OSTROWSKI FOR NUMBER FIELDS

KEITH CONRAD

1. Introduction

In 1916, Ostrowski [6] classified the nontrivial absolute values on Q: up to equivalence, they are the usual (archimedean) absolute value and the p-adic absolute values for different primes p, with none of these being equivalent to each other. We will see how this theorem extends to a number field K, giving a list of all the nontrivial absolute values on K up to equivalence: for each nonzero prime ideal \mathfrak{p} in \mathcal{O}_{K} there is a \mathfrak{p}-adic absolute value, real embeddings of K and complex embeddings of K up to conjugation lead to archimedean absolute values on K, and every nontrivial absolute value on K is equivalent to a \mathfrak{p}-adic, real, or complex absolute value.

2. Defining nontrivial absolute values on K

For each nonzero prime ideal \mathfrak{p} in \mathcal{O}_{K}, a \mathfrak{p}-adic absolute value on K is defined in terms of a \mathfrak{p}-adic valuation $\operatorname{ord}_{\mathfrak{p}}$ that is first defined on $\mathcal{O}_{K}-\{0\}$ and extended to K^{\times}by taking ratios.

Definition 2.1. For $x \in \mathcal{O}_{K}-\{0\}$, define $\operatorname{ord}_{\mathfrak{p}}(x):=m$ where $x \mathcal{O}_{K}=\mathfrak{p}^{m} \mathfrak{a}$ with $m \geq 0$ and $\mathfrak{p} \nmid \mathfrak{a}$.

We have $\operatorname{ord}_{\mathfrak{p}}(x y)=\operatorname{ord}_{\mathfrak{p}}(x)+\operatorname{ord}_{\mathfrak{p}}(y)$ for nonzero x and y in \mathcal{O}_{K} by unique factorization of ideals in \mathcal{O}_{K}. This lets us extend $\operatorname{ord}_{\mathfrak{p}}$ to K^{\times}by using ratios of nonzero numbers in \mathcal{O}_{K} : for $\alpha \in K^{\times}$, write $\alpha=x / y$ for nonzero x and y in \mathcal{O}_{K} and set $\operatorname{ord}_{\mathfrak{p}}(\alpha):=\operatorname{ord}_{\mathfrak{p}}(x)-\operatorname{ord}_{\mathfrak{p}}(y)$. To see this is well-defined, if $x / y=x^{\prime} / y^{\prime}$ for nonzero x, y, x^{\prime}, and y^{\prime} in \mathcal{O}_{K} then $x y^{\prime}=x^{\prime} y$ in \mathcal{O}_{K}, which implies $\operatorname{ord}_{\mathfrak{p}}(x)+\operatorname{ord}_{\mathfrak{p}}\left(y^{\prime}\right)=\operatorname{ord}_{\mathfrak{p}}\left(x^{\prime}\right)+\operatorname{ord}_{\mathfrak{p}}(y)$, so $\operatorname{ord}_{\mathfrak{p}}(x)-\operatorname{ord}_{\mathfrak{p}}(y)=$ $\operatorname{ord}_{\mathfrak{p}}\left(x^{\prime}\right)-\operatorname{ord}_{\mathfrak{p}}\left(y^{\prime}\right)$. On K^{\times}we have $\operatorname{ord}_{\mathfrak{p}}(\alpha \beta)=\operatorname{ord}_{\mathfrak{p}}(\alpha)+\operatorname{ord}_{\mathfrak{p}}(\beta)$ for $\alpha, \beta \in K^{\times}$, so $\operatorname{ord}_{\mathfrak{p}}: K^{\times} \rightarrow \mathbf{Z}$ is a homomorphism that is surjective (for $x \in \mathfrak{p}-\mathfrak{p}^{2}$ we have $\operatorname{ord}_{\mathfrak{p}}(x)=1$). We set $\operatorname{ord}_{\mathfrak{p}}(0)=\infty$, where $\infty>n$ for each integer n.

On $\mathcal{O}_{K}, \operatorname{ord}_{\mathfrak{p}}(x+y) \geq \min \left(\operatorname{ord}_{\mathfrak{p}}(x), \operatorname{ord}_{\mathfrak{p}}(y)\right)$. First, if x, y, or $x+y$ is 0 then the inequality is simple to check. Next, if x, y, and $x+y$ are all nonzero and $m:=\min \left(\operatorname{ord}_{\mathfrak{p}}(x), \operatorname{ord}_{\mathfrak{p}}(y)\right)$ then $\mathfrak{p}^{m} \mid x \mathcal{O}_{K}$ and $\mathfrak{p}^{m} \mid y \mathcal{O}_{K}$, so x and y are in \mathfrak{p}^{m}. Then $x+y \in \mathfrak{p}^{m}$, so $\operatorname{ord}_{\mathfrak{p}}(x+y) \geq$ m. This inequality extends from \mathcal{O}_{K} to K by using a common denominator in ratios: $\operatorname{ord}_{\mathfrak{p}}(\alpha+\beta) \geq \min \left(\operatorname{ord}_{\mathfrak{p}}(\alpha), \operatorname{ord}_{\mathfrak{p}}(\beta)\right)$ for all α and β in K. Therefore $\operatorname{ord}_{\mathfrak{p}}$ is a valuation on K.

Definition 2.2. Fixing a constant $c \in(0,1)$, set $|\alpha|=c^{\operatorname{ord}_{p}(\alpha)}$ for $\alpha \in K^{\times}$, and $|0|=0$. This is called a \mathfrak{p}-adic absolute value on K.

That the function $\alpha \mapsto|\alpha|$ for $\alpha \in K$ is an absolute value follows from $\operatorname{ord}_{\mathfrak{p}}$ being a valuation on K, and a \mathfrak{p}-adic absolute value on K is nonarchimedean.

