
A MULTIVARIABLE HENSEL’S LEMMA
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1. Introduction

Hensel’s lemma in Zp[X] is the following result about refining an approximate solution
of f(X) = 0 to an exact solution.

Theorem 1.1. If f(X) ∈ Zp[X] and some a ∈ Zp satisfies

|f(a)|p < |f ′(a)|2p
then for a unique α ∈ Zp, f(α) = 0 and |α − a|p < |f ′(a)|p. More precisely, |α − a|p =
|f(a)/f ′(a)|p < |f ′(a)|p and |f ′(α)|p = |f ′(a)|p 6= 0, so α is a simple root of f(X).

In particular, if |f(a)|p < 1 and |f ′(a)|p = 1 then there is a unique α ∈ Zp such that
f(α) = 0 and |α− a|p < 1.

Our goal here is to generalize Theorem 1.1 and its proof to a result about zeros of
multivariable p-adic polynomial equations. To do this we will want to measure the size of
a vector in Qd

p (more often, Zd
p). For a = (a1, . . . , ad) in Qd

p, its norm is

(1.1) ||a||p = max
i
|ai|p.

In real analysis it is common to take as the norm (length) of a vector in Rd the square root
of the sum of the squares of the coordinates. That type of norm has no special features
in p-adic analysis due to the lack of positivity in the p-adics, so the simpler (1.1) is the
standard choice of norm on Qd

p.

2. An easy generalization

For f(X1, . . . , Xd) ∈ Zp[X1, . . . , Xd] its derivative is its gradient (∇f)(X1, . . . , Xd) =
(∂f/∂X1, . . . , ∂f/∂Xd), which is the vector of partial derivatives of f .

Theorem 2.1. If f(X1, . . . , Xd) ∈ Zp[X1, . . . , Xd] and some a ∈ Zd
p satisfies

|f(a)|p < ||(∇f)(a)||2p
then there is an α ∈ Zd

p such that f(α) = 0 and ||α− a||p < ||(∇f)(a)||p.
In particular, if

|f(a)|p < 1 and ||(∇f)(a)||p = 1

then there is an α ∈ Zd
p such that f(α) = 0 and αi ≡ ai mod p for i = 1, . . . , d.

Proof. We will pick a coordinate in (∇f)(a) at which the maximum in ||(∇f)(a)||p is achieved
in order to reduce ourselves to a polynomial in one variable.

There is a j ∈ {1, . . . , d} (maybe more than one) such that ||(∇f)(a)||p = |(∂f/∂Xj)(a)|p.
Pick such a j and fix all but the jth variable in f(X1, . . . , Xd) to form

g(X) = f(a1, . . . , aj−1, X, aj+1, . . . , ad) ∈ Zp[X].

Then g(aj) = f(a) and g′(aj) = (∂f/∂Xj)(a), so the hypothesis of the theorem is |g(aj)|p <
|g′(aj)|2p. Theorem 1.1 can now be used: there is an α ∈ Zp such that g(α) = 0 and |α−aj |p <

1
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|g′(aj)|p = ||(∇f)(a)||p. Letting α = (a1, . . . , α, . . . , ad), with α in the jth coordinate and ai
in the ith coordinate for i 6= j, we have f(α) = 0 and ||α− a||p = |α− aj |p < ||(∇f)(a)||p.

In the special case |f(a)|p < 1 and ||(∇f)(a)||p = 1, the condition ||α− a||p < ||(∇f)(a)||p
becomes ||α− a||p < 1, which means αi ≡ ai mod p for all i. �

There is generally no uniqueness of α in Theorem 2.1 (when d > 1) since there could be
multiple coordinates at which the norm ||(∇f)(a)||p achieves its maximal value.

Example 2.2. Let f(X,Y ) = X2 + Y 2 + 4 in Z7[X]. Then f(1, 3) = 14 ≡ 0 mod 7 while
fX(1, 3) = 2 6≡ 0 mod 7 and fY (1, 3) = 6 6≡ 0 mod 7, so we can solve f(x, y) = 0 in Z7 by
either solving for x after fixing y = 3 or solving for y after fixing x = 1:

• f(X, 3) = X2 + 13 has a root α in Z7 where α ≡ 1 mod 7, so f(α, 3) = 0,
• f(1, Y ) = Y 2 + 5 has a root β in Z7 where β ≡ 3 mod 7, so f(1, β) = 0.

Example 2.3. Let f(X,Y ) = X2 + Y 2 − 21 in Z2[X,Y ]. We have f(1, 2) = −16 and
(∇f)(1, 2) = (2, 4), so the norm ||(∇f)(1, 2)||2 = 1/2 is achieved by the first coordinate of
the gradient and not the second. We have |f(1, 2)|2 < |fX(1, 2)|22, so f(α, 2) = 0 for some
α ∈ Z2 with |α− 1|2 < 1/2. Concretely, α2 = 17 and α ≡ 1 mod 4.

