PRIME POWERS UNITS AND FINITE SUBGROUPS OF $\mathrm{GL}_{n}(\mathbf{Q})$

KEITH CONRAD

1. Introduction

For an integer $m \geq 2$, write $(\mathbf{Z} / m)^{\times}$for the units modulo m : these are the numbers mod m with multiplicative inverses. We have $a \bmod m \in(\mathbf{Z} / m)^{\times}$if and only if $\operatorname{gcd}(a, m)=1$. When m is a prime power p^{k} with $k \geq 1$, the units modulo p^{k} are all residues mod p^{k} besides the multiples of p, since being relatively prime to p^{k} is the same as not being divisible by p. Therefore

$$
\left|\left(\mathbf{Z} / p^{k}\right)^{\times}\right|=\left|\left\{0,1,2, \ldots, p^{k}-1\right\}-\left\{0, p, 2 p, 3 p, \ldots,\left(p^{k}-1\right) p\right\}\right|=p^{k}-p^{k-1}=p^{k-1}(p-1) .
$$

A fundamental result in number theory, going back to Gauss, is that the group $(\mathbf{Z} / p)^{\times}$ is cyclic for every prime p : there is an element of $(\mathbf{Z} / p)^{\times}$with order $p-1$. When p is an odd prime, there is a similar result for powers of p.

Theorem 1.1. For an odd prime p and integer $k \geq 2$, the group $\left(\mathbf{Z} / p^{k}\right)^{\times}$is cyclic.
This is false for 2^{k} when $k \geq 3$, e.g. $(\mathbf{Z} / 8)^{\times}=\{1,3,5,7 \bmod 8\}$ has order 4 and each unit modulo 8 squares to 1 , so no unit modulo 8 has order 4 .

A proof that all groups $(\mathbf{Z} / p)^{\times}$are cyclic is in Appendix A. Building on that, we will show how to prove Theorem 1.1 using p-adic numbers. Then, using p-adic numbers in another way, we will apply Theorem 1.1 to compute a bound on the order of finite subgroups of $\mathrm{GL}_{n}(\mathbf{Q})$.

2. The Groups $\left(\mathbf{Z} /\left(p^{k}\right)\right)^{\times}$are CyClic

We will prove Theorem 1.1 by using a Teichmüller representative to lift a generator of $(\mathbf{Z} / p)^{\times}$multiplicatively into the p-adics.

Proof. By Theorem A.6, $(\mathbf{Z} / p)^{\times}$is cyclic. Let a generator of it be $g \bmod p$ and let $\omega(g) \in \mathbf{Z}_{p}^{\times}$ be the Teichmuller representative for g, so $\omega(g)^{p-1}=1$ and $\omega(g) \equiv g \bmod p$.

Integers modulo p^{k} and p-adic integers modulo p^{k} amount to the same thing. In the language of algebra, \mathbf{Z} / p^{k} and \mathbf{Z}_{p} / p^{k} are isomorphic rings in a natural way.

We are going to show the product $(1+p) \omega(g)$ is a generator of $\left(\mathbf{Z} / p^{k}\right)^{\times}$for all k. That is, if a is an integer such that $a \equiv(1+p) \omega(g) \bmod p^{k}$ then $a \bmod p^{k}$ generates $\left(\mathbf{Z} / p^{k}\right)^{\times}$.

Since $\left(\mathbf{Z} / p^{k}\right)^{\times}$has size $p^{k-1}(p-1)$, it suffices to prove $((1+p) \omega(g))^{m} \equiv 1 \bmod p^{k}$ only if m is divisible by $p^{k-1}(p-1)$.

Congruences $\bmod p^{k}$ remain valid as congruences $\bmod p$, so

$$
((1+p) \omega(g))^{m} \equiv 1 \bmod p^{k} \Longrightarrow((1+p) \omega(g))^{m} \equiv 1 \bmod p \Longrightarrow g^{m} \equiv 1 \bmod p,
$$

so $(p-1) \mid m$ since $g \bmod p$ is a generator of $(\mathbf{Z} / p)^{\times}$. Thus

$$
((1+p) \omega(g))^{m}=(1+p)^{m} \omega(g)^{m}=(1+p)^{m}
$$

So

$$
((1+p) \omega(g))^{m} \equiv 1 \bmod p^{k} \Longrightarrow(1+p)^{m} \equiv 1 \bmod p^{k} \Longrightarrow\left|(1+p)^{m}-1\right|_{p} \leq \frac{1}{p^{k}}
$$

For $m \in \mathbf{Z}^{+}$and $b \in 1+p \mathbf{Z}_{p}$, we have $\left|b^{m}-1\right|_{p}=|m|_{p}|b-1|_{p}$ when $p \neq 2$: see Appendix B. Taking $b=1+p$,

$$
\left|(1+p)^{m}-1\right|_{p}=|m|_{p}|(1+p)-1|_{p}=\frac{|m|_{p}}{p}
$$

Therefore $\left|(1+p)^{m}-1\right|_{p} \leq 1 / p^{k} \Longrightarrow|m|_{p} / p \leq 1 / p^{k} \Longrightarrow|m|_{p} \leq 1 / p^{k-1} \Longrightarrow p^{k-1} \mid m$.
From $(p-1) \mid m$ and $p^{k-1} \mid m$ we get $p^{k-1}(p-1) \mid m$ since $p-1$ and p^{k-1} are relatively prime. That completes the proof.
Corollary 2.1. If p is an odd prime and $a \bmod p^{2}$ is a generator of $\left(\mathbf{Z} / p^{2}\right)^{\times}$then $a \bmod p^{k}$ is a generator of $\left(\mathbf{Z} / p^{k}\right)^{\times}$for all $k \geq 2$.
Proof. In \mathbf{Z}_{p}^{\times}set $a=\omega(a) u$, where $\omega(a)$ is the Teichmuller representative of a, so $u \in 1+p \mathbf{Z}_{p}$ (since $a \equiv \omega(a) \bmod p$.

