OSTROWSKI'S THEOREM FOR Q

KEITH CONRAD

1. Introduction

Hensel created the p-adic numbers towards the end of the 19th century, and it wasn't until about 20 years later that Ostrowski [1] proved a fundamental theorem that explained in retrospect why Hensel's idea was natural: every nontrivial absolute value on \mathbf{Q} is a power of the ordinary (archimedean) absolute value or a power of a p-adic absolute value for some prime number p, so every completion of \mathbf{Q} with respect to a nontrivial absolute value is either \mathbf{R} or some \mathbf{Q}_{p}.

Theorem 1 (Ostrowski, 1916). If $|\cdot|$ is a nontrivial absolute value on \mathbf{Q} then there is $t>0$ such that either $|\cdot|=|\cdot|_{\infty}^{t}$ or $|\cdot|=|\cdot|_{p}^{t}$ for a prime p.
Proof. An absolute value on \mathbf{Q} is determined by its values on the positive integers, so it suffices to show there is a $t>0$ such that $|n|=n^{t}$ for all n in \mathbf{Z}^{+}or $|n|=|n|_{p}^{t}$ for some prime p and all n in \mathbf{Z}^{+}.

Since $|\cdot|$ is nontrivial, $|n| \neq 1$ for some positive integer n. We consider two cases: $|n|>1$ for some $n \geq 2$ or $|n| \leq 1$ for all $n \geq 2$. We will show in the first case that $|\cdot|$ is a power of the ordinary absolute value on \mathbf{Q} and in the second case that $|\cdot|$ is a power of some p-adic absolute value.

Case 1: $|n|>1$ for some $n \geq 2$.
First we prove that $|n|>1$ for all $n \geq 2$ by proving the contrapositive: if $\left|n_{0}\right| \leq 1$ for some $n_{0} \geq 2$ then $|n| \leq 1$ for all $n \geq 2$. Write n in base n_{0} :

$$
n=a_{0}+a_{1} n_{0}+\cdots+a_{d} n_{0}^{d}
$$

where $0 \leq a_{i} \leq n_{0}-1$ and $a_{d} \neq 0$, so $n_{0}^{d} \leq n<n_{0}^{d+1}$. We have $\left|a_{i}\right| \leq|1+1+\cdots+1| \leq$ $|1|+|1|+\cdots+|1|=a_{i}<n_{0}$, so

$$
\begin{equation*}
|n| \leq\left|a_{0}\right|+\left|a_{1}\right|\left|n_{0}\right|+\cdots+\left|a_{d}\right|\left|n_{0}\right|^{d}<n_{0}+n_{0}\left|n_{0}\right|+\cdots+n_{0}\left|n_{0}\right|^{d} \tag{1}
\end{equation*}
$$

From $\left|n_{0}\right| \leq 1$, (1) implies $|n| \leq n_{0}(d+1) \leq n_{0}\left(\log _{n_{0}}(n)+1\right)$. Replace n by n^{k} in this inequality to get $|n|^{k} \leq n_{0}\left(k \log _{n_{0}}(n)+1\right)$, so

$$
\begin{equation*}
|n| \leq \sqrt[k]{n_{0}\left(k \log _{n_{0}}(n)+1\right)} \tag{2}
\end{equation*}
$$

We have $\log _{n_{0}}(n)>0$ since $n_{0}>1$ and $n>1$, so letting $k \rightarrow \infty$ in (2) shows us that $|n| \leq 1$, and n was arbitrary.

The replacement of n with n^{k} is an idea we will use again. Let's call it the "power trick."
For any integers m and n that are greater than $2,|m|>1$ and $|n|>1$. Picking $d \geq 0$ so that $m^{d} \leq n<m^{d+1}$, writing n in base m implies (in the same way that we proved (1) above)

$$
|n| \leq m\left(1+|m|+\cdots+|m|^{d}\right)
$$

Since $|m|>1$, summing up the finite geometric series on the right gives us

$$
|n| \leq m\left(1+|m|+\cdots+|m|^{d}\right)=m \frac{|m|^{d+1}-1}{|m|-1}<m \frac{|m|^{d+1}}{|m|-1}=\frac{m|m|}{|m|-1}|m|^{d}
$$

