}(2^k - 1) = 2^{k-1}\). We will show \(5 \bmod 2^k\) has order \(2^{k-2}\). For \(m \geq 1\) and \(b \in 1 + 4\mathbb{Z}_2\) we have \(|b^m - 1|_2 = |m|_2|b - 1|_2\). Therefore

\[
5^m \equiv 1 \bmod 2^k \iff |5^m - 1|_2 \leq \frac{1}{2^k} \iff |m|_2|5 - 1|_2 \leq \frac{1}{2^k} \iff |m|_2 \leq \frac{1}{2^{k-2}} \iff 2^{k-2} \mid m,
\]

so \(5 \bmod 2^k\) has order \(2^{k-2}\). No power of \(5 \bmod 2^k\) is ever \(-1 \bmod 2^k\) since \(5 \equiv 1 \bmod 4\) while \(-1 \equiv 3 \bmod 4\). Therefore \(-1 \bmod 2^k \not\equiv (5 \bmod 2^k)\), and since \(-1 \bmod 2^k\) has order 2 the subgroup \(\{ \pm 5^j \bmod 2^k : j \geq 0 \}\) of \((\mathbb{Z}/2^k)\times\) has order \(2 \cdot 2^{k-2} = 2^{k-1} = |(\mathbb{Z}/2^k)\times|\), which makes this subgroup equal to the whole group.

Remark 2.4. We can explain the group structure of \((\mathbb{Z}/2^k)\times\) by writing it as a quotient group of \(\mathbb{Z}_2^\times\). Since \(\mathbb{Z}_2^\times = \{ \pm 1 \} \times (1 + 4\mathbb{Z}_2)\), for \(k \geq 2\) we have

\[
(\mathbb{Z}/2^k)\times \cong (\mathbb{Z}_2^\times/2^k)\times \cong \mathbb{Z}_2^\times/(1 + 2^k\mathbb{Z}_2) \cong ((\{ \pm 1 \} \times (1 + 4\mathbb{Z}_2))/(1 + 2^k\mathbb{Z}_2) \cong (\{ \pm 1 \} \times (1 + 4\mathbb{Z}_2))/(1 + 2^k\mathbb{Z}_2).
\]

Using the 2-adic logarithm isomorphism \(1 + 4\mathbb{Z}_2 \cong 4\mathbb{Z}_2\), which is also an isometry, we get

\[
(1 + 4\mathbb{Z}_2)/(1 + 2^k\mathbb{Z}_2) \cong 4\mathbb{Z}_2/2^k\mathbb{Z}_2 \cong \mathbb{Z}_2/2^{k-2} \cong \mathbb{Z}/2^{k-2},
\]

so \((\mathbb{Z}/2^k)\times \cong \{ \pm 1 \} \times \mathbb{Z}/2^{k-2}\).

3. Bounding Finite Subgroups of \(\text{GL}_n(\mathbb{Q})\)

How large can a finite group of matrices be? If we allow matrix entries from the complex numbers, or even the real numbers, then there is no upper bound in general. For example, if \(d\) is a positive integer then a counterclockwise rotation by \(2\pi/d\) radians in the plane \(\mathbb{R}^2\) is represented by the matrix

\[
\begin{pmatrix}
\cos(2\pi/d) & -\sin(2\pi/d) \\
\sin(2\pi/d) & \cos(2\pi/d)
\end{pmatrix}
\]

in \(\text{GL}_2(\mathbb{R})\) that has order \(d\), so \(\text{GL}_2(\mathbb{R})\) contains finite subgroups of arbitrarily large order.
If we restrict the numbers in the matrices to be rational, however, then there is an upper bound on how large a finite matrix group can be in terms of the size of the matrices. This result is due to Minkowski [4]. Our argument is adapted from [2, Chap. 4, Sect. 2].

Theorem 3.1 (Minkowski, 1887). For each \(n \geq 1 \) every finite subgroup of \(\text{GL}_n(\mathbb{Q}) \) has order dividing a number \(M(n) \) that depends only on \(n \).

