THE p-ADIC GROWTH OF HARMONIC SUMS

KEITH CONRAD

The numbers

$$
H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

are called harmonic sums. Integrals can approximate these sums as real numbers, e.g., H_{n} and $\int_{1}^{n} \mathrm{~d} t / t=\log n$ differ by a bounded amount $\left(H_{n}-\int_{1}^{n} \mathrm{~d} t / t\right.$ is positive and montonically decreasing), so the H_{n} 's slowly diverge in \mathbf{R}. We are interested here in the arithmetic behavior of harmonic sums, i.e., their p-adic growth. This is definitely not an important topic, but it is interesting to compare what happens with this rational sequence across the real and different p-adic landscapes.

Here are some initial values:

n	H_{n}
1	1
2	$3 / 2$
3	$11 / 6$
4	$25 / 12$
5	$137 / 60$
6	$49 / 20$
7	$363 / 140$
8	$761 / 280$
9	$7129 / 2520$
10	$7381 / 2520$
11	$83711 / 27720$

Table 1. Harmonic sums

For $n>1$, it appears that $H_{n} \notin \mathbf{Z}$. More precisely, the numerator of H_{n} is odd and the denominator of H_{n} is even. This suggests a strategy for proving H_{n} is not an integer.

Theorem 1 (Theisinger). For all $n \geq 2, H_{n} \notin \mathbf{Z}$.
Proof. Let L be the least common multiple of $1,2, \ldots, n$, so H_{n} can be written as a fraction with denominator L. For $1 \leq k \leq n$, write $L=k a_{k}$ with $a_{k} \in \mathbf{Z}^{+}$, so $1 / k=a_{k} / L$. Then

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k}=\frac{\sum_{k=1}^{n} a_{k}}{L} .
$$

Since $n \geq 2, L$ is even. We will show $\sum_{k=1}^{n} a_{k}$ is odd, so the ratio is not integral.
Set 2^{r} to be the largest power of 2 up to $n: 2^{r} \leq n<2^{r+1}$. The only integer up to n divisible by 2^{r} is 2^{r} itself, since $2 \cdot 2^{r}>n$. Therefore $L=2^{r} b$ where b is odd, so $2^{r} b=k a_{k}$ for $1 \leq k \leq n$. When $k=2^{r}$ we see that $a_{k}=b$ is odd. When $k \neq 2^{r}, k$ is not divisible by 2^{r}, so a_{k} must be even. Therefore in the numerator $\sum_{k=1}^{n} a_{k}$, one term (at $k=2^{r}$) is odd and the rest are even, so the total sum is odd.

Theisinger [4] did not prove Theorem 1 using anything p-adic: he used determinants and Bertrand's postulate, which says there is always a prime between n and $2 n$ when $n \geq 2 .{ }^{1}$

The proof above for Theorem 1 presents it as a 2-adic result: $H_{n} \notin \mathbf{Z}$ because $H_{n} \notin \mathbf{Z}_{2}$. Here is a second proof of Theorem 1 brings out 2-adic features more clearly.
Proof. Let $2^{r} \leq n<2^{r+1}$, so $r \geq 1$ and the highest power of 2 that appears in some reciprocal in the sum defining H_{n} is 2^{r}. The only reciprocal in H_{n} with denominator divisible by 2^{r} is $1 / 2^{r}$. Indeed, every other such reciprocal would be $1 /\left(2^{r} c\right)$ for odd $c>1$, but if that term is in the sum then so is $1 /\left(2^{r} \cdot 2\right)=1 / 2^{r+1}$, which is false since $2^{r+1}>n$. Therefore $1 / 2^{r}$ has a more highly negative 2-adic valuation than every other term in H_{n}, so it is not cancelled out in the sum. This means $H_{n} \notin \mathbf{Z}_{2}$, so $H_{n} \notin \mathbf{Z}$.

This proof gives a formula for the 2-adic valuation of the harmonic sums: $\operatorname{ord}_{2}\left(H_{n}\right)=-r$ where $2^{r} \leq n<2^{r+1}$. To see this formula in action, we rewrite the initial harmonic sums in Table 2 with the power of 2 in the denominators made explicit. The exponent jumps when n is a power of 2 .

n	H_{n}
1	1
2	$3 / 2$
3	$11 / 2 \cdot 3$
4	$25 / 2^{2} \cdot 3$
5	$137 / 2^{2} \cdot 15$
6	$49 / 2^{2} \cdot 5$
7	$363 / 2^{2} \cdot 35$
8	$761 / 2^{3} \cdot 35$
9	$7129 / 2^{3} \cdot 315$
10	$7381 / 2^{3} \cdot 2520$
11	$83711 / 2^{3} \cdot 3465$

