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KEITH CONRAD

1. Introduction

In 1916, Ostrowski [6] classified the nontrivial absolute values on Q: up to equivalence,
they are the usual (archimedean) absolute value and the p-adic absolute values for different
primes p, with none of these being equivalent to each other. We will see how this theorem
extends to a number field K, giving a list of all the nontrivial absolute values on K up
to equivalence: for each nonzero prime ideal p in OK there is a p-adic absolute value, real
embeddings of K and complex embeddings of K up to conjugation lead to archimedean
absolute values on K, and every nontrivial absolute value on K is equivalent to a p-adic,
real, or complex absolute value.

2. Defining nontrivial absolute values on K

For each nonzero prime ideal p in OK , a p-adic absolute value on K is defined in terms
of a p-adic valuation ordp that is first defined on OK − {0} and extended to K× by taking
ratios.

Definition 2.1. For x ∈ OK − {0}, define ordp(x) := m where xOK = pma with m ≥ 0
and p - a.

We have ordp(xy) = ordp(x)+ordp(y) for nonzero x and y in OK by unique factorization of
ideals in OK . This lets us extend ordp to K× by using ratios of nonzero numbers in OK : for
α ∈ K×, write α = x/y for nonzero x and y in OK and set ordp(α) := ordp(x)−ordp(y). To
see this is well-defined, if x/y = x′/y′ for nonzero x, y, x′, and y′ in OK then xy′ = x′y
in OK , which implies ordp(x) + ordp(y

′) = ordp(x
′) + ordp(y), so ordp(x) − ordp(y) =

ordp(x
′) − ordp(y

′). On K× we have ordp(αβ) = ordp(α) + ordp(β) for α, β ∈ K×, so
ordp : K× → Z is a homomorphism that is surjective (for x ∈ p− p2 we have ordp(x) = 1).
We set ordp(0) =∞, where ∞ > n for each integer n.

On OK , ordp(x+y) ≥ min(ordp(x), ordp(y)). First, if x, y, or x+y is 0 then the inequality
is simple to check. Next, if x, y, and x + y are all nonzero and m := min(ordp(x), ordp(y))
then pm | xOK and pm | yOK , so x and y are in pm. Then x + y ∈ pm, so ordp(x + y) ≥
m. This inequality extends from OK to K by using a common denominator in ratios:
ordp(α+ β) ≥ min(ordp(α), ordp(β)) for all α and β in K. Therefore ordp is a valuation on
K.

Definition 2.2. Fixing a constant c ∈ (0, 1), set |α| = cordp(α) for α ∈ K×, and |0| = 0.
This is called a p-adic absolute value on K.

That the function α 7→ |α| for α ∈ K is an absolute value follows from ordp being a
valuation on K, and a p-adic absolute value on K is nonarchimedean.

Changing c produces an equivalent absolute value on K, so there is a well-defined p-
adic topology on K that independent of c. (This topology on the ring of integers OK

1



2 KEITH CONRAD

amounts to declaring the ideals pk to be a neighborhood basis of 0 in OK .) For two different
nonzero prime ideals p and q in OK , a p-adic absolute value and q-adic absolute value are
inequivalent: the Chinese remainder theorem lets us find x ∈ OK satisfying x ≡ 0 mod p
and x ≡ 1 mod q, so the p-adic absolute value of x is less than 1 and the q-adic absolute
value of x equals 1. Thus the two absolute values are inequivalent.

Archimedean absolute values on K are defined in terms of field embeddings σ : K → R
and σ : K → C: |α| := |σ(α)|∞ where | · |∞ is the standard absolute value on R or
C. Letting r1 be the number of real embedding of K and r2 be the number of pairs of
complex-conjugate embeddings of K, there are r1 + 2r2 archimedean embeddings of K but
only r1 + r2 archimedean absolute values on K (up to equivalence) since complex-conjugate
embeddings define the same absolute value (|a + bi|∞ = |a − bi|∞ in C) and the only way
two archimedean embeddings of K define the same absolute value is when they come from
a pair of complex-conjugate embeddings; see [8, p. 42] for the proof of that.

Example 2.3. If K is a real quadratic field then there are two real embeddings of K, so K
has two archimedean absolute values. For instance, on the abstract field Q(θ) where θ2 = 2,
the two archimedean absolute values are |a + bθ| = |a + b

√
2| and |a + bθ| = |a − b

√
2| for

a, b ∈ Q.

Example 2.4. If K is an imaginary quadratic field then there are two complex embeddings
of K and they are complex-conjugate to each other, so K has just one archimedean absolute
value.

By tradition, the nonarchimedean absolute values on K are called its finite absolute
values while the archimedean absolute values on K are called its infinite absolute values.
This terminology is due to an analogy with the classification of nontrivial absolute values
on C(z) that are trivial on C: they are associated to the different points on the Riemann
sphere, by simply measuring the order of vanishing of a rational function at a point in the
same way as a p-adic absolute value operates through a valuation function in the exponent.
The absolute values on C(z) are bounded on C[z] except for the one associated to the order
of vanishing at the point ∞ on the Riemann sphere. Since the archimedean absolute value
on Q is the only one that is unbounded on Z, by analogy one calls it an infinite absolute
value. (This analogy is actually rather weak, since using a different field generator over
C, say C(w) where w = 1/z, changes which absolute value is “at infinity,” whereas the
archimedean absolute value on Q can’t be turned into one of the p-adic ones by a field
automorphism of Q; in fact, the only field automorphism of Q is the identity.)

3. Classifying absolute values on K

Ostrowski’s theorem for K says every nontrivial absolute value on K is equivalent to
an absolute value on K that we already described: a p-adic absolute value for a prime p
of OK or an archimedean absolute value associated to a real or complex-conjugate pair of
embeddings of K. When K = Q, the proof of Ostrowki’s theorem uses special features
of OK = Z (like finite base expansions in Z+ for the archimedean case and division with
remainder in Z for the nonarchimedean case) that are not valid in number fields, so we need
a different approach to prove the theorem for K.

Lemma 3.1. Let p be a nonzero prime ideal in OK . If α ∈ K× and ordp(α) ≥ 0 then
α = x/y where x and y are in OK , are not 0, and ordp(y) = 0.
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Proof. Write αOK = ab−1 for ideals a and b of OK with no common factors. Because
ordp(α) ≥ 0, p - b. From a = (α)b, a and b are in the same ideal class: [a] = [b].

There is an integral ideal c in [a]−1 that is relatively prime to p: pick x ∈ a− pa and use
c = xa−1. This works because

• c = xa−1 =⇒ [c] = [a−1] = [a]−1 in Cl(K),
• x ∈ a =⇒ c = xa−1 ⊂ OK ,
• if c and p are not relatively prime then p | c, so c ⊂ p, but having xa−1 ⊂ p implies
x ∈ pa, which contradicts the choice of x.1

Then
(α) = ab−1 = ac(bc)−1

and the ideals ac and bc are both principal, as [c] = [a]−1 = [b]−1. We have ac = (x). Set
bc = (y), so x and y are in OK and not 0. Since b and c are not divisible by p, ordp(y) = 0.
Now (α) = (x)(y)−1 = (x/y). Rescaling x by a unit, α = x/y with ordp(y) = 0. �

The heart of the proof of the classification of nonarchimedean absolute values on K is
the next result.

Theorem 3.2. Let v : K× → R be a nonzero homomorphism with

(3.1) v(α+ β) ≥ min(v(α), v(β))

when α, β, and α + β are all in K×. Then v = t ordp for a unique nonzero prime ideal p
and t > 0.

Proof. Uniqueness is easy: For a nonzero prime ideal p,

{α ∈ OK : t ordp(α) > 0} = {α ∈ OK : ordp(α) > 0} = {α ∈ OK : α ∈ p} = p.

That is, inside of OK , t ordp takes positive values precisely on p, so we can recover p from
the properties of t ordp. Since t is the smallest positive value of t ordp on K×, the value of
t is determined as well.

As for the existence of a p and t such that v = t ordp, we will show that the set

(3.2) p := {α ∈ OK − {0} : v(α) > 0} ∪ {0}
is a nonzero prime ideal in OK and then we will show v = t ordp for some t > 0. Obviously
this definition for p is motivated by the calculation we made just before: if there is going to
be a prime ideal for which v is the corresponding valuation, the set in (3.2) has to be that
ideal.

Before we even discuss p in (3.2), we show v(α) ≥ 0 on all nonzero algebraic integers.
Since v(1 · 1) = v(1) + v(1), v(1) = 0. Then 0 = v(1) = v((−1)2) = 2v(−1), so v(−1) = 0.
Now by (3.1), v(a) ≥ 0 for all nonzero a ∈ Z. In a sense, the nonnegativity of v on
Z−{0} underlies everything that follows. For α ∈ OK , we can write an equation of integral
dependence for it over Z, say

αn + an−1α
n−1 + · · ·+ a1α+ a0 = 0

with aj ∈ Z. Choose n as small as possible, so a0 6= 0. If v(α) < 0, then heuristically αn

has an n-th order pole at v, while the other terms in the sum on the left have a lower order
pole (the aj ’s don’t contribute polar data since v(aj) ≥ 0 or aj = 0). Thus the whole sum
on the left has a pole at v, but the sum is 0, a contradiction.