Since $d \leq \log _{m}(n)$,

$$
|n|<\frac{m|m|}{|m|-1}|m|^{\log _{m}(n)}
$$

Now it's time for the power trick. Replacing n with n^{k},

$$
|n|^{k}<\frac{m|m|}{|m|-1}|m|^{k \log _{m}(n)} .
$$

Taking k th roots,

$$
|n|<\sqrt[k]{\frac{m|m|}{|m|-1}}|m|^{\log _{m}(n)}
$$

and letting $k \rightarrow \infty$,

$$
\begin{equation*}
|n| \leq|m|^{\log _{m}(n)} \tag{3}
\end{equation*}
$$

Writing $|m|=m^{s}$ and $|n|=n^{t}$ where $s>0$ and $t>0$, we get from (3) that $n^{t} \leq m^{s \log _{m}(n)}=$ n^{s}, so $t \leq s$. The roles of m and n in this calculation are symmetric, so by switching their roles we get $s \leq t$ and thus $|m|=m^{t}$ and $|n|=n^{t}$.

Case 2: $|n| \leq 1$ for all $n \geq 2$.
For some $n \geq 2$ we have $|n| \neq 1$, so $0<|n|<1$. Let p be the smallest such positive integer. Since $0<|p|<1$ and also $0<1 / p<1$, we can write $|p|=(1 / p)^{t}$ for some $t>0$. We will prove $|n|=|n|_{p}^{t}$ for all $n \geq 1$.

The number p is prime, by contradiction: if $p=a b$ where a and b are positive integers that are both smaller than p then $|a|=1$ and $|b|=1$, so $|p|=|a||b|=1$, which is false.

Next we show each positive integer m not divisible by p has $|m|=1$. If $|m| \neq 1$ then $|m|<1$. We are going to use the power trick again: let's look at p^{k} and m^{k}. Since $|p|$ and $|m|$ are both between 0 and 1 , for a large k we have $|p|^{k}<1 / 2$ and $|n|^{k}<1 / 2$. Since p^{k} and m^{k} are relatively prime, there are x_{k} and $y_{k} \in \mathbf{Z}$ such that $1=p^{k} x_{k}+m^{k} y_{k}$. Take the absolute value of both sides:

$$
1=\left|p^{k} x_{k}+m^{k} y_{k}\right| \leq\left|p^{k}\right|\left|x_{k}\right|+\left|m^{k}\right|\left|y_{k}\right| \leq|p|^{k}+|m|^{k}<\frac{1}{2}+\frac{1}{2}=1
$$

which is a contradiction.
For all integers $n \geq 2$ pull out the largest power of $p: n=p^{e} n^{\prime}$ where $e \geq 0$ and n^{\prime} is not divisible by p. Then $\left|n^{\prime}\right|=1$, so $|n|=\left|p^{e} n^{\prime}\right|=|p|^{e}\left|n^{\prime}\right|=|p|^{e}=(1 / p)^{e t}$. Also $|n|_{p}=(1 / p)^{e}$, so $|n|=|n|_{p}^{t}$.

Here is a second proof that an absolute value $|\cdot|$ on \mathbf{Q} such that $|n|>1$ for some positive integer $n \geq 2$ must be a power of the ordinary absolute value on \mathbf{Q}.

First we show $|2|>1$ by an argument very close to that used already in Case 1 , but we repeat it here to keep our argument self-contained. Assuming $|2| \leq 1$ we will get a contradiction.

Write each integer $n \geq 2$ in base $2: n=a_{0}+a_{1} \cdot 2+\cdots+a_{d} 2^{d}$ where a_{i} is 0 or 1 and $a_{d}=1$, so $2^{d} \leq n<2^{d+1}$. Thus $\left|a_{i}\right|$ is 0 or 1 , so by the triangle inequality

$$
|n| \leq \sum_{i=0}^{d}\left|a_{i}\right||2|^{i} \leq \sum_{i=0}^{d} 1=d+1 \leq \log _{2}(n)+1 \leq 2 \log _{2}(n) .
$$

This holds for all $n \geq 2$, so if we replace n throughout with n^{k} for $k \geq 1$ then

$$
\left|n^{k}\right| \leq 2 \log _{2}\left(n^{k}\right)=2 k \log _{2}(n),
$$

so

$$
|n|^{k} \leq 2 k \log _{2}(n)
$$

Taking k th roots of both sides,

$$
|n| \leq \sqrt[k]{2 k \log _{2}(n)}
$$

Letting $k \rightarrow \infty$, this inequality becomes $|n| \leq 1$. We have proved this for all $n \geq 2$, but that contradicts the assumption $|n|>1$ for some $n \geq 2$, so in fact we must have $|2|>1$.