Claim: $\omega(a)$ has order $p-1$ and $|u-1|_{p}=1 / p$ (i.e., $u \in 1+p \mathbf{Z}_{p}$ and $u \notin 1+p^{2} \mathbf{Z}_{p}$).
Proof of claim: Let $d \geq 1$ be the order of $a \bmod p$, so $d \mid(p-1)$. We want to prove $d=p-1$. From $a^{d} \equiv 1 \bmod p$, raising both sides to the p th power gives us $a^{d p} \equiv 1 \bmod p^{2}$ with the modulus "improved" to $p^{2} .{ }^{1}$ Therefore $p(p-1) \mid d p$, so $(p-1) \mid d$. We noted earlier that $d \mid(p-1)$ too, so $d=p-1$. The order of $a \bmod p$ and $\omega(a)$ are the same, so $\omega(a)$ has order $p-1$.

Since $|u-1|_{p} \leq 1 / p$, if $|u-1|_{p} \neq 1 / p$ then $|u-1|_{p} \leq 1 / p^{2}$, so $u \equiv 1 \bmod p^{2}$. Then $a=\omega(a) u \equiv \omega(a) \bmod p^{2}$, so $a^{p-1} \equiv \omega(a)^{p-1} \equiv 1 \bmod p^{2}$, which contradicts $a \bmod p^{2}$ being a generator of $\left(\mathbf{Z} / p^{2}\right)^{\times}$. Thus $|u-1|_{p}=1 / p$. This finishes the proof of the claim.

When we proved in Theorem 1.1 that $(1+p) \omega(g) \bmod p^{k}$ has order $(p-1) p^{k-1}$, the properties we used about g and $1+p$ were that $g \bmod p$ has order $p-1$ and $|(1+p)-1|_{p}=1 / p$. Since $\omega(a)$ has order $p-1$ and $|u-1|_{p}=1 / p$, the arguments used for $(1+p) \omega(g)$ can be applied word for word to $u \omega(a)=a$, so $a \bmod p^{k}$ generates $\left(\mathbf{Z} / p^{k}\right)^{\times}$for all $k \geq 2$.

Remark 2.2. Here is a more conceptual description of what is going on in terms of p-adic quotient groups. We can view $\left(\mathbf{Z}_{p} / p^{k}\right)^{\times}$as an isomorphic group built from p-adic units:

$$
\left(\mathbf{Z} / p^{k}\right)^{\times} \cong\left(\mathbf{Z}_{p} / p^{k}\right)^{\times} \cong \mathbf{Z}_{p}^{\times} /\left(1+p^{k} \mathbf{Z}_{p}\right)
$$

The second isomorphism arises because elements of $\left(\mathbf{Z}_{p} / p^{k}\right)^{\times}$are represented by p-adic units, and when u and v are p-adic units we have

$$
u=v \text { in } \mathbf{Z}_{p} / p^{k} \Longleftrightarrow u \in v+p^{k} \mathbf{Z}_{p} \Longleftrightarrow \frac{u}{v} \in 1+p^{k} \mathbf{Z}_{p} \Longleftrightarrow u=v \text { in } \mathbf{Z}_{p}^{\times} /\left(1+p^{k} \mathbf{Z}_{p}\right)
$$

What makes $\mathbf{Z}_{p}^{\times} /\left(1+p^{k} \mathbf{Z}_{p}\right)$ a nice model for the multiplicative group $\left(\mathbf{Z} / p^{k}\right)^{\times}$is that it is an actual quotient of multiplicative groups. This can't be done working in the integers alone, where the only units are ± 1.

Writing $a=\omega(a) u$ provides a direct product decomposition $\mathbf{Z}_{p}^{\times} \cong \mu_{p-1} \times\left(1+p \mathbf{Z}_{p}\right)$, where μ_{p-1} is the (cyclic) group of $(p-1)$ th roots of unity in the p-adic integers. Thus

$$
\mathbf{Z}_{p}^{\times} /\left(1+p^{k} \mathbf{Z}_{p}\right) \cong\left(\mu_{p-1} \times\left(1+p \mathbf{Z}_{p}\right)\right) /\left(1+p^{k} \mathbf{Z}_{p}\right) \cong \mu_{p-1} \times\left(1+p \mathbf{Z}_{p}\right) /\left(1+p^{k} \mathbf{Z}_{p}\right)
$$

[^0]We can figure out what the multiplicative quotient group $\left(1+p \mathbf{Z}_{p}\right) /\left(1+p^{k} \mathbf{Z}_{p}\right)$ looks like concretely by using the p-adic logarithm to turn it into an additive quotient group. Since $p \neq 2$, the function $\log : 1+p \mathbf{Z}_{p} \rightarrow p \mathbf{Z}_{p}$ is an isomorphism, and since the p-adic logarithm is an isometry we get $\log \left(1+p^{k} \mathbf{Z}_{p}\right)=p^{k} \mathbf{Z}_{p}$. Thus

$$
\left(1+p \mathbf{Z}_{p}\right) /\left(1+p^{k} \mathbf{Z}_{p} \stackrel{\log }{\cong} p \mathbf{Z}_{p} / p^{k} \mathbf{Z}_{p} \cong \mathbf{Z}_{p} / p^{k-1} \cong \mathbf{Z} / p^{k-1}=\text { cyclic group of order } p^{k-1}\right.
$$

Therefore

$$
\left(\mathbf{Z} / p^{k}\right)^{\times} \cong \mathbf{Z}_{p}^{\times} /\left(1+p^{k} \mathbf{Z}_{p}\right) \cong \mu_{p-1} \times\left(1+p \mathbf{Z}_{p}\right) /\left(1+p^{k} \mathbf{Z}_{p}\right) \cong \mathbf{Z} /(p-1) \times \mathbf{Z} / p^{k-1}
$$

This is a direct product of cyclic groups of orders $p-1$ and p^{k-1}, which are relatively prime, so the direct product is also cyclic.