Since |f(1, 2)|2 = |fY (1, 2)|22, Theorem 2.1 does not guarantee there is a β ∈ Z2 making
f(1, β) = 0, and in fact there isn’t: we would need β2 = 20 and this has no solution in Z2.

Theorem 2.1 involves a multivariable polynomial, but the proof shows it is really about
single-variable polynomials, so such a multivariable generalization of Hensel’s lemma is
understandably not that impressive.

3. An interesting generalization

For a version of Hensel’s lemma making more substantial use of several variables, we’ll
consider d polynomials in d variables. Let K be a field complete with respect to an absolute
value | · | satisfying the strong triangle inequality |x + y| ≤ max(|x|, |y|), such as K = Qp.
Let o = {x ∈ K : |x| ≤ 1}, so o = Zp when K = Qp.

For d ≥ 1 set o[X] = o[X1, . . . , Xd], and for d polynomials f1, . . . , fd ∈ o[X1, . . . , Xd] let
f(X) = (f1, . . . , fd) ∈ o[X]d, so f : od → od.

We measure the size of a vector in Kd as we did in Qd
p: for a ∈ Kd, its norm is

(3.1) ||a|| = max
i
|ai|.

It is easy to verify that

(3.2) ||ca|| = |c| ||a|| ,
∣∣∣∣a + a′

∣∣∣∣ ≤ max(||a|| ,
∣∣∣∣a′∣∣∣∣)

for all c ∈ K and a and a′ in Kd. On Kd we get a metric ||x− y||, with respect to which
convergence is componentwise, so Kd and od are both complete.

By the second inequality in (3.2), ||a|| 6= ||a′|| ⇒ ||a + a′|| = max(||a|| , ||a′||)1 and a sequence
{an} in Kd is Cauchy with respect to ||·|| if and only if ||an+1 − an|| → 0 as n→∞. Relative
to this metric, polynomials in K[X] are continuous functions Kd → K and polynomials in
o[X] are continuous functions od → o.

An additional property of the norm concerns polynomial values on od when coefficients
are in o: if F (X) ∈ o[X], then

(3.3) x,y ∈ od ⇒ |F (x)− F (y)| ≤ ||x− y|| .
This is a multivariable generalization of xi − yi being divisible by x − y. To check (3.3),
let ||x− y|| = |xj − yj | for a particular j. Then |xi − yi| ≤ |xj − yj | for all i, so every

1Assume ||a|| > ||a′||. Then ||a|| ≤ max(||a + a′|| , ||−a′||) and max isn’t ||−a′||. Thus ||a|| ≤ ||a + a′|| ≤ ||a||.
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xi − yi is in the ideal (xj − yj)o of o. Therefore in the quotient ring o/(xj − yj)o we have
xi ≡ yi for all i, so F (x) ≡ F (y) since the coefficients of the polynomial F are all in o.
Thus F (x)− F (y) ∈ (xj − yj)o, and taking absolute values implies (3.3).

The derivative matrix and Jacobian of f(X) ∈ o[X]d are

(Df)(X) =

(
∂fi
∂Xj

)
1≤i,j≤d

, Jf (X) = det((Df)(X)) ∈ o[X].

Example 3.1. If d = 1 then f(X) = f(X) is a polynomial in one variable. We have
(Df)(X) = f ′(X) and Jf (X) = f ′(X).

Example 3.2. If d = 2 then f(X) = (f1(X,Y ), f2(X,Y )) is a vector of two 2-variable
polynomials. We have

(Df)(X) =

(
∂f1/∂X ∂f1/∂Y
∂f2/∂X ∂f2/∂Y

)
and

Jf (X) =
∂f1
∂X

∂f2
∂Y
− ∂f1
∂Y

∂f2
∂X

.

For each a ∈ od and each f = (f1, . . . , fd) ∈ o[X1, . . . , Xd]d we have

• the vector f(a) = (f1(a), . . . , fd(a)) in od,
• the d× d matrix (Df)(a) with entries in o,
• the scalar Jf (a) = det((Df)(a)) in o.

The number f ′(a) when d = 1 generalizes in two ways when d > 1: to the d × d matrix
(Df)(a) and to the number Jf (a).

Here is a multivariable version of Hensel’s lemma where all coordinates play an important
role, not just one of them as in Theorem 2.1.

Theorem 3.3. Let f = (f1, . . . , fd) ∈ o[X1, . . . , Xd]d and a = (a1, . . . , ad) ∈ od satisfy

||f(a)|| < |Jf (a)|2.
There is a unique α ∈ od such that f(α) = 0 and ||α− a|| < |Jf (a)|. More precisely,

(1) ||α− a|| =
∣∣∣∣((Df)(a))−1f(a)

∣∣∣∣ ≤ ||f(a)|| /|Jf (a)| < |Jf (a)|,
(2) |Jf (α)| = |Jf (a)|.

