HENSEL’S LEMMA
KEITH CONRAD

1. Introduction
In the \(p \)-adic integers, congruences are approximations: for \(a \) and \(b \) in \(\mathbb{Z}_p \), \(a \equiv b \mod p^n \) is the same as \(|a - b|_p \leq 1/p^n \). Turning information modulo one power of \(p \) into similar information modulo a higher power of \(p \) can be interpreted as improving an approximation.

Example 1.1. The number 7 is a square mod 3: \(7 \equiv 1^2 \mod 3 \). Although \(7 \not\equiv 1^2 \mod 9 \), we can write 7 as a square mod 9 by replacing 1 with 1 + 3: \(7 \equiv (1 + 3)^2 \mod 9 \). Here are expressions of 7 as a square modulo further powers of 3:

\[
\begin{align*}
7 & \equiv (1 + 3 + 3^2)^2 \mod 3^3, \\
7 & \equiv (1 + 3 + 3^2)^2 \mod 3^4, \\
7 & \equiv (1 + 3 + 3^2 + 2 \cdot 3^4)^2 \mod 3^5, \\
& \quad \vdots \\
7 & \equiv (1 + 3 + 3^2 + 2 \cdot 3^4 + 2 \cdot 3^7 + 3^8 + 3^9 + 2 \cdot 3^{10})^2 \mod 3^{11}.
\end{align*}
\]

If we can keep going indefinitely then 7 is a perfect square in \(\mathbb{Z}_3 \) with square root
\(1 + 3 + 3^2 + 2 \cdot 3^4 + 2 \cdot 3^7 + 3^8 + 3^9 + 2 \cdot 3^{10} + \cdots \).

That we really can keep going indefinitely is justified by Hensel’s lemma, which will provide conditions under which the root of a polynomial modulo \(p \) can be lifted to a root in \(\mathbb{Z}_p \), such as the polynomial \(X^2 - 7 \) with \(p = 3 \): its two roots mod 3 can both be lifted to square roots of 7 in \(\mathbb{Z}_3 \).

We will first give a basic version of Hensel’s lemma, illustrate it with examples, and then give a stronger version that can be applied in cases where the basic version is inadequate.

2. A Basic Version of Hensel’s Lemma

Theorem 2.1 (Hensel’s lemma). If \(f(X) \in \mathbb{Z}_p[X] \) and \(a \in \mathbb{Z}_p \) satisfies

\[
f(a) \equiv 0 \mod p, \quad f'(a) \not\equiv 0 \mod p
\]

then there is a unique \(\alpha \in \mathbb{Z}_p \) such that \(f(\alpha) = 0 \) and \(\alpha \equiv a \mod p \).

Example 2.2. Let \(f(X) = X^2 - 7 \). Then \(f(1) = -6 \equiv 0 \mod 3 \) and \(f'(1) = 2 \not\equiv 0 \mod 3 \), so Hensel’s lemma tells us there is a unique 3-adic integer \(\alpha \) such that \(\alpha^2 = 7 \) and \(\alpha \equiv 1 \mod 3 \).

We saw approximations to \(\alpha \) in Example 1.1, e.g., \(\alpha \equiv 1 + 3 + 3^2 + 2 \cdot 3^4 \mod 3^5 \).

Proof. We will prove by induction that for each \(n \geq 1 \) there is an \(a_n \in \mathbb{Z}_p \) such that

- \(f(a_n) \equiv 0 \mod p^n \),
- \(a_n \equiv a \mod p \).

The case \(n = 1 \) is trivial, using \(a_1 = a \). If the inductive hypothesis holds for \(n \), we seek \(a_{n+1} \in \mathbb{Z}_p \) such that

- \(f(a_{n+1}) \equiv 0 \mod p^{n+1} \),
- \(a_{n+1} \equiv a \mod p \).
Since \(f(a_{n+1}) \equiv 0 \mod p^{n+1} \Rightarrow f(a_{n+1}) \equiv 0 \mod p^n \), each root of \(f(X) \mod p^{n+1} \) reduces to a root of \(f(X) \mod p^n \). By the inductive hypothesis there is a root \(a_n \mod p^n \), so we seek a \(p \)-adic integer \(a_{n+1} \) such that \(a_{n+1} \equiv a_n \mod p^n \) and \(f(a_{n+1}) \equiv 0 \mod p^{n+1} \). Writing
\[
a_{n+1} = a_n + p^nt_n
\]
for some \(t_n \in \mathbb{Z}_p \) to be determined, can we make \(f(a_n + p^nt_n) \equiv 0 \mod p^{n+1} \)?

To compute \(f(a_n + p^nt_n) \mod p^{n+1} \), we use a polynomial identity:
\[
(2.1) \quad f(X + Y) = f(X) + f'(X)Y + g(X,Y)Y^2
\]
for some polynomial \(g(X,Y) \in \mathbb{Z}_p[X,Y] \). This formula comes from isolating the first two terms in the binomial theorem: writing \(f(X) = \sum_{i=0}^d c_iX^i \) we have
\[
f(X + Y) = \sum_{i=0}^d c_i(X + Y)^i = c_0 + \sum_{i=1}^d c_i(X^i + iX^{i-1}Y + g_i(X,Y)Y^2),
\]
where \(g_i(X,Y) \in \mathbb{Z}[X,Y] \). Thus
\[
f(X + Y) = \sum_{i=0}^d c_iX^i + \sum_{i=1}^d ic_iX^{i-1}Y + \sum_{i=1}^d g_i(X,Y)Y^2 = f(X) + f'(X)Y + g(X,Y)Y^2,
\]
where \(g(X,Y) = \sum_{i=1}^d c_ig_i(X,Y) \in \mathbb{Z}_p[X,Y] \). This gives us the desired identity.¹

To make (2.1) numerical, for all \(x \) and \(y \) in \(\mathbb{Z}_p \) the number \(z := g(x,y) \) is in \(\mathbb{Z}_p \), so
\[
(2.2) \quad x, y \in \mathbb{Z}_p \implies f(x + y) = f(x) + f'(x)y + zy^2, \text{ where } z \in \mathbb{Z}_p.
\]
In this formula set \(x = a_n \) and \(y = p^nt_n \):
\[
(2.3) \quad f(a_n + p^nt_n) = f(a_n) + f'(a_n)p^nt_n + zp^{2n}2^{-n} \equiv f(a_n) + f'(a_n)p^n t_n \mod p^{n+1}
\]
since \(2n \geq n + 1 \). In \(f'(a_n)p^nt_n \mod p^{n+1} \), the factors \(f'(a_n) \) and \(t_n \) only matter \(\mod p \) since there is already a factor of \(p^n \) and the modulus is \(p^{n+1} \). Recalling that \(a_n \equiv a \mod p \), we get \(f'(a_n)p^nt_n \equiv f'(a)p^n t_n \mod p^{n+1} \). Therefore from (2.3),
\[
f(a_n + p^nt_n) \equiv 0 \mod p^{n+1} \iff f(a_n) + f'(a)p^nt_n \equiv 0 \mod p^{n+1} \\
\iff f'(a)t_n \equiv -f(a_n)/p^n \mod p,
\]
where the ratio \(f(a_n)/p^n \) is in \(\mathbb{Z}_p \) since we assumed that \(f(a_n) \equiv 0 \mod p^n \). There is a solution for \(t_n \) in the congruence \(\mod p \) since we assumed that \(f'(a) \not\equiv 0 \mod p \).

Armed with this choice of \(t_n \) and setting \(a_{n+1} = a_n + p^nt_n \), we have \(f(a_{n+1}) \equiv 0 \mod p^{n+1} \) and \(a_{n+1} \equiv a_n \mod p^n \), so in particular \(a_{n+1} \equiv a \mod p \). This completes the induction.

Starting with \(a_1 = a \), our inductive argument has constructed a sequence \(a_1, a_2, a_3, \ldots \) in \(\mathbb{Z}_p \) such that \(f(a_n) \equiv 0 \mod p^n \) and \(a_{n+1} \equiv a_n \mod p^n \) for all \(n \). The second condition, \(a_{n+1} \equiv a_n \mod p^n \), implies that \(\{a_n\} \) is a Cauchy sequence in \(\mathbb{Z}_p \). Let \(\alpha \) be its limit in \(\mathbb{Z}_p \). We want to show \(f(\alpha) = 0 \) and \(\alpha \equiv a \mod p \).

From \(a_{n+1} \equiv a_n \mod p^n \) for all \(n \) we get \(a_m \equiv a_n \mod p^n \) for all \(m > n \), so \(\alpha \equiv a_n \mod p^n \) by letting \(m \to \infty \). At \(n = 1 \) we get \(\alpha \equiv a \mod p \). For general \(n \),
\[
\alpha \equiv a_n \mod p^n \implies f(\alpha) \equiv f(a_n) \equiv 0 \mod p^n \implies |f(\alpha)|_p \leq \frac{1}{p^n}.
\]
Since this estimate holds for all \(n \), \(f(\alpha) = 0 \).

