
MAHLER EXPANSIONS

KEITH CONRAD

1. Introduction

The set C([0, 1],R) of all continuous functions f : [0, 1] → R is a basic example of a
function space in real analysis, and its p-adic analogue is the set C(Zp,Qp) of all continuous
functions f : Zp → Qp. These are analogues both because [0, 1] and Zp are compact and
because R and Qp are both complete. Examples of continuous functions are polynomials
on [0, 1] with real coefficients and polynomials on Zp with p-adic coefficients.

A metric can be put on C([0, 1],R) and C(Zp,Qp) by measuring the distance between
two functions as the largest distance between their values:

(1.1) d(f, g) =


max
x∈[0,1]

|f(x)− g(x)| if f, g : [0, 1]→ R,

max
x∈Zp

|f(x)− g(x)|p if f, g : Zp → Qp.

The maximum really occurs because |f(x)− g(x)| in the real case and |f(x)− g(x)|p in the
p-adic case are continuous functions [0, 1]→ R and Zp → R, and any real-valued continuous
function on a compact metric space has a maximum value (Extreme Value Theorem).

Theorem 1.1. The function d in (1.1) is a metric and the spaces C([0, 1],R) and C(Zp,Qp)
are complete with respect to it.

Proof. See the appendix. �

In both C([0, 1],R) and C(Zp,Qp), the polynomial functions are a dense subset:

(1) if f : [0, 1] → R is continuous and ε > 0 there is a polynomial p(x) with real
coefficients such that |f(x)− p(x)| < ε for all x ∈ [0, 1].

(2) if f : Zp → Qp is continuous and ε > 0 there is a polynomial p(x) with coefficients
in Qp such that |f(x)− p(x)| < ε for all x ∈ Zp.

In the real case, the denseness of polynomials in C([0, 1],R) is due to Weierstrass1 (1885).
The denseness of polynomials in C(Zp,Qp) was first proved by Dieudonne (1944). While
there is no nice description of all the functions in C([0, 1],R) (they are not describable as
power series, since power series are infinitely differentiable and a continuous function need
not be even once differentiable everywhere), in 1958 Mahler [3] gave a very nice description
of all functions in C(Zp,Qp) using infinite series of special polynomials.

Theorem 1.2 (Mahler). Every continuous function f : Zp → Qp can be written in the form

(1.2) f(x) =
∑
n≥0

an

(
x

n

)
= a0 + a1x+ a2

(
x

2

)
+ a3

(
x

3

)
+ · · ·

1This was later generalized by Stone to a result now called the Stone–Weierstrass theorem, describing
conditions under which a suitable collection of continuous real or complex-valued functions on a compact
space is dense in the set of all continuous functions on that space.
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for all x ∈ Zp, where an ∈ Qp and an → 0 as n→∞.

We’ll see there is a formula for the coefficients an in terms of values of f that is reminiscent
of Taylor’s formula for the coefficients of a power series, but it must be stressed that (1.2)
represents an arbitrary continuous function, not a function expressible by a power series.
Just because each

(
x
n

)
is differentiable (even infinitely differentiable) does not mean the series

in (1.2) has that property too. This is similar to the “paradox” of Fourier series, where
continuous functions [0, 1] → R have a representation as an infinite series of sines and
cosines, but need not be differentiable even though sin(nx) and cos(nx) are differentiable.

The expansion (1.2) is called the Mahler expansion of f and the numbers an are called

the Mahler coefficients of f . If fN (x) is the polynomial
∑N

n=0 an
(
x
n

)
then |f(x)− fN (x)|p =

|
∑

n≥N+1 an
(
x
n

)
|p ≤ maxn≥N+1 |an|p since binomial coefficients at p-adic integers are p-adic

integers. This maximum goes to 0 as N → ∞ since an → 0, so Mahler’s theorem is an
explicit (and useful!) way of approximating continuous functions Zp → Qp by polynomials.

2. Continuity and coefficient formula

Before we show every continuous function Zp → Qp has a Mahler expansion, let’s see
why an infinite series

∑
n≥0 an

(
x
n

)
with an → 0 in Qp is a continuous function on Zp.

Step 1: When an → 0 in Qp, the infinite series
∑

n≥0 an
(
x
n

)
converges for all x ∈ Zp.

The key point is that even though
(
x
n

)
= x(x − 1) · · · (x − (n − 1))/n! has n! in the

denominator, which would ordinarily be bad p-adically (because n! is very small p-adically
as n grows), it is not bad when x ∈ Zp because

(
x
n

)
∈ Zp by p-adic continuity of polynomials

and its values on the dense subset N. Thus |
(
x
n

)
|p ≤ 1 for x ∈ Zp, so |an

(
x
n

)
|p ≤ |an|p, which

proves |an
(
x
n

)
|p → 0 from |an|p → 0. Therefore

∑
n≥0 an

(
x
n

)
converges in Qp for each x ∈ Zp.

Step 2: When an → 0 in Qp, the function f : Zp → Qp defined by f(x) =
∑

n≥0 an
(
x
n

)
is

continuous.

For x0 ∈ Zp we want to prove f is continuous at x0. Pick ε > 0. Since an → 0, there is an
N such that |an|p < ε for n ≥ N . Each of the finitely many functions

(
x
n

)
for 0 ≤ n ≤ N −1

is continuous at x0, so by picking the minimal δ used for each of them in the ε-δ definition
of continuity at x0, there is a single δ > 0 such that

(2.1) |x− x0|p < δ =⇒
∣∣∣∣(xn

)
−
(
x0
n

)∣∣∣∣
p

< ε

for n ∈ {0, 1, . . . , N − 1}. If |x− x0|p < δ,

|f(x)− f(x0)|p =

∣∣∣∣∣∣
∑
n≥0

an

((
x

n

)
−
(
x0
n

))∣∣∣∣∣∣
p

≤ max
n≥0
|an|p

∣∣∣∣(xn
)
−
(
x0
n

)∣∣∣∣
p

.

