
THE RING OF INTEGERS IN A RADICAL EXTENSION
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1. Introduction

The integers of Q( n
√

2) is Z[ n
√

2] for n = 2, 3, 4, and 5. In fact this is true for n ≤ 1000.
Is Z[ n

√
2] the ring of integers of Q( n

√
2) for all n ≥ 2? For comparison, the cyclotomic field

Q(ζn) has ring of integers Z[ζn] for all n, so maybe this is something similar.
Let’s broaden our scope. If n ≥ 2 and Tn − a is irreducible in Z[T ], or equivalently

[Q( n
√
a) : Q] = n, we seek necessary and sufficient conditions for the integers of Q( n

√
a) to

be Z[ n
√
a]. Some constraint is needed, since the integers of Q(

√
5) are more than Z[

√
5], as

(1+
√

5)/2 is an algebraic integer. The conditions we find will turn out to have a connection
to old work on Fermat’s Last Theorem.

2. Reduction to prime-power n

Theorem 2.1. For n ≥ 2 and Tn − a irreducible in Z[T ], if Z[ n
√
a] is the ring of integers

of Q( n
√
a) then a must be squarefree.

Proof. We give a proof by example. If α = 3
√
p2q for different primes p and q, then (α2/p)3 =

pq2, so α2/p is an algebraic integer not in Z[α]. Use this idea to find an algebraic integer
in Q( n

√
a) not in Z[ n

√
a] if a is not squarefree. �

Since we are assuming Tn − a is irreducible, a is not 1. If a = −1 then Tn − a = Tn + 1
is irreducible if and only if n = 2r is a power of 2, in which case n

√
−1 = ζ2r+1 and this

generates the ring of integers of Q( n
√
−1) = Q(ζ2r+1) since this is a cyclotomic field. So we

assume from now on that a is squarefree and is not ±1. Then a has a prime factor and
Tn−a is automatically irreducible in Z[T ] for all n since it is Eisenstein at each prime factor
of a. The next theorem reduces us to the case when n is a prime power.

Lemma 2.2. Let a 6= ±1 be squarefree in Z and Tn − a be irreducible over Q. For each
positive integer d dividing n, T d − a is irreducible over Q. If Q( n

√
a) has ring of integers

Z[ n
√
a], then Q( d

√
a) has ring of integers Z[ d

√
a]

Proof. Exercise. �

Theorem 2.3. Let a be a squarefree integer other than ±1. When (m,n) = 1, the following
conditions are equivalent:

(a) The integers of Q( mn
√
a) are Z[ mn

√
a].

(b) The integers of Q( m
√
a) and Q( n

√
a) are Z[ m

√
a] and Z[ n

√
a].

Proof. That (a) ⇒ (b) follows from Lemma 2.2. We will show (b) ⇒ (a) using properties
of discriminants. It is obvious if m or n is 1, so we may assume m > 1 and n > 1.

The mth, nth, and mnth roots of a are, as abstract roots, only well-defined up to mul-
tiplication by roots of unity. The choice of root doesn’t affect the number field up to
isomorphism, but it’s convenient to give the three roots the obvious multiplicative relation:
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take mn
√
a to be a fixed root of Tmn − a and then define m

√
a = mn

√
a
n

and n
√
a = mn

√
a
m

. If
a > 0 we can use the positive real roots.

Let K = Q( m
√
a) and L = Q( n

√
a), so [K : Q] = m and [L : Q] = n. Since (m,n) = 1,

field theory implies [KL : Q] = mn. Since mn
√
a is an algebraic integer of degree mn inside

of KL,1 KL = Q( mn
√
a) and Z[ mn

√
a] has finite index in OKL. We will show the index is 1.

From the hypotheses OK = Z[ m
√
a] and OL = Z[ n

√
a],

disc(K) = disc(Tm − a) = ±mmam−1 and disc(L) = disc(Tn − a) = ±nnan−1.
Let d be the greatest common divisor of these discriminants. Since (m,n) = 1, each prime
factor of d is a factor of a. The ring OKOL = Z[ m

√
a, n
√
a] lies in Z[ mn

√
a]. Then

OKL ⊂
1

d
OKOL ⊂

1

d
Z[ mn
√
a],

where the first containment is a general property of all pairs of number fields K and L.
Thus dOKL ⊂ Z[ mn

√
a]. Therefore the quotient group OKL/Z[ mn

√
a] is killed by d.