¹The identity (2.1) is similar to Taylor’s formula: \(f(x + h) = f(x) + f'(x)h + (f''(x)/2!)h^2 + \cdots \). The catch is that terms in Taylor’s formula have factorials in the denominator, which can require some extra care when reducing modulo powers of \(p \). Think about \(f''(x)/2! \mod 2 \), for instance. What (2.1) essentially does is extract the first two terms of Taylor’s formula and say that what remains has \(p \)-adic integral coefficients, so (2.1) can be reduced mod \(p \), or mod \(p^n \) for all \(n \geq 1 \).
It remains to show \(\alpha \) is the unique root of \(f(X) \) in \(\mathbb{Z}_p \) that is congruent to \(a \mod p \).
Suppose \(f(\beta) = 0 \) and \(\beta \equiv a \mod p \). To show \(\beta = \alpha \) we will show \(\beta \equiv \alpha \mod p^n \) for all \(n \).
The case \(n = 1 \) is clear since \(\alpha \) and \(\beta \) are both congruent to \(a \mod p \). Suppose \(n \geq 1 \) and we know that \(\beta \equiv \alpha \mod p^n \). Then \(\beta = \alpha + p^n \gamma_n \) with \(\gamma_n \in \mathbb{Z}_p \), so a calculation similar to (2.3) implies
\[
f(\beta) = f(\alpha + p^n \gamma_n) \equiv f(\alpha) + f'(\alpha)p^n \gamma_n \mod p^{n+1}.
\]
Both \(\alpha \) and \(\beta \) are roots of \(f(X) \), so \(0 \equiv f'(\alpha)p^n \gamma_n \mod p^{n+1} \). Thus \(f'(\alpha) \gamma_n \equiv 0 \mod p \).
Since \(f'(\alpha) \equiv f'(a) \not\equiv 0 \mod p \), we have \(\gamma_n \equiv 0 \mod p \), which implies \(\beta \equiv \alpha \mod p^{n+1} \). \(\Box \)

Remark 2.3. An argument similar to the last paragraph shows for all \(n \geq 1 \) that \(f(X) \) has a unique root mod \(p^n \) that reduces to \(a \mod p \). So in Theorem 2.1 we can think about the uniqueness of the lifting of the mod \(p \) root in two ways: it has a unique lifting to a root in \(\mathbb{Z}_p \) or it has a unique lifting to a root in \(\mathbb{Z}/(p^n) \) for all \(n \geq 1 \).

Here are five applications of Hensel’s lemma.

Example 2.4. Let \(f(X) = X^3 - 2 \). We have \(f(3) \equiv 0 \mod 5 \) and \(f'(3) \not\equiv 0 \mod 5 \), Therefore Hensel’s lemma with initial approximation \(a = 3 \) tells us there is a unique cube root of 2 in \(\mathbb{Z}_5 \) that is congruent to 3 mod 5. Explicitly, it is \(3 + 2 \cdot 5^2 + 2 \cdot 5^3 + 3 \cdot 5^4 + \cdots \).

Example 2.5. Let \(f(X) = X^3 - X - 2 \). We have \(f(0) \equiv 0 \mod 2 \) and \(f(1) \equiv 0 \mod 2 \), while \(f'(0) \equiv 1 \mod 2 \) and \(f'(1) \equiv 0 \mod 2 \). Therefore Hensel’s lemma with initial approximation \(a = 0 \) implies there is a unique \(\alpha \in \mathbb{Z}_2 \) such that \(f(\alpha) = 0 \) and \(\alpha \equiv 0 \mod 2 \). Explicitly, \(\alpha = 2 + 2^2 + 2^4 + 2^7 + \cdots \).

Although 1 is a root of \(f(X) \mod 2 \), it does not lift to a root in \(\mathbb{Z}_2 \) since it doesn’t even lift to a root mod 4: \(f(1) \equiv 2 \mod 4 \) and \(f(3) \equiv 2 \mod 4 \), so if \(\beta \in \mathbb{Z}_2 \) and \(\beta \equiv 1 \mod 2 \) then \(\beta \equiv 1 \) or 3 mod 4 and therefore \(f(\beta) \equiv 2 \not\equiv 0 \mod 4 \).

Example 2.6. For each positive integer \(n \) not divisible by \(p \) and each \(u \equiv 1 \mod p \mathbb{Z}_p \), \(u \) is an \(n \)-th power in \(\mathbb{Z}_p^\times \). Apply Hensel’s lemma to \(f(X) = X^n - u \) with initial approximation \(a = 1: f'(1) = 1 - u \equiv 0 \mod p \) and \(f'(0) \equiv 1 \not\equiv 0 \mod p \). Therefore there is a unique solution to \(\alpha^n = u \) in \(\mathbb{Z}_p \) such that \(\alpha \equiv 1 \mod p \). Example 1.1 is the case \(u = 7, p = 3 \), and \(n = 2:7 \) has a unique 3-adic square root that is \(\equiv 1 \mod 3 \).

Example 2.7. For an odd prime \(p \), suppose \(u \in \mathbb{Z}_p^\times \) is a square mod \(p \). We will show \(u \) is a square in \(\mathbb{Z}_p \). For example, 2 is a square mod 7 since \(2 \equiv 3^2 \mod 7 \), and it will follow that 2 is a square in \(\mathbb{Z}_7 \).

Write \(u \equiv a^2 \mod p \), so \(a \not\equiv 0 \mod p \). For the polynomial \(f(X) = X^2 - u \) we have \(f(a) \equiv 0 \mod p \) and \(f'(a) = 2a \not\equiv 0 \mod p \), since \(p \) is not 2, so Hensel’s lemma tells us that \(f(X) \) has a root in \(\mathbb{Z}_p \) that reduces to \(a \mod p \), which means \(u \) is a square in \(\mathbb{Q}_p \). Conversely, if \(u \in \mathbb{Z}_p^\times \) is a \(p \)-adic square, say \(u = v^2 \), then \(1 = |v|^2_p \), so \(v \in \mathbb{Z}_p^\times \) and \(u \equiv v^2 \mod p \). Thus the elements of \(\mathbb{Z}_p^\times \) that are squares in \(\mathbb{Q}_p \) are precisely those that reduce to squares mod \(p \). For example, the nonzero squares mod 7 are 1, 2, and 4, so \(u \in \mathbb{Z}_7^\times \) is a 7-adic square if and only if \(u \equiv 1,2, \) or 4 mod 7.

This result can have problems when \(p = 2 \) because \(2a \equiv 0 \mod 2 \). In fact the lifting of a square root mod 2 to a 2-adic square root really does have a problem: \(3 \equiv 1^2 \mod 2 \) but 3 is not a square in \(\mathbb{Z}_2 \) since 3 is not a square mod 4 (the squares mod 4 are 0 and 1). And 3 is not a square in \(\mathbb{Q}_2 \) either because a hypothetical square root in \(\mathbb{Q}_2 \) would have to be in \(\mathbb{Z}_2 \): if \(\alpha^2 = 3 \in \mathbb{Q}_2 \) then \(|\alpha|^2_2 = |3|^2_2 = 1 \), so \(|\alpha|_2 = 1 \), and thus \(\alpha \not\in \mathbb{Z}_2^\times \subset \mathbb{Z}_2 \).

Example 2.8. For each integer \(k \) between 0 and \(p - 1 \), \(k^p \equiv k \mod p \). Letting \(f(X) = X^p - X \), we have \(f(k) \equiv 0 \mod p \) and \(f'(k) = pk^{p-1} - 1 = -1 \not\equiv 0 \mod p \). Hensel’s lemma implies that there is a unique \(\omega_k \in \mathbb{Z}_p \) such that \(\omega_k^p = \omega_k \) and \(\omega_k \equiv k \mod p \). For instance,
ω₀ = 0 and ω₁ = 1. When p > 2, ωₚ₋₁ = −1. Other ωₖ for p > 2 are more interesting. For p = 5, ωₖ is a root of \(X^5 - X = X(X^4 - 1) = X(X - 1)(X + 1)(X^2 + 1) \). Thus ω₂ and ω₃ are square roots of −1 in \(\mathbb{Z}_5 \):

\[
\begin{align*}
ω₂ &= 2 + 5 · 2^2 + 5^3 + 3 · 5^4 + 4 · 5^5 + 2 · 5^6 + 3 · 5^7 + \cdots, \\
ω₃ &= 3 + 3 · 5 + 2 · 5^2 + 3 · 5^3 + 5^4 + 2 · 5^6 + 5^7 + \cdots.
\end{align*}
\]

The numbers \(ωₖ \) for \(0 ≤ k ≤ p - 1 \) are distinct since they are already distinct when reduced mod \(p \), so \(X^p - X = X(X^{p-1} - 1) \) splits completely in \(\mathbb{Z}_p[X] \). Its roots in \(\mathbb{Z}_p \) are 0 and \(p \)-adic \((p - 1) \)th roots of unity.