The structure of the group $\left(\mathbf{Z} / 2^{k}\right)^{\times}$can be studied similarly to the case of odd p, but for $k \geq 3$ these groups will turn out not to be cyclic. They are almost cyclic: there is a cyclic subgroup of order equal to half the size of the group.
Theorem 2.3. For $k \geq 3,\left(\mathbf{Z} / 2^{k}\right)^{\times}=\left\langle-1,5 \bmod 2^{k}\right\rangle=\left\{ \pm 5^{j} \bmod 2^{k}: j \geq 0\right\}$.
Proof. The group $\left(\mathbf{Z} / 2^{k}\right)^{\times}$has order $2^{k-1}(2-1)=2^{k-1}$. We will show $5 \bmod 2^{k}$ has order 2^{k-2}. For $m \in \mathbf{Z}^{+}$and $b \in 1+4 \mathbf{Z}_{2}$ we have $\left|b^{m}-1\right|_{2}=|m|_{2}|b-1|_{2}$: see Appendix B. Therefore
$\left.5^{m} \equiv 1 \bmod 2^{k} \Longleftrightarrow\left|5^{m}-1\right|_{2} \leq \frac{1}{2^{k}} \Longleftrightarrow|m|_{2}|5-1|_{2} \leq \frac{1}{2^{k}} \Longleftrightarrow|m|_{2} \leq \frac{1}{2^{k-2}} \Longleftrightarrow 2^{k-2} \right\rvert\, m$,
so $5 \bmod 2^{k}$ has order 2^{k-2}. No power of $5 \bmod 2^{k}$ is ever $-1 \bmod 2^{k}$ since $5 \equiv 1 \bmod 4$ while $-1 \equiv 3 \bmod 4$. Therefore $-1 \bmod 2^{k} \notin\left\langle 5 \bmod 2^{k}\right\rangle$, and since $-1 \bmod 2^{k}$ has order 2 the subgroup $\left\{ \pm 5^{j} \bmod 2^{k}: j \geq 0\right\}$ of $\left(\mathbf{Z} / 2^{k}\right)^{\times}$has order $2 \cdot 2^{k-2}=2^{k-1}=\left|\left(\mathbf{Z} / 2^{k}\right)^{\times}\right|$, which makes this subgroup equal to the whole group.
Remark 2.4. We can explain the group structure of $\left(\mathbf{Z} / 2^{k}\right)^{\times}$by writing it as a quotient group of \mathbf{Z}_{2}^{\times}. Since $\mathbf{Z}_{2}^{\times}=\{ \pm 1\} \times\left(1+4 \mathbf{Z}_{2}\right)$, for $k \geq 2$ we have

$$
\begin{aligned}
\left(\mathbf{Z} / 2^{k}\right)^{\times} & \cong\left(\mathbf{Z}_{2} / 2^{k}\right)^{\times} \\
& \cong \mathbf{Z}_{2}^{\times} /\left(1+2^{k} \mathbf{Z}_{2}\right) \\
& \cong\left(\{ \pm 1\} \times\left(1+4 \mathbf{Z}_{2}\right)\right) /\left(1+2^{k} \mathbf{Z}_{2}\right) \\
& \cong\{ \pm 1\} \times\left(1+4 \mathbf{Z}_{2}\right) /\left(1+2^{k} \mathbf{Z}_{2}\right)
\end{aligned}
$$

Using the 2-adic logarithm isomorphism $1+4 \mathbf{Z}_{2} \cong 4 \mathbf{Z}_{2}$, which is also an isometry, we get

$$
\begin{aligned}
& \left(1+4 \mathbf{Z}_{2}\right) /\left(1+2^{k} \mathbf{Z}_{2}\right) \stackrel{\log }{\cong} 4 \mathbf{Z}_{2} / 2^{k} \mathbf{Z}_{2} \cong \mathbf{Z}_{2} / 2^{k-2} \cong \mathbf{Z} / 2^{k-2}, \\
& \text { so }\left(\mathbf{Z} / 2^{k}\right)^{\times} \cong\{ \pm 1\} \times \mathbf{Z} / 2^{k-2}
\end{aligned}
$$

3. Bounding finite subgroups of $\mathrm{GL}_{n}(\mathbf{Q})$

How large can a finite group of matrices be? If we allow matrix entries from the complex numbers, or even the real numbers, then there is no upper bound in general. For example, if d if a positive integer then a counterclockwise rotation by $2 \pi / d$ radians in the plane \mathbf{R}^{2} is represented by the matrix

$$
\left(\begin{array}{rr}
\cos (2 \pi / d) & -\sin (2 \pi / d) \\
\sin (2 \pi / d) & \cos (2 \pi / d)
\end{array}\right)
$$

in $\mathrm{GL}_{2}(\mathbf{R})$ that has order d, so $\mathrm{GL}_{2}(\mathbf{R})$ contains finite subgroups of arbitrarily large order.
If we restrict the numbers in the matrices to be rational, however, then there is an upper bound on how large a finite matrix group can be in terms of the size of the matrices. This result is due to Minkowski [4]. Our argument is adapted from [2, Chap. 4, Sect. 2].
Theorem 3.1 (Minkowski, 1887). For each $n \geq 1$ every finite subgroup of $\mathrm{GL}_{n}(\mathbf{Q})$ has order dividing a number $M(n)$ that depends only on n.

For example, it turns out that $M(2)=24$, so every finite subgroup of $\mathrm{GL}_{2}(\mathbf{Q})$ has order dividing $24=2^{3} \cdot 3$. We are not claiming that there actually is a subgroup of $\mathrm{GL}_{2}(\mathbf{Q})$ with order 24 . In fact the largest size is 12 , but there are subgroups of order not dividing 12 and those orders all divide 24 (see below for a subgroup of order 8).
Example 3.2. The matrix $\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$ has order 6 .
Example 3.3. Let $r=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $s=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Then r has order $4, s$ has order 2, and $s r=r^{-1} s$, so the group $\langle r, s\rangle$ generated by r and s in $\mathrm{GL}_{2}(\mathbf{Q})$ has order 8 .

