LOCAL COMPACTNESS OF CHARACTER GROUPS BY ASCOLI

1. INTRODUCTION

Let G be a locally compact abelian group. (It is assumed, as usual, that all topological groups under discussion are Hausdorff.) A *character* of G is a continuous homomorphism $G \to S^1$. We denote the set of characters of G by \widehat{G} . It is an abelian group under pointwise multiplication.

We topologize \widehat{G} with the subspace topology as a subset of the space $C(G, \mathbb{C})$ of continuous functions $G \to \mathbb{C}$ with the compact-open topology. That means basic open sets around the trivial character **1** in \widehat{G} are

$$\{\chi \in \widehat{G} : |\chi - 1| < \varepsilon \text{ for all } x \in K\}$$

for compact K in G and $\varepsilon > 0$. The compact-open topology on $C(G, \mathbf{C})$ is Hausdorff, so the topology on \widehat{G} is Hausdorff. With the above topology \widehat{G} is a topological group and it is a closed subset of $C(G, \mathbf{C})$ (intuitively, a limit of homomorphisms is a homomorphism).

Our goal here is to explain why \widehat{G} is locally compact. Local compactness is one of the first nontrivial properties of \widehat{G} , but in most books I looked at that cover harmonic analysis on general locally compact abelian groups, the local compactness is explained by properties of commutative Banach algebras (applied to $L^1(G)$) and then a comparison of two topologies on \widehat{G} : see [2, Theorem 3.2.1], [3, p. 86], [4, Theorem 23.15], [5, pp. 135, 137], and [8, p. 9, App. D4]. The only exceptions I found are [9, Sect. 27], whose first edition predates the use of Banach algebra techniques, and [7, Prop. 3.2(v)], which does not use Banach algebras but has a comparison of two topologies on \widehat{G} . The approach we take here doesn't use Banach algebras. It uses a standard theorem in analysis that describes when a set of continuous functions is compact: Ascoli's theorem. (The proof of Ascoli's theorem [6, Chap. 7, Theorem 6.1] involves showing in a few cases that two topologies on a set of functions are the same, so the "equal topologies" part of the standard proof of local compactness of \widehat{G} is still present, but logically it is hidden away in Ascoli's theorem. The compactness of \widehat{G} for general G ultimately rely on Tychonoff's theorem in some form.)

2. Local compactness of \widehat{G}

We start with a standard lemma about continuity of a shift inside an L^1 -function on G.

Lemma 2.1. Fix $f \in L^1(G)$. For $y \in G$, let $L_y f: G \to \mathbb{C}$ by $(L_y f)(x) = f(yx)$. Then $L_y f \in L^1(G)$ and the map $y \mapsto L_y f$ from G to $L^1(G)$ is continuous.

Proof. By left invariance of Haar measure, $L_y f \in L^1(G)$ when $f \in L^1(G)$.

To prove continuity of $y \mapsto L_y f$, the basic idea is to check it directly on the dense subset $C_c(G) \subset L^1(G)$ and then extend it to all of $L^1(G)$ by an approximation argument.

It suffices to check continuity at the identity: for all $\varepsilon > 0$ there's a neighborhood U_{ε} of e such that $y \in U_{\varepsilon} \Rightarrow |L_y f - f|_1 < \varepsilon$. Indeed, if we have continuity at the identity, then for

each $g \in G$ the set $U_{\varepsilon}g$ is a neighborhood of g and

$$y \in U_{\varepsilon}g \Longrightarrow |L_yf - L_gf|_1 = \int_G |f(yx) - f(gx)| \, dx = \int_G |f(yg^{-1}x) - f(x)| \, dx = |L_{yg^{-1}}f - f|_1,$$

which is less than ε since $yg^{-1} \in U_{\varepsilon}$. (This shows $y \mapsto L_y f$ is uniformly continuous in y.)