For example, it turns out that \(M(2) = 24 \), so every finite subgroup of \(\text{GL}_2(\mathbb{Q}) \) has order dividing \(24 = 2^3 \cdot 3 \). We are not claiming that there actually is a subgroup of \(\text{GL}_2(\mathbb{Q}) \) with order 24. In fact the largest size is 12, but there are subgroups of order not dividing 12 and they divide 24 (see below for a subgroup of order 8).

Example 3.2. The matrix \(
\begin{pmatrix}
0 & -1 \\
1 & 1
\end{pmatrix}
\) has order 6.

Example 3.3. Let \(r = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \) and \(s = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \). Then \(r \) has order 4, \(s \) has order 2, and \(sr = r^{-1}s \), so the group \(\langle r, s \rangle \) generated by \(r \) and \(s \) in \(\text{GL}_2(\mathbb{Q}) \) has order 8.

Proof. Let \(G \) be a finite subgroup of \(\text{GL}_n(\mathbb{Q}) \). Since \(G \) contains only finitely many matrices, and each rational number is in \(\mathbb{Z}_p \) for all large primes \(p \), the matrices in \(G \) have entries in \(\mathbb{Z}_p \) for all large \(p \), so there is a prime \(p_0 \) such that \(G \subseteq \text{M}_n(\mathbb{Z}_p) \) for all \(p > p_0 \). We write \(\text{GL}_n(\mathbb{Z}_p) \) for the group of \(n \times n \) matrices with \(\mathbb{Z}_p \)-entries that have inverses also with \(\mathbb{Z}_p \)-entries; the condition for a matrix \(A \in \text{M}_n(\mathbb{Z}_p) \) to belong to \(\text{GL}_n(\mathbb{Z}_p) \) is that \(\det A \in \mathbb{Z}_p^\times \). If \(A \in \text{GL}_n(\mathbb{Q}) \) has finite order then \(\det A \in \mathbb{Q}^\times \) has finite order, so \(\det A = \pm 1 \). Therefore by Cramer’s rule for inverting matrices, \(G \subseteq \text{GL}_n(\mathbb{Z}_p) \) for all \(p > p_0 \).

Claim: For every prime \(p > p_0 \), the order of \(G \) divides \(|\text{GL}_n(\mathbb{Z}/p)| \).

Proof of claim: We can view \(G \) inside \(\text{GL}_n(\mathbb{Q}) \). Reducing matrix entries modulo \(p \) sends each matrix \(A \) in \(\text{GL}_n(\mathbb{Z}_p) \) to a matrix \(\overline{A} \) in \(\text{GL}_n(\mathbb{Z}_p/p) \), which can be regarded as \(\text{GL}_n(\mathbb{Z}/p) \) by the natural identification of \(\mathbb{Z}_p/p \) with \(\mathbb{Z}/p \). (We have \(\overline{A} \in \text{GL}_n(\mathbb{Z}_p/p) \) since \(\det A = \pm 1 \implies \det A \equiv 0 \mod p \implies \det \overline{A} \equiv 0 \mod p_0 \).) Reduction \(\text{GL}_n(\mathbb{Z}_p) \to \text{GL}_n(\mathbb{Z}_p/p) \) also preserves multiplication.

The key point is that two matrices \(A \) and \(B \) in \(G \) can’t reduce mod \(p \) to the same matrix in \(\text{GL}_n(\mathbb{Z}_p/p) \). Indeed, suppose \(A \equiv B \mod p \). Then \(AB^{-1} \) belongs to \(G \), so it has finite order, and \(AB^{-1} \equiv I_n \mod p \). To deduce that \(AB^{-1} = I_n \), so \(A = B \), we will use a norm on \(p \)-adic matrices.

