OSTROWSKI’S THEOREM FOR \(\mathbb{Q} \)

KEITH CONRAD

1. Introduction

Hensel created the \(p \)-adic numbers towards the end of the 19th century, and it wasn’t until about 20 years later that Ostrowski [1] proved a fundamental theorem that explained in retrospect why Hensel’s idea was natural: every nontrivial absolute value on \(\mathbb{Q} \) is a power of the ordinary (archimedean) absolute value or a power of a \(p \)-adic absolute value for some prime number \(p \), so every completion of \(\mathbb{Q} \) with respect to a nontrivial absolute value is either \(\mathbb{R} \) or some \(\mathbb{Q}_p \).

Theorem 1 (Ostrowski, 1916). If \(|\cdot| \) is a nontrivial absolute value on \(\mathbb{Q} \) then there is \(t > 0 \) such that either \(|\cdot| = |\cdot|_\infty \) or \(|\cdot| = |\cdot|_p \) for a prime \(p \).

Proof. An absolute value on \(\mathbb{Q} \) is determined by its values on the positive integers, so it suffices to show there is a \(t > 0 \) such that \(|n| = n^t \) for all \(n \) in \(\mathbb{Z}^+ \) or \(|n| = |n|_p^t \) for some prime \(p \) and all \(n \) in \(\mathbb{Z}^+ \).

Since \(|\cdot| \) is nontrivial, \(|n| \neq 1 \) for some positive integer \(n \). We consider two cases: \(|n| > 1 \) for some \(n \geq 2 \) or \(|n| \leq 1 \) for all \(n \geq 2 \). We will show in the first case that \(|\cdot| \) is a power of the ordinary absolute value on \(\mathbb{Q} \) and in the second case that \(|\cdot| \) is a power of some \(p \)-adic absolute value.

Case 1: \(|n| > 1 \) for some \(n \geq 2 \).

First we prove that \(|n| > 1 \) for all \(n \geq 2 \) by proving the contrapositive: if \(|n_0| \leq 1 \) for some \(n_0 \geq 2 \) then \(|n| \leq 1 \) for all \(n \geq 2 \). Write \(n \) in base \(n_0 \):

\[
n = a_0 + a_1 n_0 + \cdots + a_d n_0^d
\]

where \(0 \leq a_i \leq n_0 - 1 \) and \(a_d \neq 0 \), so \(n_0^d \leq n < n_0^{d+1} \). We have \(|a_i| \leq |1 + 1 + \cdots + 1| \leq |1| + |1| + \cdots + |1| = a_i < n_0 \), so

\[
|n| \leq |a_0| + |a_1||n_0| + \cdots + |a_d||n_0|^d < n_0 + n_0|n_0| + \cdots + n_0|n_0|^d.
\]

From \(|n_0| \leq 1 \), (1) implies \(|n| \leq n_0(d + 1) \leq n_0(\log_{n_0}(n) + 1) \). Replace \(n \) by \(n^k \) in this inequality to get \(|n|^k \leq n_0(k \log_{n_0}(n) + 1) \), so

\[
|n| \leq \sqrt[k]{n_0(k \log_{n_0}(n) + 1)}.
\]

We have \(\log_{n_0}(n) > 0 \) since \(n_0 > 1 \) and \(n > 1 \), so letting \(k \to \infty \) in (2) shows us that \(|n| \leq 1 \), and \(n \) was arbitrary.

The replacement of \(n \) with \(n^k \) is an idea we will use again. Let’s call it the “power trick.”