1More generally, for each nonzero ideal n in OK , each ideal class in Cl(K) contains an integral ideal
relatively prime to n. A proof is in Theorem A.1.
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For a rigorous argument, we rewrite the above equation as

αn = −an−1αn−1 − · · · − a1α− a0.

When aj 6= 0, v(−ajαj) = v(aj) + jv(α) ≥ jv(α). When aj = 0, of course the term ajα
j is

0 so we ignore it. Now if v(α) < 0, then v(−ajαj) ≥ (n− 1)v(α) since j ≤ n− 1. Therefore
by (3.1) extended to a sum of several terms,

v(−an−1αn−1 − · · · − a1α− a0) ≥ (n− 1)v(α).

Since v(αn) = nv(α), we have nv(α) ≥ (n − 1)v(α), so v(α) ≥ 0. This contradicts the
assumption that v(α) < 0. Therefore v(α) ≥ 0.

Since v is not identically 0 on K×, it is not identically 0 on OK − {0}, which means v
must take some positive values on OK − {0} (we just eliminated the possibility of negative
values on OK −{0}). Thus the set p in (3.2) is not {0}. Since v is a homomorphism, easily
p is a subgroup of OK , and in fact an OK-module on account of the nonnegativity of v on
OK −{0}. So p is an ideal in OK . Since v(1) = 0, p is a proper ideal of OK . Let’s show it is
a prime ideal. For α and β in OK , assume αβ ∈ p. To show α or β is in p, assume neither
is in p. Then v(α) = 0 and v(β) = 0, so v(αβ) = v(α) + v(β) = 0, but that contradicts αβ
being in p.

Now we have our nonzero prime ideal p, so it is time to show v = t ordp for some t.
First we’ll show that if ordp(α) = 0 then v(α) = 0. By Lemma 3.1 we can write α = x/y

with x, y ∈ OK and ordp(y) = 0. Therefore ordp(x) = ordp(αy) = 0 + 0 = 0. Since x and
y are in OK and are not in p, the definition of p tells us v(x) = 0 and v(y) = 0. Therefore
v(α) = 0.

Now we show v = t ordp for some t > 0. For α ∈ K×, let n = ordp(α) ∈ Z. Pick
γ ∈ p− p2, so ordp(γ) = 1 and v(γ) > 0. Then ordp(α/γ

n) = 0, so v(α/γn) = 0, so

v(α) = nv(γ) = ordp(α)v(γ).

The choice of γ has nothing to do with α. This equation holds for all α ∈ K×, so v = t ordp

where t = v(γ) > 0. �

Theorem 3.3. Each nontrivial absolute value on K is equivalent to a p-adic absolute value
for a unique prime p in OK or is equivalent to an absolute value coming from a real or
complex embedding of K.

Proof. We treat separately nonarchimedean and archimedean absolute values on K. The
first case was settled independently by Artin [1] (see also Ostrowski [7, Sect. 26]) while the
second case is due to Ostrowski [6].

Case 1. | · | is a nonarchimedean absolute value on K.

We expect |·| to look like α 7→ cordp(α) for some c ∈ (0, 1), so the function v(α) := − log |α|
should look like a positive scalar multiple of ordp. To prove this really happens, note v
satisfies the conditions of Theorem 3.2, so − log |α| = t ordp(α) for a unique t > 0 and a

unique nonzero prime ideal p of OK . Rewriting this as |α| = (e−t)ordp(α), we see | · | is a
p-adic absolute value with constant c = e−t < 1.

Case 2. | · | is an archimedean absolute value on K.
The restriction of | · | to Q is an absolute value on Q, and it can’t be nonarchimedean

since then | · | on K would be nonarchimedean (an absolute value on K is nonarchimedean
if and only if |n| ≤ 1 for all n ∈ Z). Therefore | · | on Q is archimedean, so | · | on Q
is equivalent to the standard absolute value | · |∞ on Q: |r| = |r|t∞ for some t > 0 and
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all r ∈ Q. We will show, following the argument in [2, pp. 278–280], that there is a field
embedding σ of K into R or C such that |α| = |σ(α)|t∞ for all α ∈ K.