For each \(n \times n \) matrix \(X = (x_{ij}) \in \text{M}_n(\mathbb{Q}_p) \), define its \(p \)-adic matrix norm to be the maximum \(p \)-adic absolute value of the entries:

\[
||X||_p := \max_{i,j} |x_{ij}|_p.
\]

For example, \(\text{M}_n(\mathbb{Z}_p) = \{ X \in \text{M}_n(\mathbb{Q}_p) : ||X||_p \leq 1 \} \). It is left to the reader to check \(||X + Y||_p \leq \max(||X||_p, ||Y||_p) \) and \(||XY||_p \leq ||X||_p||Y||_p \). (It is not generally true that \(||XY||_p = ||X||_p||Y||_p \), but the inequality \(||XY||_p \leq ||X||_p||Y||_p \) is sufficient to see matrix multiplication, like matrix addition, is continuous on \(\text{M}_n(\mathbb{Q}_p) \) relative to the matrix norm \(|| \cdot ||_p \).

For \(p > 2 \) and a \(p \)-adic integer \(x \) such that \(x \equiv 1 \mod p \), we have \(|x^m - 1|_p = |m|_p|x - 1|_p \) for every positive integer \(m \). It turns out the same equation holds for matrices: if \(X \equiv I_n \mod p \) (that is, \(||X - I_n||_p \leq 1/p \)) then \(||X^m - I_n||_p = |m|_p||X - I_n||_p \) for all positive integers \(m \). Returning to the matrices \(A \) and \(B \) in \(G \) satisfying \(A \equiv B \mod p \), where \(p > p_0 \) (so \(p > 2 \)),
we have
\[AB^{-1} \equiv I_n \mod p \implies \|AB^{-1} - I_n\|_p \leq \frac{1}{p} \implies \|(AB^{-1})^m - I_n\|_p = \|m\|_p \|AB^{-1} - I_n\|_p \]
for all positive integers \(m\). In the last equation let \(m\) be the (finite!) order of \(AB^{-1}\) in \(G\) to see that \(0 = \|m\|_p \|AB^{-1} - I_n\|_p\). Thus \(\|AB^{-1} - I_n\|_p = 0\), so \(AB^{-1} - I_n = O\), from which we get \(A = B\).

We have shown that reduction mod \(p\) is an injective mapping \(G \to \text{GL}_n(\mathbb{Z}/p\mathbb{Z})\) for \(p > p_0\), so \(|G|\) divides the order of \(\text{GL}_n(\mathbb{Z}/p\mathbb{Z}) \cong \text{GL}_n(\mathbb{Z}/p\mathbb{Z})\). This completes the proof of the claim.

Like the symmetric group \(S_n\), whose order \(n!\) is a product of \(n\) integers, the order of the group \(\text{GL}_n(\mathbb{Z}/p\mathbb{Z})\) has an explicit formula that is a product of \(n\) terms.

Theorem 3.4. For each prime \(p\), \(|\text{GL}_n(\mathbb{Z}/p\mathbb{Z})| = (p^n - 1)(p^n - p) \cdots (p^n - p^{n-1})\).

Proof. See Section B. The proof is based on linear algebra over the field \(\mathbb{Z}/p\).

The order of \(\text{GL}_n(\mathbb{Z}/p\mathbb{Z})\) can be rewritten by factoring out the largest power of \(p\):
\[
(p^n - 1)(p^n - p) \cdots (p^n - p^{n-1}) = (p^n - 1)p(p^{n-1} - 1) \cdots p^{n-1}(p - 1) = p^{1+\cdots+n-1}(p^n - 1)(p^{n-1} - 1) \cdots (p - 1) = p^{n(n-1)/2}(p^n - 1)(p^{n-1} - 1) \cdots (p - 1).
\]

(3.1)

To bound \(|G|\), pick a prime \(q\). We will get an upper bound \(e_n(q)\) for \(\text{ord}_q(|G|)\) and find \(e_n(q) = 0\) if \(q > n + 1\), so \(|G|\) divides \(\prod_{q \leq n+1} q^{e_n(q)}\), where the product runs over primes less than or equal to \(n + 1\). (Recall the examples of finite subgroups of \(\text{GL}_2(\mathbb{Q})\) earlier had order divisible only 2 and 3, which are less than or equal to \(n + 1 = 3\) in this case.)