Since a is squarefree, for each prime p dividing a the polynomial Tmn − a is Eisenstein
at p, so p - [OK : Z[ mn

√
a]].2 Therefore [OK : Z[ mn

√
a]] = |OKL/Z[ mn

√
a]| is relatively prime

to a, and thus also to d. A group that is killed by an integer relatively prime to its size is
trivial (the order of each element of the group divides two relatively prime integers, so the
order is 1), so OKL = Z[ mn

√
a]. �

Corollary 2.4. Let a be a squarefree integer other than ±1. For n ≥ 2, if the ring of
integers of Q( pr

√
a) is Z[ p

r√
a] for all pr ||n then the ring of integers of Q( n

√
a) is Z[ n

√
a].

Proof. Induct on the number of prime factors of n. The base case is a hypothesis and
Theorem 2.3 provides the inductive step. �

We have reduced ourselves to figuring when Q( n
√
a) has ring of integers Z[ n

√
a] for square-

free a 6= ±1 and n a prime power.

3. Prime-power n

Let n = pr for prime p and r ≥ 1. To study the integers of Q( n
√
a) for squarefree a 6= ±1,

we treat separately the cases that p | a and p - a. When p | a we will have a definitive
solution, while the case p - a will be solved only conditionally.

Theorem 3.1. When a is squarefree other than ±1 and p is a prime dividing a, the ring
of integers of Q( pr

√
a) is Z[ p

r√
a] for all r ≥ 1.

Proof. Let K = Q( pr
√
a). The index [OK : Z[ p

r√
a]] divides disc(T pr − a) = ±(pr)p

r
ap

r−1.
Since p | a, the prime factors of [OK : Z[ p

r√
a]] all divide a.

For every prime q dividing a, T pr − a is Eisenstein at q, so q - [OK : Z[ p
r√
a]]. Therefore

[OK : Z[ p
r√
a]] has no prime factors, so it is 1. �

Theorem 3.2. If a is squarefree other than ±1 and p is a prime not dividing a such that

(3.1) ap−1 6≡ 1 mod p2,

then the ring of integers of Q( pr
√
a) is Z[ p

r√
a] for all r ≥ 1.

1Here we use our convention that m
√
a and n

√
a are powers of mn

√
a.

2For every root α of a polynomial that’s Eisenstein at a prime p, the index [OQ(α) : Z[α]] is not divisible

by p.
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Fermat’s little theorem tells us ap−1 ≡ 1 mod p for all prime p not dividing a. The
noncongruence in (3.1) has modulus p2 and may or may not hold, depending on p.

Proof. As in the previous proof, a prime factor of [OK : Z[ p
r√
a]] is p or is a factor of a, and

no prime factor of a divides [OK : Z[ p
r√
a]] since T pr − a is Eisenstein at every prime factor

of a.
This time the prime p does not divide a, so we need a new argument to show p is not

a factor of [OK : Z[ p
r√
a]], thus making the index 1. We can’t use the polynomial T pr − a

directly, since it is not Eisenstein at p. But perhaps it has a translate (T + c)p
r − a that is

Eisenstein at p. That would be good enough, since Z[ p
r√
a] = Z[ p

r√
a− c]. What c could be

used?
In order for (T + c)p

r − a to be Eisenstein at p, there is no problem with the inner
coefficients, which are all multiples of p. Is the constant term cp

r −a a multiple of p exactly
once? This is equivalent to

(3.2) cp
r ≡ a mod p and cp

r 6≡ a mod p2.

We will show the choice c = a fits (3.2) when (3.1) holds. For all integers x, xp ≡ x mod p,
so by repeatedly taking the pth power we have ap

r ≡ a mod p, which is the first condition
in (3.2) with c = a. For all integers x and y,

x ≡ y mod pj =⇒ xp ≡ yp mod pj+1,

so starting from ap ≡ a mod p we get ap
r+1 ≡ ap

r
mod pr+1 by raising to the pth power

r times and increasing the modulus each time. Therefore ap
r ≡ ap mod p2, so checking

that ap
r 6≡ a mod p2 is the same as checking ap 6≡ a mod p2. This last noncongruence is

equivalent to ap−1 6≡ 1 mod p2 since (p, a) = 1, so (3.1) implies (T + a)p
r − a is Eisenstein

at p. �

Remark 3.3. In the proof, we could have dropped the discussion of general c and focused
on c = a from the start for a shorter argument. The reason we did not do that is to show
that if some choice of c works then the specific choice c = a has to work.