3. Roots of Unity in \(\mathbb{Q}_p \) via Hensel's Lemma

Hensel’s lemma is often considered to be a method of finding roots to polynomials, but that is just one aspect: the existence of a root. There is also a uniqueness part to Hensel’s lemma: it tells us there is a unique root within a certain distance of an approximate root. We’ll use the uniqueness to find all of the roots of unity in \(\mathbb{Q}_p \).

Theorem 3.1. The roots of unity in \(\mathbb{Q}_p \) are the \((p - 1) \)th roots of unity for \(p \) odd and \(\pm 1 \) for \(p = 2 \).

Proof. If \(x^n = 1 \) in \(\mathbb{Q}_p \) then \(|x|^n_p = 1 \), so \(|x|_p = 1 \). This means every root of unity in \(\mathbb{Q}_p \) lies in \(\mathbb{Z}_p^\times \). Therefore we work in \(\mathbb{Z}_p^\times \) right from the start.

First let’s consider roots of unity of order relatively prime to \(p \). Assume \(ζ₁ \) and \(ζ₂ \) are roots of unity in \(\mathbb{Z}_p^\times \) with order prime to \(p \). Letting \(m \) be the product of the orders of these roots of unity, they are both roots of \(f(X) = X^m - 1 \) and \(m \) is prime to \(p \). Since \(|f'(ζ_i)|_p = |mζ_i^{m-1}|_p = 1 \), the uniqueness aspect of Hensel’s lemma implies that the only root \(α \) of \(X^m - 1 \) satisfying \(|α - ζ_1|_p < 1 \) is \(ζ_1 \). So if \(ζ₂ ≡ ζ₁ \mod p \mathbb{Z}_p \) then \(ζ₂ = ζ₁ \): distinct roots of unity in \(\mathbb{Z}_p^\times \) having order prime to \(p \) must be incongruent mod \(p \). In Example 2.8 we found in each nonzero coset mod \(p \mathbb{Z}_p \) a root of \(X^{p-1} - 1 \), and \(p - 1 \) is prime to \(p \). Therefore each congruence class mod \(p \mathbb{Z}_p \) contains a \((p - 1) \)th root of unity, so the only roots of unity of order prime to \(p \) in \(\mathbb{Q}_p \) are the roots of \(X^{p-1} - 1 \).

Now we consider roots of unity of \(p \)-power order. We will show the only \(p \)th root of unity in \(\mathbb{Z}_p^\times \) is 1 for odd \(p \) and the only 4th roots of unity in \(\mathbb{Z}_2^\times \) are \(\pm 1 \). This implies the only \(p \)th power roots of unity in \(\mathbb{Z}_p^\times \) are 1 for odd \(p \) and \(\pm 1 \) for \(p = 2 \). (For instance, if there were a nontrivial \(p \)-th power root of unity in \(\mathbb{Q}_p \) for \(p ≠ 2 \) then there would be a root of unity in \(\mathbb{Q}_p \) of order \(p \), but we’re going to show there aren’t any of those.) This part of the proof will not use Hensel’s lemma.

We first consider odd \(p \) and suppose \(ζ^p = 1 \) in \(\mathbb{Z}_p^\times \) with \(ζ ≠ 1 \). Since \(ζ^p ≡ ζ \mod p \mathbb{Z}_p \), we have \(ζ ≡ 1 \mod p \mathbb{Z}_p \). Therefore \(ζ = 1 + py \) with \(y ∈ \mathbb{Z}_p \). Since \(ζ \) is not 1, \(ζ \) is a root of \((X^p - 1)/(X - 1) = 1 + X + X^2 + \cdots + X^{p-1} \). For all integers \(k ≥ 0 \), \(ζ^k = (1 + py)^k \equiv 1 + kpy \mod p^2 \mathbb{Z}_p \) by the binomial theorem, so

\[
\begin{align*}
0 &= 1 + ζ + ζ^2 + \cdots + ζ^{p-1} \\
&= \sum_{k=0}^{p-1} ζ^k \\
&≡ \sum_{k=0}^{p-1} (1 + kpy) \mod p^2 \mathbb{Z}_p \\
&≡ p + \frac{p(p - 1)}{2} py \mod p^2 \mathbb{Z}_p.
\end{align*}
\]
Since \(p \) is odd, \((p - 1)/2 \in \mathbb{Z} \), so (3.1) implies \(0 \equiv p \mod p^2 \), which is a contradiction. Therefore there is no \(p \)-th root of unity in \(\mathbb{Q}_p \) other than 1.

Now we turn to \(p = 2 \). We want to show the only 4th roots of unity in \(\mathbb{Z}_2^* \) are \(\pm 1 \). If \(\zeta \in \mathbb{Z}_2^* \) is a 4th root of unity and \(\zeta \neq \pm 1 \) then \(\zeta^2 = -1 \), so \(\zeta^2 \equiv -1 \mod 4\mathbb{Z}_2 \). However,
\[
\zeta \in \mathbb{Z}_2^* \implies \zeta \equiv 1 \text{ or } 3 \mod 4\mathbb{Z}_2 \implies \zeta^2 \equiv 1 \mod 4\mathbb{Z}_2
\]
and \(1 \neq -1 \mod 4\mathbb{Z}_2 \). Thus there is no 4th root of unity in \(\mathbb{Q}_2 \) besides \(\pm 1 \).

For prime \(p \), a root of unity is a (unique) product of a root of unity of \(p \)-power order and a root of unity of order prime to \(p \); so the only roots of unity in \(\mathbb{Q}_p \) are the roots of \(X^{p-1} - 1 \) for \(p \neq 2 \) and \(\pm 1 \) for \(p = 2 \). \(\square \)

4. A STRONGER VERSION OF HENSEL’S LEMMA

The hypotheses of Theorem 2.1 are \(f(a) \equiv 0 \mod p \) and \(f'(a) \not\equiv 0 \mod p \). This means \(a \mod p \) is a simple root of \(f(X) \mod p \). We will now discuss a more general version of Hensel’s lemma than Theorem 2.1. It can be applied to cases where \(a \mod p \) is a multiple root of \(f(X) \mod p \): \(f(a) \equiv 0 \mod p \) and \(f'(a) \equiv 0 \mod p \). This will allow us to describe squares in \(\mathbb{Z}_p^* \) and, more generally, \(p \)-th powers in \(\mathbb{Z}_p^* \).

Theorem 4.1 (Hensel’s lemma). Let \(f(X) \in \mathbb{Z}_p[X] \) and \(a \in \mathbb{Z}_p \) satisfy
\[
|f(a)|_p < |f'(a)|_p^2.
\]
There is a unique \(\alpha \in \mathbb{Z}_p \) such that \(f(\alpha) = 0 \) and \(|\alpha - a|_p < |f'(a)|_p \). Moreover,
\[
\begin{align*}
(1) \quad |\alpha - a|_p &= |f(a)/f'(a)|_p < |f'(a)|_p, \\
(2) \quad |f'(a)|_p &= |f'(a)|_p.
\end{align*}
\]

Since \(f'(a) \in \mathbb{Z}_p \), \(|f'(a)|_p \leq 1 \). If \(|f'(a)|_p = 1 \) then the hypotheses of Theorem 4.1 reduce to those of Theorem 2.1: saying \(|f(a)|_p < 1 \) and \(|f'(a)|_p = 1 \) means \(f(a) \equiv 0 \mod p \) and \(f'(a) \not\equiv 0 \mod p \). Theorem 4.1 actually goes beyond the conclusions of Theorem 2.1 when the hypotheses of Theorem 2.1 hold, since we learn in Theorem 4.1 exactly how far away the root \(\alpha \) is from the approximate root \(a \). But the main point of Theorem 4.1 is that it allows for the possibility that \(|f'(a)|_p < 1 \), which isn’t covered by Theorem 2.1 at all.

We will prove Theorem 4.1 by two methods, in Sections 5 and 6. Here are some applications where the polynomial has a multiple root mod \(p \).

Example 4.2. Let \(f(X) = X^4 - 7X^3 + 2X^2 + 2X + 1 \). Then \(f(X) \equiv (X + 1)^2(X^2 + 1) \mod 3 \) and we notice 2 mod 3 is a double root. Since \(|f(2)|_3 = 1/27 \) and \(|f'(2)|_3 = |1 - 24|_3 = 1/3 \), the condition \(|f(2)|_3 < |f'(2)|_3^2 \) holds, so there is a unique root \(\alpha \) of \(f(X) \) in \(\mathbb{Z}_3 \) such that \(|\alpha - 2|_3 < 1/3 \), i.e., \(\alpha \equiv 2 \mod 9 \).

In fact there are two roots of \(f(X) \) in \(\mathbb{Z}_3 \):
\[
2 + 3 \cdot 2^2 + 2 \cdot 3^2 + 2 \cdot 3^3 + 2 \cdot 3^4 + 2 \cdot 3^6 + \cdots \text{ and } 2 + 3^2 + 3^4 + 2 \cdot 3^5 + 2 \cdot 3^6 + \cdots.
\]
The second root reduces to 2 mod 9, and is \(\alpha \). The first root reduces to 5 mod 9, and its existence can be verified by checking \(|f(5)|_3 = 1/27 < |f'(5)|_3^2 = 1/9 \).

