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1. Introduction

The ring of integers of any algebraic number field is free as a Z-module. More precisely,
if [K : Q] = n, then there are ω1, . . . , ωn such that

OK = Zω1 ⊕ · · · ⊕ Zωn.

We call ω1, . . . , ωn an integral basis for K/Q.
The existence of an integral basis is proved by showing OK both contains a free rank-n

Z-module and (via discriminants) is contained in a free rank-n Z-module as well. Therefore
OK is also a free rank-n Z-module by the theory of modules over a PID. (Any module over
a PID which is stuck between two finite free modules of the same rank is also finite free of
that rank.)

Let’s consider any finite extension of number fields E/F , where F may not be Q. How
does OE look as an OF -module? Since OE is finitely generated as a Z-module so it is
certainly also finitely generated as an OF -module:

(1.1) OE = OFx1 + · · ·+ OFxr

for some x1, . . . , xr ∈ OE . Can we make this a direct sum? If OF is a PID, then this
is possible, by the same proof as over Z. (Use traces from E to F instead of from K to
Q.) However, if OF is not a PID, then OE need not be a free OF -module. We will give a
family of examples in Theorem 2.2 below. It is inspired by the particular example in [1].
The argument used in [1] involves unique factorization of ideals into prime ideals, but we
avoid this. (We will use ideal factorization to study the situation further, once examples
are established.)

2. The Example

Lemma 2.1. Let E/F be an extension of number fields. If OE is a free OF -module, then
OE has rank [E : F ] over OF .

Proof. If OE is a free OF -module then we can choose the xi’s in (1.1) to make that sum a
direct sum. Then r, in (1.1), is the rank of OE as an OF -module. Since OF has rank [F : Q]
as a Z-module, OE has rank r[F : Q] as a Z-module. We already know OE has rank [E : Q]
as a Z-module, so r[F : Q] = [E : Q]. Thus r = [E : F ]. �

Here is the example.

Theorem 2.2. Let d ≥ 2 be a squarefree positive integer and q be a prime not dividing d.
Assume q ≡ 3 mod 4. Let F = Q(

√
−dq) and E = F (

√
−q) = Q(

√
−dq,

√
−q). Then OE

is not free as an OF -module.
1
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Proof. If OE is a free OF -module, then its rank is [E : F ] = 2 by Lemma 2.1.
We are less familiar with E/F = F (

√
−q)/F than we are with Q(

√
−q)/Q. In particular,

since q ≡ 3 mod 4 we have −q ≡ 1 mod 4, so Q(
√
−q)/Q has integral basis {1, (1+

√
−q)/2}.

Could this also be an integral basis for E/F?
Step 1: If OE is a free OF -module, then {1, (1 +

√
−q)/2} is an OF -basis of OE .

Suppose OE = OF e1⊕OF e2 for some e1 and e2 in OE . Both {1, (1+
√
−q)/2} and {e1, e2}

are F -bases of E. Since {e1, e2} is a basis of OE over OF we have

1 = α1e1 + α2e2,

1 +
√
−q

2
= β1e1 + β2e2,

where the αi’s and βi’s are in OF . We will show the matrix (
α1 α2
β1 β2 ) has determinant in O×F ,

so {1, (1 +
√
−q)/2} is an OF -basis of OE because {e1, e2} is one and the matrix passing

the latter pair to the former is in GL2(OF ).
The extension E/F is Galois, with non-trivial automorphism σ determined by σ(

√
−q) =

−
√
−q. Since σ fixes elements of F , applying σ to the above equations yields

1 = α1σ(e1) + α2σ(e2),

1−
√
−q

2
= β1σ(e1) + β2σ(e2).

We can collect all four equations into a matrix equation(
α1 α2

β1 β2

)(
e1 σ(e1)
e2 σ(e2)

)
=

(
1 1

1+
√
−q

2
1−
√
−q

2

)
.

Take the determinant of both sides:

(2.1) (α1β2 − α2β1)(e1σ(e2)− σ(e1)e2) = −
√
−q.

The first term on the left side is the determinant we want to show is in O×F .
Both differences on the left side of (2.1) are algebraic integers in E. Are they in OF ? The

first difference is in OF because every term in it is in OF . The second difference is non-zero
and is negated after applying σ, so the second term is not in OF .

Now square both sides:

(2.2) (α1β2 − α2β1)
2(e1σ(e2)− σ(e1)e2)

2 = −q.
The second squared term is now in OF , since it is σ-invariant. Thus (2.2) says x2y = −q
with x = α1β2 − α2β1 and y = (e1σ(e2)− σ(e1)e2)

2. We want to show x ∈ O×F .
Taking norms on (2.2) from F down to Q, we get

(2.3) NF/Q(x)2NF/Q(y) = q2,

where x and y have norms in Z since x and y are algebraic integers. As F is imaginary
quadratic, the norm from F to Q takes only non-negative values, and q is prime, so from
(2.3) we see NF/Q(x) is either 1 or q. If NF/Q(x) = 1 then x = α1β2 − α2β1 is a unit in
OF and we’re done with Step 1. Thus, assume instead that NF/Q(x) = q. We will get a
contradiction.

Since F = Q(
√
−dq), either OF = Z[

√
−dq] (if −dq 6≡ 1 mod 4) or OF = Z[(1+

√
−dq)/2]

(if −dq ≡ 1 mod 4). In the first case the norm from OF to Z has the form a2 + dqb2 for
a, b ∈ Z, and this never takes the value q. In the second case the norm from OF to Z has

the form (a + 1
2b)

2 +
(
b
2

)2
dq. For |b| ≥ 2 this norm value is at least dq > q. For b = 0
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the norm value is a2, which is never q. For |b| = 1 this norm value is at least 1+dq
4 , which

exceeds q unless d = 2 or d = 3. But then −dq ≡ d 6≡ 1 mod 4 so this is not the second case
anyway. This concludes Step 1.

Step 2: {1, (1 +
√
−q)/2} is not an OF -basis of OE .

Assume it is an OF -basis of OE . Since
√
d :=

√
−dq/

√
−q ∈ OE , we must be able to

write

(2.4)

√
−dq√
−q

= α+ β

(
1 +
√
−q

2

)
for some α and β in OF . Applying σ, the non-trivial automorphism of E fixing F ,

(2.5) −
√
−dq√
−q

= α+ β

(
1−
√
−q

2

)
.

Subtract (2.5) from (2.4):

2
√
−dq√
−q

= β
√
−q.

Clearing the denominator and squaring,

−4dq = β2q2.

Therefore β2 = −4d/q, but −4d/q is not an algebraic integer. �

Example 2.3. Let d = 2 and q = 3. Theorem 2.2 says Q(
√
−6,
√
−3)/Q(

√
−6) does not

have an integral basis. (That is, the integers of Q(
√
−6,
√
−3) do not have a basis over the

integers of Q(
√
−6).)

The quadratic field Q(
√

2) is inside Q(
√
−6,
√
−3) = Q(

√
2,
√
−3) and its ring of integers

Z[
√

2] is a PID, so the ring of integers of Q(
√
−6,
√
−3) must have a basis over Z[

√
2]. An

example is {1, (1 +
√
−3)/2} because if K and L are number fields with relatively prime

discriminants, then OKL = OKOL: use the fields K = Q(
√

2) and L = Q(
√
−3), which have

discriminants 8 and −3. Therefore OQ(
√
2,
√
−3) = Z[

√
2, (1 +

√
3)/2] = Z[

√
2][(1 +

√
−3)/2].

Example 2.4. Let d = 5 and q = 3. By Theorem 2.2, Q(
√
−15,

√
−3)/Q(

√
−15) does not

have an integral basis.
The quadratic subfield Q(

√
5) of Q(

√
−15,

√
−3) = Q(

√
5,
√
−3) has ring of integers

Z[(1 +
√

5)/2] and Q(
√

5,
√
−3)/Q(

√
5) has integral basis {1, (1 +

√
−3)/2} by the same

reasoning as that used at the end of Example 2.3.