Since
(
x
n

)
−
(
x0

n

)
∈ Zp we have |an|p|

(
x
n

)
−
(
x0

n

)
|p ≤ |an|p < ε for n ≥ N . For the terms

preceding the Nth term, we instead say |an|p
∣∣(x

n

)
−
(
x0

n

)∣∣
p
≤ |an|pε by (2.1). Let A =

maxn≥0 |an|p (this exists since the an’s tend to 0), so |an|p ≤ A for all n. Thus

|x− x0|p < δ =⇒ |f(x)− f(x0)|p ≤ max(ε,Aε) = max(1, A)ε,

so f is continuous at x0. As x0 was arbitrary, f is continuous on Zp.
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Next we will derive a formula for the coefficients in f(x) =
∑

n≥0 an
(
x
n

)
if an → 0 in Qp. It

is easy to get the value of the constant term: setting x = 0 in (1.2) we obtain a0 = f(0) since
all terms vanish in the Mahler expansion except the one at n = 0. Similarly, if x = 1 then all
terms in (1.2) vanish except for the first two: f(1) = a0+a1, so a1 = f(1)−a0 = f(1)−f(0).
Setting x = 2, all terms in (1.2) vanish except the first three: f(2) = a0 + 2a1 + a2, so

a2 = f(2)− a0 − 2a1 = f(2)− f(0)− 2(f(1)− f(0)) = f(2)− 2f(1) + f(0).

These formulas suggest we can write an in terms of f(0), f(1), . . . , f(n), and we will see this
is true.

The basic mechanism behind a formula for an is the discrete difference operator ∆: for
any function f : Zp → Qp, define ∆f : Zp → Qp by

(∆f)(x) = f(x+ 1)− f(x).

This is also a function Zp → Qp, and it can be iterated to have functions ∆nf for n ≥ 2:
∆2f = ∆(∆f), and more generally ∆nf = ∆(∆n−1f). Set ∆0f = f , which is analogous to

the zeroth derivative f (0) of a function f being the function itself.
The discrete difference operator ∆ behaves nicely on the binomial coefficient polynomials

because it shifts them down by one: ∆
(
x
n

)
=
(

x
n−1
)

for n ≥ 1, and ∆
(
x
0

)
= ∆(1) is the zero

function. Indeed, by the Pascal’s triangle recursion for binomial coefficients, if n ≥ 1 then

∆

(
x

n

)
=

(
x+ 1

n

)
−
(
x

n

)
=

((
x

n− 1

)
+

(
x

n

))
−
(
x

n

)
=

(
x

n− 1

)
.

This resembles the effect of differentiation on xn: (xn)′ = nxn−1 for n ≥ 1, and (xn)′ = 0
for n = 0. (A more accurate analogy would be with differentiation on the functions xn/n!,
whose derivative is xn−1/(n− 1)! for n ≥ 1.) Applying ∆ to a function f : Zp → Qp having
a Mahler expansion

∑
n≥0 an

(
x
n

)
where an → 0,

(∆f)(x) =
∑
n≥0

an

(
x+ 1

n

)
−
∑
n≥0

an

(
x

n

)
=
∑
n≥0

an

((
x+ 1

n

)
−
(
x

n

))
=
∑
n≥1

an

(
x

n− 1

)
,

where a0 drops out and other coefficients shift down one position. Reindexing the series to
start at n = 0,

∆
∑
n≥0

an

(
x

n

)
=
∑
n≥0

an+1

(
x

n

)
= a1 + a2x+ a3

(
x

2

)
+ a4

(
x

3

)
+ · · · .

The effect of applying ∆ to a Mahler expansion m times is to shift coefficients m positions:

∆m
∑
n≥0

an

(
x

n

)
=
∑
n≥0

an+m

(
x

n

)
= am + am+1x+ am+2

(
x

2

)
+ am+3

(
x

3

)
+ · · · .

Setting x = 0 leaves only the constant term am, so we have proved the following theorem.

Theorem 2.1. If an → 0 in Qp and f(x) =
∑

n≥0 an
(
x
n

)
for x ∈ Zp, then in terms of the

function f we have an = (∆nf)(0).

This is reminiscent of the formula f (n)(0)/n! for the coefficient of xn in a power series.

(A better analogy is that f (n)(0) is the coefficient of xn/n! in a power series.)
Now we will work out a formula for (∆nf)(0) to verify the earlier guess that an can be

written in terms of f(0), f(1), . . . , f(n). Rather than focusing on the function ∆nf just at
x = 0, it is easier to see what’s going on by getting a formula for (∆nf)(x) for general x.
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Let’s first work out formulas for (∆2f)(x) and (∆3f)(x):

(∆2f)(x) = (∆(∆f))(x)

= (∆f)(x+ 1)− (∆f)(x)

= (f((x+ 1) + 1)− f(x+ 1))− (f(x+ 1)− f(x))

= f(x+ 2)− 2f(x+ 1) + f(x)

(∆3f)(x) = (∆(∆2f))(x)

= (∆2f)(x+ 1)− (∆2f)(x)

= (f(x+ 3)− 2f(x+ 2) + f(x+ 1))− (f(x+ 2)− 2f(x+ 1) + f(x))

= f(x+ 3)− 3f(x+ 2) + 3f(x+ 1)− f(x).

These hold for all functions f : Zp → Qp.
2 Notice the binomial coefficients and alternating

signs.

Theorem 2.2. Let f : Zp → Qp be any function. For n ≥ 0 and x ∈ Zp,

(∆nf)(x) =

n∑
k=0

(−1)n−k
(
n

k

)
f(x+ k).

Proof. We will give two proofs. One is a proof by induction that resembles a proof of the
binomial theorem by induction (using the recursive formula for binomial coefficients) and
the other is a slick proof using the binomial theorem on operators.