Example 4.3. Let \(f(X) = X^3 - 10 \) and \(g(X) = X^3 - 5 \). We have \(f(X) \equiv (X - 1)^3 \mod 3 \) and \(g(X) \equiv (X - 2)^3 \mod 3 \): 1 is an approximate 3-adic root of \(f(X) \) and 2 is an approximate 3-adic root of \(g(X) \). We want to see if they can be refined to genuine 3-adic roots. The basic form of Hensel’s lemma in Theorem 2.1 can’t be used since the polynomials do not have simple roots mod 3. Instead we will try to use the stronger form of Hensel’s lemma in Theorem 4.1.

Since \(|f(1)|_3 = 1/9 \) and \(|f'(1)|_3 = 1/3 \), we don’t have \(|f(1)|_3 < |f'(1)|_3^2 \), so Theorem 4.1 can’t be used on \(f(X) \) with \(a = 1 \). However, \(|f(4)|_3 = 1/27 \) and \(|f'(4)|_3 = 1/3 \), so we can
use Theorem 4.1 on $f(X)$ with $a = 4$: there is a unique root α of $X^3 - 10$ in \mathbb{Z}_3 satisfying $|\alpha - 4|_3 < 1/3$, so $\alpha \equiv 4 \pmod{9}$. The expansion of α begins as $1 + 3 + 3^2 + 2 \cdot 3^6 + 3^7 + \cdots$.

Turning to $g(X)$, we have $|g(2)|_3 = 1/3$ and $|g'(2)|_3 = 1/9$, so we can’t apply Theorem 4.1 with $a = 2$. In fact there is no root of $g(X)$ in \mathbb{Q}_3. If there were a root α in \mathbb{Q}_3 then $\alpha^3 = 5$, so $|\alpha|_3 = 1$, and thus $\alpha \in \mathbb{Q}_3$. Then $\alpha^3 \equiv 5 \pmod{3^5}$, so 5 would be a cube modulo every power of 3. But 5 is not a cube modulo 9 (the only cubes mod 9 are 0, 1, and 8). Therefore the mod 3 root of $X^3 - 5$ does not lift to a 3-adic root of $X^3 - 5$.

Theorem 4.4. If $u \in \mathbb{Z}_p^\times$ then u is a square in \mathbb{Q}_2 if and only if $u \equiv 1 \pmod{8\mathbb{Z}_2}$.

Proof. If $u = v^2$ in \mathbb{Q}_2 then $1 = |v|^2_2$, so $v \in \mathbb{Z}_2^\times$. In $\mathbb{Z}_2/8\mathbb{Z}_2 \cong \mathbb{Z}/8\mathbb{Z}$, the units are 1, 3, 5, and 7, whose squares are all congruent to 1 mod 8, so $u = v^2 \equiv 1 \pmod{8\mathbb{Z}_2}$. To show, conversely, that all $u \in \mathbb{Z}_p^\times$ satisfying $u \equiv 1 \pmod{8\mathbb{Z}_2}$ are squares in \mathbb{Z}_2^\times, let $f(X) = X^2 - u$ and use $a = 1$ in Theorem 4.1. We have $|f(1)|_2 = |1 - u|_2 \leq 1/8$ and $|f'(1)|_2 = |2|_2 = 1/2$, so $|f(1)|_2 < |f'(1)|_2^2$. Therefore $X^2 - u$ has a root in \mathbb{Z}_2, so u is a square in \mathbb{Z}_2.

Theorem 4.5. If $p \neq 2$ and $u \in \mathbb{Z}_p^\times$, then u is a pth power in \mathbb{Q}_p if and only if u is a pth power modulo p^3.

Theorem 4.5 is false for $p = 2$: the criterion for an element of \mathbb{Z}_2^\times to be a 2-adic square needs modulus 2^3, not modulus 2^2. For instance, 5 is a square mod 4 but 5 is not a 2-adic square since $5 \not\equiv 1 \pmod{8}$. Theorem 4.5 explains what we found in Example 4.3: 10 is a 3-adic cube and 5 is not, since 10 mod 9 is a cube and 5 mod 9 is not a cube.

Proof. If $u = v^p$ in \mathbb{Q}_p then $1 = |v|^p_2$, so $v \in \mathbb{Z}_p^\times$: we only need to look for pth roots of u in \mathbb{Z}_p^\times. Let $f(X) = X^p - u$. In order to use Theorem 4.1 on $f(X)$, we seek an $a \in \mathbb{Z}_p^\times$ such that $|f(a)|_p < |f'(a)|_p^2$. This means $|a^p - u|_p < |pa^{p-1}|_p^2 = 1/p^2$, or equivalently $a^p \equiv u \pmod{p^3}$. So provided u is a pth power modulo p^3, Theorem 4.1 tells us that $X^p - u$ has a root in \mathbb{Z}_p, so u is a pth power. The criterion in the theorem, however, has modulus p^2 rather than p^3. We need to do some work to bootstrap an approximate pth root from modulus p^2 to modulus p^3 in order for Theorem 4.1 to apply.

Suppose $u \equiv a^p \pmod{p^2}$ for some $a \in \mathbb{Z}_p$. Then $a \in \mathbb{Z}_p^\times$ and $u/a^p \equiv 1 \pmod{p^2}$. Write $u/a^p \equiv 1 + p^2c \pmod{p^3}$, where $0 \leq c \leq p - 1$. By the binomial theorem,

$$(1 + pc)^p = 1 + p(pc) + \sum_{k=2}^{p} \binom{p}{k}(pc)^k.$$

The terms for $k \geq 3$ are obviously divisible by p^3 and the term at $k = 2$ is $\binom{p}{2}(pc)^2 = \frac{p-1}{2}p^3c^2$, which is also divisible by p^3 since $p > 2$.

Therefore $(1 + pc)^p \equiv 1 + p^2c \pmod{p^3}$, so $u/a^p \equiv (1 + pc)^p \pmod{p^3}$. Now we can write

$$u \equiv a^{p(1 + pc)^p} \pmod{p^3}.$$

From Theorem 4.1, a p-adic integer that is congruent to 1 mod p^3 is a pth power (see the first paragraph again). Thus $u/(a^p(1 + pc)^p)$ is a pth power, so u is a pth power.

Remark 4.6. Hensel’s lemma in Theorem 4.1 says a root mod p lifts uniquely to a root in \mathbb{Z}_p under weaker conditions than Hensel’s lemma in Theorem 2.1, but it does not guarantee a unique lift mod p^n, unlike in Theorem 2.1 (Remark 2.3). Consider Example 4.3: in \mathbb{Z}_5, $X^3 = 10$ has one solution $1 + 3 + 3^2 + 2 \cdot 3^6 + \cdots$, but for $n \geq 2$, $X^3 \equiv 10 \pmod{3^n}$ has 3 solutions, not 1. One solution mod 3^n lifts to modulus 3^{n+1} and two don’t. (For instance, solutions mod 27 are 4, 13, and 22 and only 13 lifts to solutions mod 81, in fact to 13, 40, and 67 mod 27.) This is consistent with a unique root in \mathbb{Z}_3 since the 3 solutions mod 3^n are congruent modulo 3^{n-1} and thus are close: they have a common limit in \mathbb{Z}_3 as $n \to \infty$.
5. First Proof of Theorem 4.1: Newton’s Method

Our first proof of Theorem 4.1 will use Newton’s method and is a modification of [4, Chap. II, §2, Prop. 2].

Proof. As in Newton’s method from real analysis, define a sequence \(\{a_n\} \) in \(\mathbb{Q}_p \) by \(a_1 = a \) and

\[
a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}
\]

for \(n \geq 1 \). Set \(t = |f(a)/f'(a)|^2_p < 1 \). We will show by induction on \(n \) that

(i) \(|a_n|_p \leq 1 \), i.e., \(a_n \in \mathbb{Z}_p \),

(ii) \(|f'(a_n)|_p = |f'(a_1)|_p \),

(iii) \(|f(a_n)|_p \leq |f'(a_1)|_p^2 t^{2^{n-1}} \).

For \(n = 1 \) these conditions are all clear. Note in particular that we have equality in (iii) and \(f'(a_1) \neq 0 \) since \(|f(a_1)|_p < |f'(a_1)|_p^2 \).

