
EXAMPLES OF MORDELL’S EQUATION, II

KEITH CONRAD

1. Introduction

Using class numbers, we find all the integral solutions to some examples of Mordell’s
equation y2 = x3 + k where Z[

√
−k] does not have unique factorization. (See also [1, Chap.

10], [2, Chap. 14], and [4, Chap. 26].)

Example 1. We will show y2 = x3−5 has no integral solutions, using properties of Z[
√
−5].

In our previous discussion of Mordell’s equation, we proved this result using congruences
modulo 4, and then we showed how it could be established in a second way if Z[

√
−5] had

unique factorization. But Z[
√
−5] does not have unique factorization, so that second proof

had an error. Now we will see how our knowledge that Z[
√
−5] has class number 2 lets us

fix the error.
Assuming y2 = x3− 5 for integers x and y, our previous work with this equation showed

x is odd, y is even, and when we write the cube x3 as

(1) x3 = y2 + 5 = (y +
√
−5)(y −

√
−5)

the only common divisors of y+
√
−5 and y−

√
−5 in Z[

√
−5] are units. We want to conclude

that y+
√
−5 and y−

√
−5 are cubes, but Z[

√
−5] does not have unique factorization, so our

method of reaching this conclusion was in error. But now we will show that the conclusion
is correct for another reason.

Pass from (1) as an equation of elements to an equation of principal ideals:

(x)3 = (y +
√
−5)(y −

√
−5).

We will show the ideals (y +
√
−5) and (y −

√
−5) are relatively prime and then appeal to

unique factorization of ideals. If (y +
√
−5) and (y −

√
−5) are not relatively prime, they

are both divisible by some prime ideal p. Then

y +
√
−5 ≡ 0 mod p, y −

√
−5 ≡ 0 mod p,

so subtracting gives 2
√
−5 ≡ 0 mod p. Thus (2

√
−5) ⊂ p, so p|(2

√
−5). Taking norms, Np

divides N(2
√
−5) = 20. Also Np divides N(y +

√
−5) = y2 + 5, which is odd, so Np = 5.

If Np = 5 then 5 divides y2 + 5, so 5|y. Then x3 = y2 + 5 ≡ 0 mod 5, so x ≡ 0 mod 5,
so 5 = x3 − y2 ≡ 0 mod 25, which is false. Thus the ideals (y +

√
−5) and (y −

√
−5) are

relatively prime.
Since the ideals (y +

√
−5) and (y −

√
−5) multiply to a cube and are relatively prime,

they are each cubes:

(y +
√
−5) = a3, (y −

√
−5) = b3.

Passing to the ideal class group, [a]3 is principal, so [a] has order dividing 3. Since the class
group has size h = 2, [a] has order 1, which means a is principal, say a = (α). Therefore
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(y +
√
−5) = (α)3 = (α3), so y +

√
−5 = uα3, where u ∈ Z[

√
−5]× = {±1}. Since ±1 are

both cubes, we can absorb them into α and thus write

y +
√
−5 = α3.

Now the proof can be finished up just as we did it before under the (false) assumption that
Z[
√
−5] has unique factorization.

The key point in this treatment of y2 = x3 − 5 is that if a3 is principal and the class
number is prime to 3 then a is principal. We don’t need to have class number 1. To reinforce
this, let’s use that idea in another example.

Example 2. We will show the only integral solutions to y2 = x3 + 2 are (x, y) = (−1,±1).
(There are infinitely many rational solutions, one example being (17/4, 71/8).) While it is
natural to first write x3 = y2 − 2 and then factor the right side by working in Z[

√
2], there

is an infinite unit group for Z[
√

2], which would lead to a multi-case consideration. Instead
we will do a change of variables and work in the imaginary quadratic ring Z[

√
−6]. (This

method is due to A. Brauer.)
If x is even then y2 ≡ 2 mod 8, which has no solution. Thus x is odd, so y2 is odd, so y

is odd.
Set x = z − 1, so y2 = (z − 1)3 + 2 = z3 − 3z2 + 3z + 1. Then (y, z) = 1 and

(2) y2 + 6z2 = z3 + 3z2 + 3z + 1 = (z + 1)3.

In Z[
√
−6] we factor this as

(3) (y +
√
−6z)(y −

√
−6z) = (z + 1)3.

The class number of Q(
√
−6) is 2, so let’s treat equation (3) as an equation of ideals

rather than elements. To show the ideals (y+
√
−6z) and (y−

√
−6z) are relatively prime,

suppose they have a common prime ideal factor p:

y +
√
−6z ≡ 0 mod p, y −

√
−6z ≡ 0 mod p.