Proof by induction on n: When n = 0 the formula says (∆0f)(x) = f(x), and when

n = 1 the formula says (∆1f)(x) = f(x+1)−f(x). These are true by definition (∆1 means
∆). If the formula is true for some n and all x in Zp, then

(∆n+1f)(x) = (∆(∆nf))(x)

= (∆nf)(x+ 1)− (∆nf)(x)

=
n∑

k=0

(−1)n−k
(
n

k

)
f((x+ 1) + k)−

n∑
k=0

(−1)n−k
(
n

k

)
f(x+ k)

=
n∑

k=0

(−1)n−k
(
n

k

)
f(x+ (k + 1)) +

n∑
k=0

(−1)n−k+1

(
n

k

)
f(x+ k)

=

n+1∑
k=1

(−1)n−(k−1)
(

n

k − 1

)
f(x+ k) +

n∑
k=0

(−1)n−(k−1)
(
n

k

)
f(x+ k).

The term in the first sum at k = n+1 is f(x+n+1). The term in the second sum at k = 0
is (−1)n+1f(x). The remaining terms in both sums run from k = 1 to k = n, and together
equal

n∑
k=1

(−1)n−(k−1)
((

n

k − 1

)
+

(
n

k

))
f(x+ k) =

n∑
k=1

(−1)n−(k−1)
(
n+ 1

k

)
f(x+ k).

2The operator ∆ on functions was used by Isaac Newton in his work on the calculus of finite differences,
hundreds of years before its role in p-adic analysis.
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The terms f(x+ n+ 1) and (−1)n+1f(x) fit into this sum at k = n+ 1 and k = 0, so

(∆n+1f)(x) =
n+1∑
k=0

(−1)n−(k−1)
(
n+ 1

k

)
f(x+ k) =

n+1∑
k=0

(−1)n+1−k
(
n+ 1

k

)
f(x+ k).

Proof using binomial theorem: Define the shift operator S on functions by (Sf)(x) =
f(x + 1). Then (∆f)(x) = f(x + 1) − f(x) = (Sf)(x) − f(x), so ∆ = S − I, where
I is the identity operator on functions (If = f). The operators ∆, S, and I are all
linear (e.g., S(af + bg) = aS(f) + bS(g) for functions f and g and scalars a and b). A
product of operators A and B on functions is defined by composition, just like for matrices:
(AB)(f) = A(Bf). Thus powers of an operator mean repeated composition: A2f = A(Af),
A3f = A(A2f) = A(A(Af)), and so on. For linear operators composition commutes with
addition (like for matrices), and since S and I commute we can compute ∆n = (S − I)n by
the binomial theorem:

∆n = (S − I)n =
n∑

k=0

(
n

k

)
Sk(−I)n−k.

Applying this formula for ∆n to a function,

∆nf =

n∑
k=0

(
n

k

)
Sk((−I)n−kf) =

n∑
k=0

(
n

k

)
Sk((−1)n−kf) =

n∑
k=0

(−1)n−k
(
n

k

)
Skf.

What does Skf mean? Since (Sf)(x) := f(x + 1) shifts the variable in the function by 1,
repeating this k times shifts the variable by k: (Skf)(x) = f(x+k) for all k ≥ 0. Therefore

(∆nf)(x) =

n∑
k=0

(−1)n−k
(
n

k

)
(Skf)(x) =

n∑
k=0

(−1)n−k
(
n

k

)
f(x+ k).

�

Corollary 2.3. If f(x) =
∑

n≥0 an
(
x
n

)
for x ∈ Zp, where an → 0 in Qp, then an =

(∆nf)(0) =
∑n

k=0(−1)n−k
(
n
k

)
f(k).

Proof. We have an = (∆nf)(0) by Theorem 2.1. Set x = 0 in Theorem 2.2. �

This corollary shows a continuous function f : Zp → Qp can be written as a Mahler
expansion in at most one way, with the coefficients determined by the values of f on the
nonnegative integers. That the knowledge of f on N should be enough to figure out the
coefficients in a potential Mahler expansion for f is not a surprise: N is a dense subset of
Zp, so any continuous function on Zp is determined by its values on N. But that is only
a determination in principle. What is a surprise is how concretely the values in f(N) are
used in the coefficient formula.

3. Proof of Mahler’s theorem

Up to this point we have checked Mahler expansions with coefficients tending to 0 are
continuous functions and we have seen how the coefficients in such an expansion can be
written in terms of values of the function. But we have not yet proved Mahler’s theorem
(Theorem 1.2): continuous functions Zp → Qp can be represented by Mahler expansions.
This gap will be rectified now. Since the ideas used in the proof will not occur elsewhere,
the reader can skip the proof to see what comes next and return to this section later.
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Proof. For a continuous function f : Zp → Qp, set an := (∆nf)(0) =
∑n

k=0(−1)n−k
(
n
k

)
f(k).

Our goal is two-fold:

(1) show an → 0 as n→∞, where an = (∆nf)(0),
(2) show f(x) =

∑
n≥0 an

(
x
n

)
for all x ∈ Zp.

Let’s check first that (2) follows from (1). In (2), the series
∑

n≥0 an
(
x
n

)
is continuous on

Zp by (1), so to prove the series equals f it suffices to check these two continuous functions
are equal on the dense subset of nonnegative integers. For m ∈ N,

∑
n≥0

an

(
m

n

)
=

m∑
n=0

(
n∑

k=0

(−1)n−k
(
n

k

)
f(k)

)(
m

n

)
=

m∑
k=0

(
m∑

n=k

(−1)n−k
(
n

k

)(
m

n

))
f(k)

Rewrite
(
n
k

)(
m
n

)
as n!

k!(n−k)!
m!

n!(m−n)! = m!
k!(n−k)!(m−n)! = m!

k!(m−k)!
(m−k)!

(n−k)!(m−n)! =
(
m
k

)(
m−k
n−k

)
.

Thus ∑
n≥0

an

(
m

n

)
=

m∑
k=0

(
m∑

n=k

(−1)n−k
(
m

k

)(
m− k
n− k

))
f(k)

=

m∑
k=0

(
m∑

n=k

(−1)n−k
(
m− k
n− k

))(
m

k

)
f(k)

=
m∑
k=0

(
m−k∑
n=0

(−1)n
(
m− k
n

))(
m

k

)
f(k).