The proof of Theorem 3.1 will use the finite groups $\operatorname{GL}_{n}(\mathbf{Z} / p)$. Just as the symmetric group S_{n} has order n ! that is a product of n integers, the order of $\mathrm{GL}_{n}(\mathbf{Z} / p)$ has an explicit formula that is a product of n terms.
Lemma 3.4. For each prime $p,\left|\mathrm{GL}_{n}(\mathbf{Z} / p)\right|=\left(p^{n}-1\right)\left(p^{n}-p\right) \cdots\left(p^{n}-p^{n-1}\right)$.
Proof. See Appendix C. The proof is based on linear algebra over the field \mathbf{Z} / p.
Now we prove Theorem 3.1.
Proof. Let G be a finite subgroup of $\mathrm{GL}_{n}(\mathbf{Q})$. Since G contains only finitely many matrices, and each rational number is in \mathbf{Z}_{p} for all large primes p, the matrices in G have entries in \mathbf{Z}_{p} for all large p, so there is a prime p_{0} such that $G \subset \mathrm{M}_{n}\left(\mathbf{Z}_{p}\right)$ for all $p>p_{0}$. We write $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ for the group of $n \times n$ matrices with $\mathbf{Z}_{p^{-}}$-entries that have inverses also with $\mathbf{Z}_{p^{-}}$ entries; the condition for a matrix $A \in \mathrm{M}_{n}\left(\mathbf{Z}_{p}\right)$ to belong to $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ is that $\operatorname{det} A \in \mathbf{Z}_{p}^{\times}$. If $A \in \mathrm{GL}_{n}(\mathbf{Q})$ has finite order then $\operatorname{det} A \in \mathbf{Q}^{\times}$has finite order, so $\operatorname{det} A= \pm 1$. Therefore by Cramer's rule for inverting matrices, $G \subset \mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ for all $p>p_{0}$.

Claim: For every prime $p>p_{0}$, the order of G divides $\left|\mathrm{GL}_{n}(\mathbf{Z} / p)\right|$.
Proof of claim: We can view G inside $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$. Reducing matrix entries modulo p sends each matrix A in $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ to a matrix \bar{A} in $\mathrm{GL}_{n}\left(\mathbf{Z}_{p} / p\right)$, which can be regarded as $\mathrm{GL}_{n}(\mathbf{Z} / p)$ by the natural identification of \mathbf{Z}_{p} / p with \mathbf{Z} / p. (We have $\bar{A} \in \mathrm{GL}_{n}\left(\mathbf{Z}_{p} / p\right)$ since $\operatorname{det} A= \pm 1 \Longrightarrow \operatorname{det} A \not \equiv 0 \bmod p \Longrightarrow \operatorname{det} \bar{A} \neq 0$ in \mathbf{Z} / p. $)$ Reduction $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right) \rightarrow \mathrm{GL}_{n}\left(\mathbf{Z}_{p} / p\right)$ is a group homomorphism.

The key point is that when $p>p_{0}$, two matrices A and B in the finite group G can't reduce $\bmod p$ to the same matrix in $\mathrm{GL}_{n}\left(\mathbf{Z}_{p} / p\right)$. Indeed, suppose $A \equiv B \bmod p$. Then $A B^{-1}$ belongs to G, so it has finite order, and $A B^{-1} \equiv I_{n} \bmod p$. We will show $A B^{-1}=I_{n}$, so $A=B$, by using a norm on p-adic matrices.

For each $n \times n$ matrix $X=\left(x_{i j}\right)$ in $\mathrm{M}_{n}\left(\mathbf{Q}_{p}\right)$, define its p-adic matrix norm to be the maximum p-adic absolute value of the entries:

$$
\|X\|_{p}:=\max _{i, j}\left|x_{i j}\right|_{p}
$$

Thus $\mathrm{M}_{n}\left(\mathbf{Z}_{p}\right)=\left\{X \in \mathrm{M}_{n}\left(\mathbf{Q}_{p}\right):\|X\|_{p} \leq 1\right\}$. Check that (i) $\|X+Y\|_{p} \leq \max \left(\|X\|_{p},\|Y\|_{p}\right)$, (ii) $\|X Y\|_{p} \leq\|X\|_{p}\|Y\|_{p}$, and (iii) $\|a X\|_{p}=|a|_{p}\|X\|_{p}$ for a in \mathbf{Q}_{p} and p-adic matrices X
and Y. Often $\|X Y\|_{p} \neq\|X\|_{p}\|Y\|_{p}$, but the inequality (ii) will be sufficient for us. It implies, for instance, that $\left\|X^{k}\right\|_{p} \leq\|X\|_{p}^{k}$ for all $k \geq 1$. By (i), when $X \neq Y,\|X \pm Y\|_{p}=$ $\max \left(\left\|\left.X\right|_{p},\right\| Y \|_{p}\right)$.

For $p>2$ and $x \in 1+p \mathbf{Z}_{p},\left|x^{m}-1\right|_{p}=|m|_{p}|x-1|_{p}$ for all $m \geq 1$: see Appendix B. It turns out the same equation holds for matrices: if $X \in I_{n}+p \mathrm{M}_{n}\left(\mathbf{Z}_{p}\right)$ (that is, $\left\|X-I_{n}\right\|_{p} \leq 1 / p$), then $\left\|X^{m}-I_{n}\right\|_{p}=|m|_{p}\left\|X-I_{n}\right\|_{p}$ for all $m \geq 1$: see Appendix B. Returning to the matrices A and B in G such that $A \equiv B \bmod p$, where $p>p_{0}($ so $p>2)$, we have

$$
A B^{-1} \equiv I_{n} \bmod p \Longrightarrow A B^{-1} \in I_{n}+p \mathrm{M}_{n}\left(\mathbf{Z}_{p}\right) \Longrightarrow\left\|\left(A B^{-1}\right)^{m}-I_{n}\right\|_{p}=|m|_{p}\left\|A B^{-1}-I_{n}\right\|_{p}
$$

for all $m \geq 1$. In the last equation, let m be the (finite!) order of $A B^{-1}$ in G to see that $0=|m|_{p}\left\|A B^{-1}-I_{n}\right\|_{p}$. Thus $\left\|A B^{-1}-I_{n}\right\|_{p}=0$, so $A B^{-1}-I_{n}=O$, from which we get $A=B$.