Example 2.5. The example in [1] uses d = 2 and q = 7: Q(
√
−14,

√
−7) has no integral

basis over Q(
√
−14). In contrast to that, Q(

√
−14,

√
−7) = Q(

√
2,
√
−7) has integral basis

{1, (1 +
√
−7)/2} over Q(

√
2).

Example 2.6. Let d = 10 and q = 23. The extension Q(
√
−230,

√
−23)/Q(

√
−230) does

not have an integral basis.
The quadratic subfields of Q(

√
−230,

√
−23) are Q(

√
−230), Q(

√
−23), and Q(

√
10).

The second and third quadratic fields each have a ring of integers that is not a PID since
their class numbers are greater than 1 (they are 3 and 2, respectively), so we have no
reason to expect a priori that the ring of integers Q(

√
−230,

√
−23) = Q(

√
10,
√
−23) has

an integral basis over the ring of integers of Q(
√
−23) or Q(

√
10). However, since Q(

√
10)

and Q(
√
−23) have relatively prime discriminants (40 and−23, respectively), the ring of
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integers Q(
√

10,
√
−23) is Z[

√
10, (1 +

√
−23)/2] and therefore this ring has a basis over

Z[
√

10] and Z[(1 +
√
−23)/2].

Corollary 2.7. Let d ≥ 2 be a squarefree positive integer and q be a prime not dividing d
with q ≡ 3 mod 4. The ring of integers of Q(

√
−dq) is not a PID.

Proof. We give two proofs. First, Theorem 2.2 constructs a finitely generated torsion-free
module over the integer ring of Q(

√
−dq) which is not a free module. Therefore the integers

of Q(
√
−dq) is not a PID. (Any finitely generated torsion-free module over a PID is free.)

Second, we will explicitly write down a non-principal ideal. Since d and q are relatively
prime, we obtain the equality of ideals

(2.6) (q,
√
−dq)2 = (q)

in the integer ring of Q(
√
−dq). The integer ring has unit group ±1, and there is no solution

to ±α2 = q in Q(
√
−dq), so the ideal (q,

√
−pq) is not principal. �

3. Non-free Module Structure

In Theorem 2.2, OE is not a free module over OF . What kind of description can we give
for OE as an OF -module?

Theorem 3.1. Let d ≥ 2 be a squarefree positive integer and q be a prime not dividing d
with q ≡ 3 mod 4. Let F = Q(

√
−dq) and E = F (

√
−q) = Q(

√
−dq,

√
−q). The

(3.1) OE = OF e1 ⊕ qe2,

where e1 = (1 +
√
−q)/2, e2 = 1/

√
−q, and q = (q,

√
−dq) = qOF +

√
−dqOF .

Thus, as an OF -module, OE is isomorphic to a direct sum of two OF -modules, but one
of the OF -modules is not free.

Proof. We will work with the E/F -basis {(1 +
√
−q)/2,

√
−q}, and see what constraints on

coefficients make elements integral. At the end of the proof, we will see how it is natural to
replace

√
−q with 1/

√
−q in the basis.

Why do we pick this basis, rather than, say, {1, (1 +
√
−q)/2}? An advantage is that the

trace of our basis elements, from E down to F , are 1 and 0 rather than 2 and 1. This will
make it easier to figure out coefficient constraints on algebraic integers.

(Incidentally, the source of the contradiction at the very end of the proof of Theorem 2.2
was a denominator of q. Therefore, it is no surprise that a “good” spanning set for OE as
an OF -module is going to involve some q-related denominators.)

Write

α = x
1 +
√
−q

2
+ y
√
−q,

where x, y ∈ F . Assume α ∈ OE . Then its trace and norm down to F must lie in OF :
α+ α ∈ F and αα ∈ OF . In terms of coefficients, this says

x ∈ OF ,
1 + q

4
x2 + qxy + qy2 ∈ OF ,

which is equivalent to
x ∈ OF , qxy + qy2 ∈ OF

since q ≡ 3 mod 4. Let z = qxy + qy2. Since qx and z are in OF , the equation

qy2 + qxy − z = 0
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nearly exhibits y as an algebraic integer. There is a coefficient of q out front, which we can
collect with y by multiplying through by q:

(qy)2 + qx(qy)− qz = 0.

