
OSTROWSKI’S THEOREM FOR Q(i)

KEITH CONRAD

We will extend Ostrowki’s theorem from Q to the quadratic field Q(i). On Q, every non-
archimedean absolute value is equivalent to the p-adic absolute value for a unique prime
number p, and the archimedean absolute values are all equivalent to the usual absolute
value on Q. We will see a similar thing happens in Q(i): any non-archimedean absolute
value is associated to a prime in Z[i] (unique up to unit multiple) and any archimedean

absolute value is equivalent to the complex absolute value |a+ bi|∞ =
√
a2 + b2.

First we need some background about Z[i]. For α = a+bi in Z[i] (a, b ∈ Z), set the norm
of α to be

N(α) = a2 + b2,

which is a nonnegative integer. This norm is multiplicative (N(αβ) = N(α)N(β)) and it
gives a measure of the size of elements. For an integer a ∈ Z, its norm is its square:
N(a) = a2. In particular, N(1) = 1.

Theorem 1. The units in Z[i] are 1,−1, i, and −i, namely the elements of norm 1.

Proof. Since 1 · 1 = 1, (−1)(−1) = 1, and i(−i) = 1, these four elements are all units in
Z[i]. Conversely, if u is a unit in Z[i] then uv = 1 for some v in Z[i]. Taking the norm of
both sides, N(u)N(v) = 1. This last equation is in the positive integers, so N(u) and N(v)
both must be 1. Writing u = a + bi, we have a2 + b2 = 1. The only solutions to this in
integers are (a, b) = (±1, 0) and (0,±1), which yield the four numbers 1,−1, i, and −i. �

Like Z, there is a division theorem in Z[i]. To measure the size of a remainder under
division, we use the norm:

Theorem 2. For any α and β in Z[i] with β 6= 0, there are γ and ρ in Z[i] such that

α = βγ + ρ, N(ρ) ≤ 1

2
N(β) < N(β).

Proof. The norm on Z[i] is closely related to the absolute value on C: N(a+bi) = |a+bi|2∞.
The absolute value on C is our way of measuring distances in C, and we will take advantage
of this.

In C, the furthest a complex number can be from an element of Z[i] is 1/
√

2, since the
center points of 1× 1 squares with vertices in Z[i] are at distance 1/

√
2 from the vertices.

Now consider the ratio α/β as a complex number and place it in a 1 × 1 square having
vertices in Z[i]. Let γ ∈ Z[i] be the vertex of that square which is nearest to α/β, so
|α/β − γ|∞ ≤ 1/

√
2. Multiplying through by |β|∞, |α − βγ|∞ ≤ (1/

√
2)|β|∞. Squaring

both sides and recalling that the squared complex absolute value on Z[i] is the norm, we
obtain

N(α− βγ) ≤ 1

2
N(β).

Now set ρ = α− βγ. �
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Remark 3. Unlike in Z, the quotient and remainder in Z[i] are not unique. For example,
take α = 37 + 2i and β = 11 + 2i. You can check that

α = β · 3 + (4− 4i), α = β(3− i) + (2 + 7i).

Here both remainders have norm less than N(β) = 125 (in fact, less than 125/2). Our
proof of Theorem 2 explains geometrically why the quotient and remainder in Z[i] are not
unique: α/β is closer to two vertices in the 1× 1 square containing it than the length of a
(half-)diagonal of the square.

This lack of uniqueness in the quotient and remainder is not a big deal, since the the main
consequences of the division theorem, such as Euclid’s algorithm and unique factorization,
don’t actually use the uniqueness. The main thing is just having the remainder smaller (by
some measure) than the divisor, and that’s what Theorem 2 gives us.

Corollary 4. The ring Z[i] has unique factorization, and in fact is a principal ideal domain.

Proof. Any domain having a division theorem is a PID and a UFD, by the same proof as
in Z. �

Now that we have unique factorization, we are ready to introduce the analogue of p-adic
valuations for Q(i). This will use primes in Z[i]. Here are some examples of primes:

1 + i, 3, 1 + 2i, 1− 2i, 7, 11, 2 + 3i, 2− 3i.

Notice 2 and 5 are not here, because they are not prime in Z[i]: 2 = (1 + i)(1 − i) and
5 = (1 + 2i)(1− 2i).