In particular, if ||f(a)|| < 1 and |Jf (a)| = 1 then there is a unique α ∈ od such that
f(α) = 0 and ||α− a|| < 1.

For d = 1 and K = Qp, this is Theorem 1.1. A proof of Theorem 1.1 can be based on
Newton’s method αn+1 = αn − f(αn)/f ′(αn) for f(X) ∈ o[X] and the proof of Theorem
3.3 below will be based on the multivariable version of Newton’s method:

αn+1 = αn − ((Df)(αn))−1f(αn)

for f(X) ∈ o[X]d and αn ∈ od, starting at α1 = a.

Example 3.4. Working on Z2
5, set f(x, y) = (x3+xy+6y3−1, x2y+xy2+5y) and a = (0, 1).

Then f(a) = (5, 5) ≡ (0, 0) mod 5 and (Df)(a) = ( 1 18
1 5 ), so Jf (a) = −13 6≡ 0 mod 5. We

have ||f(a)||5 = 1/5 and |Jf (a)|5 = 1, so Theorem 3.3 tells us there is a unique solution to
f(x, y) = (0, 0) in Z2

5 with ||(x, y)− (0, 1)||5 < 1, which means x ≡ 0 mod 5 and y ≡ 1 mod 5.

The vector
(
x
y

)
is the limit of the sequence αn =

(
xn

yn

)
, where α1 = a =

(
0
1

)
and for n ≥ 1,

αn+1 = αn − ((Df)(αn))−1f(αn)

=

(
xn
yn

)
−
(

3x2n + yn xn + 18y2n
2xnyn + y2n x2n + 2xnyn + 5

)−1(
x3n + xnyn + 6y3n − 1
x2nyn + xny

2
n + 5yn

)
.
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Initial values of αn are α1 = (0, 1), α2 = (−5, 1), and α3 = (−5360/1637, 862/1637).
Using PARI-GP, here are the 5-adic expansions of the first five αn:

α1 =

(
0
1

)
,

α2 =

(
0 + 4 · 5 + 4 · 52 + 4 · 53 + 4 · 54 + 4 · 55 + 4 · 56 + 4 · 57 + 4 · 58 + · · ·
1 + 0 · 5 + 0 · 52 + 0 · 53 + 0 · 54 + 0 · 55 + 0 · 56 + 0 · 57 + 0 · 58 + · · ·

)
,

α3 =

(
0 + 4 · 5 + 3 · 52 + 4 · 53 + 4 · 54 + 1 · 55 + 4 · 56 + 0 · 57 + 1 · 58 + · · ·
1 + 0 · 5 + 2 · 52 + 2 · 53 + 4 · 54 + 4 · 55 + 1 · 56 + 1 · 57 + 4 · 58 + · · ·

)
,

α4 =

(
0 + 4 · 5 + 3 · 52 + 4 · 53 + 2 · 54 + 1 · 55 + 1 · 56 + 0 · 57 + 4 · 58 + · · ·
1 + 0 · 5 + 2 · 52 + 2 · 53 + 3 · 54 + 4 · 55 + 3 · 56 + 2 · 57 + 0 · 58 + · · ·

)
,

α5 =

(
0 + 4 · 5 + 3 · 52 + 4 · 53 + 2 · 54 + 1 · 55 + 1 · 56 + 0 · 57 + 1 · 58 + · · ·
1 + 0 · 5 + 2 · 52 + 2 · 53 + 3 · 54 + 4 · 55 + 3 · 56 + 2 · 57 + 1 · 58 + · · ·

)
.

From these calculations, the agreement between αn and αn+1 is doubling at each step:

||α2 −α1||5 = 1/5, ||α3 −α2||5 = 1/52, ||α4 −α3||5 = 1/54, ||α5 −α4||5 = 1/58.

We have αn →
(
x
y

)
where

x = 0 + 4 · 5 + 3 · 52 + 4 · 53 + 2 · 54 + 1 · 55 + 1 · 56 + 0 · 57 + 1 · 58 + 4 · 59 + · · · ,
y = 1 + 0 · 5 + 2 · 52 + 2 · 53 + 3 · 54 + 4 · 55 + 3 · 56 + 2 · 57 + 1 · 58 + 3 · 59 + · · ·

and the following 5-adic expansions illustrate the convergence of f(αn) to
(
0
0

)
:

f(α1) =

(
5
5

)
, f(α2) =

(
−53

52

)
, f(α3) =

(
3 · 55 + · · ·
2 · 54 + · · ·

)
, f(α4) =

(
2 · 59 + · · ·
3 · 58 + · · ·

)
.