The inner sum over n is the binomial expansion of (1− 1)m−k, which is 0 for k < m and is
1 for k = m, so

∑
n≥0 an

(
m
n

)
=
(
m
m

)
f(m) = f(m). That proves

∑
n≥0 an

(
x
n

)
and f(x) agree

when x ∈ N, so they agree everywhere by continuity of both functions on Zp.
It remains to show that if f : Zp → Qp is continuous then (∆nf)(0)→ 0. Our argument

comes from [4, p. 156] and is one of the nicer proofs of this fact that I have seen.
To prove what we want we’ll prove something stronger: not just |(∆nf)(0)|p → 0, but

|(∆nf)(x)|p → 0 uniformly in x. That is, we will show ||∆nf || → 0 as n → ∞ where
||∆nf || := maxx∈Zp |(∆nf)(x)|p. For each n and x,

|(∆n+1f)(x)|p = |(∆(∆nf))(x)|p
= |(∆nf)(x+ 1)− (∆nf)(x)|p
≤ max(|(∆nf)(x+ 1)|p, |(∆nf)(x)|p)
≤ ||∆nf ||,

and taking a maximum on the left over all x in Zp gives us ||∆n+1f || ≤ ||∆nf ||. By
induction ||∆mf || ≤ ||∆nf || for m ≥ n, so it suffices to prove ||∆nif || → 0 along a sequence
n1 < n2 < n3 < · · · tending to ∞. We will use the powers of p, i.e., prove ||∆prf || → 0 as
r →∞. (This is a typical p-adic idea: things get small using high powers of p.)

For n ≥ 1 and x ∈ Zp,

(∆nf)(x) =
n∑

k=0

(−1)n−k
(
n

k

)
f(x+ k) =

n∑
k=0

(−1)n−k
(
n

k

)
(f(x+ k)− f(x))
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since
∑n

k=0(−1)n−k
(
n
k

)
= (1− 1)n = 0. The k = 0 term is (−1)n(f(x)− f(x)) = 0, so drop

it:

(∆nf)(x) =
n∑

k=1

(−1)n−k
(
n

k

)
(f(x+ k)− f(x)).

Setting n = pr for r ≥ 0, we will show that in the sum

(3.1) (∆prf)(x) =

pr∑
k=1

(−1)p
r−k
(
pr

k

)
(f(x+ k)− f(x))

each term is small when r is large, independently of k and x.

Claim: For 1 ≤ k ≤ pr, ordp

(
pr

k

)
= r − ordp(k).

This is based on an important “factoring” formula for binomial coefficients: for k ≥ 1,

(3.2)

(
x

k

)
=
x

k

(
x− 1

k − 1

)
.

The verification of this identity is an algebraic calculation left to the reader. Setting x = pr,(
pr

k

)
=
pr

k

(
pr − 1

k − 1

)
.

We will show the integer
(
pr−1
k−1

)
is not divisible by p, so ordp

(
pr

k

)
= ordp(p

r) − ordp(k) =

r − ordp(k), and that is the claim.
Using the formula for the highest power of p in a factorial,

ordp

(
pr − 1

k − 1

)
= ordp

(
(pr − 1)!

(k − 1)!(pr − k)!

)
=

pr − 1− sp(pr − 1)

p− 1
− k − 1− sp(k − 1)

p− 1
− pr − k − sp(pr − k)

p− 1

=
sp(k − 1) + sp(p

r − k)− sp(pr − 1)

p− 1
.

We will show the numerator is 0. It is clear if k = pr, so assume 1 ≤ k ≤ pr − 1. Write k
in base p as cip

i + · · ·+ cr−1p
r−1 with ci 6= 0 (so i = ordp(k)). Then

k − 1 = (p− 1) + · · ·+ (p− 1)pi−1 + (ci − 1)pi + ci+1p
i+1 + · · ·+ cr−1p

r−1

pr − k = (p− ci)pi + (p− 1− ci+1)p
i+1 + · · ·+ (p− 1− cr−1)pr−1

pr − 1 = (p− 1) + (p− 1)p+ · · ·+ (p− 1)pr−1.

Thus

sp(k − 1) + sp(p
r − k) = ((p− 1)i+ sp(k)− 1) + (1 + (p− 1)(r − i)− sp(k))

= (p− 1)r

= sp(p
r − 1),

which completes the proof of the claim.
For each ε > 0 we want to show |(∆prf)(x)|p < ε for all large r and all x in Zp. By (3.1),

|(∆prf)(x)|p ≤ max
1≤k≤pr

∣∣∣∣(prk
)∣∣∣∣

p

|f(x+ k)− f(x)|p.
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Each term in the maximum is bounded above: |
(
pr

k

)
|p ≤ 1 and |f(x + k) − f(x)|p ≤ ||f ||.

We’ll show for large r that one factor in each term is small, so each term is (bounded)(small)
= small.

For 1 ≤ k ≤ pr, by the claim |
(
pr

k

)
|p = 1/pr−ordp(k) = 1/(pr|k|p), so |

(
pr

k

)
|p|k|p = 1/pr.

Therefore |
(
pr

k

)
|p ≤ 1/

√
pr or |k|p ≤ 1/

√
pr. Choosing ε > 0, there is δ > 0 such that

|x− y|p < δ in Zp implies |f(x)− f(y)|p < ε. Pick R so large that 1/
√
pR < min(δ, ε). For

r ≥ R and each k between 1 and pr we have two options:

(1) If |
(
pr

k

)
|p ≤ 1/

√
pr then |

(
pr

k

)
|p|f(x+ k)− f(x)|p ≤ (1/

√
pr)||f || ≤ ε||f ||.

(2) If |k|p ≤ 1/
√
pr then |k|p < δ, so for all x ∈ Zp we have |(x + k) − x|p < δ. Thus

|f(x+ k)− f(x)|p < ε, so |
(
pr

k

)
|p|f(x+ k)− f(x)|p ≤ |f(x+ k)− f(x)|p < ε.