Changing c produces an equivalent absolute value on K, so there is a well-defined \mathfrak{p} adic topology on K that independent of c. (This topology on the ring of integers \mathcal{O}_{K}
amounts to declaring the ideals \mathfrak{p}^{k} to be a neighborhood basis of 0 in \mathcal{O}_{K}.) For two different nonzero prime ideals \mathfrak{p} and \mathfrak{q} in \mathcal{O}_{K}, a \mathfrak{p}-adic absolute value and \mathfrak{q}-adic absolute value are inequivalent: the Chinese remainder theorem lets us find $x \in \mathcal{O}_{K}$ satisfying $x \equiv 0 \bmod \mathfrak{p}$ and $x \equiv 1 \bmod \mathfrak{q}$, so the \mathfrak{p}-adic absolute value of x is less than 1 and the \mathfrak{q}-adic absolute value of x equals 1 . Thus the two absolute values are inequivalent.

Archimedean absolute values on K are defined in terms of field embeddings $\sigma: K \rightarrow \mathbf{R}$ and $\sigma: K \rightarrow \mathbf{C}:|\alpha|:=|\sigma(\alpha)|_{\infty}$ where $|\cdot|_{\infty}$ is the standard absolute value on \mathbf{R} or C. Letting r_{1} be the number of real embedding of K and r_{2} be the number of pairs of complex-conjugate embeddings of K, there are $r_{1}+2 r_{2}$ archimedean embeddings of K but only $r_{1}+r_{2}$ archimedean absolute values on K (up to equivalence) since complex-conjugate embeddings define the same absolute value $\left(|a+b i|_{\infty}=|a-b i|_{\infty}\right.$ in $\left.\mathbf{C}\right)$ and the only way two archimedean embeddings of K define the same absolute value is when they come from a pair of complex-conjugate embeddings; see [8, p. 42] for the proof of that.

Example 2.3. If K is a real quadratic field then there are two real embeddings of K, so K has two archimedean absolute values. For instance, on the abstract field $\mathbf{Q}(\theta)$ where $\theta^{2}=2$, the two archimedean absolute values are $|a+b \theta|=|a+b \sqrt{2}|$ and $|a+b \theta|=|a-b \sqrt{2}|$ for $a, b \in \mathbf{Q}$.

Example 2.4. If K is an imaginary quadratic field then there are two complex embeddings of K and they are complex-conjugate to each other, so K has just one archimedean absolute value.

By tradition, the nonarchimedean absolute values on K are called its finite absolute values while the archimedean absolute values on K are called its infinite absolute values. This terminology is due to an analogy with the classification of nontrivial absolute values on $\mathbf{C}(z)$ that are trivial on \mathbf{C} : they are associated to the different points on the Riemann sphere, by simply measuring the order of vanishing of a rational function at a point in the same way as a p-adic absolute value operates through a valuation function in the exponent. The absolute values on $\mathbf{C}(z)$ are bounded on $\mathbf{C}[z]$ except for the one associated to the order of vanishing at the point ∞ on the Riemann sphere. Since the archimedean absolute value on \mathbf{Q} is the only one that is unbounded on \mathbf{Z}, by analogy one calls it an infinite absolute value. (This analogy is actually rather weak, since using a different field generator over \mathbf{C}, say $\mathbf{C}(w)$ where $w=1 / z$, changes which absolute value is "at infinity," whereas the archimedean absolute value on \mathbf{Q} can't be turned into one of the p-adic ones by a field automorphism of \mathbf{Q}; in fact, the only field automorphism of \mathbf{Q} is the identity.)

3. Classifying absolute values on K

Ostrowski's theorem for K says every nontrivial absolute value on K is equivalent to an absolute value on K that we already described: a \mathfrak{p}-adic absolute value for a prime \mathfrak{p} of \mathcal{O}_{K} or an archimedean absolute value associated to a real or complex-conjugate pair of embeddings of K. When $K=\mathbf{Q}$, the proof of Ostrowki's theorem uses special features of $\mathcal{O}_{K}=\mathbf{Z}$ (like finite base expansions in \mathbf{Z}^{+}for the archimedean case and division with remainder in \mathbf{Z} for the nonarchimedean case) that are not valid in number fields, so we need a different approach to prove the theorem for K.

Lemma 3.1. Let \mathfrak{p} be a nonzero prime ideal in \mathcal{O}_{K}. If $\alpha \in K^{\times}$and $\operatorname{ord}_{\mathfrak{p}}(\alpha) \geq 0$ then $\alpha=x / y$ where x and y are in \mathcal{O}_{K}, are not 0 , and $\operatorname{ord}_{\mathfrak{p}}(y)=0$.

Proof. Write $\alpha \mathcal{O}_{K}=\mathfrak{a b}^{-1}$ for ideals \mathfrak{a} and \mathfrak{b} of \mathcal{O}_{K} with no common factors. Because $\operatorname{ord}_{\mathfrak{p}}(\alpha) \geq 0, \mathfrak{p} \nmid \mathfrak{b}$. From $\mathfrak{a}=(\alpha) \mathfrak{b}, \mathfrak{a}$ and \mathfrak{b} are in the same ideal class: $[\mathfrak{a}]=[\mathfrak{b}]$.