Now we turn to a proof of Theorem 3.3.

Proof. Existence of α: Define αn in Kd for n ≥ 1 by α1 = a, and for n ≥ 1

αn+1 = αn − ((Df)(αn))−1f(αn).

From the hypothesis that ||f(a)|| < |Jf (a)|2 we have Jf (a) 6= 0, so t := ||f(a)|| /|Jf (a)|2
satisfies 0 ≤ t < 1.

We will show by induction on n that

(i) ||αn|| ≤ 1, i.e., αn ∈ od,
(ii) |Jf (αn)| = |Jf (a)| (so (Df)(αn) is invertible, since it has determinant Jf (αn) 6= 0),

(iii) ||f(αn)|| ≤ |Jf (a)|2t2n−1
.

When n = 1, part (i) is a hypothesis of the theorem, part (ii) follows from the definition
of α1, and part (iii) follows from the definition of t (as an equality, not just an inequality).

To prove the inductive step for (i), (ii), and (iii), we will use a polynomial identity: for
f ∈ o[X1, . . . , Xd], X = (X1, . . . , Xd), and Y = (Y1, . . . , Yd),

(3.4) f(X + Y) = f(X) +
∑

1≤i≤d

∂f

∂Xi
Yi +

∑
1≤i,j≤d

Cij(X,Y)YiYj ,

where Cij(X,Y) ∈ o[X,Y]. This is essentially a formal Taylor expansion in d variables.
We’ll prove (3.4) by induction on d. For d = 1, (3.4) is the standard single-variable expansion

f(X + Y ) = f(X) + f ′(X)Y + C(X,Y )Y 2
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with C(X,Y ) ∈ o[X,Y ] when f(X) ∈ o[X], which is used to prove the single-variable
Hensel’s lemma and we treat this as already known (anybody reading a proof of the multi-
variable Hensel’s lemma should already have read a proof of the single-variable case). For
d ≥ 2, write f as a polynomial in Xd:

(3.5) f(X1, . . . , Xd) =
∑
r≥0

gr(X1, . . . , Xd−1)X
r
d

where gr ∈ o[X1, . . . , Xd−1] and gr = 0 for large r (f is a polynomial). We can apply (3.4)
to each gr by induction (with d − 1 in place of d), so working in o[X,Y] modulo the ideal
generated by all YiYj ,

f(X1 + Y1, . . . , Xd + Yd) =
∑
r≥0

gr(X1 + Y1, . . . , Xd−1 + Yd−1)(Xd + Yd)r

≡
∑
r≥0

gr(X1, . . . , Xd−1) +
∑

1≤i≤d−1

∂gr
∂Xi

Yi

 (Xr
d + rXr−1

d Yd)

≡
∑
r≥0

gr(X1, . . . , Xd−1)X
r
d +

∑
r≥0

gr(X1, . . . , Xd−1)rX
r−1
d Yd

+
∑

1≤i≤d−1

∑
r≥0

∂gr
∂Xi

Xr
d

Yi

≡ f(X1, . . . , Xd) +
∑

1≤i≤d

∂f

∂Xi
Yi.

This congruence in o[X,Y] modulo the ideal generated by all YiYj is exactly (3.4) for
polynomials in d variables, so we are done proving (3.4) for all d.

If f = (f1, . . . , fd) is a d-tuple of polynomials in o[X] = o[X1, . . . , Xd] then using (3.4) in
each coordinate of f with f running through f1, . . . , fd gives us

f(X + Y) =


...

fk(X + Y)
...


1≤k≤d

=


...

fk(X) +
∑

1≤i≤d
∂fk
∂Xi

Yi +
∑

1≤i,j≤dCijk(X,Y)YiYj
...


1≤k≤d

= f(X) + ((Df)(X))

Y1...
Yd

+

R1(X,Y)
...

Rd(X,Y)

 ,(3.6)

where Rk(X,Y) =
∑

1≤i,j≤dCijk(X,Y)YiYj is a sum of terms that are an o[X,Y]-multiple

of some YiYj . The formal identity (3.6) implies by substitution that

(3.7) f ∈ o[X]d, x,y ∈ od =⇒ f(x + y) = f(x) + ((Df)(x))y + z, where ||z|| ≤ ||y||2

since each component of z is a sum of terms that are an o-multiple of some yiyj .
Now assume (i), (ii), and (iii) hold for some n ≥ 1. Part (ii) implies (Df)(αn) has nonzero

determinant. Since (Df)(αn) has all entries in o, Cramer’s formula tells us the inverse of
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the d× d matrix (Df)(αn) has entries in o divided by Jf (αn). Therefore for all x ∈ od,

(3.8)
∣∣∣∣((Df)(αn))−1x

∣∣∣∣ ≤ 1

|Jf (αn)|
||x|| = 1

|Jf (a)|
||x||

by (ii), so by the definition of αn+1,

(3.9) ||αn+1 −αn|| =
∣∣∣∣((Df)(αn))−1f(αn)

∣∣∣∣ ≤ 1

|Jf (a)|
||f(αn)|| ≤ |Jf (a)|t2n−1

,

where the second inequality is from (iii). Since 0 ≤ |Jf (a)| ≤ 1 and 0 ≤ t < 1, we have
||αn+1 −αn|| < 1, so ||αn|| ≤ 1⇒ ||αn+1|| ≤ 1, which is (i) for n+ 1.