Thus qy is integral over OF . Since qy ∈ F , we get qy ∈ OF . Therefore

qy2 = z − qxy = z − x(qy) ∈ OF .

We view this as a product of ideals: (q)(y)2 ⊂ (1). By (2.6), (q) = q2. Therefore q2(y)2 is
an integral ideal, so q(y) is an integral ideal, which means

(y) ⊂ q−1 = qq−2 =
1

q
q.

We have shown

x
1 +
√
−q

2
+ y
√
−q ∈ OE =⇒ x ∈ OF , y ∈ q−1 =

1

q
q.

Now we check the converse. Since (1 +
√
−q)/2 is an algebraic integer, so is x(1 +

√
−q)/2

when x ∈ OF . To see that y
√
−q is an algebraic integer when y ∈ q−1, it is simpler to look

at its square, which is −y2q. Since y2 ∈ q−2 = (1/q)OF , we have y2q ∈ OF . At last, we can
write

OE = OF

(
1 +
√
−q

2

)
⊕ 1

q
q
√
−q = OF

(
1 +
√
−q

2

)
⊕ q

1√
−q

.

�

Remark 3.2. One has to be careful when using parentheses to denote “ideal generated by”
if there are several rings floating around. For instance, in the notation of Theorem 3.1, we
have (q) = q2. In OE , where there is a square root of −q, we have (q) = (

√
−q)2. Therefore

q = (
√
−q), and then q/

√
−q = (1) = OE , but (3.1) shows q/

√
−q = qe2 is only one piece

of OE . What went wrong?
To compare ideals, such as q and (

√
−q) =

√
−qOE , they must be ideals in the same ring.

The ideal q = (q,
√
−dq) = qOF +

√
−dqOF was defined as an ideal in OF . To compare q

to
√
−qOE , we must extend q to OE :

qOF = q2 =⇒ qOE = (qOE)2.

Therefore, it is true that qOE =
√
−qOE , since both ideals of OE square to qOE . Dividing

now by
√
−q, we get

(3.2)
1√
−q

qOE = OE .

There is no contradiction between (3.1) and (3.2), since we have the extended ideal qOE on
the left side of (3.2).

To see that (3.2) is true computationally, we will exhibit
√
−q as an element of qOE :

(3.3) qOE = (qOF +
√
−dqOF )OE = qOE +

√
−dqOE =

√
−q(
√
−qOE +

√
dOE),

where
√
d :=

√
−dq/

√
−q (some square root of d). Since d and q are relatively prime

integers, we can write 1 = da− qb for some a, b ∈ Z. Then

1 =
√
−q
√
−qb+

√
d
√
da ∈

√
−qOE +

√
dOE ,

so the OE-ideal (
√
−q,
√
d) contains 1 and must be the unit ideal. Feeding this representation

of 1 into the right side of (3.3) shows
√
−qOE = qOE .
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The general classification theorem for (torsion-free) finitely generated modules over a
Dedekind domain has the following form. Compare it with Theorem 3.1.

Theorem 3.3. Let A be a Dedekind domain and M be a finitely generated torsion-free
A-module. Then there is an r ≥ 1 such that M ∼= Ar−1 ⊕ a as A-modules, where a is an
ideal of A. The ideal class of a is well-defined by M .

Proof. See [2, Prop. 24, Chapter VII]. It is the final proposition in the book. �

In particular, for a degree n extension of number fields E/F , there is an OF -module
isomorphism OE ∼= On−1F ⊕ a, where a is an ideal of OF (possibly non-principal). Thus, in
(1.1) it is possible to get a direct sum, but we must allow one of the xi’s to have coefficients
running through an ideal of OF rather than through OF itself.

Finally, it is possible for OE to be a free OF -module even if OF is not a PID. For instance,
let F = Q(

√
−15) (OF is not a PID) and E = F (

√
26) = Q(

√
−15,

√
26). It can be shown

that OE = OF ⊕ OF
√

26.
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