Thus for each ε > 0 there is R > 0 such that r ≥ R =⇒ ||∆prf || ≤ εmax(||f ||, 1). �

Remark 3.1. We have shown continuous functions f : Zp → Qp admit a series repre-
sentation

∑
n≥0 an

(
x
n

)
where an → 0 in Qp. Could a discontinuous function Zp → Qp

admit such a series representation with an not tending to 0? No. The reason is that(−1
n

)
= (−1)n (check!), so if f(x) =

∑
n≥0 an

(
x
n

)
for all x in Zp, where an ∈ Qp, then

f(−1) =
∑

n≥0 an(−1)n so |an|p → 0 and therefore f has to be continuous.
This trick of evaluating f at −1 is essential, because if we remove −1 from the domain

then a Mahler-like expansion can converge everywhere else with coefficients not tending to
0. For example, if x ∈ Zp−{−1} then set f(x) = 1

x+1

∑
r≥0 ar

(
x+1
pr

)
=
∑

r≥0
ar
pr

(
x

pr−1
)

where

ar → 0 in Qp with a0 6= 0 and ar/p
r 6→ 0 in Qp (e.g., ar = p[r/2]). The series

∑
r≥0 ar

(
x+1
pr

)
is continuous on Zp, so f is continuous on Zp−{−1} and (x+ 1)f(x)→ a0 6= 0 as x→ −1.
Therefore f can’t be extended continuously to x = −1, but it has a Mahler-type expansion
valid everywhere else on Zp using the second formula that has unbounded coefficients.

Mahler’s theorem extends to a description of all continuous functions on Zp taking values
in fields other than Qp.

Theorem 3.2. Let (K, | · |) be a p-adic field, i.e., a complete valued extension of Qp. If
an → 0 in K then the series

∑
n≥0 an

(
x
n

)
converges for all x ∈ Zp and is continuous.

Conversely, every continuous function f : Zp → K has a unique representation in the form∑
n≥0 an

(
x
n

)
where an ∈ K and an → 0. Explicitly, an = (∆nf)(0) =

∑n
k=0(−1)n−k

(
n
k

)
f(k).

Proof. The proof is identical to the arguments used when K = Qp. �

Example 3.3. If |a− 1|p < 1 in Qp then the series f(x) =
∑

n≥0(a− 1)n
(
x
n

)
is continuous

on Zp since |(a− 1)n|p → 0. At a positive integer m we have
(
m
n

)
= 0 for n > m, so

f(m) =
m∑

n=0

(a− 1)n
(
n

m

)
= (1 + (a− 1))m = am.

Therefore we have p-adically interpolated the power sequence {am} from m ∈ N to a
continuous function on Zp that is denoted ax:

(3.3) ax =
∑
n≥0

(a− 1)n
(
x

n

)
.
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For example, in Q2 with a = −1 we have∑
n≥0

(−2)n
(
x

n

)
= (−1)x =

{
1, if x ∈ 2Z2,

−1, if x ∈ 1 + 2Z2.

It’s interesting how “nontrivial” the Mahler expansion of this locally constant function on
Z2 looks.

4. Properties of Mahler expansions

Theorem 4.1. For a continuous function f : Zp → Qp with Mahler expansion
∑

n≥0 an
(
x
n

)
,

max
x∈Zp

|f(x)|p = max
n≥0
|an|p.

Proof. For each x ∈ Zp,

|f(x)|p =

∣∣∣∣∣∣
∑
n≥0

an

(
x

n

)∣∣∣∣∣∣
p

≤ max
n≥0

∣∣∣∣an(xn
)∣∣∣∣

p

≤ max
n≥0
|an|p.

Therefore maxx∈Zp |f(x)|p ≤ maxn≥0 |an|p.
To get the reverse inequality we use the formula for each an as (∆nf)(0):

|an|p =

∣∣∣∣∣
n∑

k=0

(−1)n−k
(
n

k

)
f(k)

∣∣∣∣∣
p

≤ max
0≤k≤n

∣∣∣∣(nk
)
f(k)

∣∣∣∣
p

≤ max
0≤k≤n

|f(k)|p ≤ max
x∈Zp

|f(x)|p.

Thus maxn≥0 |an|p ≤ maxx∈Zp |f(x)|p. �

Corollary 4.2. For continuous functions f, g : Zp → Qp with respective Mahler expansions∑
n≥0 an

(
x
n

)
and

∑
n≥0 bn

(
x
n

)
, maxx∈Zp |f(x)− g(x)|p = maxn≥0 |an − bn|p.

Proof. The Mahler expansion of f − g is
∑

n≥0(an − bn)
(
x
n

)
. �

This theorem and corollary are true for continuous functions from Zp to any p-adic field,
not just to Qp.

Theorem 4.3. In Qp, if |a − 1|p ≤ 1/p for p 6= 2 and |a − 1|2 ≤ 1/4 for p = 2 then
|ax − 1|p = |a− 1|p|x|p for all x ∈ Zp.

Proof. This is obvious if a = 1 or if x = 0, so let’s assume a 6= 1 and x 6= 0.
From the Mahler expansion and (3.2),

ax = 1 + (a− 1)x+
∑
n≥2

(a− 1)n
(
x

n

)
= 1 + (a− 1)x+

∑
n≥2

(a− 1)n
x

n

(
x− 1

n− 1

)
.

Subtract 1 and we get

|ax − 1|p =

∣∣∣∣∣∣(a− 1)x+
∑
n≥2

(a− 1)n

n
x

(
x− 1

n− 1

)∣∣∣∣∣∣
p

.

We will show when a 6= 1 that |(a − 1)n/n|p < |a − 1|p for all n ≥ 2. This inequality is

equivalent to |a− 1|p < |n|1/(n−1)p and the reader can check (1/p)1/(p−1) ≤ |n|1/(n−1)p for all
n ≥ 2 (there is equality only when n = p, but that doesn’t matter), so from |a − 1|p ≤
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1/p < (1/p)1/(p−1) when p 6= 2 or from |a − 1|2 ≤ 1/4 < 1/2 when p = 2 we have verified
|(a− 1)n/n|p < |a− 1|p for all n ≥ 2. Then∣∣∣∣∣∣
∑
n≥2

(a− 1)n

n
x

(
x− 1

n− 1

)∣∣∣∣∣∣
p

≤ max
n≥2

∣∣∣∣(a− 1)n

n

∣∣∣∣
p

|x|p < |a− 1|p|x|p (we use a 6= 1, x 6= 0 here),

so by the strong triangle inequality |ax − 1|p = |a− 1|p|x|p. �

More generally, for any p-adic field (K, | · |) and a ∈ K with |a − 1| < 1, the continuous
function ax for x ∈ Zp defined by the Mahler expansion (3.3) equals am when x = m ∈ N,
so Mahler expansions prove the power sequence {am} has a continuous p-adic interpolation.