To prove (ii) for n+ 1, we use (3.3) for the polynomial F (X) = Jf (X) ∈ o[X] evaluated
at αn+1 and αn in o:

(3.10) |Jf (αn+1)− Jf (αn)| ≤ ||αn+1 −αn|| .

By (3.9), ||αn+1 −αn|| ≤ |Jf (a)|t2n−1
< |Jf (a)|. Thus |Jf (αn+1) − Jf (αn)| < |Jf (a)|. By

(ii) for n we have |Jf (αn)| = |Jf (a)|, so |Jf (αn+1)| = |Jf (a)|, which is (ii) for n+ 1.
To prove (iii) for n + 1, we will use (3.7) with x = αn and y = −((Df)(αn))−1f(αn).

Obviously x ∈ od, and by (3.8) and (iii) for n, ||y|| ≤ ||f(αn)|| /|Jf (αn)| ≤ |Jf (a)|t2n−1
< 1,

so y ∈ od. Thus by (3.7),

f(αn+1) = f(αn − ((Df)(αn))−1f(αn))

= f(αn) + ((Df)(αn))
(
−((Df)(αn))−1f(αn)

)
+ z,(3.11)

where ||z|| ≤ ||y||2 ≤ |Jf (a)|2t2n by the upper bound on ||y||. Simplifying (3.11),

f(αn+1) = f(αn)− f(αn) + z = z,

so

||f(αn+1)|| = ||z|| ≤ |Jf (a)|2t2n .
This proves (iii) for n+ 1, so we have finished proving (i), (ii), and (iii) for all n ≥ 1.

The sequence {αn} in od is Cauchy with respect to ||·|| since ||αn+1 −αn|| ≤ |Jf (a)|t2n−1 ≤
t2

n−1
by (3.9) and the upper bound tends to 0 as n→∞. Since od is complete,

α := lim
n→∞

αn

exists and (iii) tells us that as n→∞ we have ||f(αn)|| → 0. The continuity of polynomials
in o[X] as functions od → o implies f(αn)→ f(α), so ||f(α)|| = 0 and thus f(α) = 0.

Bounds on ||α− a||: We want to show

(3.12) ||α− a|| =
∣∣∣∣((Df)(a))−1f(a)

∣∣∣∣ ≤ ||f(a)|| /|Jf (a)| < |Jf (a)|.

The exact formula for ||α− a||, which in several variables is at first surprising (we learned it
from [3, Theorem 23]), will be proved from the weaker bound ||α− a|| < |Jf (a)|, so first we’ll
prove the inequalities in (3.12) and then come back to get the exact formula for ||α− a||.

From (3.9) we have ||αn+1 −αn|| ≤ |Jf (a)|t2n−1
, and t2

n−1 ≤ t, so ||αn+1 −αn|| ≤ |Jf (a)|t
for all n. Therefore ||αn −α1|| ≤ |Jf (a)|t for all n by the strong triangle inequality for ||·||,
so letting n→∞ gives us

(3.13) ||α− a|| ≤ |Jf (a)|t = |Jf (a)| ||f(a)||
|Jf (a)|2

=
||f(a)||
|Jf (a)|

,

which is the first inequality in (3.12). The second follows from ||f(a)|| < |Jf (a)|2.
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To explain why ||α− a|| =
∣∣∣∣((Df)(a))−1f(a)

∣∣∣∣, consider separately the cases f(a) = 0 and

f(a) 6= 0. If f(a) = 0 then (3.13) implies ||α− a|| = 0, so ||α− a|| =
∣∣∣∣((Df)(a))−1f(a)

∣∣∣∣
since both sides are 0. If f(a) 6= 0 then α 6= a. Use (3.7) with x = a and y = α− a:

(3.14) 0 = f(α) = f(a + (α− a)) = f(a) + ((Df)(a))(α− a) + z

where ||z|| ≤ ||α− a||2. We already showed ||α− a|| < |Jf (a)|, so ||z|| < |Jf (a)| ||α− a|| since
||α− a|| > 0. In (3.14), solve for f(a) and apply the inverse of (Df)(a) to both sides:

(3.15) f(a) = −((Df)(a))(α− a)− z =⇒ ((Df)(a))−1f(a) = −(α− a)− ((Df)(a))−1z

and reasoning as in (3.8) tells us (using the bound ||z|| < |Jf (a)| ||α− a|| above)∣∣∣∣((Df)(a))−1z
∣∣∣∣ ≤ 1

|Jf (a)|
||z|| < ||α− a|| .