For any prime π in Z[i], we can define a π-adic valuation in the same way as the p-adic
valuation on Q: for nonzero x ∈ Q(i), write x as a ratio of elements in Z[i] and pull out
the largest power of π from the numerator and denominator:

x = πn
α

β

where α, β ∈ Z[i] and π does not divide α or β. Then we set

ordπ(x) = n

and call n the π-adic valuation of x. At x = 0, we set ordπ(0) =∞.

Example 5. Let α = 19 + 83i. What are ord1+i(α), ord3(α), and ord1+2i(α)? We divide
α by 1 + i, 3, and 2 + 3i until we can go no further, and see how many times we are able
to divide.

Since α/(1+i) = (19+83i)/(1+i) = 51+32i and (51+32i)/(1+i) = 83/2−19/2i 6∈ Z[i],
the largest power of 1 + i in α is the first power: α = (1 + i)(51 + 32i) and 1 + i doesn’t
divide 51 + 32i. Therefore ord1+i(α) = 1.

Since α/3 6∈ Z[i], 3 doesn’t divide α at all, so ord3(α) = 0.
If we divide α by 1 + 2i, this can be done three times and we find α = (1 + 2i)3(−3− 7i),

where 1 + 2i doesn’t divide −3− 7i (their ratio is not in Z[i]). Therefore ord1+2i(α) = 3.

As with the p-adic valuation ordp on Q, you can check using unique factorization in Z[i]
that for any prime π in Z[i] and x and y in Q(i)

(1) ordπ(xy) = ordπ(x) + ordπ(y) and ordπ(x+ y) ≥ min(ordπ(x), ordπ(y)).

To turn the π-adic valuation into an absolute value, pick c ∈ (0, 1) and set

|x|π = cordπ(x)
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for x ∈ Q(i). In particular, |0|π = 0. The algebraic properties of ordπ in (1) show | · |π is
an absolute value on Q(i) and is non-archimedean. Just as any p-adic absolute value on
Q is ≤ 1 on Z, any π-adic absolute value on Q(i) is ≤ 1 on Z[i], simply because ordπ is
nonnegative on Z[i].

Picking two different c1 and c2 in (0, 1) leads to two different π-adic absolute values:

|x| = c
ordπ(x)
1 and |x|′ = c

ordπ(x)
2 . However, since c1 and c2 are (positive) powers of each

other, these absolute values are equivalent (that is, they define the same topology on Q(i)).
From any prime π we get a single equivalence class of absolute values by using different
choices of c in (0, 1). (We will find out later what the best choice of c is, to get a product
formula on Q(i).)

If we replace π by a unit multiple π′ = uπ then we don’t change the valuation: ordπ(x) =
ordπ′(x) for all x. Therefore primes which differ by a unit multiple give rise to the same
absolute value on Q(i). For example, 1 − i = −i(1 + i), so 1 − i and 1 + i have the same
valuation functions. But watch out: the primes 1 + 2i and 1− 2i are not unit multiples of
each other (compute all four unit multiples of 1 + 2i and you won’t get 1− 2i) and in fact
they define different valuations. Indeed, ord1+2i(1 + 2i) = 1 and ord1−2i(1 + 2i) = 0 since
1− 2i doesn’t divide 1 + 2i (the ratio (1 + 2i)/(1− 2i) is not in Z[i]).

We are almost ready for Ostrowski’s theorem in Q(i). The proof of Ostrowski’s theorem
in Q uses base expansions to handle the archimedean case. Are there base expansions in
Z[i]? Not in the same canonical way as in Z (really, Z+). We will only need an expansion
for base 1 + i, which goes as follows.

Lemma 6. For nonzero α in Z[i], we can write

α = c0 + c1(1 + i) + c2(1 + i)2 + · · ·+ ck(1 + i)k,

where 2k ≤ N(α) < 2k+1 and cj ∈ {0,±1,±i}, with ck 6= 0.

This lemma is not saying the coefficients cj are unique for α.

Proof. We argue by induction on N(α). If N(α) = 1 then k = 0 and α is ±1 or ±i.
Now suppose N(α) ≥ 2, so k ≥ 1. Assume the theorem is true for elements with norm

less than N(α). Since we will only be using the complex absolute value in this proof, we
write it as | · | rather than as | · |∞.

From the inequalities on N(α) = |α|2, |1+i|k ≤ |α| < |1+i|k+1, so 1 ≤ |α/(1+i)k| < |1+i|.
In the annulus {z : 1 ≤ |z| < |1 + i|}, the points farthest away from any of ±1 or ±i are
±1 ± i (independent signs), at distance 1. We can’t have α/(1 + i)k = ±1 ± i, since then
|α| = |1 + i|k+1, so N(α) = 2k+1, but actually N(α) < 2k+1. Therefore α/(1 + i)k has
distance less than 1 from one of ±1 or ±i: |α/(1 + i)k − ε| < 1 where ε ∈ {±1,±i}. Hence
|α− ε(1 + i)k| < |(1 + i)k|, so

N(α− ε(1 + i)k) < N((1 + i)k) = 2k.