Reduction to the case $f \in C_c(G)$. Since $C_c(G)$ is dense in $L^1(G)$, for $\varepsilon > 0$ there is some $\varphi \in C_c(G)$ such that $|f - \varphi|_1 < \varepsilon/3$. Then for each $y \in G$,

$$|L_y f - f|_1 \le |L_y f - L_y \varphi|_1 + |L_y \varphi - \varphi|_1 + |\varphi - f|_1 = |f - \varphi|_1 + |L_y \varphi - \varphi|_1 + |\varphi - f|_1.$$

If the lemma is true for functions in $C_c(G)$ then $|L_y \varphi - \varphi|_1 < \varepsilon/3$ for all y in some neighborhood of the identity in G, so $|L_y f - f|_1 < \varepsilon$ for all y close to e.

Proof when $f \in C_c(G)$. Let K be the support of f and C be a compact neighborhood of \overline{e} . We will show for all y in a suitable neighborhood of e inside C that $|L_y f - f|_1$ is arbitrarily small.

For $y \in C$, if $(L_y f)(x) - f(x) = f(yx) - f(x) \neq 0$ then $f(x) \neq 0$ or $f(yx) \neq 0$, so $x \in K$ or $yx \in K$, which means either way that $x \in C^{-1}K$ (note $e \in C^{-1}$). Both K and C^{-1} are compact (by continuity of inversion in G), so $C^{-1}K$ is compact (by continuity of multiplication in G). Thus $L_y f - f$ vanishes outside $C^{-1}K$, so

$$|L_y f - f|_1 = \int_G |f(yx) - f(x)| \, dx = \int_{C^{-1}K} |f(yx) - f(x)| \, dx \le \sup_{x \in G} |f(yx) - f(x)| \mu(C^{-1}K),$$

where μ is the Haar measure on G.

Functions in $C_c(G)$ are not just continuous but uniformly continuous: for all $\varepsilon > 0$ there's a neighborhood V_{ε} of e such that for all g and h in G, $gh^{-1} \in V_{\varepsilon} \Rightarrow |f(g) - f(h)| < \varepsilon$. The intersection $V_{\varepsilon} \cap C$ is a neighborhood of e since V_{ε} and C are both neighborhoods of e. If $y \in V_{\varepsilon} \cap C$ then $(yx)x^{-1} \in V_{\varepsilon}$ for all $x \in G$, so $|f(yx) - f(x)| < \varepsilon$. Then from $y \in C$ we get

$$|L_y f - f|_1 \le \sup_{x \in G} |f(yx) - f(x)| \mu(C^{-1}K) \le \varepsilon \mu(C^{-1}K).$$

Make ε arbitrarily small and we're done.

Remark 2.2. Lemma 2.1 is true if $f \in L^p(G)$ for $1 \le p < \infty$, not just for p = 1.

Lemma 2.3. For $\varepsilon > 0$, and $f \in L^1(G)$, $\{\chi \in \widehat{G} : |\int_G f(x)\chi(x) dx| \ge \varepsilon\}$ has compact closure in the compact-open topology of \widehat{G} .

Proof. Set

$$C_{\varepsilon,f} := \left\{ \chi \in \widehat{G} : \left| \int_{G} f(x) \chi(x) \, dx \right| \ge \varepsilon \right\}$$

To prove $C_{\varepsilon,f}$ has compact closure in \widehat{G} , recall that \widehat{G} gets its topology from being a subset of $C(G, \mathbb{C})$ and \widehat{G} is closed in $C(G, \mathbb{C})$. Therefore the closure of $C_{\varepsilon,f}$ in \widehat{G} is the closure of $C_{\varepsilon,f}$ in $C(G, \mathbb{C})$ and a subset of \widehat{G} is compact in \widehat{G} if and only if it is compact in $C(G, \mathbb{C})$. Thus proving the lemma is equivalent to proving $C_{\varepsilon,f}$ has compact closure in $C(G, \mathbb{C})$.

For a locally compact Hausdorff space X and a metric space Y, Ascoli's theorem [6, Chap. 7, Theorem 6.1] tells us necessary and sufficient conditions for a subset \mathcal{F} of C(X, Y) to have compact closure in the compact-open topology of C(X, Y):

- for each $x \in X$, $\{\varphi(x) : \varphi \in \mathcal{F}\}$ has compact closure in Y,
- \mathcal{F} is equicontinuous at each $x \in X$.

$$\square$$

We will use this with X = G, $Y = \mathbf{C}$, and $\mathcal{F} = C_{\varepsilon,f}$. The first condition in Ascoli's theorem is automatic for $C_{\varepsilon,f}$ since characters have image in S^1 and all closed subsets of S^1 are compact.