Table 2. Harmonic sums viewed 2-adically

Since $\left|H_{n}\right|_{2}=2^{r}$ if $2^{r} \leq n<2^{r+1},\left|H_{n}\right|_{2} \rightarrow \infty$ as $n \rightarrow \infty$ (explicitly, $n / 2<\left|H_{n}\right|_{2} \leq n$). Does $\left|H_{n}\right|_{p} \rightarrow \infty$ as $n \rightarrow \infty$ for odd primes p ? We will address this later.
Theorem 2 (Kürschák). For $m \leq n-2, H_{n}-H_{m} \notin \mathbf{Z}_{2}$. In particular, $H_{n}-H_{m} \notin \mathbf{Z}$.
Taking $m=1$ and $n \geq 3$ recovers Theorem 1 for $n \geq 3$ since $H_{1} \in \mathbf{Z}$. Theorem 2 is false if $m=n-1$ and n is odd, since then $H_{n}-H_{m}=1 / n \in \mathbf{Z}_{2}$.
Proof. Writing

$$
H_{n}-H_{m}=\sum_{k=m+1}^{n} \frac{1}{k},
$$

we will show there is a unique term in the sum with the most negative 2 -adic valuation. Let $r=\max _{m<k \leq n} \operatorname{ord}_{2}(k)$. Since $n \geq m+2$, the sum $H_{n}-H_{m}$ has at least two terms in it, so some k is even and therefore $r \geq 1$.

We will show there is only one integer from m up to $n-1$ with 2 -adic valuation r. Suppose there are two such numbers. Write them as $2^{r} c$ and $2^{r} d$ with odd $c<d$. Then $c+1$ is even and $2^{r} c<2^{r}(c+1)<2^{r} d$, so $1 /\left(2^{r}(c+1)\right)$ appears in $H_{n}-H_{m}$. But $\operatorname{ord}_{2}\left(2^{r}(c+1)\right) \geq r+1$ since c is odd. This contradicts the definition of r. Therefore there is only one term in $H_{n}-H_{m}$ with 2-adic valuation $-r$, so $\operatorname{ord}_{2}\left(H_{n}-H_{m}\right)=-r$.

[^0]This type of 2 -adic argument (in the setting of rational numbers, not 2 -adic numbers) is due to Kürschák [3], so he should be credited with the 2 -adic proof of Theorem 1.

We now turn to the p-adic behavior of H_{n} for $p \neq 2$. The material below is based on the notes "Harmonics and Primes" by Nicholas Rogers.

The harmonic sums $H_{1}, H_{2}, \ldots, H_{p-1}$ are all p-adically integral, since the denominators appearing in them are prime to p and thus are p-adic integers (even p-adic units). Since $1 / p$ is outside the ring $\mathbf{Z}_{p}, H_{p}=H_{p-1}+1 / p$ is outside \mathbf{Z}_{p} : $\operatorname{ord}_{p}\left(H_{p}\right)=-1$. It need not be true (as it is for $p=2$) that $H_{n} \notin \mathbf{Z}_{p}$ for all $n \geq p$. For example, H_{3}, H_{4} and H_{5} are outside \mathbf{Z}_{3} (all with 3 -adic valuation -1), but H_{6}, H_{7}, and H_{8} are in \mathbf{Z}_{3}. Then $H_{9}, H_{10}, \ldots, H_{20}$ are outside of \mathbf{Z}_{3}. The harmonic sums return to \mathbf{Z}_{3} for H_{21}, H_{22}, and H_{23}, then leave \mathbf{Z}_{3} and come back in again for H_{66}, H_{67}, and H_{68}. Then the harmonic sums leave \mathbf{Z}_{3} and never return. In fact, $\left|H_{n}\right|_{3} \rightarrow \infty$ as $n \rightarrow \infty$. We will not discuss the proof of this, but the next theorem gives a simple connection between p-adic integrality and p-adic divergence of the harmonic sums.

Theorem 3. For a prime p, the following conditions are equivalent:
(1) $\left\{n \geq 1: H_{n} \in \mathbf{Z}_{p}\right\}$ is finite,
(2) $\left|H_{n}\right|_{p} \rightarrow \infty$ as $n \rightarrow \infty$.