Therefore (3.15) and the strong triangle inequality imply
∣∣∣∣((Df)(a))−1f(a)

∣∣∣∣ = ||α− a||.
Calculation of ||Jf (α)||: Part (ii) tells us that |Jf (αn)| = |Jf (a)| for all n, so continuity

of Jf (x) as a function of x ∈ od implies by passage to the limit that |Jf (α)| = |Jf (a)|.
Uniqueness of α: If β ∈ od satisfies f(β) = 0 and ||β − a|| < |Jf (a)| we will show β = α.

(Since a ∈ od and |Jf (a)| ≤ 1, if β were in Kd then it would have to be in od.) Set h = β−α,
so h ∈ od and β = α + h. We want to show h = 0.

In (3.6) set X = α and Y = h:

0 = f(β) = f(α + h) = f(α) + ((Df)(α))h +

R1(α,h)
...

Rd(α,h)

 = ((Df)(α))h +

R1(α,h)
...

Rd(α,h)

 ,

where Rk(X,Y) =
∑

i,j Cijk(X,Y)YiYj for polynomials Cijk(X,Y) ∈ o[X,Y]. Thus

(3.16) ((Df)(α))h =

−R1(α,h)
...

−Rd(α,h)

 =

−
∑

i,j Cij1(α,h)hihj
...

−
∑

i,j Cijd(α,h)hihj

 .

From ||β − a|| < |Jf (a)| and ||α− a|| < |Jf (a)| we get ||h|| = ||β −α|| < |Jf (a)|, so h = Jf (a)v
where ||v|| < 1. In terms of components, for i = 1, . . . , d we have hi = Jf (a)vi where |vi| < 1.
We will show v = 0, so h = 0.

Setting hi and hj in (3.16) to be Jf (a)vi and Jf (a)vj and then dividing both sides of
(3.16) by the nonzero number Jf (a),

((Df)(α))v = Jf (a)

−
∑

i,j Cij1(α,h)vivj
...

−
∑

i,j Cijd(α,h)vivj

 .

For a d × d matrix A, let adj(A) be its “classical adjoint” of A: this is the matrix whose
entries are, up to sign, determinants of (d − 1) × (d − 1) minors in A so that A adj(A) =
adj(A)A = (detA)Id. Then Jf (a)Id = det((Df)(a))Id = ((Df)(α)) adj((Df)(α)), so

((Df)(α))v = ((Df)(α)) adj((Df)(α))

−
∑

i,j Cij1(α,h)vivj
...

−
∑

i,j Cijd(α,h)vivj

 .
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The matrix ((Df)(α)) is in GLn(K), so we can multiply by its inverse on the left on both
sides above:

(3.17) v = adj((Df)(α))

−
∑

i,j Cij1(α,h)vivj
...

−
∑

i,j Cijd(α,h)vivj

 .

Every entry of the matrix adj((Df)(α)) is in o, each Cijk(α,h) for 1 ≤ k ≤ d is in o, and

|vivj | ≤ ||v||2 for all i and j, so taking norms of both sides of (3.17) implies

(3.18) ||v|| ≤ ||v||2 .

Since ||v|| < 1, the inequality (3.18) forces ||v|| to be 0, so v = 0. �

Remark 3.5. There is a multivariable Hensel’s lemma that has a weaker condition than
||f(a)|| < |Jf (a)|2 when |Jf (a)| < 1. See [2].

The condition |f(a)|p < |f ′(a)|2p in Theorem 1.1 is reasonable, since if f(X) has a simple
root α ∈ Zp, then all a ∈ Zp that are close enough to α (the bound |a−α|p < |f ′(α)|p suffices)
satisfy |f(a)|p < |f ′(a)|2p. The following theorem shows the hypothesis ||f(a)|| < |Jf (a)|2 in
Theorem 3.3 is reasonable too.

Theorem 3.6. If f(X) ∈ o[X]d and f(α) = 0 with Jf (α) 6= 0, then ||f(a)|| < |Jf (a)|2 for
all a ∈ od close enough to α: it is sufficient that ||a−α|| < |Jf (α)|2/ ||(Df)(α)||.

Division by ||(Df)(α)|| is allowed since the matrix (Df)(α) is not O, as its determinant
Jf (α) is assumed to be nonzero.

Proof. Let γ = a−α, so a = α + γ. By (3.7),

f(a) = f(α + γ) = f(α) + ((Df)(α))γ + z = ((Df)(α))γ + z

where ||z|| ≤ ||γ||2. We will show both vectors ((Df)(α))γ and z have norm less than
|Jf (α)|2, so ||f(a)|| < |Jf (α)|2, and then we’ll show |Jf (α)| = |Jf (a)|.

