OSTROWSKI'S THEOREM FOR Q

KEITH CONRAD

1. INTRODUCTION

Hensel created the *p*-adic numbers towards the end of the 19th century, and it wasn't until about 20 years later that Ostrowski [1] proved a fundamental theorem that explained in retrospect why Hensel's idea was natural: every nontrivial absolute value on \mathbf{Q} is a power of the ordinary (archimedean) absolute value or a power of a *p*-adic absolute value for some prime number *p*, so every completion of \mathbf{Q} with respect to a nontrivial absolute value is either \mathbf{R} or some \mathbf{Q}_p .

Theorem 1 (Ostrowski, 1916). If $|\cdot|$ is a nontrivial absolute value on \mathbf{Q} then there is t > 0 such that either $|\cdot| = |\cdot|_{\infty}^{t}$ or $|\cdot| = |\cdot|_{p}^{t}$ for a prime p.

Proof. An absolute value on **Q** is determined by its values on the positive integers, so it suffices to show there is a t > 0 such that $|n| = n^t$ for all n in \mathbf{Z}^+ or $|n| = |n|_p^t$ for some prime p and all n in \mathbf{Z}^+ .

Since $|\cdot|$ is nontrivial, $|n| \neq 1$ for some positive integer n. We consider two cases: |n| > 1 for some $n \geq 2$ or $|n| \leq 1$ for all $n \geq 2$. We will show in the first case that $|\cdot|$ is a power of the ordinary absolute value on \mathbf{Q} and in the second case that $|\cdot|$ is a power of some p-adic absolute value.

<u>Case 1</u>: |n| > 1 for some $n \ge 2$.

First we prove that |n| > 1 for all $n \ge 2$ by proving the contrapositive: if $|n_0| \le 1$ for some $n_0 \ge 2$ then $|n| \le 1$ for all $n \ge 2$. Write n in base n_0 :

$$n = a_0 + a_1 n_0 + \dots + a_d n_0^d$$

where $0 \le a_i \le n_0 - 1$ and $a_d \ne 0$, so $n_0^d \le n < n_0^{d+1}$. We have $|a_i| \le |1 + 1 + \dots + 1| \le |1| + |1| + \dots + |1| = a_i < n_0$, so

(1)
$$|n| \le |a_0| + |a_1||n_0| + \dots + |a_d||n_0|^d < n_0 + n_0|n_0| + \dots + n_0|n_0|^d.$$

From $|n_0| \leq 1$, (1) implies $|n| \leq n_0(d+1) \leq n_0(\log_{n_0}(n)+1)$. Replace *n* by n^k in this inequality to get $|n|^k \leq n_0(k \log_{n_0}(n)+1)$, so

(2)
$$|n| \le \sqrt[k]{n_0(k \log_{n_0}(n) + 1)}.$$

We have $\log_{n_0}(n) > 0$ since $n_0 > 1$ and n > 1, so letting $k \to \infty$ in (2) shows us that $|n| \leq 1$, and n was arbitrary.

The replacement of n with n^k is an idea we will use again. Let's call it the "power trick." For any integers m and n that are greater than 2, |m| > 1 and |n| > 1. Picking $d \ge 0$ so that $m^d \le n < m^{d+1}$, writing n in base m implies (in the same way that we proved (1) above)

$$|n| \le m(1+|m|+\dots+|m|^d).$$

Since |m| > 1, summing up the finite geometric series on the right gives us

$$|n| \le m(1+|m|+\dots+|m|^d) = m\frac{|m|^{d+1}-1}{|m|-1} < m\frac{|m|^{d+1}}{|m|-1} = \frac{m|m|}{|m|-1}|m|^d.$$

Since $d \leq \log_m(n)$,

$$|n| < \frac{m|m|}{|m|-1} |m|^{\log_m(n)}.$$

Now it's time for the power trick. Replacing n with n^k ,

$$|n|^k < \frac{m|m|}{|m|-1} |m|^{k \log_m(n)}.$$

Taking kth roots,

$$|n| < \sqrt[k]{\frac{m|m|}{|m|-1}} |m|^{\log_m(n)},$$

and letting $k \to \infty$,

$$(3) |n| \le |m|^{\log_m(n)}.$$

Writing $|m| = m^s$ and $|n| = n^t$ where s > 0 and t > 0, we get from (3) that $n^t \le m^{s \log_m(n)} = n^s$, so $t \le s$. The roles of m and n in this calculation are symmetric, so by switching their roles we get $s \le t$ and thus $|m| = m^t$ and $|n| = n^t$.

<u>Case 2</u>: $|n| \le 1$ for all $n \ge 2$.

For some $n \ge 2$ we have $|n| \ne 1$, so 0 < |n| < 1. Let p be the smallest such positive integer. Since 0 < |p| < 1 and also 0 < 1/p < 1, we can write $|p| = (1/p)^t$ for some t > 0. We will prove $|n| = |n|_p^t$ for all $n \ge 1$.

The number p is prime, by contradiction: if p = ab where a and b are positive integers that are both smaller than p then |a| = 1 and |b| = 1, so |p| = |a||b| = 1, which is false.

Next we show each positive integer m not divisible by p has |m| = 1. If $|m| \neq 1$ then |m| < 1. We are going to use the power trick again: let's look at p^k and m^k . Since |p| and |m| are both between 0 and 1, for a large k we have $|p|^k < 1/2$ and $|n|^k < 1/2$. Since p^k and m^k are relatively prime, there are x_k and $y_k \in \mathbb{Z}$ such that $1 = p^k x_k + m^k y_k$. Take the absolute value of both sides:

$$1 = |p^{k}x_{k} + m^{k}y_{k}| \le |p^{k}||x_{k}| + |m^{k}||y_{k}| \le |p|^{k} + |m|^{k} < \frac{1}{2} + \frac{1}{2} = 1,$$

which is a contradiction.