There is an integral ideal \mathfrak{c} in $[\mathfrak{a}]^{-1}$ that is relatively prime to \mathfrak{p} : pick $x \in \mathfrak{a}-\mathfrak{p a}$ and use $\mathfrak{c}=x \mathfrak{a}^{-1}$. This works because

- $\mathfrak{c}=x \mathfrak{a}^{-1} \Longrightarrow[\mathfrak{c}]=\left[\mathfrak{a}^{-1}\right]=[\mathfrak{a}]^{-1}$ in $\mathrm{Cl}(K)$,
- $x \in \mathfrak{a} \Longrightarrow \mathfrak{c}=x \mathfrak{a}^{-1} \subset \mathcal{O}_{K}$,
- if \mathfrak{c} and \mathfrak{p} are not relatively prime then $\mathfrak{p} \mid \mathfrak{c}$, so $\mathfrak{c} \subset \mathfrak{p}$, but having $x \mathfrak{a}^{-1} \subset \mathfrak{p}$ implies $x \in \mathfrak{p a}$, which contradicts the choice of $x .^{1}$
Then

$$
(\alpha)=\mathfrak{a} \mathfrak{b}^{-1}=\mathfrak{a c}(\mathfrak{b c})^{-1}
$$

and the ideals $\mathfrak{a c}$ and $\mathfrak{b c}$ are both principal, as $[\mathfrak{c}]=[\mathfrak{a}]^{-1}=[\mathfrak{b}]^{-1}$. We have $\mathfrak{a c}=(x)$. Set $\mathfrak{b c}=(y)$, so x and y are in \mathcal{O}_{K} and not 0 . Since \mathfrak{b} and \mathfrak{c} are not divisible by $\mathfrak{p}, \operatorname{ord}_{\mathfrak{p}}(y)=0$. Now $(\alpha)=(x)(y)^{-1}=(x / y)$. Rescaling x by a unit, $\alpha=x / y$ with $\operatorname{ord}_{\mathfrak{p}}(y)=0$.

The heart of the proof of the classification of nonarchimedean absolute values on K is the next result.
Theorem 3.2. Let $v: K^{\times} \rightarrow \mathbf{R}$ be a nonzero homomorphism with

$$
\begin{equation*}
v(\alpha+\beta) \geq \min (v(\alpha), v(\beta)) \tag{3.1}
\end{equation*}
$$

when α, β, and $\alpha+\beta$ are all in K^{\times}. Then $v=t \operatorname{ord}_{\mathfrak{p}}$ for a unique nonzero prime ideal \mathfrak{p} and $t>0$.
Proof. Uniqueness is easy: For a nonzero prime ideal \mathfrak{p},

$$
\left\{\alpha \in \mathcal{O}_{K}: t \operatorname{ord}_{\mathfrak{p}}(\alpha)>0\right\}=\left\{\alpha \in \mathcal{O}_{K}: \operatorname{ord}_{\mathfrak{p}}(\alpha)>0\right\}=\left\{\alpha \in \mathcal{O}_{K}: \alpha \in \mathfrak{p}\right\}=\mathfrak{p}
$$

That is, inside of \mathcal{O}_{K}, t ord $_{\mathfrak{p}}$ takes positive values precisely on \mathfrak{p}, so we can recover \mathfrak{p} from the properties of $t \operatorname{ord}_{\mathfrak{p}}$. Since t is the smallest positive value of $t \operatorname{ord}_{\mathfrak{p}}$ on K^{\times}, the value of t is determined as well.

As for the existence of a \mathfrak{p} and t such that $v=t$ ord $_{\mathfrak{p}}$, we will show that the set

$$
\begin{equation*}
\mathfrak{p}:=\left\{\alpha \in \mathcal{O}_{K}-\{0\}: v(\alpha)>0\right\} \cup\{0\} \tag{3.2}
\end{equation*}
$$

is a nonzero prime ideal in \mathcal{O}_{K} and then we will show $v=t$ ord $_{\mathfrak{p}}$ for some $t>0$. Obviously this definition for \mathfrak{p} is motivated by the calculation we made just before: if there is going to be a prime ideal for which v is the corresponding valuation, the set in (3.2) has to be that ideal.

Before we even discuss \mathfrak{p} in (3.2), we show $v(\alpha) \geq 0$ on all nonzero algebraic integers. Since $v(1 \cdot 1)=v(1)+v(1), v(1)=0$. Then $0=v(1)=v\left((-1)^{2}\right)=2 v(-1)$, so $v(-1)=0$. Now by (3.1), $v(a) \geq 0$ for all nonzero $a \in \mathbf{Z}$. In a sense, the nonnegativity of v on $\mathbf{Z}-\{0\}$ underlies everything that follows. For $\alpha \in \mathcal{O}_{K}$, we can write an equation of integral dependence for it over \mathbf{Z}, say

$$
\alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha+a_{0}=0
$$

with $a_{j} \in \mathbf{Z}$. Choose n as small as possible, so $a_{0} \neq 0$. If $v(\alpha)<0$, then heuristically α^{n} has an n-th order pole at v, while the other terms in the sum on the left have a lower order pole (the a_{j} 's don't contribute polar data since $v\left(a_{j}\right) \geq 0$ or $a_{j}=0$). Thus the whole sum on the left has a pole at v, but the sum is 0 , a contradiction.

[^0]For a rigorous argument, we rewrite the above equation as

$$
\alpha^{n}=-a_{n-1} \alpha^{n-1}-\cdots-a_{1} \alpha-a_{0} .
$$

When $a_{j} \neq 0, v\left(-a_{j} \alpha^{j}\right)=v\left(a_{j}\right)+j v(\alpha) \geq j v(\alpha)$. When $a_{j}=0$, of course the term $a_{j} \alpha^{j}$ is 0 so we ignore it. Now if $v(\alpha)<0$, then $v\left(-a_{j} \alpha^{j}\right) \geq(n-1) v(\alpha)$ since $j \leq n-1$. Therefore by (3.1) extended to a sum of several terms,

$$
v\left(-a_{n-1} \alpha^{n-1}-\cdots-a_{1} \alpha-a_{0}\right) \geq(n-1) v(\alpha) .
$$

Since $v\left(\alpha^{n}\right)=n v(\alpha)$, we have $n v(\alpha) \geq(n-1) v(\alpha)$, so $v(\alpha) \geq 0$. This contradicts the assumption that $v(\alpha)<0$. Therefore $v(\alpha) \geq 0$.