For the inductive step, we need two polynomial identities. The first one, for \(F(X) \in \mathbb{Z}_p[X] \), is

\[
F(X + Y) = F(X) + F'(X)Y + g(X, Y)Y^2
\]

for some \(g(X, Y) \in \mathbb{Z}_p[X, Y] \). This is (2.1) from the proof of Theorem 2.1. So

\[
x, y \in \mathbb{Z}_p \implies F(x + y) = F(x) + F'(x)y + zy^2, \text{ where } z \in \mathbb{Z}_p
\]

with \(z = g(x, y) \). The second polynomial identity we need is that for \(F(X) \in \mathbb{Z}_p[X] \),

\[
F(X) - F(Y) = (X - Y)G(X, Y)
\]

for some \(G(X, Y) \in \mathbb{Z}_p[X, Y] \). This comes from \(X - Y \) being a factor of \(X^i - Y^i \) for all \(i \geq 1 \). Writing \(F(X) = \sum_{i=0}^{m} b_i X^i \),

\[
F(X) - F(Y) = \sum_{i=1}^{m} b_i (X^i - Y^i)
\]

and we can factor \(X - Y \) out of each term on the right. For \(x \) and \(y \) in \(\mathbb{Z}_p \), \(G(x, y) \in \mathbb{Z}_p \), so

\[
x, y \in \mathbb{Z}_p \implies |F(x) - F(y)|_p = |x - y|_p |G(x, y)|_p \leq |x - y|_p
\]

Assume (i), (ii), and (iii) are true for \(n \). To prove (i) for \(n + 1 \), first note \(a_{n+1} \) is defined since \(f'(a_n) \neq 0 \) by (ii). To prove (i) it suffices to show \(|f(a_n)/f'(a_n)|_p \leq 1 \). Using (ii) and (iii) for \(n \), we have \(|f(a_n)/f'(a_n)|_p = |f(a_n)/f'(a_1)|_p \leq |f'(a_1)|_p t^{2^{n-1}} \leq 1 \).

To prove (ii) for \(n + 1 \), (iii) for \(n \) implies \(|f(a_n)|_p < |f'(a_1)|_p^2 \) since \(t < 1 \) (and \(|f'(a_1)|_p \neq 0 \)), so by (5.4) with \(F(X) = f'(X) \),

\[
|f'(a_{n+1}) - f'(a_n)|_p \leq |a_{n+1} - a_n|_p = \frac{|f(a_n)|_p}{|f'(a_1)|_p} = \frac{|f'(a_n)|_p}{|f'(a_1)|_p} < |f'(a_1)|_p = |f'(a_n)|_p,
\]

so \(|f'(a_{n+1})|_p = |f'(a_n)|_p = |f'(a_1)|_p \).

To prove (iii) for \(n + 1 \), we use (5.3) with \(F(X) = f(X) \), \(x = a_n \) and \(y = -f(a_n)/f'(a_n) \):

\[
f(a_{n+1}) = f(x + y) = f(a_n) + f'(a_n) \left(-\frac{f(a_n)}{f'(a_n)} \right) + z \left(\frac{f(a_n)}{f'(a_n)} \right)^2 = z \left(\frac{f(a_n)}{f'(a_n)} \right)^2,
\]

where \(z \in \mathbb{Z}_p \). Thus, by (iii) for \(n \),

\[
|f(a_{n+1})|_p \leq \frac{|f(a_n)|^2_p}{|f'(a_n)|^2_p} \leq \frac{|f'(a_1)|^2_p t^{2^n}}{|f'(a_1)|^2_p} = |f'(a_1)|^2_p t^{2^n}.
\]
This completes the induction. Now we show \(\{a_n\} \) is Cauchy in \(\mathbb{Q}_p \). From the recursive definition of this sequence,

\[
(5.5) \quad |a_{n+1} - a_n|_p = \left| \frac{f(a_n)}{f'(a_n)} \right|_p = \frac{|f(a_n)|_p}{|f'(a_1)|_p} \leq |f'(a_1)|_p t^{2^{n-1}},
\]

where we used (ii) and (iii). Thus \(\{a_n\} \) is Cauchy. Let \(\alpha \) be its limit, so \(|\alpha|_p \leq 1 \) by (i), i.e., \(\alpha \in \mathbb{Z}_p \). Letting \(n \to \infty \) in (ii) and (iii) we get \(|f'(\alpha)|_p = |f'(a_1)|_p = |f'(a)|_p \) and \(f(\alpha) = 0 \).

To show \(|\alpha - a|_p = |f(a)/f'(a)|_p \), it’s true if \(f(a) = 0 \) since then \(a_n = a_1 = a \) for all \(n \), so \(\alpha = a \). If \(f(a) \neq 0 \) then we will show \(|a_n - a|_p = |f(a)/f'(a)|_p \) for all \(n \geq 2 \) and let \(n \to \infty \). When \(n = 2 \) use the definition of \(a_2 \) in terms of \(a_1 = a \). For all \(n \geq 2 \), by (5.5)

\[
(5.6) \quad |a_{n+1} - a_n|_p \leq |f'(a_1)|_p t^{2^{n-1}} \leq |f'(a_1)|_p t^2 < |f'(a_1)|_p t = |f'(a)|_p t = \left| \frac{f(a)}{f'(a)} \right|_p,
\]

where \(t \in (0,1) \) since \(f(a) \neq 0 \).² If \(|a_n - a|_p = |f(a)/f'(a)|_p \) then \(|a_{n+1} - a_n|_p < |a_n - a|_p \) by (5.6), so \(|a_{n+1} - a|_p = |a_{n+1} - a_n| + |a_n - a|_p = |a_n - a|_p = |f(a)/f'(a)|_p \).

The last thing to do is show \(\alpha \) is the only root of \(f(X) \) in the ball \(\{ x \in \mathbb{Z}_p : |x - a|_p < |f'(a)|_p \} \). This will not use anything about Newton’s method. Assume \(f(\beta) = 0 \) and \(|\beta - a|_p < |f'(a)|_p \). Since \(|\alpha - a|_p < |f'(a)|_p \) we have \(|\beta - \alpha|_p < |f'(a)|_p \). Write \(\beta = \alpha + h \), so \(h \in \mathbb{Z}_p \). Then by (5.3) with \(F(X) = f(X) \),

\[
0 = f(\beta) = f(\alpha + h) = f(\alpha) + f'(\alpha)h + z h^2 = f'(\alpha)h + z h^2
\]

for some \(z \in \mathbb{Z}_p \). If \(h \neq 0 \) then \(f'(\alpha) = -zh \), so \(|f'(\alpha)|_p \leq |h|_p = |\beta - \alpha|_p < |f'(a)|_p \). But \(|f'(\alpha)|_p = |f'(a)|_p \), so we have a contradiction. Thus \(h = 0 \), i.e., \(\beta = \alpha \).

Before we give a second proof of Theorem 4.1, it’s worth noting that the \(a_n \)’s converge to \(\alpha \) very rapidly. From the inequality \(|a_{n+1} - a_n|_p \leq |f'(a_1)|_p t^{2^{n-1}} \) for all \(n \geq 1 \) we obtain by the strong triangle inequality \(|a_m - a_n|_p \leq |f'(a_1)|_p t^{2^{n-1}} \) for all \(m > n \). Letting \(m \to \infty \),

\[
(5.7) \quad |\alpha - a_n|_p \leq |f'(a_1)|_p t^{2^{n-1}} = |f'(a)|_p t^{2^{n-1}} = |f'(a)|_p \left| \frac{f(a)}{f'(a)^2} \right|_p^{2^{n-1}}.
\]

Since \(|f(a)/f'(a)^2|_p < 1 \), the exponent \(2^{n-1} \) tells us that the number of initial \(p \)-adic digits in \(a_n \) that agree with those in the limit \(\alpha \) is at least doubling at each step.

Example 5.1. Let \(f(X) = X^2 - 7 \in \mathbb{Q}_3[X] \). It has two roots in \(\mathbb{Z}_3 \):

\[
\begin{align*}
 r &= 1 + 3 + 3^2 + 2 \cdot 3^4 + 2 \cdot 3^7 + 3^9 + \cdots, \\
 s &= 2 + 3 + 3^2 + 2 \cdot 3^3 + 2 \cdot 3^5 + 2 \cdot 3^6 + 3^8 + 3^9 + \cdots.
\end{align*}
\]

Starting with \(a_1 = 1 \), for which \(|f(a_1)/f'(a_1)^2|_3 = 1/3 \), Newton’s recursion (5.1) has limit \(\alpha \) where \(|\alpha - a_1|_3 < |f'(a_1)|_3 = 1/3 \), so \(\alpha \equiv a_1 \equiv 1 \mod 3 \). Thus \(\alpha = r \). For example,

\[
a_4 = \frac{977}{368} = 1 + 3 + 3^2 + 2 \cdot 3^4 + 2 \cdot 3^7 + 3^9 + 3^{10} + \cdots,
\]

which has the same 3-adic digits as \(r \) up through terms including \(3^7 \) (the first 8 digits). The estimate in (5.7) says \(|r - a_n|_3 \leq |f'(a_1)|_3 (1/3)^{2^{n-1}} = (1/3)^{2^{n-1}} \) for all \(n \). Using a computer, this inequality is an equality for \(1 \leq n \leq 10 \).