For any integers \(m \) and \(n \) that are greater than \(2 \), \(|m| > 1 \) and \(|n| > 1 \). Picking \(d \geq 0 \) so that \(m^d \leq n < m^{d+1} \), writing \(n \) in base \(m \) implies (in the same way that we proved (1) above)

\[
|n| \leq m(1 + |m| + \cdots + |m|^d).
\]
Since $|m| > 1$, summing up the finite geometric series on the right gives us
\[
|n| \leq m(1 + |m| + \cdots + |m|^d) = m \frac{|m|^{d+1} - 1}{|m| - 1} < m \frac{|m|^{d+1}}{|m| - 1} = \frac{m|m|}{|m| - 1}|m|^d.
\]
Since $d \leq \log_m(n)$,
\[
|n| < \frac{m|m|}{|m| - 1}|m|^\log_m(n).
\]
Now it’s time for the power trick. Replacing n with n^k,
\[
|n|^k < \frac{m|m|}{|m| - 1}|m|^{k\log_m(n)}.
\]
Taking kth roots,
\[
|n| < \sqrt[k]{\frac{m|m|}{|m| - 1}} |m|^\log_m(n),
\]
and letting $k \to \infty$,
\[
|n| \leq |m|^\log_m(n).
\]
Writing $|m| = m^s$ and $|n| = n^t$ where $s > 0$ and $t > 0$, we get from (3) that $n^t \leq m^{s \log_m(n)} = n^s$, so $t \leq s$. The roles of m and n in this calculation are symmetric, so by switching their roles we get $s \leq t$ and thus $|m| = m^t$ and $|n| = n^t$.

Case 2: $|n| \leq 1$ for all $n \geq 2$.

For some $n \geq 2$ we have $|n| \neq 1$, so $0 < |n| < 1$. Let p be the smallest such positive integer. Since $0 < |p| < 1$ and also $0 < 1/p < 1$, we can write $|p| = (1/p)^t$ for some $t > 0$. We will prove $|n| = |n|_p^t$ for all $n \geq 1$.

The number p is prime, by contradiction: if $p = ab$ where a and b are positive integers that are both smaller than p then $|a| = 1$ and $|b| = 1$, so $|p| = |a||b| = 1$, which is false.

Next we show each positive integer m not divisible by p has $|m| = 1$. If $|m| \neq 1$ then $|m| < 1$. We are going to use the power trick again: let’s look at p^k and m^k. Since $|p|$ and $|m|$ are both between 0 and 1, for a large k we have $|p|^k < 1/2$ and $|m|^k < 1/2$. Since p^k and m^k are relatively prime, there are x_k and $y_k \in \mathbb{Z}$ such that $1 = p^k x_k + m^k y_k$. Take the absolute value of both sides:
\[
1 = |p^k x_k + m^k y_k| \leq |p^k||x_k| + |m^k||y_k| \leq |p|^k + |m|^k < \frac{1}{2} + \frac{1}{2} = 1,
\]
which is a contradiction.

For all integers $n \geq 2$ pull out the largest power of p: $n = p^e n'$ where $e \geq 0$ and n' is not divisible by p. Then $|n'| = 1$, so $|n| = |p^e n'| = |p|^e |n'| = |p|^e (1/p)^{n'}$. Also $|n|_p = (1/p)^e$, so $|n| = |n|_p^e$. \(\square \)

Here is a second proof that an absolute value $| \cdot |$ on \mathbb{Q} such that $|n| > 1$ for some positive integer $n \geq 2$ must be a power of the ordinary absolute value on \mathbb{Q}.

First we show $|2| > 1$ by an argument very close to that used already in Case 1, but we repeat it here to keep our argument self-contained. Assuming $|2| \leq 1$ we will get a contradiction.
Write each integer \(n \geq 2 \) in base 2: \(n = a_0 + a_1 \cdot 2 + \cdots + a_d 2^d \) where \(a_i \) is 0 or 1 and \(a_d = 1 \), so \(2^d \leq n < 2^{d+1} \). Thus \(|a_i| \) is 0 or 1, so by the triangle inequality
\[
|n| \leq \sum_{i=0}^{d} |a_i|2^i \leq \sum_{i=0}^{d} 1 = d + 1 \leq \log_2(n) + 1 \leq 2 \log_2(n).
\]
This holds for all \(n \geq 2 \), so if we replace \(n \) throughout with \(n^k \) for \(k \geq 1 \) then
\[
|n^k| \leq 2 \log_2(n^k) = 2k \log_2(n),
\]
so
\[
|n|^k \leq 2k \log_2(n).
\]
Taking \(k \)th roots of both sides,
\[
|n| \leq \sqrt[k]{2k \log_2(n)}.
\]
Letting \(k \to \infty \), this inequality becomes \(|n| \leq 1 \). We have proved this for all \(n \geq 2 \), but that contradicts the assumption \(|n| > 1 \) for some \(n \geq 2 \), so in fact we must have \(|2| > 1 \).