For prime \(p > p_0\), \(\text{ord}_q(|G|) \leq \text{ord}_q(|\text{GL}_n(\mathbb{Z}/p\mathbb{Z})|)\). If \(p \neq q\) then by (3.1)
\[
\text{ord}_q(|\text{GL}_n(\mathbb{Z}/p\mathbb{Z})|) \leq \text{ord}_q((p^n - 1)(p^{n-1} - 1) \cdots (p - 1)) = \sum_{i=1}^{n-1} \text{ord}_q(p^i - 1).
\]

We will choose for \(p\) a large prime different from \(q\) that makes \(\text{ord}_q(p^i - 1)\) easy to calculate.

If \(q \neq 2\) then \((\mathbb{Z}/q^k)^\times\) is cyclic for all \(k \geq 1\). An integer that is a generator of \((\mathbb{Z}/q^2)^\times\) is also a generator of \((\mathbb{Z}/q^k)^\times\) for all \(k \geq 1\) by Corollary 2.1. Let \(b \mod q^2\) generate \((\mathbb{Z}/q^2)^\times\), so \((b, q^2) = 1\). We will now bring in a famous theorem of Dirichlet about primes in arithmetic progression.

Theorem 3.5 (Dirichlet). If \(a\) and \(m\) are relatively prime integers then there are infinitely many primes \(p \equiv a \mod m\).

By Dirichlet’s theorem there are infinitely many primes \(p \equiv b \mod q^2\). Choose such a prime \(p\) with \(p > p_0\). Necessarily \(p \neq q\) since \((p, q^2) = (b, q^2) = 1\). The number \(\text{ord}_q(p^i - 1)\) is the largest integer \(k\) that makes \(q^k \mid (p^i - 1)\), or equivalently that makes \(p^i \equiv 1 \mod q^k\). Since \(p \mod q^k\) generates \((\mathbb{Z}/q^k)^\times\),
\[q^k \mid (p^i - 1) \iff p^i \equiv 1 \mod q^k \iff q^{k-1}(q-1) \mid i. \]

From the equivalence of the first and third relations we can start counting.

- The number of \(p^i - 1\) with \(1 \leq i \leq n\) that are divisible by \(q\) is the number of multiples of \(q - 1\) up to \(n\), and that number is \([n/(q - 1)]\).
The number of $p^i - 1$ with $1 \leq i \leq n$ that are divisible by q^2 is the number of multiples of $q(q-1)$ up to n, and that number is $\lceil n/(q(q-1)) \rceil$.

The number of $p^i - 1$ with $1 \leq i \leq n$ that are divisible by q^3 is the number of multiples of $q^2(q-1)$ up to n, and that number is $\lceil n/(q^2(q-1)) \rceil$.

For each $k \geq 1$, the number of $p^i - 1$ with $1 \leq i \leq n$ that are divisible by q^k is the number of multiples of $q^{k-1}(q-1)$ up to n, and that number is $\lceil n/(q^{k-1}(q-1)) \rceil$.

Putting this all together, the multiplicity of the prime q in $|GL_n(\mathbb{Z}/p)|$, if $p \mod q^2$ generates $(\mathbb{Z}/q^2)^\times$, is

$$e_n(q) := \left\lfloor \frac{n}{q-1} \right\rfloor + \left\lfloor \frac{n}{q(q-1)} \right\rfloor + \left\lfloor \frac{n}{q^2(q-1)} \right\rfloor + \cdots = \sum_{j \geq 0} \left\lfloor \frac{n}{q^j(q-1)} \right\rfloor.$$

This formally infinite series is really finite because the j-th term is 0 once $q^j(q-1) > n$. In particular, if $q > n + 1$ then $q - 1 > n$ and all terms in the sum vanish. Thus q does not divide $|G|$ if $q > n + 1$, so the only possible odd prime factors of $|G|$ are primes up to $n + 1$, and the highest power of q dividing $|G|$ is at most $q^{e_n(q)}$.