²The case \(f(a) = 0 \) was not covered in an earlier draft and this omission was found when this proof was formalized using the Lean theorem prover [5, p. 8].
Example 5.2. Let \(f(X) = X^2 - 17 \) in \(\mathbb{Q}_2[X] \). It has two roots in \(\mathbb{Z}_2 \):

\[
\begin{align*}
 r &= 1 + 2^3 + 2^5 + 2^6 + 2^7 + \cdots, \\
 s &= 1 + 2^2 + 2^4 + 2^8 + \cdots.
\end{align*}
\]

Using Newton’s recursion (5.1) for \(f(X) \) with initial seed \(a \in \mathbb{Z}_2^\times \), we need \(|a^2 - 17|_2 < |2a|_2^2 \), which is the same as \(a^2 \equiv 17 \mod 8 \), and this congruence works for all \(a \in \mathbb{Z}_2^\times \). Therefore (5.1) with \(a_1 \in \mathbb{Z}_2^\times \) converges to \(r \) or \(s \). Since \(|f'(a)|_2 = 1/2 \) for \(a \in \mathbb{Z}_2^\times \), (5.1) with \(a_1 = a \) has a limit \(\alpha \) satisfying \(|\alpha - a|_2 < |f'(a)|_2 = 1/2 \), so \(\alpha \equiv a \mod 4 \): if \(a \equiv 1 \mod 4 \) then \(\alpha = a \), and if \(a \equiv 3 \mod 4 \) then \(\alpha = s \). By (5.7), \(|\alpha - a_n|_2 \leq |f'(a)|_2 |(f(a)/f'(a))|_2 2^{n-1} = (1/2)(4|a^2 - 17|_2)2^{n-1} \). For a few a’s of \(a \), this inequality is an equality for \(1 \leq n \leq 10 \):

- When \(a = 1 \), \(|r - a_n|_2 = (1/2)2^{n+1} \) for \(1 \leq n \leq 10 \).
- When \(a = 3 \), \(|s - a_n|_2 = (1/2)2^{n-1+1} \) for \(1 \leq n \leq 10 \).
- When \(a = 5 \), \(|r - a_n|_2 = (1/2)2^{n-1+1} \) for \(1 \leq n \leq 10 \).

Example 5.3. Let’s solve \(X^2 - 1 = 0 \) in \(\mathbb{Q}_3 \). This might seem silly, since we know the solutions are \(\pm 1 \), but let’s check how an initial approximation affects the 3-adic limit. We use \(a_1 = 2 \). (If we used \(a_1 = 1 \) then \(a_n = 1 \) for all \(n \), which is not interesting.) When \(f(X) = X^2 - 1 \) the recursion for Newton’s method is

\[
a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)} = a_n - \frac{a_n^2 - 1}{2a_n} = \frac{a_n^2 + 1}{2a_n} = \frac{1}{2} \left(a_n + \frac{1}{a_n} \right).
\]

Since \(|f(2)|_3 = 1/3 < |f'(2)|_3^2 \), Newton’s recursion with \(a_1 = 2 \) converges in \(\mathbb{Q}_3 \). What is the limit? Since \(a_1 \equiv -1 \mod 3 \), we have \(a_n \equiv -1 \mod 3 \) for all \(n \) by induction: if \(a_n \equiv -1 \mod 3 \) then \(a_{n+1} = (1/2)(a_n + 1/a_n) \equiv (1/2)(-1 + 1/(-1)) \equiv (1/2)(-2) \equiv -1 \mod 3 \). Thus \(\lim_{n \to \infty} a_n = -1 \) in \(\mathbb{Q}_3 \). What makes this interesting is that in \(\mathbb{R} \) all \(a_n \) are positive so the sequence of rational numbers \(\{a_n\} \) converges to \(1 \) in \(\mathbb{R} \) and to \(-1 \) in \(\mathbb{Q}_3 \). The table below illustrates the rapid convergence in \(\mathbb{R} \) and \(\mathbb{Q}_3 \) (the 3-adic expansion of \(-1 \) is \(\mathbb{Z}_3 = 2222\ldots \)).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(a_n)</th>
<th>Decimal approx.</th>
<th>3-adic approx.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2.00000000</td>
<td>20000000</td>
</tr>
<tr>
<td>2</td>
<td>5/4</td>
<td>1.25000000</td>
<td>22020202</td>
</tr>
<tr>
<td>3</td>
<td>41/40</td>
<td>1.02500000</td>
<td>22220222</td>
</tr>
<tr>
<td>4</td>
<td>3281/3280</td>
<td>1.00030487</td>
<td>22222222</td>
</tr>
</tbody>
</table>

Theorem 4.1 has Theorem 2.1 as the special case when \(|f'(a)|_p = 1 \). Using a change of variables, we will show Theorem 4.1 follows from Theorem 2.1, so the basic and strong versions of Hensel’s lemma are in fact equivalent!

Theorem 5.4. Theorem 2.1 implies Theorem 4.1.

Proof. Suppose \(f(X) \in \mathbb{Z}_p[X] \) and \(a \in \mathbb{Z}_p \) satisfies \(|f(a)|_p < |f'(a)|_p^2 \). We will use Theorem 2.1 to show \(f(X) \) has a unique root \(\alpha \in \mathbb{Z}_p \) such that \(|\alpha - a|_p < |f'(a)|_p \), and in fact \(|\alpha - a_p| = |f(a)/f'(a)|_p \) and \(|f'(a)|_p = |f'(a)|_p \).

Since \(|f(a)|_p < |f'(a)|_p^2 \), set \(b = f(a)/f'(a)^2 \), so \(f(a) = f'(a)^2b \) and \(|b|_p < 1 \). A root \(\alpha \in \mathbb{Z}_p \) of \(f(X) \) where \(|\alpha - a|_p < |f'(a)|_p \) is a root of the form \(a + f'(a)s \) with \(|s|_p < 1 \). We thus want to show \(f(a + f'(a)s) = 0 \) for a unique \(s \in \mathbb{Z}_p \) with \(|s|_p < 1 \) and also show that in fact \(|s|_p = |f(a)/f'(a)|_p \). By the polynomial identity (5.2) with \(F(X) = f(X) \), there is a polynomial \(g(X,Y) \in \mathbb{Z}_p[X,Y] \) such that

\[
f(X + Y) = f(X) + f'(X)Y + g(X,Y)Y^2,
\]
so for all $s \in \mathbb{Z}_p$,

$$f(a + f'(a)s) = f(a) + f'(a)(f'(a)s) + g(a, f'(a)s)(f'(a)s)^2$$

$$= f'(a)^2b + f'(a)^2s + g(a, f'(a)s)f'(a)^2s^2$$

$$= f'(a)^2(b + s + g(a, f'(a)s)s^2).$$

Set $h(X) = b + X + g(a, f'(a)X)X^2 \in \mathbb{Z}_p[X]$. Since $h(X)$ has constant term $b = f(a)/f'(a)^2$ and linear coefficient 1, $|h(0)|_p = |b|_p < 1$ and $|h'(0)|_p = |1|_p = 1$. Theorem 2.1 implies there is a unique $\beta \in \mathbb{Z}_p$ such that $h(\beta) = 0$ and $|\beta|_p < 1$, so $\alpha := a + f'(a)\beta$ is the unique root of $f(X)$ in \mathbb{Z}_p such that $|\alpha - a|_p < |f'(a)|_p$.

To show $|\alpha - a|_p = |f(a)/f'(a)|_p$, rewrite this as $|\beta|_p = |f(a)/f'(a)^2|_p$. If $\beta = 0$ then $\alpha = a$, so $f(a) = 0$ and thus $|f(a)/f'(a)^2|_p = 0 = |\beta|_p$. If $\beta \neq 0$ then from

$$0 = h(\beta) = b + \beta + g(a, f'(a)\beta)^2$$

we get $|b + \beta|_p = |g(a, f'(a)\beta)^2|_p \leq |\beta|^2|_p < |\beta|_p$, so $|\beta|_p = |b|_p = |f(a)/f'(a)^2|_p$.

That $|f'(a)|_p = |f(a)|_p$ follows from $|\alpha - a|_p < |f'(a)|_p$: by (5.4), $|f'(a)| = |f(a)/f'(a)|_p \leq |\alpha - a|_p < |f'(a)|_p$, so $|f'(a)|_p = |f'(a)|_p$. □

Example 5.5. Let $f(X) = X^3 - 10$ with approximate root $a = 4$ in \mathbb{Z}_3. We can’t apply Theorem 2.1 directly to $f(X)$ to show there is a solution to $f(\alpha) = 0$ in \mathbb{Z}_3 with α close to 4 since $f'(4) = 48 \equiv 0 \mod 3$. From the proof of Theorem 5.4 we compute

$$f(X + Y) = (X + Y)^3 - 10 = X^3 + 3X^2Y + 3XY^2 + Y^3 - 10 = f(X) + f'(X)Y + (3X + Y)Y^2.$$

Then

$$f(4 + 48X) = f(4) + f'(4)(48X) + (12 + 48X)(48X)^2 = 54 + 48^2X + (12 + 48X)(48X)^2 = 48^2h(X)$$

where

$$h(X) = \frac{54}{48^2} + X + (12 + 48X)X^2 = \frac{3}{128} + X + 12X^2 + 48X^3.$$

Since $h(0) \equiv 0 \mod 3$ and $h'(0) = 1 \neq 0 \mod 3$, $h(X)$ has a unique root $\beta \in 3\mathbb{Z}_3$ that gives us a root $\alpha = 4 + 48\beta$ of $f(X)$.