We will get a contradiction. Adding and subtracting the congruences, 2y ≡ 0 mod p and
2
√
−6z ≡ 0 mod p. Thus (2y) ⊂ p and (2

√
−6z) ⊂ p. Taking norms, Np divides 4y2 and

24z2. Also Np divides N(y +
√
−6z) = y2 + 6z2, which is odd, so Np is odd. Therefore Np

divides y2 and 3z2. Since y and z are relatively prime, Np|3, so Np = 3. Therefore 3|y2, so
y is a multiple of 3 and x3 = y2 − 2 ≡ 7 mod 9. The only cubes mod 9 and 0, 1, and −1,
so we have a contradiction.

Since the class number 2 is relatively prime to 3, from (3) as an equation of ideals the
factors (y+

√
−6z) and (y−

√
−6z) are both cubes of ideals, and by the same argument as

in Z[
√
−5] the elements y +

√
−6z and y −

√
−6z are both cubes in Z[

√
−6]. Write

(4) y +
√
−6z = (a+ b

√
−6)3.

Taking norms of both sides in (4), y2 + 6z2 = (a2 + 6b2)3, and comparing this with (2) gives
us z + 1 = a2 + 6b2. Equating the imaginary parts in (4), z = 3a2b− 6b3, so

3a2b− 6b3 = a2 + 6b2 − 1.

Putting the a-free terms on the right,

a2(3b− 1) = 6b3 + 6b2 − 1.

Multiply by 9 and reduce modulo 3b− 1:

0 ≡ 2 + 6− 9 = −1 mod 3b− 1.



EXAMPLES OF MORDELL’S EQUATION, II 3

The only moduli where 0 ≡ −1 are ±1, so 3b− 1 is 1 or −1. The first choice is not possible,
while the second leads to b = 0. Then z = 3a2b − 6b3 = 0, so x = z − 1 = −1 and
y2 = x3 + 2 = 1, so y = ±1.

Example 3. The equation y2 = x3−26 has four integral solutions: (3,±1) and (35,±207).
We will use algebraic number theory to prove these are the only integral solutions.

If x is even then y2 ≡ −26 ≡ 6 mod 8, but 6 mod 8 is not a square. Therefore x is odd,
so y is odd too.

Rewrite the equation as

x3 = y2 + 26 = (y +
√
−26)(y −

√
−26)

and pass to principal ideals:

(x)3 = (y +
√
−26)(y −

√
−26).

Step 1: The ideals (y +
√
−26) and (y −

√
−26) are relatively prime.

Suppose the ideals have a common prime ideal factor p, so

y +
√
−26 ≡ 0 mod p, y −

√
−26 ≡ 0 mod p.

Subtracting, 2
√
−26 ≡ 0 mod p, so p|(2)(

√
−26). How do (2) and (

√
−26) factor in

Z[
√
−26]?

p T 2 + 26 mod p (p)
2 T 2 p22
3 (T + 1)(T − 1) p3p

′
3

13 T 2 p213
Table 1.

By Table 1, (2) and (13) are both squares of prime ideals. Since N(
√
−26) = 26 = 2 · 13,

(
√
−26) = p2p13. Therefore p = p2 or p = p13. If p = p2 then from y+

√
−26 ≡ 0 mod p2 we

get y ≡ 0 mod p2, so y is even, so x is even. Then 26 = x3− y2 ≡ 0 mod 4, a contradiction.
If p = p13 then we get a similar contradiction (check). Thus the ideals (y +

√
−26) and

(y −
√
−26) are relatively prime.

Relatively prime ideals multiply to a cube only when each is a cube, so

(5) (y +
√
−26) = a3

for some ideal a. Since a has a principal cube, [a] has order 1 or 3.
Step 2: The class group of Q(

√
−26) is cyclic of order 6.

The Minkowski bound is(
4

π

)2 n!

nn

√
| disc(K)| = 2

√
26

π
≈ 3.24.

So the class group is generated by the prime ideals of norm 2 and 3. Since (2) = p22 and
(3) = p3p

′
3 (see Table 1), [p2] and either [p3] or [p′3] generate the class group. No element of

Z[
√
−26] has norm 2 or 3, so p2, p3, and p′3 are nonprincipal. Since p22 = (2), [p2] has order

2. Since N(1 +
√
−26) = 27 and (3) does not divide (1 +

√
−26), (1 +

√
−26) is either p33 or

p′33 . Therefore the ideal classes [p3] and [p′3] (which are inverses of each other) have order 3,
so the class group is abelian of order 6, hence cyclic.

In particular, the ideal classes of order 3 are [p3] and [p′3].
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Case 1: The ideal a is principal.
When a is principal, write a = (α), so (y+

√
−26) = (α3). The units in Z[

√
−26] are ±1,

which are both cubes, so after perhaps changing α by a sign we get

y +
√
−26 = α3.