When $q = 2$ a similar analysis can be made with Dirichlet’s theorem for modulus 8 (not for modulus 4 = 2, as the case of odd q might suggest), although it is a bit more complicated because the groups $(\mathbb{Z}/2^k)^\times$ for $k \geq 3$ are not cyclic but only “half-cyclic”: there’s a cyclic subgroup filling up half the group. The result, whose details we omit (see [5, Sect. 1.3.4]), is that $\text{ord}_2(|G|)$ is bounded above by the same formula as (3.2) when $q = 2$, that is, by the sum

$$e_n(2) := \sum_{j \geq 0} \left\lfloor \frac{n}{2^{j+1}} \right\rfloor,$$

Putting everything together, each finite subgroup of $GL_n(\mathbb{Q})$ divides the integer

$$M(n) = \prod_q q^{e_n(q)} = \prod_{q \leq n+1} q^{e_n(q)}$$

where $e_n(q)$ is given by (3.2) for all primes q. The table below gives some sample values.

| n | 1 2 3 4 5 6 7 |
|-----|---|---|---|---|---|---|
| $M(n)$ | 2 24 48 5760 11520 2903040 5806080 |

For each prime q the exponent $e_n(q)$ in $M(n)$ is optimal in the sense that there does exist a subgroup of $GL_n(\mathbb{Q})$ of order $q^{e_n(q)}$ [1, pp. 392-394], [5, Sect. 1.4].

Remark 3.6. The largest possible order of a finite subgroup of $GL_n(\mathbb{Q})$ is $2^nn!$ except when $n = 2, 4, 6, 7, 8, 9$, and 10, and for every n (no exceptions) the subgroups of $GL_n(\mathbb{Q})$ with maximal order are conjugate. See [3].

Appendix A. Cyclicity of $\mathbb{Z}/p)^\times$

To prove $(\mathbb{Z}/p)^\times$ is cyclic for each prime p, we can suppose $p > 2$. We are going to use the prime factorization of $p - 1$. Say

$$p - 1 = q_1^{e_1}q_2^{e_2} \cdots q_m^{e_m},$$

where the q_i are distinct primes and $e_i \geq 1$. We will show $(\mathbb{Z}/p)^\times$ has elements of order $q_i^{e_i}$ for each i and their product furnishes a generator of $(\mathbb{Z}/p)^\times$.
As a warm-up, let’s show for each prime \(p \) dividing \(p - 1 \) that there is an element of order \(p - 1 \) in \((\mathbb{Z}/p)^\times \). While this a consequence of Cauchy’s theorem for all finite groups, abelian or nonabelian, we want to give a proof that uses a special feature of \((\mathbb{Z}/p)^\times \): it is the nonzero elements of the field \(\mathbb{Z}/p \).

Lemma A.1. If \(q \) is a prime dividing \(p - 1 \) then there is an element of \((\mathbb{Z}/p)^\times \) with order \(q \). Specifically, there is an \(a \in (\mathbb{Z}/p)^\times \) such that \(a^{(p-1)/q} \neq 1 \), and necessarily \(a^{(p-1)/q} \) has order \(q \) in \((\mathbb{Z}/p)^\times \).

Proof. The polynomial equation \(a^{(p-1)/q} = 1 \) in \(\mathbb{Z}/p \) has at most \((p - 1)/q \) solutions in \(\mathbb{Z}/p \) since \(\mathbb{Z}/p \) is a field, and \((p - 1)/q \) is less than \(p - 1 = |(\mathbb{Z}/p)^\times| \). Therefore \((\mathbb{Z}/p)^\times \) has an element \(a \) such that \(a^{(p-1)/q} \neq 1 \).