By Theorem 2.1, each solution of $h(x) \equiv 0 \mod 3^n$ with $x \equiv 0 \mod 3$ lifts uniquely to a solution of $h(x) \equiv 0 \mod 3^{n+1}$ but such uniqueness of lifting at each “finite level” is not true for solving $f(x) \equiv 0 \mod 3^n$; see Remark 4.6. This different behavior is compatible because of the 48 (a multiple of 3) appearing on both sides of $f(4 + 48X) = 48^2h(X)$.

For example, suppose we want to solve $f(t) \equiv 0 \mod 81$ in \mathbb{Z}_3 with $t \equiv 4 \mod 3$. Then we can write $t = 4 + 48x$ with $x \in \mathbb{Z}_3$ since 48 is divisible by 3 just once, so

$$f(4 + 48x) \equiv 0 \mod 81 \iff 48^2h(x) \equiv 0 \mod 81 \iff h(x) \equiv 0 \mod 9.$$

Note the modulus decreased from 81 to 9. The unique solution of $h(x) \equiv 0 \mod 9$ is 3 mod 9, and that is the same as $t = 4 + 48x \equiv 4 + 48 \cdot 3 \equiv 13 \mod 27$. The modulus increased from 9 to 27 since congruences mod 9 are the same as congruences mod 27 when multiplying by 48. We have shown $f(t) \equiv 0 \mod 81$ is the same as $t \equiv 13 \mod 27$, and there are three liftings of 13 from mod 27 to mod 81: 13, 40, and 67.

6. **Second Proof of Theorem 4.1: Contraction Mappings**

Newton’s method produces a sequence converging to a root of $f(X)$ by iterating the function $x - f(x)/f'(x)$ with initial value $a_1 = a$ where $|f(a)|_p < |f'(a)|_p^2$. A root can also be found with a different iteration $\varphi(x) = x - f(x)/f'(a)$, where again $|f(a)|_p < |f'(a)|_p^2$. The denominator is $f'(a)$, not $f'(x)$, so it doesn’t change. We will show φ is a contraction mapping on a suitable ball around a. Then the contraction mapping theorem will imply φ
has a (unique) fixed point α in that ball.\footnote{There is an analogous method in real analysis to simplify Newton’s method to the contraction mapping theorem by fixing the denominator in the recursion. See [2, Thm. 1.2, p. 164].} The condition $\varphi(\alpha) = \alpha$ says $\alpha - f(\alpha)/f'(a) = \alpha$, so $f(\alpha) = 0$ and we have a root of $f(X)$. Filling in the details leads to the following second proof of Theorem 4.1. If you’re not interested in a second proof, go to the next section.

Proof. For $r \in [0, 1]$ to be determined, set $\overline{B}_a(r) = \{x \in \mathbb{Q}_p : |x - a|_p \leq r\}$, so $\overline{B}_a(r) \subset \mathbb{Z}_p$. Set

$$\varphi(x) = x - \frac{f(x)}{f'(a)}.$$

We seek an r such that φ maps $\overline{B}_a(r)$ back to itself and is a contraction on that ball.

To show φ is a contraction on some ball around a, we want to estimate

$$|\varphi(x) - \varphi(y)|_p = \left| x - y - \frac{f(x) - f(y)}{f'(a)} \right|_p$$

for all x and y near a in order to make this $\leq \lambda|x - y|_p$ for some $\lambda < 1$.

Write $f(X)$ as a polynomial in $X - a$, say $f(X) = \sum_{i=0}^d b_i(X - a)^i$. Then $b_0 = f(a)$, $b_1 = f'(a)$, and $b_i \in \mathbb{Z}_p$ for $i > 1$. For all x and y in \mathbb{Q}_p,

$$f(x) - f(y) = \sum_{i=1}^d b_i((x - a)^i - (y - a)^i) = f'(a)(x - y) + \sum_{i=2}^d b_i((x - a)^i - (y - a)^i),$$

so

$$\varphi(x) - \varphi(y) = x - y - \frac{f(x) - f(y)}{f'(a)} = -\frac{1}{f'(a)} \sum_{i=2}^d b_i((x - a)^i - (y - a)^i).$$

(If $d \leq 1$ then the sum on the right is empty.) In the polynomial identity

$$X^i - Y^i = (X - Y) \sum_{j=0}^{i-1} X^{i-1-j} Y^j$$

for $i \geq 2$ set $X = x - a$ and $Y = y - a$. Then

$$|(x - a)^i - (y - a)^i|_p = |x - y|_p \left| \sum_{j=0}^{i-1} (x - a)^{i-1-j} (y - a)^j \right|_p$$

$$\leq |x - y|_p \max_{0 \leq j \leq i-1} |x - a|_p^{i-1-j} |y - a|_p^j$$

$$\leq |x - y|_p \max(|x - a|_p, |y - a|_p)^{i-1}$$

$$\leq |x - y|_p \max(|x - a|_p, |y - a|_p)$$

when $|x - a|_p$ and $|y - a|_p$ are both at most 1. Therefore from (6.1),

$$|x - a|_p, |y - a|_p \leq 1 \implies |\varphi(x) - \varphi(y)|_p \leq \frac{|x - y|_p \max(|x - a|_p, |y - a|_p)}{|f'(a)|_p},$$

so for $\lambda \in [0, 1]$,

$$|x - a|_p, |y - a|_p \leq \lambda |f'(a)|_p \implies |\varphi(x) - \varphi(y)|_p \leq \lambda|x - y|_p.$$

If we can find $\lambda \in [0, 1)$, perhaps depending on a and $f(X)$, such that

$$|x - a|_p \leq \lambda |f'(a)|_p \implies |\varphi(x) - a|_p \leq \lambda |f'(a)|_p$$

then (6.2) will tell us that φ is a contraction mapping on the closed ball around a of radius $\lambda|f'(a)|_p$. We will see that if $|f(a)|_p < |f'(a)|_p^2$ then a choice for λ is $|f(a)|_p/|f'(a)|_p^2$. In
fact, we want to do more: show the condition \(|f(a)|_p < |f'(a)|_p^2\) arises naturally by trying to make (6.3) work for some unknown \(\lambda\).

For \(\lambda \in (0, 1)\), when \(|x - a|_p \leq \lambda|f'(a)|_p\) we have

\[
|\varphi(x) - a|_p \leq \lambda|f'(a)|_p \iff |x - a - \frac{f(x)}{f'(a)}|_p \leq \lambda|f'(a)|_p \iff \left| \frac{f(x)}{f'(a)} \right|_p \leq \lambda|f'(a)|_p.
\]

Returning to the formula \(f(X) = \sum_{i=0}^d b_i(X - a)^i\), where \(b_0 = f(a)\) and \(b_1 = f'(a)\),

\[
(6.4) \quad \frac{f(x)}{f'(a)} = f(a) f'(a) + (x - a) + \sum_{i=2}^d \frac{b_i}{f'(a)} (x - a)^i.
\]

When \(|x - a|_p \leq \lambda|f'(a)|_p\), which is less than \(|f'(a)|_p \leq 1\), we have for \(i \geq 2\) that

\[
\left| \frac{b_i}{f'(a)} (x - a)^i \right|_p \leq \frac{|x - a|^2}{|f'(a)|_p} \leq \lambda^2|f'(a)|_p \leq \lambda|f'(a)|_p,
\]

so by (6.4)

\[
\left| \frac{f(x)}{f'(a)} \right|_p \leq \lambda|f'(a)|_p \iff \left| \frac{f(a)}{f'(a)} \right|_p \leq \lambda|f'(a)|_p \iff \left| \frac{f(a)}{f'(a)} \right|_p \leq \lambda.
\]

To make this occur for some \(\lambda < 1\) is equivalent to requiring \(|f(a)/f'(a)|^2_p < 1\). Therefore if \(|f(a)|_p < |f'(a)|^2_p\) and we set \(\lambda = |f(a)/f'(a)|^2_p\), the mapping \(\varphi(x) = x - f(x)/f'(a)\) is a contraction on the closed ball around \(a\) with radius \(|\lambda|f'(a)|_p = |f(a)/f'(a)|_p\) and contraction constant \(\lambda\). Any closed ball in \(\mathbb{Q}_p\) is complete, so the contraction mapping theorem implies that the sequence \(\{a_n\}\) defined recursively by \(a_1 = a\) and

\[
(5.5) \quad a_{n+1} = \varphi(a_n) = a_n - \frac{f(a_n)}{f'(a)}
\]

for \(n \geq 1\) converges to the unique fixed point of \(\varphi\) in \(\overline{B}_a(|f(a)/f'(a)|_p)\). By the definition of \(\varphi\), a fixed point of \(\varphi\) is the same thing as a zero of \(f(X)\), so there is a unique \(\alpha\) in \(\mathbb{Q}_p\) satisfying \(f(\alpha) = 0\) and \(|\alpha - a|_p \leq |f(a)/f'(a)|_p|\).