Since v is not identically 0 on K^{\times}, it is not identically 0 on $\mathcal{O}_{K}-\{0\}$, which means v must take some positive values on $\mathcal{O}_{K}-\{0\}$ (we just eliminated the possibility of negative values on $\left.\mathcal{O}_{K}-\{0\}\right)$. Thus the set \mathfrak{p} in (3.2) is not $\{0\}$. Since v is a homomorphism, easily \mathfrak{p} is a subgroup of \mathcal{O}_{K}, and in fact an \mathcal{O}_{K}-module on account of the nonnegativity of v on $\mathcal{O}_{K}-\{0\}$. So \mathfrak{p} is an ideal in \mathcal{O}_{K}. Since $v(1)=0, \mathfrak{p}$ is a proper ideal of \mathcal{O}_{K}. Let's show it is a prime ideal. For α and β in \mathcal{O}_{K}, assume $\alpha \beta \in \mathfrak{p}$. To show α or β is in \mathfrak{p}, assume neither is in \mathfrak{p}. Then $v(\alpha)=0$ and $v(\beta)=0$, so $v(\alpha \beta)=v(\alpha)+v(\beta)=0$, but that contradicts $\alpha \beta$ being in \mathfrak{p}.

Now we have our nonzero prime ideal \mathfrak{p}, so it is time to show $v=t \operatorname{ord}_{\mathfrak{p}}$ for some t.
First we'll show that if $\operatorname{ord}_{\mathfrak{p}}(\alpha)=0$ then $v(\alpha)=0$. By Lemma 3.1 we can write $\alpha=x / y$ with $x, y \in \mathcal{O}_{K}$ and $\operatorname{ord}_{\mathfrak{p}}(y)=0$. Therefore $\operatorname{ord}_{\mathfrak{p}}(x)=\operatorname{ord}_{\mathfrak{p}}(\alpha y)=0+0=0$. Since x and y are in \mathcal{O}_{K} and are not in \mathfrak{p}, the definition of \mathfrak{p} tells us $v(x)=0$ and $v(y)=0$. Therefore $v(\alpha)=0$.

Now we show $v=t \operatorname{ord}_{\mathfrak{p}}$ for some $t>0$. For $\alpha \in K^{\times}$, let $n=\operatorname{ord}_{\mathfrak{p}}(\alpha) \in \mathbf{Z}$. Pick $\gamma \in \mathfrak{p}-\mathfrak{p}^{2}$, so $\operatorname{ord}_{\mathfrak{p}}(\gamma)=1$ and $v(\gamma)>0$. Then $\operatorname{ord}_{\mathfrak{p}}\left(\alpha / \gamma^{n}\right)=0$, so $v\left(\alpha / \gamma^{n}\right)=0$, so

$$
v(\alpha)=n v(\gamma)=\operatorname{ord}_{\mathfrak{p}}(\alpha) v(\gamma) .
$$

The choice of γ has nothing to do with α. This equation holds for all $\alpha \in K^{\times}$, so $v=t \operatorname{ord}_{\mathfrak{p}}$ where $t=v(\gamma)>0$.

Theorem 3.3. Each nontrivial absolute value on K is equivalent to a \mathfrak{p}-adic absolute value for a unique prime \mathfrak{p} in \mathcal{O}_{K} or is equivalent to an absolute value coming from a real or complex embedding of K.

Proof. We treat separately nonarchimedean and archimedean absolute values on K. The first case was settled independently by Artin [1] (see also Ostrowski [7, Sect. 26]) while the second case is due to Ostrowski [6].

Case 1. $|\cdot|$ is a nonarchimedean absolute value on K.
We expect $|\cdot|$ to look like $\alpha \mapsto c^{\operatorname{ord}_{p}(\alpha)}$ for some $c \in(0,1)$, so the function $v(\alpha):=-\log |\alpha|$ should look like a positive scalar multiple of ord ${ }_{p}$. To prove this really happens, note v satisfies the conditions of Theorem 3.2, so $-\log |\alpha|=t \operatorname{ord}_{\mathfrak{p}}(\alpha)$ for a unique $t>0$ and a unique nonzero prime ideal \mathfrak{p} of \mathcal{O}_{K}. Rewriting this as $|\alpha|=\left(e^{-t}\right)^{\operatorname{ord}_{\mathfrak{p}}(\alpha)}$, we see $|\cdot|$ is a \mathfrak{p}-adic absolute value with constant $c=e^{-t}<1$.

Case 2. $|\cdot|$ is an archimedean absolute value on K.
The restriction of $|\cdot|$ to \mathbf{Q} is an absolute value on \mathbf{Q}, and it can't be nonarchimedean since then $|\cdot|$ on K would be nonarchimedean (an absolute value on K is nonarchimedean if and only if $|n| \leq 1$ for all $n \in \mathbf{Z})$. Therefore $|\cdot|$ on \mathbf{Q} is archimedean, so $|\cdot|$ on \mathbf{Q} is equivalent to the standard absolute value $|\cdot|_{\infty}$ on $\mathbf{Q}:|r|=|r|_{\infty}^{t}$ for some $t>0$ and
all $r \in \mathbf{Q}$. We will show, following the argument in [2, pp. 278-280], that there is a field embedding σ of K into \mathbf{R} or \mathbf{C} such that $|\alpha|=|\sigma(\alpha)|_{\infty}^{t}$ for all $\alpha \in K$.

Let \widehat{K} be the completion of K with respect to $|\cdot|$, so \widehat{K} is a field and $|\cdot|$ has an extension from K to \widehat{K}, also to be denoted as $|\cdot|$, such that \widehat{K} is complete with respect to $|\cdot|$ and K is dense in \widehat{K}. The closure of \mathbf{Q} in \widehat{K} is a completion of \mathbf{Q} with respect to $|\cdot|$, so we will denote it as $\widehat{\mathbf{Q}}$. Since $(\widehat{\mathbf{Q}},|\cdot|)$ and $\left(\mathbf{R},|\cdot|_{\infty}^{t}\right)$ are both completions of $(\mathbf{Q},|\cdot|)$, there is an isomorphism $\sigma: \widehat{\mathbf{Q}} \rightarrow \mathbf{R}$ of valued fields, as indicated in the field diagram below, so $|x|=|\sigma(x)|_{\infty}^{t}$ for all $x \in \widehat{\mathbf{Q}}$.