We now prove the second condition, that $C_{\varepsilon,f}$ is equicontinuous at each point of G. Since characters on G are homomorphisms to S^1 , it suffices to show $C_{\varepsilon,f}$ is equicontinuous at the identity e of G: for each $\delta > 0$ we want to find an open neighborhood U_{δ} of e in G such that

$$y \in U_{\delta}, \ \chi \in C_{\varepsilon,f} \Longrightarrow |\chi(y) - 1| < \delta.$$

In other words, we want to turn the lower bound $|\int_G f(x)\chi(x) dx| \ge \varepsilon$ into an upper bound on $|\chi(y) - 1|$ (for all $y \in U_{\delta}$, where U_{δ} is not yet defined). The key idea is to get an upper bound on $|\chi(y) - 1|$ where y doesn't show up inside $\chi(y)$ anymore. For all $\chi \in \widehat{G}$ such that $|\int_G f(x)\chi(x) dx| \ge \varepsilon$ and all $y \in G$, we have

$$\begin{aligned} |\chi(y) - 1|\varepsilon &\leq \left| (\chi(y) - 1) \int_{G} f(x)\chi(x) \, dx \right| \\ &= \left| \int_{G} f(x)\chi(xy) \, dx - \int_{G} f(x)\chi(x) \, dx \right| \\ &= \left| \int_{G} f(xy^{-1})\chi(x) \, dx - \int_{G} f(x)\chi(x) \, dx \right| \\ &= \left| \int_{G} (f(xy^{-1}) - f(x))\chi(x) \, dx \right| \\ &\leq \int_{G} |f(xy^{-1}) - f(x)| \, dx \text{ since } \chi(G) \subset S^{1} \\ &= |L_{y^{-1}}f - f|_{1}, \end{aligned}$$

 \mathbf{SO}

$$|\chi(y) - 1| \le \frac{1}{\varepsilon} |L_{y^{-1}}f - f|_1$$

for all $y \in G$. From continuity of $y \mapsto L_y f$ as a mapping $G \to L^1(G)$ (Lemma 2.1) and continuity of inversion on G, $|L_{y^{-1}}f - f|_1 \to 0$ as $y \to e$ in G. Therefore $|\chi(y) - 1| < \delta$ for all y near e, and that level of nearness to e gives us the desired set U_{δ} .

Remark 2.4. When $G = \mathbf{R}$, so $\widehat{G} \cong \mathbf{R}$, this lemma is essentially the Riemann–Lebesgue lemma: if $f \in L^1(\mathbf{R})$ then $\int_{\mathbf{R}} f(x)e^{2\pi ixy} dx \to 0$ as $|y| \to \infty$. We have $|\int_{\mathbf{R}} f(x)e^{2\pi ixy} dx| < \varepsilon$ by Lemma 2.3 when |y| is large (outside the complement of a compact subset of \mathbf{R} , which are the closed and bounded subsets of \mathbf{R}).

Theorem 2.5. When G is a locally compact abelian group, the group \widehat{G} is locally compact in the compact-open topology.

Proof. Since \widehat{G} is a topological group, it suffices to show the trivial character **1** has a basis of open neighborhoods with compact closure. Every neighborhood of **1** in \widehat{G} contains some $N_{\mathbf{1}}(K,\varepsilon) = \{\chi \in \widehat{G} : |\chi(x) - 1| < \varepsilon \text{ for all } x \in K\}$, where K is a nonempty compact subset of G and $\varepsilon > 0$. Making ε smaller makes $N_{\mathbf{1}}(K,\varepsilon)$ smaller, and making K larger makes $N_{\mathbf{1}}(K,\varepsilon)$ smaller, so it suffices to show $N_{\mathbf{1}}(K,\varepsilon)$ has compact closure for all small enough $\varepsilon > 0$ and all large enough compact K. In particular, we can assume $\varepsilon \in (0,1)$ and K has positive Haar measure since every compact subset of G with measure 0 is contained in a compact subset of G with positive measure: G has nonzero Haar measure, so inner regularity of Haar measure implies there's a compact subset S with positive measure. Then if $\mu(K) = 0, K \cup S$ is compact with positive measure and contains K.