We have shown the reduction $\bmod p$ homomorphism $G \rightarrow \mathrm{GL}_{n}\left(\mathbf{Z}_{p} / p\right)$ is injective for $p>p_{0}$, so $|G|$ divides the order of $\mathrm{GL}_{n}\left(\mathbf{Z}_{p} / p\right) \cong \mathrm{GL}_{n}(\mathbf{Z} / p)$. This completes the proof of the claim.

The order of $\mathrm{GL}_{n}(\mathbf{Z} / p)$ in Lemma 3.4 can be rewritten by factoring out the largest power of p :

$$
\begin{align*}
\left(p^{n}-1\right)\left(p^{n}-p\right) \cdots\left(p^{n}-p^{n-1}\right) & =\left(p^{n}-1\right) p\left(p^{n-1}-1\right) \cdots p^{n-1}(p-1) \\
& =p^{1+\cdots+n-1}\left(p^{n}-1\right)\left(p^{n-1}-1\right) \cdots(p-1) \\
& =p^{n(n-1) / 2}\left(p^{n}-1\right)\left(p^{n-1}-1\right) \cdots(p-1) . \tag{3.1}
\end{align*}
$$

To bound $|G|$, pick a prime q. We will get an upper bound $e_{n}(q)$ for $\operatorname{ord}_{q}(|G|)$ and find $e_{n}(q)=0$ if $q>n+1$, so $|G|$ divides $\prod_{q \leq n+1} q^{e_{n}(q)}$, where the product runs over primes less than or equal to $n+1$. (Recall the examples of finite subgroups of $\mathrm{GL}_{2}(\mathbf{Q})$ earlier had order divisible only 2 and 3 , which are less than or equal to $n+1=3$ in this case.)

For prime $p>p_{0}, \operatorname{ord}_{q}(|G|) \leq \operatorname{ord}_{q}\left(\left|\mathrm{GL}_{n}(\mathbf{Z} / p)\right|\right)$. If $p \neq q$ then by (3.1)

$$
\operatorname{ord}_{q}\left(\left|\operatorname{GL}_{n}(\mathbf{Z} / p)\right|\right) \leq \operatorname{ord}_{q}\left(\left(p^{n}-1\right)\left(p^{n-1}-1\right) \cdots(p-1)\right)=\sum_{i=1}^{n-1} \operatorname{ord}_{q}\left(p^{i}-1\right)
$$

We will choose for p a large prime different from q that makes $\operatorname{ord}_{q}\left(p^{i}-1\right)$ easy to calculate.
If $q \neq 2$ then $\left(\mathbf{Z} / q^{k}\right)^{\times}$is cyclic for all $k \geq 1$. An integer that is a generator of $\left(\mathbf{Z} / q^{2}\right)^{\times}$is also a generator of $\left(\mathbf{Z} / q^{k}\right)^{\times}$for all $k \geq 1$ by Corollary 2.1. Let $b \bmod q^{2}$ generate $\left(\mathbf{Z} / q^{2}\right)^{\times}$, so $\left(b, q^{2}\right)=1$. We will now use a famous theorem of Dirichlet about primes in arithmetic progression: if a and m are relatively prime integers then there are infinitely many primes $p \equiv a \bmod m$.

By Dirichlet's theorem, there are infinitely many primes $p \equiv b \bmod q^{2}$. Choose such a prime p with $p>p_{0}$. Necessarily $p \neq q$ since $\left(p, q^{2}\right)=\left(b, q^{2}\right)=1$. The number $\operatorname{ord}_{q}\left(p^{i}-1\right)$ is the largest integer k that makes $q^{k} \mid\left(p^{i}-1\right)$, or equivalently that makes $p^{i} \equiv 1 \bmod q^{k}$. Since $p \bmod q^{k}$ generates $\left(\mathbf{Z} / q^{k}\right)^{\times}$,

$$
\begin{equation*}
q^{k}\left|\left(p^{i}-1\right) \Longleftrightarrow p^{i} \equiv 1 \bmod q^{k} \Longleftrightarrow q^{k-1}(q-1)\right| i \tag{3.2}
\end{equation*}
$$

From the equivalence of the first and third relations in (3.2) we can start counting.

- The number of $p^{i}-1$ with $1 \leq i \leq n$ that are divisible by q is the number of multiples of $q-1$ up to n, and that number is $\lfloor n /(q-1)\rfloor$.
- The number of $p^{i}-1$ with $1 \leq i \leq n$ that are divisible by q^{2} is the number of multiples of $q(q-1)$ up to n, and that number is $\lfloor n /(q(q-1))\rfloor$.
- The number of $p^{i}-1$ with $1 \leq i \leq n$ that are divisible by q^{3} is the number of multiples of $q^{2}(q-1)$ up to n, and that number is $\left\lfloor n /\left(q^{2}(q-1)\right)\right\rfloor$.
- For each $k \geq 1$, the number of $p^{i}-1$ with $1 \leq i \leq n$ that are divisible by q^{k} is the number of multiples of $q^{k-1}(q-1)$ up to n, and that number is $\left\lfloor n /\left(q^{k-1}(q-1)\right)\right\rfloor$.
Putting this all together, the multiplicity of the prime q in $\left|\mathrm{GL}_{n}(\mathbf{Z} / p)\right|$, if $p \bmod q^{2}$ generates $\left(\mathbf{Z} / q^{2}\right)^{\times}$, is

$$
\begin{equation*}
e_{n}(q):=\left\lfloor\frac{n}{q-1}\right\rfloor+\left\lfloor\frac{n}{q(q-1)}\right\rfloor+\left\lfloor\frac{n}{q^{2}(q-1)}\right\rfloor+\cdots=\sum_{j \geq 0}\left\lfloor\frac{n}{q^{j}(q-1)}\right\rfloor . \tag{3.3}
\end{equation*}
$$

This formally infinite series is really finite because the j-th term is 0 once $q^{j}(q-1)>n$. In particular, if $q>n+1$ then $q-1>n$ and all terms in the sum vanish. Thus q does not divide $|G|$ if $q>n+1$, so the only possible odd prime factors of $|G|$ are primes up to $n+1$, and the highest power of q dividing $|G|$ is at most $q^{e_{n}(q)}$.