Corollary 3.4. When a is squarefree other than ±1, the ring of integers of Q( n
√
a) is Z[ n

√
a]

if every prime p factor of n that is not a factor of a satisfies (3.1).

Proof. Combine Theorems 2.3, 3.1, and 3.2. �

Example 3.5. To show Q( n
√

2) has ring of integers Z[ n
√

2] for all n ≤ 1000, it suffices to
show for all odd primes p ≤ 1000 that 2p−1 6≡ 1 mod p2. There are 168 primes below 1000
and it takes PARI almost no time to confirm the condition on those primes.

Example 3.6. Since 102 ≡ 1 mod 9, Corollary 3.4 does not tell us Z[ 3
√

10] is the ring of
integers of Q( 3

√
10), and in fact it isn’t: (1 + 3

√
10 + 3

√
100)/3 is an algebraic integer, being

a root of T 3 − T 2 − 3T − 3.

What happens if n has a prime factor p not dividing a for which (3.1) fails, meaning

(3.3) ap−1 ≡ 1 mod p2

for a prime p dividing n that does not divide a?
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4. A special congruence

The congruence (3.3) is famous in number theory because it appeared in the early 20th
century in work on Fermat’s last theorem. By the end of the 19th century, proving non-
solvability of xp + yp = zp in positive integers x, y, and z with an odd prime exponent p
had fallen into two traditional cases: show no solutions where p - xyz (Case I) and show
no solutions where p | xyz (Case II). In 1909, Wieferich [9] showed that if Case I has a
counterexample (making Fermat’s last theorem false) for exponent p then 2p−1 ≡ 1 mod p2.
He did not know a prime p fitting that congruence, but two were later found: 1093 and
3511. The first was found by Meissner [4] in 1913 and the second by Beeger [1] in 1922.3

In 1910, Miramanoff [5] showed that if Case I has a counterexample for exponent p then
3p−1 ≡ 1 mod p2 too. The only known p satisfying Miramanoff’s congruence are 11 and
1,006,003 (found by Kloss in 1965). Before Wiles proved Fermat’s last theorem for all p,
by an argument making no use of Case I vs. Case II and hardly using the Fermat equation
directly at all, Case I was proved for p up to large bounds by checking numerically that
no prime fits both Wieferich’s congruence ((3.3) with a = 2) and Miramanoff’s congruence
((3.3) with a = 3). In practice, Wieferich’s congruence alone was sufficient except for the
primes 1093 and 3511, since no other primes fitting Wieferich’s congruence have been found.

Definition 4.1. For a ∈ Z, a prime p is called a Wieferich prime to base a if (3.3) holds:
ap−1 ≡ 1 mod p2.

The known Wieferich primes for squarefree bases a ≤ 10 are in Table 1. Searches have
been made for p < 1.25 · 1015 when a = 2 [3] and for p < 232 ≈ 109.63 when 3 ≤ a < 100 [6].

a Known Wieferich primes to base a
2 1093, 3511
3 11, 1006003
5 20771, 40487, 53471161, 1645333507
6 66161, 534851, 3152573
7 5, 491531
10 3, 487, 56598313

Table 1. Wieferich primes below 232 for squarefree bases

Wieferich primes to a fixed base a are quite rare numerically, and for some a none are
known: no Wieferich prime to base 47 or 50 has been found, for example. There is a
simple probabilistic heuristic that supports the infrequent appearance of Wieferich primes
to a fixed base, as follows. When p - a, ap−1 ≡ 1 mod p, so ap−1 ≡ 1 + pb mod p2, where
0 ≤ b ≤ p−1. Having no compelling reason to believe otherwise, assume b takes each of the
p values 0, 1, . . . , p−1 with equal probability. Since b = 0 corresponds to p being a Wieferich
prime to base a, the “probability” some p not dividing a is a Wieferich prime to base a is
1/p. Therefore the expected number of primes p ≤ x that are Wieferich primes to base a
is found by adding up the “probabilities”. This is

∑
p≤x 1/p, which grows very slowly: it is

asymptotic to log log x. Since log log(232) ≈ 3.1, it is no surprise so few Wieferich primes
for p < 232 are known to each particular base. (Strictly speaking,

∑
p≤x 1/p should not

include the p dividing a, and removing these initial p makes
∑

p-a,p≤x 1/p even smaller.)