Set \(b = a^{(p-1)/q} \) in \(\mathbb{Z}/p \). Then \(b \neq 1 \) and \(b^q = (a^{(p-1)/q})^q = a^{p-1} = 1 \) in \((\mathbb{Z}/p)^\times \) by Fermat’s little theorem, so the order of \(b \mod p \) divides \(q \) and is not 1. Since \(q \) is prime, the only choice for the order of \(b \mod p \) is \(q \).

That proof is *not* saying that if \(a^{(p-1)/q} \neq 1 \) in \(\mathbb{Z}/p \) then \(a \mod p \) has order \(q \). It is saying that a power of the form \(a^{(p-1)/q} \mod p \) has order \(q \) if the power is not 1 (or 0).

Example A.2. Take \(p = 19 \). By Fermat’s little theorem, all \(a \) in \((\mathbb{Z}/19)^\times \) satisfy \(a^{18} = 1 \). Since 18 is divisible by 3, the lemma is telling us that whenever \(a^{18/3} \neq 1 \), \(a^{18/3} \) has order 3. From the second row of the table below, which runs over the nonzero numbers mod 19, we find 2 different values of \(a^6 \) mod 19 other than 1: 7 and 11. They both have order 3.

<table>
<thead>
<tr>
<th>(a \mod 19)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^6 \mod 19)</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

If a prime \(q \) divides \(p - 1 \) more than once, then the same reasoning as in Lemma A.1 leads to elements of higher \(q \)-power order in \((\mathbb{Z}/p)^\times \).

Lemma A.3. If \(q \) is a prime and \(q^e \mid (p - 1) \) for a positive integer \(e \), then there is an element of \((\mathbb{Z}/p)^\times \) with order \(q^e \). Specifically, there is an \(a \in (\mathbb{Z}/p)^\times \) such that \(a^{(p-1)/q^e} \neq 1 \) in \((\mathbb{Z}/p)^\times \), and necessarily \(a^{(p-1)/q^e} \) has order \(q^e \) in \((\mathbb{Z}/p)^\times \).

Proof. As in the proof of Lemma A.1, there are fewer than \(p - 1 \) solutions to \(a^{(p-1)/q} = 1 \) in \(\mathbb{Z}/p \) since \(\mathbb{Z}/p \) is a field, so there is an \(a \) in \((\mathbb{Z}/p)^\times \) where \(a^{(p-1)/q} \neq 1 \) in \(\mathbb{Z}/p \).

Set \(b = a^{(p-1)/q^e} \) in \(\mathbb{Z}/p \), which makes sense since \(q^e \) is a factor of \(p - 1 \) (we are not using fractional exponents). Then \(b^{q^e} = (a^{(p-1)/q^e})^{q^e} = a^{p-1} = 1 \) in \((\mathbb{Z}/p)^\times \) by Fermat’s little theorem, so the order of \(b \mod p \) divides \(q^e \). Since \(q \) is prime, the (positive) factors of \(q^e \) other than \(q^e \) are factors of \(q^{e-1} \). Since \(b^{q^{e-1}} = (a^{(p-1)/q^{e-1}})^{q^{e-1}} = a^{(p-1)/q} \neq 1 \) in \((\mathbb{Z}/p)^\times \), by the choice of \(a \), the order of \(b \mod p \) does not divide \(q^{e-1} \). Thus the order of \(b \) in \((\mathbb{Z}/p)^\times \) must be \(q^e \). □

Example A.4. Returning to \(p = 19 \), the number \(p - 1 = 18 \) is divisible by the prime power 9. In the table below we list the \(a \) for which \(a^{(p-1)/3} = a^6 \neq 1 \) and below that list the corresponding values of \(a^{18/9} = a^2 \): these are 4, 5, 6, 9, 16, and 17, and all have order 9.