When $q=2$ a similar analysis can be made with Dirichlet's theorem for modulus 8 (not for modulus $4=2^{2}$, as the case of odd q might suggest), although it is a bit more complicated because the groups $\left(\mathbf{Z} / 2^{k}\right)^{\times}$for $k \geq 3$ are not cyclic but only "half-cyclic": there's a cyclic subgroup filling up half the group. The result, whose details we omit (see [5, Sect. 1.3.4]), is that $\operatorname{ord}_{2}(|G|)$ is bounded above by the same formula as (3.3) when $q=2$, that is, by the sum

$$
e_{n}(2):=\sum_{j \geq 0}\left\lfloor\frac{n}{2^{j}}\right\rfloor,
$$

Putting everything together, each finite subgroup of $\mathrm{GL}_{n}(\mathbf{Q})$ divides the integer

$$
M(n)=\prod_{q} q^{e_{n}(q)}=\prod_{q \leq n+1} q^{e_{n}(q)}
$$

where $e_{n}(q)$ is given by (3.3) for all primes q. The table below gives some sample values.

$$
\begin{array}{c|ccccccc}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline M(n) & 2 & 24 & 48 & 5760 & 11520 & 2903040 & 5806080
\end{array}
$$

For each prime q the exponent $e_{n}(q)$ in $M(n)$ is optimal in the sense that there does exist a subgroup of $\mathrm{GL}_{n}(\mathbf{Q})$ of order $q^{e_{n}(q)}[1$, pp. 392-394], [5, Sect. 1.4].
Remark 3.5. The largest possible order of a finite subgroup of $\mathrm{GL}_{n}(\mathbf{Q})$ is $2^{n} n$! except when $n=2,4,6,7,8,9$, and 10 , and for every n (no exceptions) the subgroups of $\mathrm{GL}_{n}(\mathbf{Q})$ with maximal order are conjugate. See [3].

Appendix A. Cyclicity of $(\mathbf{Z} / p)^{\times}$

To prove $(\mathbf{Z} / p)^{\times}$is cyclic for each prime p, we can suppose $p>2$. We are going to use the prime factorization of $p-1$. Say

$$
p-1=q_{1}^{e_{1}} q_{2}^{e_{2}} \cdots q_{m}^{e_{m}}
$$

where the q_{i} are distinct primes and $e_{i} \geq 1$. We will show $(\mathbf{Z} / p)^{\times}$has elements of order $q_{i}^{e_{i}}$ for each i and their product furnishes a generator of $(\mathbf{Z} / p)^{\times}$.

As a warm-up, let's show for each prime q dividing $p-1$ that there is an element of order q in $(\mathbf{Z} / p)^{\times}$. While this a consequence of Cauchy's theorem for all finite groups, abelian or nonabelian, we want to give a proof that uses a special feature of $(\mathbf{Z} / p)^{\times}$: it is the nonzero elements of the field \mathbf{Z} / p.
Lemma A.1. If q is a prime dividing $p-1$ then there is an element of $(\mathbf{Z} / p)^{\times}$with order q. Specifically, there is an $a \in(\mathbf{Z} / p)^{\times}$such that $a^{(p-1) / q} \neq 1$, and necessarily $a^{(p-1) / q}$ has order q in $(\mathbf{Z} / p)^{\times}$.
Proof. The polynomial equation $a^{(p-1) / q}=1$ in \mathbf{Z} / p has at most $(p-1) / q$ solutions in \mathbf{Z} / p since \mathbf{Z} / p is a field, and $(p-1) / q$ is less than $p-1=\left|(\mathbf{Z} / p)^{\times}\right|$. Therefore $(\mathbf{Z} / p)^{\times}$has an element a such that $a^{(p-1) / q} \neq 1$.

Set $b=a^{(p-1) / q}$ in \mathbf{Z} / p. Then $b \neq 1$ and $b^{q}=\left(a^{(p-1) / q}\right)^{q}=a^{p-1}=1$ in $(\mathbf{Z} / p)^{\times}$by Fermat's little theorem, so the order of $b \bmod p$ divides q and is not 1 . Since q is prime, the only choice for the order of $b \bmod p$ is q.

That proof is not saying that if $a^{(p-1) / q} \neq 1$ in \mathbf{Z} / p then $a \bmod p$ has order q. It is saying that a power of the form $a^{(p-1) / q} \bmod p$ has order q if the power is not 1 (or 0).
Example A.2. Take $p=19$. By Fermat's little theorem, all a in $(\mathbf{Z} / 19)^{\times}$satisfy $a^{18}=1$. Since 18 is divisible by 3 , the lemma is telling us that whenever $a^{18 / 3} \neq 1, a^{18 / 3}$ has order 3 . From the second row of the table below, which runs over the nonzero numbers mod 19, we find 2 different values of $a^{6} \bmod 19$ other than $1: 7$ and 11 . They both have order 3 .

$a \bmod 19$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$a^{6} \bmod 19$	1	7	7	11	7	11	1	1	11	11	1	1	11	7	11	7	7	1

If a prime q divides $p-1$ more than once, then the same reasoning as in Lemma A. 1 leads to elements of higher q-power order in $(\mathbf{Z} / p)^{\times}$.
Lemma A.3. If q is a prime and $q^{e} \mid(p-1)$ for a positive integer e, then there is an element of $(\mathbf{Z} / p)^{\times}$with order q^{e}. Specifically, there is an $a \in(\mathbf{Z} / p)^{\times}$such that $a^{(p-1) / q} \neq 1$ in $(\mathbf{Z} / p)^{\times}$, and necessarily $a^{(p-1) / q^{e}}$ has order q^{e} in $(\mathbf{Z} / p)^{\times}$.
Proof. As in the proof of Lemma A.1, there are fewer than $p-1$ solutions to $a^{(p-1) / q}=1$ in \mathbf{Z} / p since \mathbf{Z} / p is a field, so there is an a in $(\mathbf{Z} / p)^{\times}$where $a^{(p-1) / q} \neq 1$ in \mathbf{Z} / p.