3In 1950, Beeger [2] introduced the term “Carmichael number”.
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5. Resolution of the Wieferich case

Let’s return to the problem of determining when, for squarefree a 6= ±1, Z[ n
√
a] is the

full ring of integers of Q( n
√
a). Corollary 3.4 says this happens if no prime factor of n is a

Wieferich prime to base a. What happens if n has a prime factor that is a Wieferich prime
to base a?

By Lemma 2.2, we should first check the case when n itself is a Wieferich prime to base
a, because if the ring of integers is not Z[ n

√
a] in that case then it isn’t when n is a multiple

of such a prime. We obviously don’t want to try this out numerically when a = 2, since the
first such n is 1093. Instead of choosing a and looking for Wieferich primes to base a for
examples, let’s turn things around: pick a prime p and search for a such that p is a Wieferich
prime to base a. There are always solutions a to (3.3), for instance every a ≡ 1 mod p2.
Table 2 lists squarefree Wieferich bases for small primes, and we can experiment with those.

p Squarefree bases a with Wieferich prime p As congruence mod p2

2 5, 13, 17, 21, 29, 33, 37, 41, 53, 57, 61, 65 a ≡ 1 mod 4
3 10, 17, 19, 26, 35, 37, 46, 53, 55, 62, 71, 73 a ≡ ±1 mod 9
5 7, 26, 43, 51, 57, 74, 82, 93, 101, 107, 118 a ≡ ±1,±7 mod 25
7 19, 30, 31, 67, 79, 97, 129, 146, 165, 166 a ≡ ±1,±18,±19 mod 49

Table 2. Bases a having small Wieferich primes p

For p = 2, you should know quite well that when a ≡ 1 mod 4 and a is not a perfect
square, Z[

√
a] is not the full ring of integers of Q(

√
a) thanks to (1 +

√
a)/2. The first

entry for a in Table 2 when p = 3 is 10 and we saw Z[ 3
√

10] is not the ring of integers
of Q( 3

√
10) in Example 3.6. Asking PARI for a Z-basis of the integers of Q( p

√
a) (use the

command nfbasis(x^p-a)) for various a and p in Table 2 returns an answer of the form

{1, p
√
a, p
√
a
2
, . . . , p

√
a
p−2

, z}, where z is a linear combination of { p
√
a
i

: 0 ≤ i ≤ p − 1}
having coefficients that are rational with denominator p: a definite non-member of Z[ p

√
a]!

Examining the expression for z in examples as p and a vary suggests the following candidate
for an algebraic integer in Q( p

√
a) that is not in Z[ p

√
a]:

(5.1)
1

p

p−1∑
k=0

ap−1−k p
√
a
k
.

(When p = 2, this is a+
√
a

2 = a−1
2 + 1+

√
a

2 .) In Fp[X,Y ],

p−1∑
k=0

Xp−1−kY k =
Xp − Y p

X − Y
= (X − Y )p−1,

so (5.1) is an algebraic integer if and only if (a− p
√
a)p−1/p is. We will work with this last

expression.

Theorem 5.1. If ap−1 ≡ 1 mod p2 and T p − a is irreducible over Q, then

(a) p is not totally ramified in Q( p
√
a),

(b) the ratio ( p
√
a− a)p−1/p, which is not in Z[ p

√
a], is an algebraic integer.

Therefore the ring of integers of Q( p
√
a) is not Z[ p

√
a].

We do not assume a is squarefree, which is why we are explicit that T p−a is irreducible.
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Proof. Set K = Q( p
√
a) and α = p

√
a− a, so [K : Q] = p and the minimal polynomial of α

over Q is

(T + a)p − a = T p + p(· · · ) + ap − a,

so NK/Q(α) = ±(ap− a). Every prime p that lies over p in OK is a factor of (α): OK/p is a

field of characteristic p and the pth power map is one-to-one on such fields, so p
√
a

p
= a ≡

ap mod p⇒ p
√
a ≡ a mod p. Thus p | (α).

(a) We will prove the contrapositive: if p is totally ramified in K and (p, a) = 1, then
ap−1 − 1 is divisible by p just once. (Note that if ap−1 ≡ 1 mod p2 then (p, a) = 1.)