Since \(|2| \) and 2 are both greater than 1, we can write \(|2| = 2^t \) for some \(t > 0 \). We will prove \(|n| = n^t \) for all \(n \geq 2 \) by proving \(|n| \leq n^t \) (easier) and \(|n| \geq n^t \) (trickier).

As we have already done, write an integer \(n \geq 1 \) in base 2: \(n = a_0 + a_1 \cdot 2 + \cdots + a_d 2^d \) with \(a_i \) equal to 0 or 1 and \(a_d = 1 \), so \(2^d \leq n < 2^{d+1} \). An upper bound on \(n \) follows easily from the triangle inequality:
\[
|n| \leq |a_0| + |a_1|2 + \cdots + |a_d|2^d \leq 1 + |2| + \cdots + |2|^d = \frac{|2|^{d+1} - 1}{|2| - 1}.
\]
Writing \(|2| \) as \(2^t \),
\[
|n| \leq \frac{2^{t(d+1)} - 1}{2^t - 1} \leq \frac{2^{t(d+1)} - 1}{2^t - 1} = \frac{2^t}{2^t - 1} 2^{td} \leq \frac{2^t}{2^t - 1} n^t.
\]
It’s time to use the power trick again: replacing \(n \) in this inequality by \(n^k \) with \(k \geq 1 \),
\[
|n|^k \leq \frac{2^t}{2^t - 1} n^{kt}.
\]
Taking \(k \)th roots of both sides implies
\[
|n| \leq \sqrt[k]{\frac{2^t}{2^t - 1} n^t}.
\]
Letting \(k \to \infty \) (keeping \(n \) fixed), we get
\[
(4) \quad |n| \leq n^t
\]
for all \(n \in \mathbb{Z}^+ \) (it is obvious at \(n = 1 \)).

To prove the reverse inequality \(|n| \geq n^t \) for \(n \geq 2 \), once again write \(n \) in base 2: \(n = a_0 + a_1 \cdot 2 + \cdots + a_d 2^d \) with \(a_i = 0 \) or 1 and \(a_d = 1 \), so \(2^d \leq n < 2^{d+1} \). Once again we use the triangle inequality, but in a less obvious way:
\[
|2^{d+1}| = |2^{d+1} - n + n| \leq |2^{d+1} - n| + |n|.
\]
On the left side, \(|2^{d+1}| = |2|^{d+1} = 2^{t(d+1)} \). On the right side, since \(2^{d+1} - n \) is a positive integer we get \(|2^{d+1} - n| \leq (2^{d+1} - n)^t \) by (4), so
\[
2^{t(d+1)} \leq (2^{d+1} - n)^t + |n|.
\]
From this we obtain a lower bound on $|n|$

$$|n| \geq 2^{td+1} - (2^{d+1} - n)t.$$

To decrease this lower bound we can increase $2^{d+1} - n$: since n is between 2^d and 2^{d+1}, we have $2^{d+1} - n \leq 2^{d+1} - 2^d = 2^d$, so

$$|n| \geq 2^{td+1} - 2^td = (2^t - 1)2^td \leq (2^t - 1)n^t.$$

One more time we will use the power trick: replace n by n^k and take kth roots to get

$$|n| \geq \sqrt[k]{2^t - 1} n^t.$$

Letting $k \to \infty$, we get $|n| \geq n^t$. Since we already showed $|n| \leq n^t$, we have shown $|n| = n^t$ for all $n \in \mathbb{Z}^+$.

References