If α = ε(1 + i)k then we are done. Otherwise α− ε(1 + i)k is nonzero and by induction on
the norm we can write

α− ε(1 + i)k = a0 + a1(1 + i) + · · ·+ a`(1 + i)`,

where aj ∈ {0,±1,±i} and ` ≤ k − 1. Therefore

α = a0 + a1(1 + i) + · · ·+ a`(1 + i)` + ε(1 + i)k,

which has the desired form. �
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Example 7. The number 3 + 4i has norm 25, with 24 ≤ 25 < 25, so k = 4. Explicitly,
3 + 4i = 1− i(1 + i)2 − i(1 + i)4.

Example 8. We can write 3 + i = (1 + i)− i(1 + i)2 and 3 + i = −i(1 + i)− i(1 + i)3. Since
N(3 + i) = 10, k = 3 and it is the second expression for 3 + i which corresponds to Lemma
6, not the first.

Theorem 9. Let | · | be a nontrivial absolute value on Q(i). If | · | is nonarchimedean then
| · | is a π-adic absolute value for some prime π in Z[i] which is unique up to unit multiple.
If | · | is archimedean then | · | is equivalent to the usual complex absolute value.

Proof. Our treatment of the non-archimedean case will be similar to the non-archimedean
case in the proof of Ostrowski’s theorem over Q, but it will be logically self-contained.
However, when it comes to the archimedean case we will actually use Ostrowski’s theorem
over Q to know how the absolute value on Q(i) already looks on the subfield Q.

Since | · | is nontrivial on Q(i) and every element of Q(i) is a ratio of elements of Z[i], we
must have |α| 6= 1 for some nonzero α in Z[i].

First assume |α| ≤ 1 for all α in Z[i]. In particular, |n| ≤ 1 for all n ∈ Z, so | · | is
non-archimedean. Because | · | is nontrivial, |α| < 1 for some nonzero α in Z[i]. Let π be an
element of Z[i] with the least norm satisfying |π| < 1. That is, |π| < 1 and if N(α) < N(π)
with α 6= 0 then |α| = 1. We will show π is prime and that | · | is a π-adic absolute value.

First we observe π is not a unit in Z[i], since the units in Z[i] are roots of unity and roots
of unity always have absolute value 1. Therefore N(π) > 1, so if π is not prime then we can
write π = αβ where α and β are both non-units. That means α and β are not 1,−1, i, or
−i, so α and β both have norm greater than 1. Since N(π) = N(α)N(β), with both factors
on the right being greater than 1, both α and β have smaller norm than π does. Therefore
|α| = 1 and |β| = 1, by the minimality of π, but then |π| = |αβ| = 1, a contradiction. Hence
π is prime in Z[i].

Now pick any nonzero x ∈ Z[i] and pull out the largest power of π from it: x = πny,
where y ∈ Z[i] and π doesn’t divide y. So n = ordπ(x) and |x| = |π|n|y|. We will show y
has absolute value 1. Use division in Z[i] to write y = πγ + ρ where N(ρ) < N(π). As π
doesn’t divide y, ρ is nonzero. Then |ρ| = 1 because ρ is a nonzero number in Z[i] with
smaller norm than π. (Recall the way we defined π.) Therefore |πγ| ≤ |π| < 1 and |ρ| = 1,
so by the non-archimedean property |y| = |πγ + ρ| = 1. Hence

|x| = |π|n|y| = |π|n = |π|ordπ(x).
Since both sides are multiplicative in x, this equation in Z[i] extends to Q(i) by writing an

element of Q(i) as a ratio from Z[i]. Set c = |π| < 1, so | · | = cordπ(·) is a π-adic absolute
value.

If we replace π by a unit multiple π′ then we don’t change the valuation function: ordπ =
ordπ′ , so | · | is also a π′-adic absolute value. To show | · | can only be a π′-adic absolute
value when π′ is a unit multiple of π, let π′ be a prime in Z[i] which is not a unit multiple
of π. Then π′ is not divisible by π, so from our work above we have |π′| = 1. This is not
how π′-adic absolute values behave, so | · | is not π′-adic.