Set $b=a^{(p-1) / q^{e}}$ in \mathbf{Z} / p, which makes sense since q^{e} is a factor of $p-1$ (we are not using fractional exponents). Then $b^{q^{e}}=\left(a^{(p-1) / q^{e}}\right)^{q^{e}}=a^{p-1}=1$ in $(\mathbf{Z} / p)^{\times}$by Fermat's little theorem, so the order of $b \bmod p$ divides q^{e}. Since q is prime, the (positive) factors of q^{e} other than q^{e} are factors of q^{e-1}. Since $b^{q^{e-1}}=\left(a^{(p-1) / q^{e}}\right)^{q^{e-1}}=a^{(p-1) / q} \neq 1$ in $(\mathbf{Z} / p)^{\times}$, by the choice of a, the order of $b \bmod p$ does not divide q^{e-1}. Thus the order of b in $(\mathbf{Z} / p)^{\times}$ must be q^{e}.
Example A.4. Returning to $p=19$, the number $p-1=18$ is divisible by the prime power 9. In the table below we list the a for which $a^{(p-1) / 3}=a^{6} \neq 1$ and below that list the corresponding values of $a^{18 / 9}=a^{2}$: these are $4,5,6,9,16$, and 17 , and all have order 9 .

$a \bmod 19$	2	3	4	5	6	9	10	13	14	15	16	17
$a^{6} \bmod 19$	7	7	11	7	11	11	11	11	7	11	7	7
$a^{2} \bmod 19$	4	9	16	6	17	5	5	17	6	16	9	4

Remark A.5. Lemma A. 3 can be proved in another way using unique factorization of polynomials with coefficients in \mathbf{Z} / p. Because all nonzero numbers mod p are roots of
$T^{p-1}-1$, this polynomial factors mod p as $(T-1)(T-2) \cdots(T-(p-1))$. Being a product of distinct linear factors, every factor of $T^{p-1}-1$ is also a product of distinct linear factors, so in particular, every factor of $T^{p-1}-1$ has as many roots in \mathbf{Z} / p as its degree. For a prime power q^{e} dividing $p-1, T^{q^{e}}-1$ divides $T^{p-1}-1$, so there are q^{e} solutions of $a^{q^{e}}=1$ in \mathbf{Z} / p. This exceeds the number of solutions of $a^{q^{e-1}}=1 \mathrm{in} \mathbf{Z} / p$, which is at most q^{e-1} since a nonzero polynomial over a field has no more roots than its degree. Therefore there is an a in \mathbf{Z} / p fitting $a^{q^{e}}=1$ and $a^{q^{e-1}} \neq 1$. All such a have order q^{e}.
Theorem A.6. For each prime p, the group $(\mathbf{Z} / p)^{\times}$is cyclic.
Proof. We may take $p>2$, so $p-1>1$. Write $p-1$ as a product of primes:

$$
p-1=q_{1}^{e_{1}} q_{2}^{e_{2}} \cdots q_{m}^{e_{m}} .
$$

By Lemma A.3, for each i from 1 to m there is $b_{i} \in(\mathbf{Z} / p)^{\times}$with order $q_{i}^{e_{i}}$. These orders are relatively prime, and $(\mathbf{Z} / p)^{\times}$is abelian, so the product of the b_{i} 's has order equal to the product of the $q_{i}^{e_{i}}$'s, which is $p-1$. Thus, $b_{1} b_{2} \cdots b_{m}$ generates $(\mathbf{Z} / p)^{\times}$.

Appendix B. Computing $\left|b^{m}-1\right|_{p}$ and $\left\|B^{m}-I_{n}\right\|_{p}$
The two theorems we prove here were used in the proofs of Theorems 1.1, 2.3, and 3.1.
Theorem B.1. Let p be prime. When $p>2$ and $b \in 1+p \mathbf{Z}_{p}$,

$$
\left|b^{m}-1\right|_{p}=|m|_{p}|b-1|_{p}
$$

for $m \geq 1$. When $p=2$ and $b \in 1+4 \mathbf{Z}_{2},\left|b^{m}-1\right|_{2}=|m|_{2}|b-1|_{2}$ for $m \geq 1$.
Proof. We will present the case $p>2$ and leave the case $p=2$ to the reader.
Check the identity for general $m \geq 1$ follows from the cases $(p, m)=1$ and $m=p$:

$$
(p, m)=1 \Longrightarrow\left|b^{m}-1\right|_{p}=|b-1|_{p}, \quad \text { and } \quad\left|b^{p}-1\right|_{p}=\frac{1}{p}|b-1|_{p}
$$