If $0 < \varepsilon < 1$ and K is a compact subset of G with positive Haar measure, we will show $N_1(K,\varepsilon)$ has compact closure in \widehat{G} . Our argument is based on the compactness result in [4, Cor. 23.16].¹ The characteristic function ξ_K is in $L^1(G)$ because compact subsets of G have finite Haar measure. For all $\chi \in \widehat{G}$,

$$\mu(K) = \int_G \xi_K(x) dx$$

=
$$\int_G \xi_K(x) \cdot (1 - \chi(x)) dx + \int_G \xi_K(x)\chi(x) dx$$

=
$$\int_K (1 - \chi(x)) dx + \int_G \xi_K(x)\chi(x) dx.$$

Taking absolute values, if $\chi \in N_1(K, \varepsilon)$ then

$$\mu(K) \le \int_{K} |1 - \chi(x)| \, dx + \left| \int_{G} \xi_{K}(x)\chi(x) \, dx \right| \le \mu(K)\varepsilon + \left| \int_{G} \xi_{K}(x)\chi(x) \, dx \right|,$$
$$\left| \int_{G} \xi_{K}(x)\chi(x) \, dx \right| \ge (1 - \varepsilon)\mu(K) > 0.$$

 \mathbf{SO}

By Lemma 2.3, the set of
$$\chi \in G$$
 satisfying the above inequality (for fixed K and ε) has compact closure in \widehat{G} . We have shown $N_1(K, \varepsilon)$ is inside this set, so $N_1(K, \varepsilon)$ also has compact closure in \widehat{G} .

Remark 2.6. The set of continuous homomorphisms $G \to \mathbb{C}^{\times}$, like \widehat{G} , is an abelian group under pointwise multiplication. Denote it by X(G). For example, $\widehat{\mathbf{Z}} \cong S^1$ (all maps $n \mapsto z^n$ for $z \in S^1$) and $X(\mathbf{Z}) \cong \mathbb{C}^{\times}$ (all maps $n \mapsto z^n$ for $z \in \mathbb{C}^{\times}$), where \mathbf{Z} has the discrete topology. The group X(G) is a topological group in the compact-open topology from $C(G, \mathbb{C})$. The proof of that involves a little more care than for \widehat{G} since $|\chi(g)^{-1}| \neq |\chi(g)|$ if $\chi(g) \notin S^1$.

Unlike \widehat{G} , when G is locally compact X(G) is *not* always locally compact. For example, $X(\bigoplus_{k>1} \mathbf{Z}) \cong \prod_{k>1} \mathbf{C}^{\times}$, where $\prod_{k>1} \mathbf{C}^{\times}$ has the product topology [1, Example 2.4].

References

- S. J. Bhatt and H. V. Dedania, A Note on Generalized Characters, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), 437-444. Online at https://arxiv.org/abs/math/0512317.
- [2] A. Deitmar and S. Echterhoff, "Principles of Harmonic Analysis," 2nd ed., Springer, New York, 2014.
- [3] G. Folland, "A Course in Abstract Harmonic Analysis," CRC Press, Boca Raton, 1995.
- [4] E. Hewitt and K. A. Ross, "Abstract Harmonic Analysis, I", Springer-Verlag, New York, 1963.
- [5] L. H. Loomis, "An Introduction to Abstract Harmonic Analysis," Van Nostrand, Princeton, 1953.
- [6] J. Munkres, "Topology," Prentice-Hall, Englewood Cliffs, 1974.
- [7] D. Ramakrishnan and R. J. Valenza, "Fourier Analysis on Number Fields," Springer, New York, 1999.
- [8] W. Rudin, "Fourier Analysis on Groups," Wiley, New York, 1962.
- [9] A. Weil, "L'Intégration dans les Groupes Topologiques et ses Applications," 2nd ed., Hermann, Paris, 1965.

¹This result was the starting point for developing this proof, and ironically it appears in [4] as a *corollary* to a proof of local compactness of \hat{G} .