This is exactly the equation we derived in our previous look at the equation y2 = x3 − 26,
under the false assumption that Z[

√
−26] has unique factorization. The calculations used

there can now be applied here to derive y = ±207.
Case 2: The ideal a is nonprincipal. So [a] has order 3.
Having already found the possibility y = ±207, now we expect to show y = ±1. When a

is nonprincipal, either [a] = [p3] = [p′3]
−1 or [a] = [p′3] = [p3]

−1, so ap′3 or ap3 is principal.
Let p3 denote the ideal with norm 3 such that ap3 is principal. Multiplying both sides of
the equation (5) by p33,

p33(y +
√
−26) = (α)3

for some α ∈ Z[
√
−26]. The ideal p33 is either (1 +

√
−26) or (1−

√
−26), so

(1±
√
−26)(y +

√
−26) = (α3).

If this holds with one choice of sign then it holds with the other by conjugating everything
(and then replacing y with −y). So it suffices to focus on

(6) (1 +
√
−26)(y +

√
−26) = (α3).

and show y = ±1. In fact, we will see that y = −1.
Since units in Z[

√
−26] are cubes, (6) implies the equation of elements

(1 +
√
−26)(y +

√
−26) = (a+ b

√
−26)3

for some integers a and b. Equating real and imaginary parts,

(7) y − 26 = a3 − 78ab2, y + 1 = 3a2b− 26b3.

Subtracting the first equation from the second,

(8) 27 = 3a2b− 26b3 − a3 + 78ab2.

Reducing (8) modulo 3 shows 0 ≡ b3 − a3 mod 3, so b ≡ a mod 3. Write b = a + 3c and
substitute into (8):

27 = 3a2(a+ 3c)− 26(a+ 3c)3 − a3 + 78a(a+ 3c)2 = 27(2a3 + 9a2c− 26c3).

Hence

(9) 1 = 2a3 + 9a2c− 26c3.

We are going to show the only integral solution to (9) is a = −3 and c = 1. Then
b = a+ 3c = 0 and (7) implies y = −1, so x3 = 27, hence x = 3.

In (9), make the invertible Z-linear change of variables m = c and n = a + 3c (so
a = n− 3m). This turns (9) into

(10) 1 = m3 − 9mn2 + 2n3.

We will show the only integral solution of (10) is m = 1, n = 0 (so a = −3 and c = 1, as
desired). There are infinitely many rational solutions to (10), such as (m,n) = (1, 9/2) and
(m,n) = (−11/5,−4/5). We care only about integral solutions.
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The right side of (10) is the norm from a cubic field. Set F = Q(γ) where γ is a root of
f(T ) = T 3 − 9T − 2. This cubic is irreducible, so [F : Q] = 3. A short calculation shows
NF/Q(r + sγ) = r3 − 9rs2 + 2s3 for rational r and s, so (10) is the same as

NF/Q(m+ nγ) = 1,

which means m + nγ is a unit in Z[γ]. We are searching for units of norm 1 in Z[γ] with
γ2-coefficient equal to 0. That is a strong constraint on a unit.

From now on our attention is focused on the cubic field F , not on the quadratic field
Q(
√
−26).

Step 7: The ring of integers of F = Q(γ) is Z[γ].

Since disc(f(T )) = 233313 = [OF : Z[γ]]2 disc(OF ), we will show 2, 3, and 13 don’t divide
[OF : Z[γ]]. We have disc(f(T )) = [OF : Z[γ]]2 disc(F ). Because 13 only divides disc(f(T ))
once, it doesn’t divide [OF : Z[γ]].

f(T − 1) = T 3 − 3T 2 − 6T + 6,

which is Eisenstein at 3, 3 is totally ramified in OF and 3 does not divide [OF : Z[γ + 1]] =
[OF : Z[γ]].

The only possibility left is [OF : Z[γ]] = 1 or 2. If the index is 2 then disc(OF ) =
2 · 33 · 13 ≡ 2 mod 4, which violates Stickelberger’s congruence (which says the discriminant
of a number field is 0 or 1 mod 4). Therefore [OF : Z[γ]] = 1.

Step 8: Applying the unit theorem.
Returning to (10), we want to show the only unit in Z[γ] = OF with norm 1 having

γ2-coefficient 0 is 1. Since NF/Q(−β) = −NF/Q(β), we can just as well show the only units

having γ2-coefficient 0 are ±1.
Since r1(F ) = 3 and r2(F ) = 0, O×F has rank 2: O×F = ±εZ1 εZ2 .
We will present candidates for fundamental units. By PARI, a set of fundamental units

is 1 + 9γ + 3γ2 and 1 + 4γ − 2γ2.
Try Skolem’s method for p = 2. See [3, p. 204].
This also tells us about power bases in OF . Since

[Z[γ] : Z[xγ + yγ2]] = |x3 − 9xy2 − 2y3|,
for xγ + yγ2 to generate a power basis we need

x3 − 9xy2 − 2y3 = ±1.

The left side is homogeneous of odd degree, so it’s enough to focus on

x3 − 9xy2 − 2y3 = 1.

The only Z-solution is (x, y) = (1, 0), so the only power basis of Z[γ] is {1, γ, γ2}.
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