Let K̂ be the completion of K with respect to | · |, so K̂ is a field and | · | has an extension

from K to K̂, also to be denoted as | · |, such that K̂ is complete with respect to | · | and

K is dense in K̂. The closure of Q in K̂ is a completion of Q with respect to | · |, so we

will denote it as Q̂. Since (Q̂, | · |) and (R, | · |t∞) are both completions of (Q, | · |), there

is an isomorphism σ : Q̂ → R of valued fields, as indicated in the field diagram below, so

|x| = |σ(x)|t∞ for all x ∈ Q̂.

K̂

Q̂
σ // R

K

Q

By the primitive element theorem, K = Q(γ) for some γ. If γ ∈ Q̂ then K ⊂ Q̂, so
|α| = |σ(α)|t∞ for all α ∈ K. That shows | · | on K comes from a real embedding of K. Also,

since Q̂ is complete and contains K = Q(γ), which is dense in K̂, we have K̂ = Q̂, so the

embedding K ↪→ K̂ is essentially a real embedding of K.

If γ 6∈ Q̂ then the field Q̂(γ) is a finite extension of Q̂ (since Q(γ) is a finite extension

of Q) with [Q̂(γ) : Q̂] > 1. Since C is algebraically closed, the only finite extension field

of R other than R is C, with degree 2, so [Q̂(γ) : Q̂] = 2 and σ : Q̂→ R can be extended

in two ways to a field isomorphism τ : Q̂(γ) → C. Fix a choice of τ . Since Q̂(γ)/Q̂ is a

finite extension and Q̂ is complete with respect to | · |, Q̂(γ) is also complete with respect

to | · |. We have K = Q(γ) ⊂ Q̂(γ) ⊂ K̂ with K̂ complete and K dense in K̂, so Q̂(γ) = K̂.

Therefore K̂ ∼= C, so the completion of K with respect to | · | is isomorphic to the complex
numbers.

K̂

1

Q̂(γ)

2

τ // C

2

K Q̂
σ // R

Q
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On the field Q̂(γ), | · | and x 7→ |τ(x)|t∞ are both absolute values extending | · | on Q̂,
so by the uniqueness of extending absolute values to finite extensions of complete fields we

have |x| = |τ(x)|t∞ for all x ∈ K̂. This equation for x ∈ K tells us | · | on K comes from a
complex embedding of K �

Remark 3.4. Ostrowski [6], in the same paper where he classified the nontrivial absolute
values on Q, proved that a field complete with respect to an archimedean absolute value is
isomorphic to R or C. Proofs of this “other” Ostrowski theorem can be found in Jacobson [3,
pp. 571–573], Lang [5, Chap. XII, Cor. 2.4], and Ribenboim [8, pp. 40–41]. Such a field must
have characteristic 0 since absolute values in characteristic p are always nonarchimedean,
and the closure of Q in the field is a copy of R, so Ostrowski’s “other” theorem is basically
saying that when t is transcendental over R there is no extension of the standard absolute
value on R to an absolute value on R(t).

4. Normalizing the absolute values on K

In Theorem 3.3, the descriptions of the nontrivial absolute values in the archimedean
and non-archimedean cases look different: use real or complex embeddings in one case and
use nonzero prime ideals in the other case. There is a way to describe both cases in a
uniform way: consider field embeddings of K into an algebraic closure of a completion
of Q: embeddings of K into R = C or Qp as p varies. Embedding K into such a field

provides K with a nontrivial absolute value by using the absolute value from C or Qp on
the image of K under the embedding. Every nontrivial absolute value on K arises in this
way (proof?), but it is not quite true that different embeddings of K into some Qv (v =∞
or p) produce different absolute values on K. For instance, we have already noted that in the
archimedean setting complex-conjugate embeddings of K into C define the same absolute
value on K. A similar thing can happen p-adically. As an example, the two embeddings
Q(i)→ Q2, obtained by sending i to the two different square roots of −1 in Q2, define the
same absolute value on Q(i). Similarly, the two embeddings Q(i)→ Q3 give Q(i) the same
absolute value. However, the two embeddings Q(i) → Q5 define different absolute values.
To describe which embeddings of K into some Qv define the same absolute value on K, see
[4, Theorem 2, p. 38] (setting K = Q there).