By the primitive element theorem, $K=\mathbf{Q}(\gamma)$ for some γ. If $\gamma \in \widehat{\mathbf{Q}}$ then $K \subset \widehat{\mathbf{Q}}$, so $|\alpha|=|\sigma(\alpha)|_{\infty}^{t}$ for all $\alpha \in K$. That shows $|\cdot|$ on K comes from a real embedding of K. Also, since $\widehat{\mathbf{Q}}$ is complete and contains $K=\mathbf{Q}(\gamma)$, which is dense in \widehat{K}, we have $\widehat{K}=\widehat{\mathbf{Q}}$, so the embedding $K \hookrightarrow \widehat{K}$ is essentially a real embedding of K.

If $\gamma \notin \widehat{\mathbf{Q}}$ then the field $\widehat{\mathbf{Q}}(\gamma)$ is a finite extension of $\widehat{\mathbf{Q}}$ (since $\mathbf{Q}(\gamma)$ is a finite extension of $\mathbf{Q})$ with $[\widehat{\mathbf{Q}}(\gamma): \widehat{\mathbf{Q}}]>1$. Since \mathbf{C} is algebraically closed, the only finite extension field of \mathbf{R} other than \mathbf{R} is \mathbf{C}, with degree 2 , so $[\widehat{\mathbf{Q}}(\gamma): \widehat{\mathbf{Q}}]=2$ and $\sigma: \widehat{\mathbf{Q}} \rightarrow \mathbf{R}$ can be extended in two ways to a field isomorphism $\tau: \widehat{\mathbf{Q}}(\gamma) \rightarrow \mathbf{C}$. Fix a choice of τ. Since $\widehat{\mathbf{Q}}(\gamma) / \widehat{\mathbf{Q}}$ is a finite extension and $\widehat{\mathbf{Q}}$ is complete with respect to $|\cdot|, \widehat{\mathbf{Q}}(\gamma)$ is also complete with respect to $|\cdot|$. We have $K=\mathbf{Q}(\gamma) \subset \widehat{\mathbf{Q}}(\gamma) \subset \widehat{K}$ with \widehat{K} complete and K dense in \widehat{K}, so $\widehat{\mathbf{Q}}(\gamma)=\widehat{K}$. Therefore $\widehat{K} \cong \mathbf{C}$, so the completion of K with respect to $|\cdot|$ is isomorphic to the complex numbers.

On the field $\widehat{\mathbf{Q}}(\gamma),|\cdot|$ and $x \mapsto|\tau(x)|_{\infty}^{t}$ are both absolute values extending $|\cdot|$ on $\widehat{\mathbf{Q}}$, so by the uniqueness of extending absolute values to finite extensions of complete fields we have $|x|=|\tau(x)|_{\infty}^{t}$ for all $x \in \widehat{K}$. This equation for $x \in K$ tells us $|\cdot|$ on K comes from a complex embedding of K

Remark 3.4. Ostrowski [6], in the same paper where he classified the nontrivial absolute values on \mathbf{Q}, proved that a field complete with respect to an archimedean absolute value is isomorphic to \mathbf{R} or \mathbf{C}. Proofs of this "other" Ostrowski theorem can be found in Jacobson [3, pp. 571-573], Lang [5, Chap. XII, Cor. 2.4], and Ribenboim [8, pp. 40-41]. Such a field must have characteristic 0 since absolute values in characteristic p are always nonarchimedean, and the closure of \mathbf{Q} in the field is a copy of \mathbf{R}, so Ostrowski's "other" theorem is basically saying that when t is transcendental over \mathbf{R} there is no extension of the standard absolute value on \mathbf{R} to an absolute value on $\mathbf{R}(t)$.

4. Normalizing the absolute values on K

In Theorem 3.3, the descriptions of the nontrivial absolute values in the archimedean and non-archimedean cases look different: use real or complex embeddings in one case and use nonzero prime ideals in the other case. There is a way to describe both cases in a uniform way: consider field embeddings of K into an algebraic closure of a completion of \mathbf{Q} : embeddings of K into $\overline{\mathbf{R}}=\mathbf{C}$ or $\overline{\mathbf{Q}}_{p}$ as p varies. Embedding K into such a field provides K with a nontrivial absolute value by using the absolute value from \mathbf{C} or $\overline{\mathbf{Q}}_{p}$ on the image of K under the embedding. Every nontrivial absolute value on K arises in this way (proof?), but it is not quite true that different embeddings of K into some $\overline{\mathbf{Q}}_{v}(v=\infty$ or p) produce different absolute values on K. For instance, we have already noted that in the archimedean setting complex-conjugate embeddings of K into \mathbf{C} define the same absolute value on K. A similar thing can happen p-adically. As an example, the two embeddings $\mathbf{Q}(i) \rightarrow \overline{\mathbf{Q}}_{2}$, obtained by sending i to the two different square roots of -1 in \mathbf{Q}_{2}, define the same absolute value on $\mathbf{Q}(i)$. Similarly, the two embeddings $\mathbf{Q}(i) \rightarrow \overline{\mathbf{Q}}_{3}$ give $\mathbf{Q}(i)$ the same absolute value. However, the two embeddings $\mathbf{Q}(i) \rightarrow \overline{\mathbf{Q}}_{5}$ define different absolute values. To describe which embeddings of K into some $\overline{\mathbf{Q}}_{v}$ define the same absolute value on K, see [4, Theorem 2, p. 38] (setting $K=\mathbf{Q}$ there).