Our argument will use a matrix norm. For a d× d matrix A = (aij) with entries in o, set
the norm of A to be ||A|| = maxi,j |aij |. Two properties of this matrix norm are

• ||Ax|| ≤ ||A|| ||x|| for x ∈ od,
• ||AB|| ≤ ||A|| ||B|| for d × d matrices A and B with entries in o. (We do not always

have equality here. For example, working over Zp, if A = ( p+1 1
1 1 ) and B = ( 1 −1

−1 p+1 )

then AB = ( p 0
0 p ), so ||A|| = ||B|| = 1 while ||AB|| = 1/p < ||A|| ||B||.)

For a d × d matrix A with entries in o, its classical adjoint adj(A) also has entries in o.
Taking the matrix norm on both sides of the equation A adj(A) = (detA)Id gives us

(3.19) |detA| = ||(detA)Id|| = ||A adj(A)|| ≤ ||A|| ||adj(A)|| ≤ ||A|| .

To show ||((Df)(α))γ|| < |Jf (α)|2, start from

||((Df)(α))γ|| ≤ ||(Df)(α)|| ||γ|| = ||(Df)(α)|| ||a−α|| .

On the right, ||(Df)(α)|| > 0 since det((Df)(α)) = Jf (α) 6= 0. By hypothesis ||a−α|| <
|Jf (α)|2/ ||(Df)(α)||, so

||((Df)(α))γ|| ≤ ||(Df)(α)|| ||a−α|| < ||(Df)(α)|| |Jf (α)|2

||(Df)(α)||
= |Jf (α)|2.

This calculation explains the bound ||a−α|| < |Jf (α)|2/ ||(Df)(α)|| as a hypothesis in the
theorem.
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To show ||z|| < |Jf (α)|2,

||z|| ≤ ||γ||2 = ||a−α||2 < |Jf (α)|4

||(Df)(α)||2
.

We want |Jf (α)|4/ ||(Df)(α)||2 ≤ |Jf (α)|2, or equivalently |Jf (α)| ≤ ||(Df)(α)||. Applying
(3.19) to the matrix A = (Df)(α) gives us

(3.20) |Jf (α)| ≤ ||(Df)(α)|| ,

so we are done with the proof that |f(a)| < |Jf (α)|2. It remains to prove |Jf (α)| = |Jf (a)|.
(The bound (3.20) shows |Jf (α)|2/ ||(Df)(α)|| ≤ |Jf (α)| ≤ 1 since f ∈ o[X]d and α ∈ od,

so any a in Kd satisfying ||a−α|| < |Jf (α)|2/ ||(Df)(α)|| must be in od.)
Since a and α are in od, as with (3.10) we have

(3.21) |Jf (a)− Jf (α)| ≤ ||a−α|| < |Jf (α)|2

||(Df)(α)||
≤ |Jf (α)|,

where the last inequality follows from (3.20). Thus |Jf (a)− Jf (α)| < |Jf (α)|, so |Jf (a)| =
|Jf (α)|. �

Remark 3.7. The bound ||a−α|| < |Jf (α)|2/ ||(Df)(α)|| in Theorem 3.6 is not the nicest
multivariable generalization of |a−α| < |f ′(α)| that could be imagined. A nicer one would
be ||a−α|| < |Jf (α)| (note |Jf (α)|2/ ||(Df)(α)|| ≤ |Jf (α)| by (3.20)). Is Theorem 3.6 valid
using ||a−α|| < |Jf (α)|?

Just as Theorem 2.1 is an easy generalization of the single-variable Hensel’s lemma in
Theorem 1.1, there is an easy generalization of Theorem 3.3 that allows more variables than
the number of polynomials.

Theorem 3.8. For m ≥ d, let f = (f1, . . . , fd) ∈ o[X1, . . . , Xm]d and a = (a1, . . . , am) ∈ om

satisfy

(3.22) ||f(a)|| < |Jf ,d(a)|2

where

(3.23) Jf ,d(a) = det

(
∂fi
∂Xj

(a)

)
1≤i,j≤d

.

There is an α = (α1, . . . , αd) ∈ od such that f(α1, . . . , αd, ad+1, . . . , am) = 0 and |αi− ai| <
|Jf ,d(a)| for i = 1, . . . , d.

In particular, if ||f(a)|| < 1 and |Jf ,d(a)| = 1 then there is an α = (α1, . . . , αd) ∈ od such
that f(α1, . . . , αd, ad+1, . . . , am) = 0 and |αi − ai| < 1 for i = 1, . . . , d.