The standard nontrivial absolute values on Q are tied together by a product formula.
This generalizes to K if we normalize the absolute values on K in the right way. Here’s
how that is done. For a nonzero prime ideal p in OK , use 1/Np as the base for the p-adic
absolute value:

|α|p =

(
1

Np

)ordp(α)

for α ∈ K×. For the archimedean absolute values on K, we use the absolute values from
every real embedding and the squares of the absolute values from the complex-conjugate
pairs of complex embeddings.2 We have now selected one absolute value on K from every
nontrivial equivalence class, with a peculiar twist in the complex case of using the square
of the absolute value.

2Strictly speaking, |z|2 on C is not an absolute value, but for the purpose of getting a product formula
it is convenient to treat it as one. In place of the triangle inequality, since |z + w| ≤ 2max(|z|, |w|) we have
|z + w|2 ≤ 4max(|z|2, |w|)2.
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Theorem 4.1 (Product Formula). For α 6= 0 in K,∏
v

|α|v = 1,

where the product runs over the absolute values on K as described above.

Example 4.2. Take K = Q(i) and α = 3 + i = −i(1 + i)(1 + 2i). Then |α|2∞ = |3 + i|2 =
32 + 12 = 10, |α|1+i = 1/2, |α|1+2i = 1/5, and |α|v = 1 for all other absolute values on Q(i).
Then

∏
v |α|v = 10(1/2)(1/5) = 1.

For each α ∈ K, all but finitely many |α|v are 1, so the formally infinite product of |α|v
over all v in Theorem 4.1 is a finite product, and thus the product makes sense algebraically.

Proof. The product is multiplicative in α, so it suffices to check the product formula when
α ∈ OK − {0}.

Case 1: α ∈ O×K . Here |α|p = 1 for all p. For archimedean v that correspond to a real
embedding σ : K → R, |α|v = |σ(α)|. For archimedean v that correspond to a complex
embedding σ : K → C, |α|v = |σ(α)|2 = |σ(α)||σ(α)|. Therefore∏

v

|α|v =
∏

arch. v

|α|v =
∏

real σ

|σ(α)|
∏
cpx.σ

|σ(α)||σ(α)| = |NK/Q(α)|

since the product of the absolute values of α under all real and complex embeddings of
K, where we count pairs of conjugate embeddings separately, is NK/Q(α). (Specifically, if

σ : K → C is a complex embedding of K then |σ(α)|2 = |σ(α)||σ(α)| can be interpreted
as a contribution to

∏
v |α|v from both σ and σ rather than being a “double” contribution

from σ.) Since α ∈ O×K , NK/Q(α) = ±1, so |NK/Q(α)| = 1.

Case 2: α 6∈ O×K . The ideal αOK is a proper ideal. Factor it into prime ideals:

αOK = pa11 · · · p
ar
r ,

where aj ≥ 1. The only terms in
∏
v |α|v that are not necessarily 1 come from the absolute

values on K attached to p1, . . . , pr and to the archimedean absolute values on K. We
separately treat the contribution from non-archimedean and archimedean absolute values.

The contribution to
∏
v |α|v from p1, . . . , pr is

r∏
j=1

(
1

Npj

)aj
.

As in Case 1, the archimedean contribution to
∏
v |α|v is |NK/Q(α)|. From the compati-

bility of the norm on elements and on principal ideals,

|NK/Q(α)| = N(αOK) =

r∏
j=1

Np
aj
j ,

which means the archimedean and non-archimedean contributions to
∏
v |α|v are inverses

of each other, so their product is 1. �

Remark 4.3. It was not really necessary to treat separately the cases α ∈ O×K and α 6∈ O×K
in the proof: Case 2 is applicable to α ∈ O×K by relaxing the exponent constraint aj ≥ 1 to
aj ≥ 0.
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The use of squared complex absolute values doesn’t just make the product formula work
out, but appears in many other situations in algebraic number theory.

There is a second way to prove the product formula. Collect together the factors in the
product for absolute values on K that extend a given absolute value on Q and see what
these subproducts turn out to be:∏

v

|α|v =
∏
v|∞

|α|v ·
∏
p

∏
p|p

|α|p,

where we write v | ∞ to mean v is an archimedean absolute value on K and it is understood
that we use the squares of absolute values from complex embeddings. The product of the
archimedean absolute values is |NK/Q(α)|, which we used in the proof above. For each
prime number p it turns out that

∏
p|p |α|p = |NK/Q(α)|p. Therefore

(4.1)
∏
v

|α|v = |NK/Q(α)| ·
∏
p

|NK/Q(α)|p,

so the product formula for α as an element of K turns into the product formula for NK/Q(α)
as a rational number. Therefore if we already know the product formula over Q, then the
right side of (4.1) is 1, which proves the product formula over K!