Since [K : Q] = p, having p be totally ramified means (p) = pp. Let pr || (α), so r ≥ 1
since p | (α). Since p is the only prime lying over p in OK and N(p) = p, from pr || (α) we
get pr || (ap − a) in Z. We want to show r = 1. Our argument is adapted from [8, p. 390].

In the expansion

0 = (α+ a)p − a

= αp +

p−1∑
i=1

(
p

i

)
αiap−i + ap − a,

subtract ap − a from both sides:

(5.2) αp +

p−1∑
i=1

(
p

i

)
αiap−i = a− ap.

We are going to look at the highest power of p dividing both sides. Keep in mind the
following: if pk || (x) and pk+1 | (y), then pk || (x + y) provided x + y 6= 0. (Think about
congruences modulo pk and pk+1.)

On the right side of (5.2), pr || (a − ap) in Z, so prp || (a − ap) as ideals in OK . On the
left side of (5.2), prp || (αp). For 1 ≤ i ≤ p− 1,

(
p
i

)
is divisible by p exactly once. Since a is

not divisible by p,
(
p
i

)
αiap−i has highest p-power pp+ir. So the p-power multiplicities of the

terms on the left side of (5.2) are rp and p+ ir for 1 ≤ i ≤ p− 1.
If r ≥ 2, the unique minimum of the numbers rp, p + r, p + 2r, . . . , p + (p − 1)r is p + r

as long as p 6= 2. (The theorem can be checked directly when p = 2, so there’s no harm
in taking p > 2.) Therefore the highest p-power dividing the left side of (5.2) is p + r.
Comparing this to the highest power of p dividing the right side of (5.2), we get p+ r = pr.
But p+ r < pr, so we have a contradiction. This forces r = 1, so p || (ap − a).

(b) We want to show αp−1/p ∈ OK . Since p is not totally ramified in K and [K : Q] = p,
each prime ideal factor of (p) has multiplicity at most p − 1. Every prime lying over p in
OK is a factor of (α), so (α)p−1 is divisible by (p) as ideals. Therefore αp−1/p ∈ OK . �

We now know that Q( n
√

2) does not always have ring of integers Z[ n
√

2] and the first
counterexample is n = 1093.

Remark 5.2. If (p, a) = 1 then p is totally ramified in Q( p
√
a) if and only if ap−1 6≡

1 mod p2. Theorem 5.1 implies the “only if” direction, while in the other direction p divides
ap − a just once, so (T + a)p − a is Eisenstein at p and therefore p is totally ramified in
Q( p
√
a).

Here is the full description of when Q( n
√
a) has integers Z[ n

√
a] if [Q( n

√
a) : Q] = n.
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Theorem 5.3. If a 6= ±1, n ≥ 2, and Tn − a is irreducible in Z[T ] then the integers
of Q( n

√
a) are Z[ n

√
a] if and only if (i) a is squarefree and (ii) no prime factor of n is a

Wieferich prime to base a.

Proof. First suppose conditions (i) and (ii) are satisfied. Let p be a prime factor of n and pr

be the highest power of p dividing n. Then Q( pr
√
a) has integers Z[ p

r√
a] if p | a by Theorem

3.1 and if p - a by Theorem 3.2. Since this holds for all prime factors of n, Q( n
√
a) has

integers Z[ n
√
a] by Corollary 2.4.

Next we assume conditions (i) or (ii) fail.

• If a is not squarefree then the integers of Q( n
√
a) are not Z[ n

√
a] by Theorem 2.1.

• If a is squarefree and n has a prime factor p that is a Wieferich prime to base a,
then Theorem 5.1 says the integers of Q( p

√
a) are not Z[ p

√
a], so Lemma 2.2 tells us

that the integers of Q( n
√
a) are not Z[ n

√
a].

�

The results here give a setting other than Fermat’s last theorem where solutions a to the
congruence ap−1 ≡ 1 mod p2 cause undesirable behavior. Another problem where solutions
to 2p−1 ≡ 1 mod p2 lead to undesirable behavior is in the study of Fermat numbers Fn =
22
n

+ 1 and Mersenne numbers Mn = 2n − 1. It is conjectured that every Fn and Mq for
prime q is squarefree.4 In [7] it is shown that if Fn or Mq is not squarefree, with a repeated
prime factor p, then 2p−1 ≡ 1 mod p2, and moreover that 1093 and 3511 are not factors of
an Fn or Mq.
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