Proof. Reduce to the setting of d polynomials in d variables by replacing fi(X1, . . . , Xm)
with fi(X1, . . . , Xd, ad+1, . . . , am) ∈ o[X1, . . . , Xd] for 1 ≤ i ≤ d and apply Theorem 3.3 to
these. �

We avoided overloading the notation in Theorem 3.8 by fixing all but the first d variables
to define |Jf ,d(a)|, but we could have fixed all but any subset of d variables or replaced
(3.22) with ||f(a)|| < maxS |Jf ,S(a)|2 where the maximum runs over all d-element subsets S
of {1, . . . ,m} and Jf ,S(a) is defined as in (3.23) with the indices from 1 to d replaced by
the numbers in S.
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4. The multivariable Hensel’s lemma for power series

Hensel’s lemma works not just for systems of polynomial equations, but also for systems
of power series equations. There are two standard types of power series: the series in the
d-variable Tate ring o{X} (coefficients tending to 0 with the degree of the monomial) and
the d-variable formal power series in o[[X]]. A series in o{X} is convergent on od (remember
that in complete non-archimedean rings, the order of addition for a numerical series can
be rearranged without affecting the value) and defines a continuous function od → o, while
a series in o[[X]] is convergent on md, where m is the maximal ideal of o, and defines a
continuous function md → o. Therefore we seek a version of Hensel’s lemma for f(x) = 0
where f ∈ o{X}d and for f(x) = 0 where f ∈ o[[X]]d.

Theorem 4.1. Let f = (f1, . . . , fd) ∈ o{X1, . . . , Xd}d and a = (a1, . . . , ad) ∈ od satisfy

||f(a)|| < |Jf (a)|2.

There is a unique α ∈ od such that f(α) = 0 and ||α− a|| < |Jf (a)|. More precisely,

(1) ||α− a|| =
∣∣∣∣((Df)(a))−1f(a)

∣∣∣∣ ≤ ||f(a)|| /|Jf (a)| < |Jf (a)|,
(2) |Jf (α)| = |Jf (a)|.

In particular, if ||f(a)|| < 1 and |Jf (a)| = 1 then there is a unique α ∈ od such that
f(α) = 0 and ||α− a|| < 1.

Proof. The proof of Theorem 3.3 can be adapted to the setting of power series in o{X},
defining α as a limit for a multivariable Newton’s method. The key point is that the
polynomial identity (3.4) when f ∈ o[X] extends to the case f ∈ o{X}, by the same proof.
The only difference in the proof is that the coefficients gr ∈ o{X1, . . . , Xd−1} need not be
0 for large r. Equations (3.6) and (3.7) also generalize to f ∈ o{X}d, with Cijk(X,Y) ∈
o{X,Y}, and once we have those two equations the rest of the proof of Theorem 3.3 carries
over. Remember that each element of o{X} is a continuous mapping od → o. �

An application of Theorem 4.1 to Diophantine equations is described by Cassels [1,
pp. 228–231] using Hensel’s lemma for two power series over Zp in two variables. The
method as well as the version of Hensel’s lemma used are attributed there to work of
Skolem in the 1930s, so Skolem may have been the first to formulate Hensel’s lemma for
more than one equation. A similar application is given by Smart [4, pp. 36–39].

Theorem 4.2. Let f = (f1, . . . , fd) ∈ o[[X1, . . . , Xd]]d and a = (a1, . . . , ad) ∈ md satisfy

||f(a)|| < |Jf (a)|2.

There is a unique α ∈ md such that f(α) = 0 and ||α− a|| < |Jf (a)|. More precisely,

(1) ||α− a|| =
∣∣∣∣((Df)(a))−1f(a)

∣∣∣∣ ≤ ||f(a)|| /|Jf (a)| < |Jf (a)|,
(2) |Jf (α)| = |Jf (a)|.

In particular, if ||f(a)|| < 1 and |Jf (a)| = 1 then there is a unique α ∈ md such that
f(α) = 0 and ||α− a|| < 1.

Proof. As with the proof of Theorem 4.1, equations (3.4), (3.6), and (3.7) can be established
for formal power series over o, where the analogue of (3.7) is

f ∈ o[[X]]d, x,y ∈ md =⇒ f(x + y) = f(x) + ((Df)(x))y + z, where ||z|| ≤ ||y||2 .
With this in place, the rest of the proof of Theorem 3.3 carries over. Some attention needs to
be paid to a few places where md replaces od (both are complete since both are closed in Kd).

For example, α1 = a ∈ md by hypothesis and for n ≥ 1, ||αn+1 −αn|| ≤ |Jf (a)|t2n−1 ≤ t < 1,
so αn ∈ md for all n by induction and thus α = limαn ∈ md. �



A MULTIVARIABLE HENSEL’S LEMMA 11

Theorems 3.6 and 3.8 and their proofs carry over to power series of both types. Details
are left to the reader.
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