In addition to number fields, we should consider the function field case. That is, we
should allow K to be a finite extension of Fp(T ), where T is transcendental over Fp.
(Equivalently, K has transcendence degree 1 over Fp and the algebraic closure of Fp in
K is a finite extension of Fp.) We know what the nontrivial absolute values are on Fp(T );
they are associated to the monic irreducibles in Fp[T ] and to the negative degree function.
Each of these lifts to absolute values on K in terms of nonzero prime ideals (there are no
archimedean absolute values in characteristic p), but trying to think of these prime ideals
as lying in some “ring of integers” is awkward because there is no canonical ring of integers
in K, essentially since there isn’t one in Fp(T ) either, e.g., Fp[T ] could be replaced with
Fp[1/T ]. Using a geometric language, one can think of elements of K as certain functions
on a smooth curve, and the absolute values on K (or rather, the associated valuations on K)
turn out to be the order-of-vanishing functions at points on this curve. The main argument
one needs in this development is an analogue of Theorem 3.2.

Appendix A. Ideal class representative relatively prime to an ideal

In the proof of Lemma 3.1 we showed that for a nonzero prime ideal p in OK , each ideal
class in Cl(K) contains an integral ideal not divisible by p. Below is a generalization that
replaces p with other ideals in OK .

Theorem A.1. Let n be a nonzero ideal in OK . Each ideal class in Cl(K) has a represen-
tative that is an ideal in OK and is relatively prime to n.

Proof. This is trivial if n = (1), so assume n 6= (1).
We will give two proofs.
First proof. Pick an ideal class in Cl(K). It can be written as [a]−1 where a is integral.
Let p1, . . . , pr be all the prime ideals dividing a or n. Write

a = pe11 · · · p
er
r , ei ≥ 0.

For 1 ≤ i ≤ r, pick xi ∈ peii −pei+1
i , so peii | (xi) and pei+1

i - (xi). Thus peii ||(xi). (The double
bars mean this power of pi is a factor and no higher one is.) By the Chinese remainder
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theorem, there exists x ∈ OK such that

x ≡ xi mod pei+1
i

for all i, so x ∈ peii − pei+1
i . Thus peii ||(x) for all i, so the prime factorization of (x) is

(x) = pe11 · · · p
er
r b = ab

for some ideal b in OK not divisible by any pi. Hence b ∈ [a]−1 and b + n = (1).
Second proof. I thank Will Sawin for the following argument.

Pick an ideal class in Cl(K) and write it as [a]−1 where a is integral. We want to find an
x ∈ K× such that

(i) xa−1 ⊂ OK ,
(ii) xa−1 + n = OK .

Condition (i) says x ∈ a and condition (ii) implies x 6= 0, so b := xa−1 is an ideal in OK
such that b ∈ [a]−1 and b + n = (1).

Let p1, . . . , pr be the different prime ideal factors of n. For each x ∈ a,

(A.1) n ⊂ xa−1 + n ⊂ OK .

If xa−1 + n = OK then x fits (i) and (ii), so we are done. If xa−1 + n 6= OK , then xa−1 + n
is contained in a maximal ideal of OK , which is some pi by (A.1). Since n ⊂ pi, from
xa−1 + n ⊂ pi we get xa−1 ⊂ pi, so x ∈ pia. So as long as we can choose an x ∈ a such that
x 6∈ pia for i = 1, . . . , r, that x fits (i) and (ii), so we’re done.

For 1 ≤ i ≤ r, pia is strictly smaller than a. Pick xi ∈ a− pia for each i. If we can find
x ∈ a such that x ≡ xi mod pia for all i, then x 6∈ pia for i = 1, . . . , r, so this x would fit (i)
and (ii) by the previous paragraph. Existence of such x follows from the mapping

(A.2) a −→
r∏
i=1

a/pia

where x 7→ (x mod p1a, . . . , x mod pra) being onto. This is part of the Chinese remainder
theorem for modules,3 but we’ll give a direct proof of surjectivity in our setting.

To prove (A.2) is surjective it is enough to show for each yj ∈ a that in a we can solve

(A.3) y ≡ yj mod pja and y ≡ 0 mod pia for i 6= j.

Let bj =
∏
i 6=j pi, so pj + bj = (1). Thus 1 = αj +βj where αj ∈ pj and βj ∈ bj . Since βj ≡

1 mod pj and βj ≡ 0 mod bj , y := yjβj satisfies y ≡ yj mod pja and y ≡ 0 mod bja. �
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