For all integers $n \ge 2$ pull out the largest power of p: $n = p^e n'$ where $e \ge 0$ and n' is not divisible by p. Then |n'| = 1, so $|n| = |p^e n'| = |p|^e |n'| = |p|^e = (1/p)^{et}$. Also $|n|_p = (1/p)^e$, so $|n| = |n|_p^t$.

Here is a second proof that an absolute value $|\cdot|$ on **Q** such that |n| > 1 for some positive integer $n \ge 2$ must be a power of the ordinary absolute value on **Q**.

First we show |2| > 1 by an argument very close to that used already in Case 1, but we repeat it here to keep our argument self-contained. Assuming $|2| \le 1$ we will get a contradiction.

Write each integer $n \ge 2$ in base 2: $n = a_0 + a_1 \cdot 2 + \cdots + a_d 2^d$ where a_i is 0 or 1 and $a_d = 1$, so $2^d \le n < 2^{d+1}$. Thus $|a_i|$ is 0 or 1, so by the triangle inequality

$$|n| \le \sum_{i=0}^{d} |a_i| |2|^i \le \sum_{i=0}^{d} 1 = d+1 \le \log_2(n) + 1 \le 2\log_2(n)$$

This holds for all $n \ge 2$, so if we replace n throughout with n^k for $k \ge 1$ then

$$|n^{k}| \le 2\log_{2}(n^{k}) = 2k\log_{2}(n),$$

 \mathbf{SO}

$$|n|^k \le 2k \log_2(n).$$

Taking kth roots of both sides,

$$|n| \le \sqrt[k]{2k \log_2(n)}.$$

Letting $k \to \infty$, this inequality becomes $|n| \le 1$. We have proved this for all $n \ge 2$, but that contradicts the assumption |n| > 1 for some $n \ge 2$, so in fact we must have |2| > 1.

Since |2| and 2 are both greater than 1, we can write $|2| = 2^t$ for some t > 0. We will prove $|n| = n^t$ for all $n \ge 2$ by proving $|n| \le n^t$ (easier) and $|n| \ge n^t$ (trickier).

As we have already done, write an integer $n \ge 1$ in base 2: $n = a_0 + a_1 \cdot 2 + \cdots + a_d 2^d$ with a_i equal to 0 or 1 and $a_d = 1$, so $2^d \le n < 2^{d+1}$. An upper bound on n follows easily from the triangle inequality:

$$|n| \le |a_0| + |a_1||2| + \dots + |a_d||2|^d \le 1 + |2| + \dots + |2|^d = \frac{|2|^{d+1} - 1}{|2| - 1}.$$

Writing |2| as 2^t ,

$$|n| \le \frac{2^{t(d+1)} - 1}{2^t - 1} < \frac{2^{t(d+1)}}{2^t - 1} = \frac{2^t}{2^t - 1} 2^{td} \le \frac{2^t}{2^t - 1} n^t$$

It's time to use the power trick again: replacing n in this inequality by n^k with $k \ge 1$,

$$|n|^k < \frac{2^t}{2^t - 1} n^{kt}.$$

Taking kth roots of both sides implies

$$|n| \le \sqrt[k]{\frac{2^t}{2^t - 1}} n^t.$$

Letting $k \to \infty$ (keeping *n* fixed), we get

$$(4) |n| \le n^t$$

for all $n \in \mathbf{Z}^+$ (it is obvious at n = 1).

To prove the reverse inequality $|n| \ge n^t$ for $n \ge 2$, once again write n in base 2: $n = a_0 + a_1 \cdot 2 + \cdots + a_d 2^d$ with $a_i = 0$ or 1 and $a_d = 1$, so $2^d \le n < 2^{d+1}$. Once again we use the triangle inequality, but in a less obvious way:

$$|2^{d+1}| = |2^{d+1} - n + n| \le |2^{d+1} - n| + |n|$$

On the left side, $|2^{d+1}| = |2|^{d+1} = 2^{t(d+1)}$. On the right side, since $2^{d+1} - n$ is a positive integer we get $|2^{d+1} - n| \le (2^{d+1} - n)^t$ by (4), so

$$2^{t(d+1)} \le (2^{d+1} - n)^t + |n|.$$

KEITH CONRAD

From this we obtain a *lower bound* on |n|:

$$|n| \ge 2^{t(d+1)} - (2^{d+1} - n)^t$$

To decrease this lower bound we can increase $2^{d+1} - n$: since n is between 2^d and 2^{d+1} , we have $2^{d+1} - n \le 2^{d+1} - 2^d = 2^d$, so

$$|n| \ge 2^{t(d+1)} - 2^{td} = (2^t - 1)2^{td} \le (2^t - 1)n^t$$

One more time we will use the power trick: replace n by n^k and take kth roots to get

$$|n| \ge \sqrt[k]{2^t - 1} n^t$$

Letting $k \to \infty$, we get $|n| \ge n^t$. Since we already showed $|n| \le n^t$, we have shown $|n| = n^t$ for all $n \in \mathbb{Z}^+$.

References

[1] A. Ostrowski, Über einige Lösungen der Funktionalgleichung, Acta Arith. 41 (1916), 271–284.