Theorem 4.3 is valid when |a−1| < (1/p)1/(p−1): under that condition, |ax−1| = |a−1||x|p.

Theorem 4.4. For a p-adic field K, a continuous function
∑

n≥0 an
(
x
n

)
from Zp to K is

p-adic analytic (representable by a power series on Zp) if and only if an/n!→ 0 in K.

Proof. Suppose an/n!→ 0. For x ∈ Zp,

f(x) =
∑
n≥0

an

(
x

n

)
=
∑
n≥0

an
n!
x(x− 1) · · · (x− (n− 1)).

Write x(x − 1) · · · (x − (n − 1)) =
∑

m≥0 cmnx
m where cmn ∈ Z for m ≤ n and cmn = 0

when m > n. (At n = 1 this is the constant polynomial 1.) Then

(4.1) f(x) =
∑
n≥0

an
n!
x(x− 1) · · · (x− (n− 1)) =

∑
n≥0

∑
m≥0

an
n!
cmnx

m.

We want to switch the order of summation here. A condition that justifies this is having
the (m,n)-th term tend to 0 as max(m,n)→∞.

• If m > n then the (m,n)-th term is 0 since cmn = 0.
• If n ≥ m, then from cmn ∈ Z and x ∈ Zp we can bound the (m,n)-th term:∣∣∣an

n!
cmnx

m
∣∣∣ ≤ ∣∣∣an

n!

∣∣∣ ,
and |an/n!| can be made arbitrarily small for large enough n (independently of the
choice of m when m ≤ n).

Therefore the (m,n)-th term in the double sum in (4.1) tends to 0 as max(m,n) → ∞, so
we can switch the order of summation and get

f(x) =
∑
m≥0

∑
n≥0

an
n!
cmnx

m =
∑
m≥0

∑
n≥m

an
n!
cmn

xm,

which is a power series in x.
Conversely, assume f(x) =

∑
m≥0 bmx

m on Zp where bm ∈ K. Since this power series
converges at 1, bm → 0. The sequence of powers xm and the sequence of “falling powers”
xm = x(x − 1) · · · (x − (m − 1)) are each Z-linear combinations of each other (since each
sequence has one term of each degree with integral coefficients and leading coefficient 1),
so xm =

∑m
k=0 smkx

k =
∑m

k=0 smkk!
(
x
k

)
where3 smk ∈ Z, so xm =

∑
k≥0 dmk

(
x
k

)
, where

3The integers smk are called Stirling numbers of the second kind.
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dmk = smkk! for k ≤ m and dmk = 0 for k > m. Note k! | dmk. Then

f(x) =
∑
m≥0

bm
∑
k≥0

dmk

(
x

k

)
=
∑
m≥0

∑
k≥0

bmdmk

(
x

k

)
.

Again we want to switch the order of summation. If k > m then the (m, k)-th term is 0
since dmk = 0. If k ≤ m then |bmdmk

(
x
k

)
| ≤ |bm| since dmk ∈ Z, and this becomes arbitrarily

small as m grows since bm → 0. Thus we can switch the order of summation and obtain

f(x) =
∑
k≥0

∑
m≥0

bmdmk

(
x

k

)
=
∑
k≥0

∑
m≥k

bmdmk

(x
k

)
,

which is the Mahler expansion for f (by uniqueness). Since k! | dmk,∣∣∣∣
∑

m≥k bmdmk

k!

∣∣∣∣ =

∣∣∣∣∣∣
∑
m≥k

bm
dmk

k!

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
m≥k

bm

∣∣∣∣∣∣ ≤ max
m≥k
|bm|,

and this maximum tends to 0 as k → ∞, so the kth Mahler coefficient of f divided by k!
tends to 0. �

Corollary 4.5. For a in a p-adic field K with |a− 1| < 1, the continuous function ax for

x ∈ Zp is p-adic analytic on Zp if and only if |a− 1| < (1/p)1/([p−1).

Proof. Since ax =
∑

n≥0(a − 1)n
(
x
n

)
, this function is representable by a power series on

Zp if and only if |(a − 1)n/n!| → 0. We want to show this condition holds if and only if

|a− 1| < (1/p)1/(p−1). To start,∣∣∣∣(a− 1)n

n!

∣∣∣∣ =
|a− 1|n

|n!|p
= |a− 1|np(n−sp(n))/(p−1) =

(|a− 1|p1/(p−1))n

psp(n)/(p−1)
≤ (|a− 1|p1/(p−1))n

since sp(n) ≥ 0. Therefore if |a− 1| < (1/p)1/(p−1) we get (|a− 1|p1/(p−1))n → 0 as n→∞,

so |(a− 1)n/n!| → 0. And if |a− 1| ≥ (1/p)1/(p−1) then |a− 1|p1/(p−1) ≥ 1, so∣∣∣∣(a− 1)n

n!

∣∣∣∣ =
(|a− 1|p1/(p−1))n

psp(n)/(p−1)
≥ 1

psp(n)/(p−1)
,

and when n is a power of p we have sp(n) = 1, so the lower bound |(a−1)n/n!| ≥ 1/p1/(p−1)

occurs infinitely often, which shows (a− 1)n/n! does not tend to 0 in K. �

If |a − 1| < (1/p)1/(p−1) then there is an explicit power series for ax using the p-adic
exponential and logarithm: ax = ex log a =

∑
n≥0((log a)n/n!)xn. This particular power

series formula breaks down if (1/p)1/(p−1) ≤ |a− 1| < 1, and Corollary 4.5 says there is no
power series for ax anyway in this case: the function is continuous but not p-adic analytic.