The standard nontrivial absolute values on \mathbf{Q} are tied together by a product formula. This generalizes to K if we normalize the absolute values on K in the right way. Here's how that is done. For a nonzero prime ideal \mathfrak{p} in \mathcal{O}_{K}, use $1 / \mathrm{Np}$ as the base for the \mathfrak{p}-adic absolute value:

$$
|\alpha|_{\mathfrak{p}}=\left(\frac{1}{\mathrm{~N} \mathfrak{p}}\right)^{\operatorname{ord}_{\mathfrak{p}}(\alpha)}
$$

for $\alpha \in K^{\times}$. For the archimedean absolute values on K, we use the absolute values from every real embedding and the squares of the absolute values from the complex-conjugate pairs of complex embeddings. ${ }^{2}$ We have now selected one absolute value on K from every nontrivial equivalence class, with a peculiar twist in the complex case of using the square of the absolute value.

[^1]Theorem 4.1 (Product Formula). For $\alpha \neq 0$ in K,

$$
\prod_{v}|\alpha|_{v}=1
$$

where the product runs over the absolute values on K as described above.
Example 4.2. Take $K=\mathbf{Q}(i)$ and $\alpha=3+i=-i(1+i)(1+2 i)$. Then $|\alpha|_{\infty}^{2}=|3+i|^{2}=$ $3^{2}+1^{2}=10,|\alpha|_{1+i}=1 / 2,|\alpha|_{1+2 i}=1 / 5$, and $|\alpha|_{v}=1$ for all other absolute values on $\mathbf{Q}(i)$. Then $\prod_{v}|\alpha|_{v}=10(1 / 2)(1 / 5)=1$.

For each $\alpha \in K$, all but finitely many $|\alpha|_{v}$ are 1 , so the formally infinite product of $|\alpha|_{v}$ over all v in Theorem 4.1 is a finite product, and thus the product makes sense algebraically.

Proof. The product is multiplicative in α, so it suffices to check the product formula when $\alpha \in \mathcal{O}_{K}-\{0\}$.

Case 1: $\alpha \in \mathcal{O}_{K}^{\times}$. Here $|\alpha|_{\mathfrak{p}}=1$ for all \mathfrak{p}. For archimedean v that correspond to a real embedding $\sigma: K \rightarrow \mathbf{R},|\alpha|_{v}=|\sigma(\alpha)|$. For archimedean v that correspond to a complex embedding $\sigma: K \rightarrow \mathbf{C},|\alpha|_{v}=|\sigma(\alpha)|^{2}=|\sigma(\alpha)||\bar{\sigma}(\alpha)|$. Therefore

$$
\prod_{v}|\alpha|_{v}=\prod_{\text {arch. } v}|\alpha|_{v}=\prod_{\text {real } \sigma}|\sigma(\alpha)| \prod_{\text {cpx. } \sigma}|\sigma(\alpha)||\bar{\sigma}(\alpha)|=\left|\mathrm{N}_{K / \mathbf{Q}}(\alpha)\right|
$$

since the product of the absolute values of α under all real and complex embeddings of K, where we count pairs of conjugate embeddings separately, is $\mathrm{N}_{K / \mathbf{Q}}(\alpha)$. (Specifically, if $\sigma: K \rightarrow \mathbf{C}$ is a complex embedding of K then $|\sigma(\alpha)|^{2}=|\sigma(\alpha)||\bar{\sigma}(\alpha)|$ can be interpreted as a contribution to $\prod_{v}|\alpha|_{v}$ from both σ and $\bar{\sigma}$ rather than being a "double" contribution from σ.) Since $\alpha \in \mathcal{O}_{K}^{\times}, \mathrm{N}_{K / \mathbf{Q}}(\alpha)= \pm 1$, so $\left|\mathrm{N}_{K / \mathbf{Q}}(\alpha)\right|=1$.

Case 2: $\alpha \notin \mathcal{O}_{K}^{\times}$. The ideal $\alpha \mathcal{O}_{K}$ is a proper ideal. Factor it into prime ideals:

$$
\alpha \mathcal{O}_{K}=\mathfrak{p}_{1}^{a_{1}} \cdots \mathfrak{p}_{r}^{a_{r}},
$$

where $a_{j} \geq 1$. The only terms in $\prod_{v}|\alpha|_{v}$ that are not necessarily 1 come from the absolute values on K attached to $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ and to the archimedean absolute values on K. We separately treat the contribution from non-archimedean and archimedean absolute values.

The contribution to $\prod_{v}|\alpha|_{v}$ from $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ is

$$
\prod_{j=1}^{r}\left(\frac{1}{\mathrm{~Np}_{j}}\right)^{a_{j}}
$$

As in Case 1, the archimedean contribution to $\prod_{v}|\alpha|_{v}$ is $\left|\mathrm{N}_{K / \mathbf{Q}}(\alpha)\right|$. From the compatibility of the norm on elements and on principal ideals,

$$
\left|\mathrm{N}_{K / \mathbf{Q}}(\alpha)\right|=\mathrm{N}\left(\alpha \mathcal{O}_{K}\right)=\prod_{j=1}^{r} \mathrm{~Np}_{j}^{a_{j}},
$$

which means the archimedean and non-archimedean contributions to $\prod_{v}|\alpha|_{v}$ are inverses of each other, so their product is 1 .

Remark 4.3. It was not really necessary to treat separately the cases $\alpha \in \mathcal{O}_{K}^{\times}$and $\alpha \notin \mathcal{O}_{K}^{\times}$ in the proof: Case 2 is applicable to $\alpha \in \mathcal{O}_{K}^{\times}$by relaxing the exponent constraint $a_{j} \geq 1$ to $a_{j} \geq 0$.

The use of squared complex absolute values doesn't just make the product formula work out, but appears in many other situations in algebraic number theory.