<table>
<thead>
<tr>
<th>(a \mod 19)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>9</th>
<th>10</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^6 \mod 19)</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>(a^2 \mod 19)</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>6</td>
<td>17</td>
<td>5</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>6</td>
<td>16</td>
<td>9</td>
</tr>
</tbody>
</table>

Remark A.5. Lemma A.3 can be proved in another way using unique factorization of polynomials with coefficients in \(\mathbb{Z}/p \). Because all nonzero numbers mod \(p \) are roots of
$T^{p-1} - 1$, this polynomial factors mod p as $(T - 1)(T - 2) \cdots (T - (p - 1))$. Being a product of distinct linear factors, every factor of $T^{p-1} - 1$ is also a product of distinct linear factors, so in particular, every factor of $T^{p-1} - 1$ has as many roots in \mathbb{Z}/p as its degree. For a prime power q^e dividing $p - 1$, $T^{q^e} - 1$ divides $T^{p-1} - 1$, so there are q^e solutions of $a^{q^e} = 1$ in \mathbb{Z}/p. This exceeds the number of solutions of $a^{q^{e-1}} = 1$ in \mathbb{Z}/p, which is at most q^{e-1} since a nonzero polynomial over a field has no more roots than its degree. Therefore there is an a in \mathbb{Z}/p fitting $a^{q^e} = 1$ and $a^{q^{e-1}} \neq 1$. All such a have order q^e.

Theorem A.6. For each prime p, the group $(\mathbb{Z}/p)^\times$ is cyclic.

Proof. We may take $p > 2$, so $p - 1 > 1$. Write $p - 1$ as a product of primes:

$$p - 1 = q_1^{e_1} q_2^{e_2} \cdots q_m^{e_m}. $$

By Lemma A.3, for each i from 1 to m there is $b_i \in (\mathbb{Z}/p)^\times$ with order $q_i^{e_i}$. These orders are relatively prime, and $(\mathbb{Z}/p)^\times$ is abelian, so the product of the b_i’s has order equal to the product of the $q_i^{e_i}$’s, which is $p - 1$. Thus, $b_1 b_2 \cdots b_m$ generates $(\mathbb{Z}/p)^\times$. \qed

Appendix B. The order of $\text{GL}_n(\mathbb{Z}/p)$

To compute $|\text{GL}_n(\mathbb{Z}/p)|$, view the columns of an $n \times n$ matrix with entries in \mathbb{Z}/p as an ordered list of n elements of $(\mathbb{Z}/p)^n$. The matrix is invertible if and only if the columns are a basis of $(\mathbb{Z}/p)^n$. Since a set of n vectors in an n-dimensional vector space is a basis if and only if it is linearly independent, we will count how many ordered lists of n vectors in $(\mathbb{Z}/p)^n$ are linearly independent. Since every set of linearly independent vectors in $(\mathbb{Z}/p)^n$ can be extended to a basis, we can build up elements of $\text{GL}_n(\mathbb{Z}/p)$ column by column.

1. The first column can be anything in $(\mathbb{Z}/p)^n$ but the zero vector, since every nonzero vector can be extended to a basis. Therefore the first column has $p^n - 1$ choices.

2. Having picked the first column, the second column can be an arbitrary vector in $(\mathbb{Z}/p)^n$ that is linearly independent of the first column: such a choice makes the first two columns linearly independent and every pair of linearly independent vectors in $(\mathbb{Z}/p)^n$ can be extended to a basis (if $n \geq 2$). Since the first column has p scalar multiples, the second column has $p^n - p$ choices.

3. The third column (if $n \geq 3$) has to be chosen linearly independently of the first two, which span a 2-dimensional subspace of $(\mathbb{Z}/p)^n$, so the third column has $p^n - p^2$ choices and every such choice is allowed since a set of 3 linearly independent vectors in $(\mathbb{Z}/p)^n$ can be extended to a basis (if $n \geq 3$).

The process continues, with the jth column being anything outside the span of the first $j - 1$ columns, so the jth column has $p^n - p^{j-1}$ choices. We are done when $j = n$, so $|\text{GL}_n(\mathbb{Z}/p)| = (p^n - 1)(p^n - p) \cdots (p^n - p^{n-1})$.

References