Now assume |α| > 1 for some α ∈ Z[i]. Then | · | has values > 1 on Z, as otherwise | · | is
nonarchimedean and then |a + bi| ≤ 1 for any a + bi ∈ Z[i]. From Ostrowski’s theorem in
Q, there is t > 0 such that |n| = nt for all n ∈ Z+. In particular, since 2 = −i(1 + i)2 we

have |1 + i|2 = |2| = 2t, so |1 + i| = 2t/2 > 1. We’ll write elements of Z[i] in base 1 + i, in
accordance with Lemma 6.
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Pick nonzero α ∈ Z[i] and set 2k ≤ N(α) < 2k+1, where k ≥ 0. Since N(α) = |α|2∞,

2k/2 ≤ |α|∞ < 2(k+1)/2. Writing α as in Lemma 6,

|α| ≤ 1 + |1 + i|+ · · ·+ |1 + i|k

=
|1 + i|k+1 − 1

|1 + i| − 1

<
|1 + i|
|1 + i| − 1

|1 + i|k

=
|1 + i|
|1 + i| − 1

2tk/2

≤ |1 + i|
|1 + i| − 1

|α|t∞.

So |α| < C|α|t∞ for all nonzero α in Z[i], where C = |1 + i|/(|1 + i| − 1). By the power trick
(replacing α with αN , taking Nth roots, and letting N → ∞), we get |α| ≤ |α|t∞ for all α
in Z[i].

At this point in the proof of Ostrowski’s theorem in Q, the reverse inequality is obtained
by returning to the base expansions again. Instead, we will use the inequality already
obtained in order to show |α| = |α| for all α in Z[i] and wrap up the proof from that.

If there is an α such that |α| 6= |α|, then replacing α by α if necessary we may suppose
|α| < |α|. Then multiplying both sides by |α|, |αα| < |α|2 ≤ |α|2t∞. Also, |αα| = |N(α)| =
N(α)t = |α|2t∞, so |α|2t∞ < |α|2t∞. This is absurd.

Now that we have |α| = |α| for all α ∈ Z[i],

|α|2 = |αα| = |N(α)| = N(α)t = |α|2t∞,
so |α| = |α|t∞ for all α in Z[i]. Taking ratios shows this same equation holds for all α in
Q(i) and we’re done. �

Having found all the nontrivial absolute values are on Q(i), we can establish a product
formula on Q(i). As with the product formula on Q, a product formula requires a compatible
choice of constants for the different non-archimedean absolute values. On Q, the constants
are 1/p for different primes p. We will use the same idea on Q(i) with norms of primes.

For a prime π in Z[i] and x in Q(i), set

|x|π =

(
1

N(π)

)ordπ(x)

.

Example 10. By Example 5,

|19 + 83i|1+i =
1

2
, |19 + 83i|3 = 1, |19 + 83i|1+2i =

1

125
.

Also set |x|1 = |x|2∞. That is, |a + bi|1 = |a + bi|2∞ = a2 + b2 is the square of the usual
absolute value on C. While | · |1 is multiplicative, it is not an absolute value since it fails the
triangle inequality. But we do have |x+ y|1 ≤ 2(|x|1 + |y|1), so we can use | · |1 in place of
| · |∞ to talk about convergence and nothing is really lost. We need | · |1 (a squared absolute
value) to get the product formula to work out. Here it is:

Theorem 11. For any nonzero x ∈ Q(i),∏
v

|x|v = 1,
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where the product runs over the absolute values on Q(i), one from each equivalence class
chosen according to the above conventions, in particular using the squared absolute value in
the archimedean case.

Proof. For any nonzero x, |x|v = 1 for all but finitely many of the absolute values since the
numerator and denominator of x are divisible by only finitely many primes in Z[i]. The
product

∏
v |x|v is multiplicative in x, so to check this is always 1 it suffices to check it on

nonzero elements of Z[i]. Since units and primes generate Z[i] multiplicatively, it suffices
to check the product formula on units and primes.

The units in Z[i] are ±1 and ±i, which are roots of unity, so the product formula is
obvious on units because any absolute value of a root of unity is 1.

Taking x = π to be a prime in Z[i], the left side of the product formula has only two
terms which are not automatically 1, namely |π|1 and |π|π. Therefore∏

v

|π|v = |π|1|π|π = |π|2∞
1

N(π)
,

which is 1 since |a+ bi|2∞ = a2 + b2 = N(a+ bi) for a, b ∈ Z. �


