
LOCAL COMPACTNESS OF CHARACTER GROUPS BY ASCOLI

1. Introduction

Let G be a locally compact abelian group. (It is assumed, as usual, that all topological
groups under discussion are Hausdorff.) A character of G is a continuous homomorphism

G→ S1. We denote the set of characters of G by Ĝ. It is an abelian group under pointwise
multiplication.

We topologize Ĝ with the subspace topology as a subset of the space C(G,C) of continu-
ous functions G→ C with the compact-open topology. That means basic open sets around

the trivial character 1 in Ĝ are

{χ ∈ Ĝ : |χ− 1| < ε for all x ∈ K}

for compact K in G and ε > 0. The compact-open topology on C(G,C) is Hausdorff, so

the topology on Ĝ is Hausdorff. With the above topology Ĝ is a topological group and it is
a closed subset of C(G,C) (intuitively, a limit of homomorphisms is a homomorphism).

Our goal here is to explain why Ĝ is locally compact. Local compactness is one of the first

nontrivial properties of Ĝ, but in most books I looked at that cover harmonic analysis on
general locally compact abelian groups, the local compactness is explained by properties of
commutative Banach algebras (applied to L1(G)) and then a comparison of two topologies

on Ĝ: see [2, Theorem 3.2.1], [3, p. 86], [4, Theorem 23.15], [5, pp. 135, 137], and [8,
p. 9, App. D4]. The only exceptions I found are [9, Sect. 27], whose first edition predates
the use of Banach algebra techniques, and [7, Prop. 3.2(v)], which does not use Banach

algebras but has a comparison of two topologies on Ĝ. The approach we take here doesn’t
use Banach algebras. It uses a standard theorem in analysis that describes when a set of
continuous functions is compact: Ascoli’s theorem. (The proof of Ascoli’s theorem [6, Chap.
7, Theorem 6.1] involves showing in a few cases that two topologies on a set of functions
are the same, so the “equal topologies” part of the standard proof of local compactness of

Ĝ is still present, but logically it is hidden away in Ascoli’s theorem. The compactness in

Ascoli’s theorem relies on Tychonoff’s theorem, and all proofs of local compactness of Ĝ for
general G ultimately rely on Tychonoff’s theorem in some form.)

2. Local compactness of Ĝ

We start with a standard lemma about continuity of a shift inside an L1-function on G.

Lemma 2.1. Fix f ∈ L1(G). For y ∈ G, let Lyf : G → C by (Lyf)(x) = f(yx). Then
Lyf ∈ L1(G) and the map y 7→ Lyf from G to L1(G) is continuous.

Proof. By left invariance of Haar measure, Lyf ∈ L1(G) when f ∈ L1(G).
To prove continuity of y 7→ Lyf , the basic idea is to check it directly on the dense subset

Cc(G) ⊂ L1(G) and then extend it to all of L1(G) by an approximation argument.
It suffices to check continuity at the identity: for all ε > 0 there’s a neighborhood Uε of

e such that y ∈ Uε ⇒ |Lyf − f |1 < ε. Indeed, if we have continuity at the identity, then for
1
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each g ∈ G the set Uεg is a neighborhood of g and

y ∈ Uεg =⇒ |Lyf−Lgf |1 =

∫
G
|f(yx)−f(gx)| dx =

∫
G
|f(yg−1x)−f(x)| dx = |Lyg−1f−f |1,

which is less than ε since yg−1 ∈ Uε. (This shows y 7→ Lyf is uniformly continuous in y.)
Reduction to the case f ∈ Cc(G). Since Cc(G) is dense in L1(G), for ε > 0 there is some

ϕ ∈ Cc(G) such that |f − ϕ|1 < ε/3. Then for each y ∈ G,

|Lyf − f |1 ≤ |Lyf − Lyϕ|1 + |Lyϕ− ϕ|1 + |ϕ− f |1 = |f − ϕ|1 + |Lyϕ− ϕ|1 + |ϕ− f |1.

If the lemma is true for functions in Cc(G) then |Lyϕ − ϕ|1 < ε/3 for all y in some neigh-
borhood of the identity in G, so |Lyf − f |1 < ε for all y close to e.

Proof when f ∈ Cc(G). Let K be the support of f and C be a compact neighborhood

of e. We will show for all y in a suitable neighborhood of e inside C that |Lyf − f |1 is
arbitrarily small.

For y ∈ C, if (Lyf)(x) − f(x) = f(yx) − f(x) 6= 0 then f(x) 6= 0 or f(yx) 6= 0, so
x ∈ K or yx ∈ K, which means either way that x ∈ C−1K (note e ∈ C−1). Both K and
C−1 are compact (by continuity of inversion in G), so C−1K is compact (by continuity of
multiplication in G). Thus Lyf − f vanishes outside C−1K, so

|Lyf − f |1 =

∫
G
|f(yx)− f(x)| dx =

∫
C−1K

|f(yx)− f(x)| dx ≤ sup
x∈G
|f(yx)− f(x)|µ(C−1K),

where µ is the Haar measure on G.
Functions in Cc(G) are not just continuous but uniformly continuous: for all ε > 0 there’s

a neighborhood Vε of e such that for all g and h in G, gh−1 ∈ Vε ⇒ |f(g)− f(h)| < ε. The
intersection Vε ∩ C is a neighborhood of e since Vε and C are both neighborhoods of e. If
y ∈ Vε ∩C then (yx)x−1 ∈ Vε for all x ∈ G, so |f(yx)− f(x)| < ε. Then from y ∈ C we get

|Lyf − f |1 ≤ sup
x∈G
|f(yx)− f(x)|µ(C−1K) ≤ εµ(C−1K).

Make ε arbitrarily small and we’re done. �

Remark 2.2. Lemma 2.1 is true if f ∈ Lp(G) for 1 ≤ p <∞, not just for p = 1.

Lemma 2.3. For ε > 0, and f ∈ L1(G), {χ ∈ Ĝ : |
∫
G f(x)χ(x) dx| ≥ ε} has compact

closure in the compact-open topology of Ĝ.

Proof. Set

Cε,f :=

{
χ ∈ Ĝ :

∣∣∣∣∫
G
f(x)χ(x) dx

∣∣∣∣ ≥ ε} .
To prove Cε,f has compact closure in Ĝ, recall that Ĝ gets its topology from being a subset

of C(G,C) and Ĝ is closed in C(G,C). Therefore the closure of Cε,f in Ĝ is the closure of

Cε,f in C(G,C) and a subset of Ĝ is compact in Ĝ if and only if it is compact in C(G,C).
Thus proving the lemma is equivalent to proving Cε,f has compact closure in C(G,C).

For a locally compact Hausdorff space X and a metric space Y , Ascoli’s theorem [6,
Chap. 7, Theorem 6.1] tells us necessary and sufficient conditions for a subset F of C(X,Y )
to have compact closure in the compact-open topology of C(X,Y ):

• for each x ∈ X, {ϕ(x) : ϕ ∈ F} has compact closure in Y ,
• F is equicontinuous at each x ∈ X.
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We will use this with X = G, Y = C, and F = Cε,f . The first condition in Ascoli’s theorem
is automatic for Cε,f since characters have image in S1 and all closed subsets of S1 are
compact.

We now prove the second condition, that Cε,f is equicontinuous at each point of G. Since
characters on G are homomorphisms to S1, it suffices to show Cε,f is equicontinuous at the
identity e of G: for each δ > 0 we want to find an open neighborhood Uδ of e in G such
that

y ∈ Uδ, χ ∈ Cε,f =⇒ |χ(y)− 1| < δ.

In other words, we want to turn the lower bound |
∫
G f(x)χ(x) dx| ≥ ε into an upper bound

on |χ(y)− 1| (for all y ∈ Uδ, where Uδ is not yet defined). The key idea is to get an upper

bound on |χ(y)− 1| where y doesn’t show up inside χ(y) anymore. For all χ ∈ Ĝ such that
|
∫
G f(x)χ(x) dx| ≥ ε and all y ∈ G, we have

|χ(y)− 1|ε ≤
∣∣∣∣(χ(y)− 1)

∫
G
f(x)χ(x) dx

∣∣∣∣
=

∣∣∣∣∫
G
f(x)χ(xy) dx−

∫
G
f(x)χ(x) dx

∣∣∣∣
=

∣∣∣∣∫
G
f(xy−1)χ(x) dx−

∫
G
f(x)χ(x) dx

∣∣∣∣
=

∣∣∣∣∫
G

(f(xy−1)− f(x))χ(x) dx

∣∣∣∣
≤

∫
G

∣∣f(xy−1)− f(x)
∣∣ dx since χ(G) ⊂ S1

= |Ly−1f − f |1,
so

|χ(y)− 1| ≤ 1

ε
|Ly−1f − f |1

for all y ∈ G. From continuity of y 7→ Lyf as a mapping G → L1(G) (Lemma 2.1) and
continuity of inversion on G, |Ly−1f − f |1 → 0 as y → e in G. Therefore |χ(y)− 1| < δ for
all y near e, and that level of nearness to e gives us the desired set Uδ. �

Remark 2.4. When G = R, so Ĝ ∼= R, this lemma is essentially the Riemann–Lebesgue
lemma: if f ∈ L1(R) then

∫
R f(x)e2πixy dx→ 0 as |y| → ∞. We have |

∫
R f(x)e2πixy dx| < ε

by Lemma 2.3 when |y| is large (outside the complement of a compact subset of R, which
are the closed and bounded subsets of R).

Theorem 2.5. When G is a locally compact abelian group, the group Ĝ is locally compact
in the compact-open topology.

Proof. Since Ĝ is a topological group, it suffices to show the trivial character 1 has a basis

of open neighborhoods with compact closure. Every neighborhood of 1 in Ĝ contains some

N1(K, ε) = {χ ∈ Ĝ : |χ(x)− 1| < ε for all x ∈ K}, where K is a nonempty compact subset
of G and ε > 0. Making ε smaller makes N1(K, ε) smaller, and making K larger makes
N1(K, ε) smaller, so it suffices to show N1(K, ε) has compact closure for all small enough
ε > 0 and all large enough compact K. In particular, we can assume ε ∈ (0, 1) and K
has positive Haar measure since every compact subset of G with measure 0 is contained
in a compact subset of G with positive measure: G has nonzero Haar measure, so inner
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regularity of Haar measure implies there’s a compact subset S with positive measure. Then
if µ(K) = 0, K ∪ S is compact with positive measure and contains K.

If 0 < ε < 1 and K is a compact subset of G with positive Haar measure, we will show

N1(K, ε) has compact closure in Ĝ. Our argument is based on the compactness result in
[4, Cor. 23.16].1 The characteristic function ξK is in L1(G) because compact subsets of G

have finite Haar measure. For all χ ∈ Ĝ,

µ(K) =

∫
G
ξK(x) dx

=

∫
G
ξK(x) · (1− χ(x)) dx+

∫
G
ξK(x)χ(x) dx

=

∫
K

(1− χ(x)) dx+

∫
G
ξK(x)χ(x) dx.

Taking absolute values, if χ ∈ N1(K, ε) then

µ(K) ≤
∫
K
|1− χ(x)| dx+

∣∣∣∣∫
G
ξK(x)χ(x) dx

∣∣∣∣ ≤ µ(K)ε+

∣∣∣∣∫
G
ξK(x)χ(x) dx

∣∣∣∣ ,
so ∣∣∣∣∫

G
ξK(x)χ(x) dx

∣∣∣∣ ≥ (1− ε)µ(K) > 0.

By Lemma 2.3, the set of χ ∈ Ĝ satisfying the above inequality (for fixed K and ε) has

compact closure in Ĝ. We have shown N1(K, ε) is inside this set, so N1(K, ε) also has

compact closure in Ĝ. �

Remark 2.6. The set of continuous homomorphisms G→ C×, like Ĝ, is an abelian group

under pointwise multiplication. Denote it by X(G). For example, Ẑ ∼= S1 (all maps n 7→ zn

for z ∈ S1) and X(Z) ∼= C× (all maps n 7→ zn for z ∈ C×), where Z has the discrete
topology. The group X(G) is a topological group in the compact-open topology from

C(G,C). The proof of that involves a little more care than for Ĝ since |χ(g)−1| 6= |χ(g)| if
χ(g) 6∈ S1.

Unlike Ĝ, when G is locally compact X(G) is not always locally compact. For example,
X(
⊕

k≥1 Z) ∼=
∏
k≥1C

×, where
∏
k≥1C

× has the product topology [1, Example 2.4].
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https://arxiv.org/abs/math/0512317

	1. Introduction
	2. Local compactness of G"0362G
	References