There is a second way to prove the product formula. Collect together the factors in the product for absolute values on K that extend a given absolute value on \mathbf{Q} and see what these subproducts turn out to be:

$$
\prod_{v}|\alpha|_{v}=\prod_{v \mid \infty}|\alpha|_{v} \cdot \prod_{p} \prod_{\mathfrak{p} \mid p}|\alpha|_{\mathfrak{p}}
$$

where we write $v \mid \infty$ to mean v is an archimedean absolute value on K and it is understood that we use the squares of absolute values from complex embeddings. The product of the archimedean absolute values is $\left|\mathrm{N}_{K / \mathbf{Q}}(\alpha)\right|$, which we used in the proof above. For each prime number p it turns out that $\prod_{\mathfrak{p} \mid p}|\alpha|_{\mathfrak{p}}=\left|\mathrm{N}_{K / \mathbf{Q}}(\alpha)\right|_{p}$. Therefore

$$
\begin{equation*}
\prod_{v}|\alpha|_{v}=\left|\mathrm{N}_{K / \mathbf{Q}}(\alpha)\right| \cdot \prod_{p}\left|\mathrm{~N}_{K / \mathbf{Q}}(\alpha)\right|_{p} \tag{4.1}
\end{equation*}
$$

so the product formula for α as an element of K turns into the product formula for $\mathrm{N}_{K / \mathbf{Q}}(\alpha)$ as a rational number. Therefore if we already know the product formula over \mathbf{Q}, then the right side of (4.1) is 1 , which proves the product formula over K !

In addition to number fields, we should consider the function field case. That is, we should allow K to be a finite extension of $\mathbf{F}_{p}(T)$, where T is transcendental over \mathbf{F}_{p}. (Equivalently, K has transcendence degree 1 over \mathbf{F}_{p} and the algebraic closure of \mathbf{F}_{p} in K is a finite extension of \mathbf{F}_{p}.) We know what the nontrivial absolute values are on $\mathbf{F}_{p}(T)$; they are associated to the monic irreducibles in $\mathbf{F}_{p}[T]$ and to the negative degree function. Each of these lifts to absolute values on K in terms of nonzero prime ideals (there are no archimedean absolute values in characteristic p), but trying to think of these prime ideals as lying in some "ring of integers" is awkward because there is no canonical ring of integers in K, essentially since there isn't one in $\mathbf{F}_{p}(T)$ either, e.g., $\mathbf{F}_{p}[T]$ could be replaced with $\mathbf{F}_{p}[1 / T]$. Using a geometric language, one can think of elements of K as certain functions on a smooth curve, and the absolute values on K (or rather, the associated valuations on K) turn out to be the order-of-vanishing functions at points on this curve. The main argument one needs in this development is an analogue of Theorem 3.2.

Appendix A. Ideal class representative relatively prime to an ideal

In the proof of Lemma 3.1 we showed that for a nonzero prime ideal \mathfrak{p} in \mathcal{O}_{K}, each ideal class in $\mathrm{Cl}(K)$ contains an integral ideal not divisible by \mathfrak{p}. Below is a generalization that replaces \mathfrak{p} with other ideals in \mathcal{O}_{K}.

Theorem A.1. Let \mathfrak{n} be a nonzero ideal in \mathcal{O}_{K}. Each ideal class in $\mathrm{Cl}(K)$ has a representative that is an ideal in \mathcal{O}_{K} and is relatively prime to \mathfrak{n}.

Proof. This is trivial if $\mathfrak{n}=(1)$, so assume $\mathfrak{n} \neq(1)$.
We will give two proofs.
First proof. Pick an ideal class in $\mathrm{Cl}(K)$. It can be written as $[\mathfrak{a}]^{-1}$ where \mathfrak{a} is integral.
$\overline{\text { Let }} \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ be all the prime ideals dividing \mathfrak{a} or \mathfrak{n}. Write

$$
\mathfrak{a}=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{r}^{e_{r}}, \quad e_{i} \geq 0
$$

For $1 \leq i \leq r$, pick $x_{i} \in \mathfrak{p}_{i}^{e_{i}}-\mathfrak{p}_{i}^{e_{i}+1}$, so $\mathfrak{p}_{i}^{e_{i}} \mid\left(x_{i}\right)$ and $\mathfrak{p}_{i}^{e_{i}+1} \nmid\left(x_{i}\right)$. Thus $\mathfrak{p}_{i}^{e_{i}} \|\left(x_{i}\right)$. (The double bars mean this power of \mathfrak{p}_{i} is a factor and no higher one is.) By the Chinese remainder
theorem, there exists $x \in \mathcal{O}_{K}$ such that

$$
x \equiv x_{i} \bmod \mathfrak{p}_{i}^{e_{i}+1}
$$

for all i, so $x \in \mathfrak{p}_{i}^{e_{i}}-\mathfrak{p}_{i}^{e_{i}+1}$. Thus $\mathfrak{p}_{i}^{e_{i}} \|(x)$ for all i, so the prime factorization of (x) is

$$
(x)=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{r}^{e_{r}} \mathfrak{b}=\mathfrak{a b}
$$

for some ideal \mathfrak{b} in \mathcal{O}_{K} not divisible by any \mathfrak{p}_{i}. Hence $\mathfrak{b} \in[\mathfrak{a}]^{-1}$ and $\mathfrak{b}+\mathfrak{n}=(1)$.
Second proof. I thank Will Sawin for the following argument.
Pick an ideal class in $\mathrm{Cl}(K)$ and write it as $[\mathfrak{a}]^{-1}$ where \mathfrak{a} is integral. We want to find an $x \in K^{\times}$such that
(i) $x \mathfrak{a}^{-1} \subset \mathcal{O}_{K}$,
(ii) $x \mathfrak{a}^{-1}+\mathfrak{n}=\mathcal{O}_{K}$.