We have described two properties of a continuous function in terms of its Mahler co-
efficients: its maximal size (Theorem 4.1) and whether or not it is p-adic analytic (The-
orem 4.4). There is a criterion for pointwise differentiability also: f(x) =

∑
n≥0 an

(
x
n

)
is differentiable at a p-adic integer y if and only if (∆nf)(y)/n → 0 as n → ∞, in
which case f ′(y) =

∑
n≥1(−1)n−1(∆nf)(y)/n. For example, if f(x) =

∑
r≥0 p

r
(
x
pr

)
then

(∆pkf)(y) = pk +
∑

r≥k+1 p
r
( y
pr−pk

)
, so |(∆pkf)(y)/pk|p = 1 and thus differentiability at

each y fails: the series
∑

r≥0 p
r
(
x
pr

)
is a continuous nowhere differentiable function Zp → Qp.
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The equality of maxima in Theorem 4.1 can be interpreted as an isometry between two
metric spaces, as follows. Let c0(Qp) = {(a0, a1, a2, . . .) : an ∈ Qp, an → 0} be the set of all
sequences in Qp that tend to 0. For example, c0(Qp) contains (1, p, p2, . . . , pn, . . .) and all
sequences whose terms eventually equal 0. Under componentwise addition and the natural
scaling rule t(a0, a1, . . . , an, . . .) = (ta0, ta1, . . . , tan, . . .), c0(Qp) is a vector space over Qp.
Make c0(Qp) a metric space by defining the distance between two sequences in c0(Qp) to
be the maximum distance between terms in corresponding positions:

d(a,b) = max
n≥0
|an − bn|p.

Sending each f ∈ C(Zp,Qp) to its sequence (a0, a1, . . .) of Mahler coefficients is a mapping
C(Zp,Qp) → c0(Qp) that is a bijection: it is surjective by Section 2 and it is injective
since a continuous function Zp → Qp is completely determined by its Mahler coefficients.
Theorem 4.1 tells us that if f(x) =

∑
n≥0 an

(
x
n

)
and g(x) =

∑
n≥0 bn

(
x
n

)
in C(Zp,Qp) then

maxx∈Zp |f(x)− g(x)|p = maxn≥0 |an− bn|p, which says the distance between two functions
C(Zp,Qp) and between their Mahler coefficient sequences in c0(Qp) are equal.

5. Integration of functions in C(Zp,Qp)

One of the most important applications of the Mahler expansion is in the development
of p-adic integration. What is a p-adic integral? We will abstract properties of the definite
integral of continuous functions f : [0, 1]→ R to define integration of functions in C(Zp,Qp).

For f ∈ C([0, 1],R), the definite integral
∫ 1
0 f(x) dx is a real number and integration is a

mapping C([0, 1],R)→ R that has a few properties:

• Linearity:
∫ 1
0 (af(x) + bg(x)) dx = a

∫ 1
0 f(x) dx+ b

∫ 1
0 g(x) dx for a, b ∈ R and f, g ∈

C([0, 1],R),
• Continuity: functions that are close in C([0, 1],R) have close integrals. This is

made explicit with the bound |
∫ 1
0 (f(x)− g(x)) dx| ≤ maxx∈[0,1] |f(x)− g(x)| for all

f, g ∈ C([0, 1],R).

Integration also preserves positivity (if f ≥ 0 on [0, 1] then
∫ 1
0 f(x) dx ≥ 0), but we don’t

pay attention to this since it doesn’t carry over to the p-adics.
There are other mappings I : C([0, 1],R) → R that are linear and continuous besides

I(f) =
∫ 1
0 f(x) dx. Examples include I(f) = f(0) and I(f) =

∫ 1
0 f(x)(2x2 + x) dx. They

can be regarded as generalized integrals on C([0, 1],R).

Definition 5.1. An integral on C(Zp,Qp) is a continuous Qp-linear map C(Zp,Qp)→ Qp.

Example 5.2. For a bounded sequence b = {bn} in Qp, define Ib : C(Zp,Qp)→ Qp by

(5.1) Ib(f) =
∑
n≥0

anbn,

where the an’s are the Mahler coefficients of f . This series converges: letting |bn|p ≤ B for
all n ≥ 0, we have |anbn| ≤ |an|B → 0. It is easy to see Ib is Qp-linear, and it is continuous
since

|Ib(f)|p =

∣∣∣∣∣∣
∑
n≥0

anbn

∣∣∣∣∣∣
p

≤ max
n≥0
|anbn|p ≤ max

n≥0
|an|pB = max

x∈Zp

|f(x)|pB,

so small continuous functions on Zp have small integrals.
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In effect we are defining Ib(
(
x
n

)
) = bn for all n and extending Ib to the rest of C(Zp,Qp)

by linearity and continuity. The continuity meant here is for the metric d on C(Zp,Qp) that

makes it complete: if f(x) =
∑

n≥0 an
(
x
n

)
then

∑N
n=0 an

(
x
n

)
→ f in C(Zp,Qp) as N → ∞,

so

Ib

∑
n≥0

an

(
x

n

) = Ib

 lim
N→∞

∑
n≥N

an

(
x

n

) = lim
N→∞

Ib

(
N∑

n=0

an

(
x

n

))
,

and by linearity Ib(
∑N

n=0 an
(
x
n

)
) =

∑N
n=0 anIb

((
x
n

))
=
∑N

n=0 anbn. Passing to the limit as

N →∞, Ib

(∑
n≥0 an

(
x
n

))
=
∑

n≥0 anbn.

It can be shown that this example is in fact completely general: every integral on
C(Zp,Qp) is an infinite dot product of Mahler coefficients against a bounded sequence,
as in (5.1).4 Specific choices of bounded sequences in Qp (or in other p-adic fields) define
integrals that lead to p-adic zeta-functions and L-functions [2, Chap. 4]. These are p-adic
analogues of the zeta and L-functions on C from analytic number theory. Integration on
C(Zp,Qp) can also be developed without using Mahler expansions [1, Chap. 2].