Case 1: $(p, m)=1$.
To prove $\left|b^{m}-1\right|_{p}=|b-1|_{p}$, we can assume $b \neq 1$ and $m \geq 2$ since it is obvious when $b=1$ or $m=1$. Set $c=b-1$, so

$$
b^{m}-1=(1+c)^{m}-1=m c+\sum_{k=2}^{m}\binom{m}{k} c^{k} .
$$

We have $|m c|_{p}=|c|_{p}=|b-1|_{p}$. Since $0<|c|_{p} \leq 1 / p,\left|\sum_{k=2}^{m}\binom{m}{k} c^{k}\right|_{p} \leq \max _{2 \leq k \leq m}|c|_{p}^{k}=$ $|c|_{p}^{2}<|c|_{p}=|b-1|_{p}$ (the last inequality would not be correct if $c=0$). Thus

$$
\left|b^{m}-1\right|_{p}=|b-1|_{p}
$$

Case 2: $m=p$.
To prove $\left|b^{p}-1\right|_{p}=(1 / p)|b-1|_{p}$, as in Case 1 we can assume $b \neq 1$. Set $c=b-1$, so

$$
b^{p}-1=(1+c)^{p}-1=p c+\sum_{k=2}^{p}\binom{p}{k} c^{p} .
$$

We have $|p c|_{p}=(1 / p)|c|_{p}=(1 / p)|b-1|_{p}$. Since $0<|c|_{p} \leq 1 / p$, if $2 \leq k \leq p-1$ (there are such k since $p>2)$, then $p \left\lvert\,\binom{ p}{k}\right.$, so $\left|\binom{p}{k} c^{k}\right|_{p} \leq(1 / p)|c|_{p}^{k} \leq(1 / p)|c|_{p}^{2}<(1 / p)|c|_{p}=$ $(1 / p)|b-1|_{p}$. Also $\left.\left\lvert\, \begin{array}{c}p \\ p\end{array}\right.\right)\left.c^{p}\right|_{p}=|c|_{p}^{p} \leq|c|_{p}^{3} \leq(1 / p)|c|_{p}^{2}<(1 / p)|c|_{p}=(1 / p)|b-1|_{p}$, so

$$
\left|b^{p}-1\right|_{p}=\frac{1}{p}|b-1|_{p} .
$$

Theorem B.2. Let p be prime. When $p>2$ and $B \in 1+p \mathrm{M}_{n}\left(\mathbf{Z}_{p}\right)$

$$
\left\|B^{m}-I_{n}\right\|_{p}=|m|_{p}| | B-I_{n} \|_{p}
$$

for $m \geq 1$. When $p=2$ and $B \in 1+4 \mathrm{M}_{n}\left(\mathbf{Z}_{2}\right),\left\|B^{m}-I_{n}\right\|_{2}=|m|_{2}\left\|B-I_{n}\right\|_{2}$ for $m \geq 1$.
When this was used in the proof of Theorem 3.1, we did not need the case $p=2$.
Proof. It is left to the reader to check the proof of Theorem B. 1 still works in the matrix setting, using $\|X Y\|_{p} \leq\|X\|_{p}\|Y\|_{p}$ with p-adic matrices instead of $|x y|_{p}=|x|_{p}|y|_{p}$ with p-adic numbers and using $\|a X\|_{p}=|a|_{p}| | X| |$ for p-adic scalars a and matrices X. Even though matrix multiplication is not usually commutative, we can use the binomial theorem to expand $\left(I_{n}+B\right)^{m}$ just as with $(1+b)^{m}$ since I_{n} and B commute.

Appendix C. The order of $\mathrm{GL}_{n}(\mathbf{Z} / p)$

To compute $\left|\mathrm{GL}_{n}(\mathbf{Z} / p)\right|$ in Lemma 3.4, view the columns of a matrix in $\mathrm{M}_{n}(\mathbf{Z} / p)$ as an ordered list of n elements of $(\mathbf{Z} / p)^{n}$. The matrix is invertible if and only if the columns are a basis of $(\mathbf{Z} / p)^{n}$. In an n-dimensional vector space, n vectors are a basis if and only if they are linearly independent, so count how many ordered lists of n vectors in $(\mathbf{Z} / p)^{n}$ are linearly independent. Every set of linearly independent vectors in $(\mathbf{Z} / p)^{n}$ can be extended to a basis, so we can build up elements of $\mathrm{GL}_{n}(\mathbf{Z} / p)$ column by column.
(1) The first column can be anything in $(\mathbf{Z} / p)^{n}$ but the zero vector, since every nonzero vector can be extended to a basis. Therefore the first column has $p^{n}-1$ choices.
(2) Having picked the first column, the second column can be an arbitrary vector in $(\mathbf{Z} / p)^{n}$ that is linearly independent of the first column: such a choice makes the first two columns linearly independent and every pair of linearly independent vectors in $(\mathbf{Z} / p)^{n}$ can be extended to a basis (if $n \geq 2$). Since the first column has p scalar multiples, the second column has $p^{n}-p$ choices.
(3) The third column (if ngeq3) has to be chosen linearly independently of the first two, which span a 2-dimensional subspace of $(\mathbf{Z} / p)^{n}$, so the third column has $p^{n}-p^{2}$ choices and every such choice is allowed since a set of 3 linearly independent vectors in $(\mathbf{Z} / p)^{n}$ can be extended to a basis (if $n \geq 3$).
The process continues, with the j th column being anything outside the span of the first $j-1$ columns, so the j th column has $p^{n}-p^{j-1}$ choices. We are done when $j=n$, so $\left|\mathrm{GL}_{n}(\mathbf{Z} / p)\right|=\left(p^{n}-1\right)\left(p^{n}-p\right) \cdots\left(p^{n}-p^{n-1}\right)$.

References

[1] N. Bourbaki, "Lie Groups and Lie Algebras, Chapters 1-3," Springer-Verlag, 1998.
[2] J. W. S. Cassels, "Local Fields," Cambridge Univ. Press, Cambridge, 1986.
[3] S. Friedland, The maximal orders of finite subgroups of $\mathrm{GL}_{n}(\mathbf{Q})$, Proc. Amer. Math. Soc. 125 (1997), 3519-3526.
[4] H. Minkowski, Zur Theorie der positiven quadratische Formen, J. reine angew. Math. 101 (1887), 196202.
[5] J-P. Serre, Bounds for the orders of the finite subgroups of $G(k)$, in: "Group Representation Theory," EPFL Press (2007), 405-450, URL https://arxiv.org/pdf/1011.0346.pdf.

[^0]: ${ }^{1}$ In general for x and y in \mathbf{Z}_{p}, if $x \equiv y \bmod p$ then $x^{p} \equiv y^{p} \bmod p^{2}$. More generally, if $x \equiv y \bmod p^{k}$ then $x^{p} \equiv y^{p} \bmod p^{k+1}$.