Proof. Trivially the second condition implies the first. To prove the (more interesting) reverse implication, pick $n \geq 1$ and write $n=p q+r$ with $0 \leq r \leq p-1$. Since $1 / k \in \mathbf{Z}_{p}$ when $(p, k)=1$, in the quotient group $\mathbf{Q}_{p} / \mathbf{Z}_{p}$ a harmonic sum is equal to the sum of its terms whose denominators are divisible by p, so

$$
H_{n} \equiv \frac{1}{p}+\frac{1}{2 p}+\cdots+\frac{1}{p q}=\frac{1}{p} H_{q},
$$

so $H_{n}-(1 / p) H_{q} \in \mathbf{Z}_{p}$.
We are assuming that $\left|H_{n}\right|_{p} \leq 1$ only finitely many times, so there is some $N_{0} \geq 1$ such that $\left|H_{n}\right|_{p}>1$ for $n \geq N_{0}$. We will show this N_{0} controls the p-adic divergence of the harmonic sums: for all $k \geq 0$,

$$
n \geq p^{k} N_{0} \Longrightarrow\left|H_{n}\right|_{p}>p^{k}
$$

For $k=0$ this is true by the definition of N_{0}. Assuming it is true for k, suppose $n \geq p^{k+1} N_{0}$. Writing $n=p q+r$ with $0 \leq r \leq p-1$, from $p q+r \geq p^{k+1} N_{0}$ we must have $q \geq p^{k} N_{0}$, so $\left|H_{q}\right|_{p}>p^{k}$. Therefore $\left|(1 / p) H_{q}\right|_{p}>p^{k+1}$. Since $H_{n}-(1 / p) H_{q} \in \mathbf{Z}_{p}$,

$$
\left|H_{n}-\frac{1}{p} H_{q}\right|_{p} \leq 1<p^{k+1}=\left|\frac{1}{p} H_{q}\right|_{p},
$$

so by the nonarchimedean property $\left|H_{n}\right|_{p}=\left|(1 / p) H_{q}\right|_{p}>p^{k+1}$.
The same reasoning shows $\left|H_{n}\right|_{p} \rightarrow \infty$ as $n \rightarrow \infty$ if and only if the set $\left\{n \geq 1: H_{n} \in p \mathbf{Z}_{p}\right\}$ is finite. (Replace the strict inequalities $\left|H_{n}\right|_{p}>1$ and $\left|H_{n}\right|_{p}>p^{k}$ in the proof with $\left|H_{n}\right|_{p} \geq 1$ and $\left|H_{n}\right|_{p} \geq p^{k}$.) This set, introduced in [2], is denoted

$$
J(p)=\left\{n \geq 1: H_{n} \in p \mathbf{Z}_{p}\right\} .
$$

To say $n \notin J(p)$ means H_{n} has no p in its numerator. For instance, Theorem 1 says $J(2)=\emptyset$. In [2] it is proved that $J(3)=\{2,7,22\}, J(5)=\{4,20,24\}$, and

$$
J(7)=\{6,42,48,295,299,337,341,2096,2390,14675,16731,16735,102728\} .
$$

The set $J(11)$ has 638 elements [1]. It is conjectured that $J(p)$ is finite for all p, which by Theorem 3 is equivalent to saying $\left|H_{n}\right|_{p} \rightarrow \infty$ as $n \rightarrow \infty$ for all p.

The rest of our discussion will focus on the particular sum H_{p-1}.

Theorem 4. For each odd prime $p, H_{p-1} \in p \mathbf{Z}_{p}$. Therefore $J(p) \neq \emptyset$ for $p>2$.
Proof. In the sum

$$
H_{p-1}=1+\frac{1}{2}+\cdots+\frac{1}{p-1}
$$

each term is a unit in \mathbf{Z}_{p}, so we can reduce modulo p and check that $H_{p-1} \equiv 0 \bmod p \mathbf{Z}_{p}$. The integers $\{1,2, \ldots, p-1\}$ represent the units modulo p, so their inverses do as well. Thus, after replacing each $1 / k$ with the integer from 1 to $p-1$ that is equal to it in $\mathbf{Z}_{p} /(p)$,

$$
\begin{aligned}
H_{p-1} & \equiv 1+2+\cdots+p-1 \bmod p \\
& \equiv \frac{p(p-1)}{2} \bmod p \\
& \equiv 0 \bmod p
\end{aligned}
$$

where in the last step we needed $p \neq 2$.
In Table 3, we factor the initial harmonic sums into primes, and can see in this data (for $p=5,7$, and 11) that not only is H_{p-1} divisible by p, but by p^{2}.