Appendix A. Completeness

We want to prove that C([0, 1],R) and C(Zp,Qp) are complete with respect to the metric
described in (1.1). All that matters about [0, 1] and Zp is that they are compact in order
for the maximum in (1.1) to occur. We will prove completeness of these spaces as a special
case of completeness of the space of continuous functions from any compact metric space
to a complete valued field.

Theorem A.1. Let (X, dX) be a compact metric space and (K, | · |) be a complete valued
field. On the set C(X,K) of all continuous functions from X to K, define

d(f, g) = max
x∈X
|f(x)− g(x)|.

This is a metric and C(X,K) is complete for this metric.

Proof. It is easy to check that d fits the axioms for a metric:

(1) Easily d(f, g) ≥ 0 with equality if and only if f(x) = g(x) for all x ∈ X (so f = g
in C(X,K))

(2) Obviously d(f, g) = d(g, f).
(3) (Triangle inequality) For three continuous functions f, g, h ∈ C(X,K), let d(f, g) =
|f(x0)− g(x0)|. Using the triangle inequality for the absolute value on K,

d(f, g) = |f(x0)− g(x0)| ≤ |f(x0)− h(x0)|+ |h(x0)− g(x0)| ≤ d(f, h) + d(h, g).

Actually, the only delicate issue about the metric d is that it makes sense: the maximum
really exists. We discussed this in Section 1 for K = R and Qp, but do it again. Showing
there is a maximum relies on compactness of X: for continuous functions f, g : X → K,
the function |f − g| : X → R is continuous (the difference f − g is continuous X → K and
the absolute value | · | : K → R is continuous, and the composite of continuous functions
is continuous) and a continuous real-valued function on any compact metric space has a
maximum (as well as a minimum) value.

4See Theorems 3.2 and 3.4 of https://kconrad.math.uconn.edu/blurbs/analysis/sequencespaceto0.pdf.

https://kconrad.math.uconn.edu/blurbs/analysis/sequencespaceto0.pdf
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To show every Cauchy sequence {fn} in C(X,K) has a limit in C(X,K) will be broken
up into three steps:

Step 1: Create a candidate limit function f .
For each a ∈ X the sequence of numbers {fn(a)} in K is Cauchy since

|fm(a)− fn(a)| ≤ max
x∈X
|fm(x)− fn(x)| = d(fm, fn)

and the value on the right is arbitrarily small for all large enough m and n. Therefore
limn→∞ fn(a) exists in K by completeness. Call the limit value f(a). We have
defined a function f : X → K.

Step 2: Show f is continuous.
This will be proved with an ε/3 argument.
Pick a ∈ X and ε > 0. We need to find δ > 0 such that dX(a,X) < δ =⇒

|f(x)− f(a)| < ε.
Since {fn} is Cauchy, there is N such that m,n ≥ N =⇒ d(fm, fn) < ε/3, so

for all x ∈ X and m ≥ N we have |fm(x) − fN (x)| < ε/3. Letting m → ∞ in this
inequality, |f(x)− fN (x)| ≤ ε/3 for all x in X. Thus for each x in X,

|f(x)− f(a)| ≤ |f(x)− fn(x)|+ |fN (x)− fN (a)|+ |fN (a)− f(a)|

≤ ε

3
+ |fN (x)− fN (a)|+ ε

3

=
2

3
ε+ |fN (x)− fN (a)|.

Since fN is continuous at a, there is δ > 0 such that |x−a| < δ =⇒ |fN (x)−fN (a)| <
ε/3. Therefore

|x− a| < δ =⇒ |f(x)− f(a)| ≤ 2

3
ε+ |fN (x)− fN (a)| < ε,

which proves f is continuous at each a ∈ X.
Step 3: Show d(fn, f)→ 0.

We essentially repeat the beginning of Step 2. From {fn} being Cauchy there is
an N such that m,n ≥ N =⇒ d(fm, fn) < ε/3, so for all x ∈ X and m,n ≥ N we
have |fm(x) − fn(x)| < ε/3. Letting m → ∞ here, we get |f(x) − fn(x)| ≤ ε/3 for
all x ∈ X. Therefore d∞(f, fn) ≤ ε/3 < ε.

�

A similar theorem can be formulated where the domain X is not assumed to be compact,
but then we have to work with the continuous functions that are bounded (which is automatic
for continuous functions X → K when X is compact). If (X, dX) is a metric space and
Cb(X,K) is the set of bounded continuous functions X → K, then a metric on Cb(X,K) is
given by

d(f, g) = sup
x∈X
|f(x)− g(x)|,

where we use a supremum instead of a maximum because there is no guarantee (without X
being compact) that a maximum value of |f(x)− g(x)| over all x exists; when f and g have
bounded values in K then the real numbers |f(x)− g(x)| are bounded so the supremum of
this set in R exists. Since it is not guaranteed that the supremum defining d(f, g) is achieved,
we can’t assume d(f, g) = |f(x0) − g(x0)| for some x0 ∈ X, so proving d is a metric on
Cb(X,K) requires a little ε-fiddling with the definition of the supremum compared to the
case when X is compact. This is left to the reader.
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Theorem A.2. If (X, dX) is any metric space and (K, | · |) is a complete valued field then
Cb(X,K) is complete for the metric d above.

The proof of this is left to the reader. It is similar to the proof of Theorem A.1, but there
is an extra step: proving the limit function is bounded, not just continuous.

There is a theorem of this type for functions having values not just in a complete valued
field, but in any complete metric space.

Theorem A.3. For metric spaces (X, dX) and (Y, dY ), let Cb(X,Y ) denote the set of
bounded continuous functions from X to Y . On Cb(X,Y ) the function

d(f, g) = sup
x∈X

dY (f(x), g(x))

is a metric, and if Y is complete for dY then Cb(X,Y ) is complete for d.

The proof is very much like that of Theorem A.2 except for added notation: expressions
like |f(x)− f(a)| have to be replaced by dY (f(x), f(a)).
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