Since $|2|$ and 2 are both greater than 1 , we can write $|2|=2^{t}$ for some $t>0$. We will prove $|n|=n^{t}$ for all $n \geq 2$ by proving $|n| \leq n^{t}$ (easier) and $|n| \geq n^{t}$ (trickier).

As we have already done, write an integer $n \geq 1$ in base 2: $n=a_{0}+a_{1} \cdot 2+\cdots+a_{d} 2^{d}$ with a_{i} equal to 0 or 1 and $a_{d}=1$, so $2^{d} \leq n<2^{d+1}$. An upper bound on n follows easily from the triangle inequality:

$$
|n| \leq\left|a_{0}\right|+\left|a_{1}\right||2|+\cdots+\left|a_{d}\right||2|^{d} \leq 1+|2|+\cdots+|2|^{d}=\frac{|2|^{d+1}-1}{|2|-1} .
$$

Writing $|2|$ as 2^{t},

$$
|n| \leq \frac{2^{t(d+1)}-1}{2^{t}-1}<\frac{2^{t(d+1)}}{2^{t}-1}=\frac{2^{t}}{2^{t}-1} 2^{t d} \leq \frac{2^{t}}{2^{t}-1} n^{t}
$$

It's time to use the power trick again: replacing n in this inequality by n^{k} with $k \geq 1$,

$$
|n|^{k}<\frac{2^{t}}{2^{t}-1} n^{k t}
$$

Taking k th roots of both sides implies

$$
|n| \leq \sqrt[k]{\frac{2^{t}}{2^{t}-1}} n^{t}
$$

Letting $k \rightarrow \infty$ (keeping n fixed), we get

$$
\begin{equation*}
|n| \leq n^{t} \tag{4}
\end{equation*}
$$

for all $n \in \mathbf{Z}^{+}$(it is obvious at $n=1$).
To prove the reverse inequality $|n| \geq n^{t}$ for $n \geq 2$, once again write n in base $2: n=$ $a_{0}+a_{1} \cdot 2+\cdots+a_{d} 2^{d}$ with $a_{i}=0$ or 1 and $a_{d}=1$, so $2^{d} \leq n<2^{d+1}$. Once again we use the triangle inequality, but in a less obvious way:

$$
\left|2^{d+1}\right|=\left|2^{d+1}-n+n\right| \leq\left|2^{d+1}-n\right|+|n| .
$$

On the left side, $\left|2^{d+1}\right|=|2|^{d+1}=2^{t(d+1)}$. On the right side, since $2^{d+1}-n$ is a positive integer we get $\left|2^{d+1}-n\right| \leq\left(2^{d+1}-n\right)^{t}$ by (4), so

$$
2^{t(d+1)} \leq\left(2^{d+1}-n\right)^{t}+|n| .
$$

From this we obtain a lower bound on $|n|$:

$$
|n| \geq 2^{t(d+1)}-\left(2^{d+1}-n\right)^{t} .
$$

To decrease this lower bound we can increase $2^{d+1}-n$: since n is between 2^{d} and 2^{d+1}, we have $2^{d+1}-n \leq 2^{d+1}-2^{d}=2^{d}$, so

$$
|n| \geq 2^{t(d+1)}-2^{t d}=\left(2^{t}-1\right) 2^{t d} \leq\left(2^{t}-1\right) n^{t} .
$$

One more time we will use the power trick: replace n by n^{k} and take k th roots to get

$$
|n| \geq \sqrt[k]{2^{t}-1} n^{t}
$$

Letting $k \rightarrow \infty$, we get $|n| \geq n^{t}$. Since we already showed $|n| \leq n^{t}$, we have shown $|n|=n^{t}$ for all $n \in \mathbf{Z}^{+}$.

References

[1] A. Ostrowski, Über einige Lösungen der Funktionalgleichung, Acta Arith. 41 (1916), 271-284.