Condition (i) says $x \in \mathfrak{a}$ and condition (ii) implies $x \neq 0$, so $\mathfrak{b}:=x \mathfrak{a}^{-1}$ is an ideal in \mathcal{O}_{K} such that $\mathfrak{b} \in[\mathfrak{a}]^{-1}$ and $\mathfrak{b}+\mathfrak{n}=(1)$.

Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ be the different prime ideal factors of \mathfrak{n}. For each $x \in \mathfrak{a}$,
$\mathfrak{n} \subset x \mathfrak{a}^{-1}+\mathfrak{n} \subset \mathcal{O}_{K}$.
If $x \mathfrak{a}^{-1}+\mathfrak{n}=\mathcal{O}_{K}$ then x fits (i) and (ii), so we are done. If $x \mathfrak{a}^{-1}+\mathfrak{n} \neq \mathcal{O}_{K}$, then $x \mathfrak{a}^{-1}+\mathfrak{n}$ is contained in a maximal ideal of \mathcal{O}_{K}, which is some \mathfrak{p}_{i} by (A.1). Since $\mathfrak{n} \subset \mathfrak{p}_{i}$, from $x \mathfrak{a}^{-1}+\mathfrak{n} \subset \mathfrak{p}_{i}$ we get $x \mathfrak{a}^{-1} \subset \mathfrak{p}_{i}$, so $x \in \mathfrak{p}_{i} \mathfrak{a}$. So as long as we can choose an $x \in \mathfrak{a}$ such that $x \notin \mathfrak{p}_{i} \mathfrak{a}$ for $i=1, \ldots, r$, that x fits (i) and (ii), so we're done.

For $1 \leq i \leq r, \mathfrak{p}_{i} \mathfrak{a}$ is strictly smaller than \mathfrak{a}. Pick $x_{i} \in \mathfrak{a}-\mathfrak{p}_{i} \mathfrak{a}$ for each i. If we can find $x \in \mathfrak{a}$ such that $x \equiv x_{i} \bmod \mathfrak{p}_{i} \mathfrak{a}$ for all i, then $x \notin \mathfrak{p}_{i} \mathfrak{a}$ for $i=1, \ldots, r$, so this x would fit (i) and (ii) by the previous paragraph. Existence of such x follows from the mapping

$$
\begin{equation*}
\mathfrak{a} \longrightarrow \prod_{i=1}^{r} \mathfrak{a} / \mathfrak{p}_{i} \mathfrak{a} \tag{A.2}
\end{equation*}
$$

where $x \mapsto\left(x \bmod \mathfrak{p}_{1} \mathfrak{a}, \ldots, x \bmod \mathfrak{p}_{r} \mathfrak{a}\right)$ being onto. This is part of the Chinese remainder theorem for modules, ${ }^{3}$ but we'll give a direct proof of surjectivity in our setting.

To prove (A.2) is surjective it is enough to show for each $y_{j} \in \mathfrak{a}$ that in \mathfrak{a} we can solve

$$
\begin{equation*}
y \equiv y_{j} \bmod \mathfrak{p}_{j} \mathfrak{a} \text { and } y \equiv 0 \bmod \mathfrak{p}_{i} \mathfrak{a} \text { for } i \neq j \tag{A.3}
\end{equation*}
$$

Let $\mathfrak{b}_{j}=\prod_{i \neq j} \mathfrak{p}_{i}$, so $\mathfrak{p}_{j}+\mathfrak{b}_{j}=(1)$. Thus $1=\alpha_{j}+\beta_{j}$ where $\alpha_{j} \in \mathfrak{p}_{j}$ and $\beta_{j} \in \mathfrak{b}_{j}$. Since $\beta_{j} \equiv$ $1 \bmod \mathfrak{p}_{j}$ and $\beta_{j} \equiv 0 \bmod \mathfrak{b}_{j}, y:=y_{j} \beta_{j}$ satisfies $y \equiv y_{j} \bmod \mathfrak{p}_{j} \mathfrak{a}$ and $y \equiv 0 \bmod \mathfrak{b}_{j} \mathfrak{a}$.

References

[1] E. Artin, Über die Bewertungen algebraischer Zahlkörper, J. Reine Angew. Math. 167 (1932), 157-159. URL https://eudml.org/doc/149802.
[2] Z. I. Borevich and I. R. Shafarevich, "Number Theory," Academic Press, New York, 1966.
[3] N. Jacobson, "Basic Algebra II," 2nd ed., W. H. Freeman, New York, 1989.
[4] S. Lang, "Algebraic Number Theory," 2nd ed., Springer-Verlag, New York, 1994.
[5] S. Lang, "Algebra," 3rd ed., Springer-Verlag, New York, 2002.
[6] A. Ostrowski, Über einige Lösungen der Funktionalgleichung $\varphi(x) \cdot \varphi(y)=\varphi(x y)$, Acta Math. 41 (1916), 271-284. URL https://projecteuclid.org/euclid.acta/1485887472.
[7] A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper. (Die Theorie der Teilbarkeit in allgemeinen Körpern) Teil I, Math. Zeit. 39 (1935), 269-320. URL https://eudml.org/doc/168554.
[8] P. Ribenboim, "The Theory of Classical Valuations," Springer-Verlag, New York, 1999.

[^2]
[^0]: ${ }^{1}$ More generally, for each nonzero ideal \mathfrak{n} in \mathcal{O}_{K}, each ideal class in $\mathrm{Cl}(K)$ contains an integral ideal relatively prime to \mathfrak{n}. A proof is in Theorem A.1.

[^1]: ${ }^{2}$ Strictly speaking, $|z|^{2}$ on \mathbf{C} is not an absolute value, but for the purpose of getting a product formula it is convenient to treat it as one. In place of the triangle inequality, since $|z+w| \leq 2 \max (|z|,|w|)$ we have $|z+w|^{2} \leq 4 \max \left(|z|^{2},|w|\right)^{2}$.

[^2]: ${ }^{3}$ See https://mathoverflow.net/questions/18959.