n	H_{n}
1	1
2	$3 / 2$
3	$11 / 2 \cdot 3$
4	$5^{2} / 2^{2} \cdot 3$
5	$137 / 2^{2} \cdot 3 \cdot 5$
6	$7^{2} / 2^{2} \cdot 5$
7	$3 \cdot 11^{2} / 2^{2} \cdot 5 \cdot 7$
8	$761 / 2^{3} \cdot 5 \cdot 7$
9	$7129 / 2^{3} \cdot 3^{2} \cdot 5 \cdot 7$
10	$11^{2} \cdot 61 / 2^{3} \cdot 3^{2} \cdot 5 \cdot 7$
11	$97 \cdot 863 / 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$

TABLE 3. Harmonic sums fully factored

Theorem 5 (Wolstenholme [5], 1862). For each prime $p \geq 5, H_{p-1} \in p^{2} \mathbf{Z}_{p}$.
Proof. We collect terms in H_{p-1} that are equidistant from the middle of the sum:

$$
\begin{aligned}
H_{p-1} & =1+\frac{1}{2}+\cdots+\frac{1}{p-1} \\
& =\left(1+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+\cdots+\left(\frac{1}{(p-1) / 2}+\frac{1}{(p+1) / 2}\right) \\
& =\sum_{k=1}^{(p-1) / 2}\left(\frac{1}{k}+\frac{1}{p-k}\right) \\
& =\sum_{k=1}^{(p-1) / 2} \frac{p}{k(p-k)}=p \sum_{k=1}^{(p-1) / 2} \frac{1}{k(p-k)} .
\end{aligned}
$$

Since a p has been pulled out, we want to show the last sum is in $p \mathbf{Z}_{p}$. The terms in the sum are p-adic units, and reducing the terms modulo p yields

$$
\sum_{k=1}^{(p-1) / 2} \frac{1}{k(p-k)} \equiv-\sum_{k=1}^{(p-1) / 2} \frac{1}{k^{2}} \bmod p \mathbf{Z}_{p}
$$

The numbers $1^{2}, \ldots,((p-1) / 2)^{2}$ represent all the nonzero squares modulo p, so their reciprocals also represent the nonzero squares modulo p. Therefore

$$
\sum_{k=1}^{(p-1) / 2} \frac{1}{k^{2}} \equiv \sum_{k=1}^{(p-1) / 2} k^{2} \bmod p \mathbf{Z}_{p}
$$

Using the formula $\sum_{k=1}^{n} k^{2}=n(n+1)(2 n+1) / 6$ with $n=(p-1) / 2$,

$$
\sum_{k=1}^{(p-1) / 2} k^{2}=\frac{p\left(p^{2}-1\right)}{24}
$$

Since $p>3,(p, 24)=1$, so this sum is in $p \mathbf{Z}_{p}$ and we're done.
Remark 6. Wolstenholme's paper writes n ! using the obsolete "corner" notation. See https://kconrad.math.uconn.edu/factorials/.

Theorem $5 \operatorname{says}^{\operatorname{ord}_{p}}\left(H_{p-1}\right) \geq 2$. If one calculates H_{p-1} for primes $3<p<10000$, always $\operatorname{ord}_{p}\left(H_{p-1}\right)=2$. But at $p=16843$ and at $p=2124679, \operatorname{ord}_{p}\left(H_{p-1}\right)=3$. No further examples are known where $\operatorname{ord}_{p}\left(H_{p-1}\right)>2$.

References

[1] D. W. Boyd, A p-adic study of the partial sums of the harmonic series, Experiment. Math 3 (1994), 287-302.
[2] A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), 249-257.
[3] J. Kürschák, A Harmonikus Sorról, Mat. és Fiz. Lapok, 27 (1918), 299-300. URL http://real-j.mtak. hu/7278/1/MTA_MatematikaiEsPhysikaiLapok_27.pdf.
[4] L. Theisinger Bemerkung über die harmonische Reihe, Montash. f. Math. und Physik 26 (1915), 132-134. URL http://www.literature.at/viewer.alo?objid=12428\&viewmode=fullscreen\&page=136.
[5] J. Wolstenholme, On certain properties of prime numbers, The Quarterly Journal of Pure and Applied Mathematics 5 (1862), 35-39. URL https://babel.hathitrust.org/cgi/pt?id=hvd. 3204 $4102924370 \& v i e w=1$ up\&seq $=51$.

[^0]: ${ }^{1}$ Theisinger referred to Bertrand's postulate as Chebyshev's theorem, since Chebyshev had proved it.