To finish this proof of Theorem 4.1 we need to show \(|\alpha - a|_p = |f(a)/f'(a)|_p\), \(\alpha\) is the unique root of \(f(X)\) in \(\mathbb{Z}_p\) such that \(|\alpha - a|_p < |f'(a)|_p\), and \(|f'(a)|_p = |f'(a)|_p\).

\(|\alpha - a|_p = |f(a)/f'(a)|_p\): We have \(|a_2 - a|_p = |a_2 - a_1|_p = |f(a_1)/f'(a)|_p = |f(a)/f'(a)|_p|\), and for all \(n\)

\[
|a_{n+1} - a_n|_p = |\varphi^n(a) - \varphi^{n-1}(a)|_p = |\varphi^{n-1}(\varphi(a)) - \varphi^{n-1}(a)|_p \leq \lambda^{n-1}|a_2 - a_1|_p \leq \left| \frac{f(a)}{f'(a)} \right|_p.
\]

Then \(|a_n - a|_p = |f(a)/f'(a)|_p\) for all \(n\) by induction, so \(|\alpha - a|_p = |f(a)/f'(a)|_p\) by letting \(n \to \infty\). \(\alpha\) is the unique root of \(f(X)\) such that \(|\alpha - a|_p < |f'(a)|_p\): This was proved at the end of the first proof of Theorem 4.1 without needing Newton’s method. We won’t rewrite the proof.

\(|f'(a)|_p = |f'(a)|_p\): Since \(a_1 = a\), of course \(|f'(a)|_p = |f'(a)|_p\). If \(|f'(a_n)|_p = |f'(a)|_p\) for some \(n \geq 1\) then

\[
|f'(a_{n+1}) - f'(a_n)|_p \leq |a_{n+1} - a_n|_p \leq \left| \frac{f(a)}{f'(a)} \right|_p
\]

where the first inequality is from (5.4) and the second inequality is from \(a_n\) and \(a_{n+1}\) both lying in the closed ball around \(a\) of radius \(|f(a)/f'(a)|_p\). Thus \(|f'(a_{n+1}) - f'(a_n)|_p < |f'(a)|_p = |f'(a_n)|_p = |f'(a)|_p = |f'(a)|_p\). We’ve shown \(|f'(a_n)|_p = |f'(a)|_p\) for all \(n\), and letting \(n \to \infty\) gives us \(|f'(a)|_p = |f'(a)|_p\). \(\square\)
It’s worthwhile to compare the recursions from Newton’s method and from the contraction mapping theorem:

- Newton’s method: \(a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)} \), with \(a_1 = a \) and \(|f(a)|_p < |f'(a)|_p^2 \).
- Contraction mapping: \(a_{n+1} = a_n - \frac{f(a_n)}{f'(a)} \), with \(a_1 = a \) and \(|f(a)|_p < |f'(a)|_p^2 \).

The difference is the denominators \(f'(a_n) \) and \(f'(a) \), and this has a profound effect on the rate of convergence. In Newton’s method, (5.7) tells us

\[
|\alpha - a_n|_p \leq |f'(a)|_p \frac{|f(a)|_p}{f'(a)} 2^{n-1}.
\]

To find an estimate on \(|\alpha - a_n|_p \) from the contraction mapping theorem, the recursion given by (6.5) implies \(|a_{n+1} - a_n|_p = |\varphi^{-1}(a_2) - \varphi^{-1}(a_1)|_p \leq |a_2 - a_1|_p \lambda^{n-1} \) for all \(n \geq 1 \), where \(a_2 - a_1 = f(a)/f'(a) \) and \(\lambda = |f(a)/f'(a)|_p^2 \). If \(m > n \) the strong triangle inequality implies

\[
|a_m - a_n|_p \leq \max_{n \leq j \leq m-1} |a_{j+1} - a_j|_p \leq |a_2 - a_1|_p \lambda^{n-1} = \frac{|f(a)|_p}{f'(a)} \lambda^{n-1}.
\]

Letting \(m \to \infty \) yields

\[
|\alpha - a_n|_p \leq \frac{|f(a)|_p}{f'(a)} \lambda^{n-1}.
\]

The upper bound in (6.6) goes to 0 much faster than the upper bound in (6.7), so we anticipate that \(|\alpha - a_n|_p \to 0 \) faster when \(\{a_n\} \) is comes from Newton’s recursion compared to the contraction mapping recursion. For instance, if \(|f(a)/f'(a)|_p^2 = 1/p \), then the bound in (6.6) goes to 0 like \((1/p)^{2n-1}\) while in (6.7) the bound goes to 0 like \((1/p)^n\), so there is at least a doubling of correct \(p \)-adic digits in each step of Newton’s recursion while we expect at most one new correct \(p \)-adic digit at each step by the contraction mapping recursion.

Example 6.1. Let \(f(X) = X^2 - 7 \) with \(a = 1 \), so \(|f(a)/f'(a)|_3 = 1/3 \). The sequence \(\{a_n\} \) produced from the contraction mapping recursion (6.5) with \(a_1 = 1 \) has a limit \(\alpha \) and with a computer we find \(|\alpha - a_n|_3 = (1/3)^n \) for \(1 \leq n \leq 10 \). The sequence \(\{a_n\} \) based on Newton’s recursion in Example 5.1 with \(a_1 = 1 \) has the same limit \(\alpha \), but a computer tells us that \(|\alpha - a_n|_3 = (1/3)^{2n-1} \) for \(1 \leq n \leq 10 \), which is much smaller than \((1/3)^n\).

7. The inevitability of \(|f(a)|_p < |f'(a)|_p^2 \)

In Theorem 4.1 we have \(|f'(a)|_p = |f'(a)|_p \neq 0 \), so Hensel’s lemma produces a simple root \(\alpha \) of \(f(X) \) in \(\mathbb{Z}_p \) that is close to \(a \). The criterion \(|f(a)|_p < |f'(a)|_p^2 \) in Theorem 4.1 is not just a sufficient condition for there to be a simple root of \(f(X) \) near \(a \) but it is also necessary, as the next theorem makes precise.

Theorem 7.1. If \(f(X) \in \mathbb{Z}_p[X] \) has a simple root \(\alpha \) in \(\mathbb{Z}_p \), then for all \(a \in \mathbb{Z}_p \) that are close enough to \(\alpha \) we have \(|f'(a)|_p = |f'(a)|_p \) and \(|f(a)|_p < |f'(a)|_p^2 \). In particular, these conditions hold when \(|a - \alpha|_p < |f'(\alpha)|_p \).

Proof. By (5.4) with \(F(X) = f'(X) \), \(|f'(\alpha) - f'(a)|_p \leq |\alpha - a|_p < |f'(\alpha)|_p \). Thus \(|f'(a)|_p = |f'(\alpha)|_p \). By (5.3) with \(F(X) = f(X) \),

\[
f(a) = f(a + (a - \alpha)) = f(a) + f'(\alpha)(a - \alpha) + z(a - \alpha)^2 = f'(a)(a - \alpha) + z(a - \alpha)^2
\]

for some \(z \in \mathbb{Z}_p \). Both terms on the right side have absolute value less than \(|f'(\alpha)|_p^2 \) since \(|a - \alpha|_p < |f'(\alpha)|_p \), so \(|f(a)|_p < |f'(a)|_p^2 \).
8. Hensel’s lemma for power series

Hensel’s lemma can be applied to p-adic power series, not just polynomials. By “p-adic power series” we have in mind those with \mathbb{Z}_p-coefficients, which we will call power series “over \mathbb{Z}_p.” We will consider such series of two types: those that converge on \mathbb{Z}_p and those that converge on $p\mathbb{Z}_p$ but not necessarily on \mathbb{Z}_p (e.g., e^x for $p > 2$). To prove Hensel’s lemma for these two types of power series, we will use the following power series analogue of (5.3) and (5.4).

Lemma 8.1. Let $F(X)$ be a power series with coefficients in \mathbb{Z}_p that converges on \mathbb{Z}_p.

1. For x and y in \mathbb{Z}_p, $F(x + y) = F(x) + F'(x)y + zy^2$ for some $z \in \mathbb{Z}_p$.
2. For x and y in \mathbb{Z}_p, $|F(x) - F(y)|_p \leq |x - y|_p$.

If $F(X)$ converges on $p\mathbb{Z}_p$ but not necessarily on \mathbb{Z}_p, then (1) and (2) are true for $x, y \in p\mathbb{Z}_p$.

Proof. Let $F(X) = \sum_{i \geq 0} c_i X^i$, so $c_i \in \mathbb{Z}_p$. Convergence of $F(X)$ on \mathbb{Z}_p implies $c_i \to 0$ as $i \to \infty$. To prove (1), the analogue of (5.3), for x and y in \mathbb{Z}_p we have

$$F(x + y) = \sum_{i \geq 0} c_i (x + y)^i = c_0 + \sum_{i \geq 1} c_i (x^i + ix^{i-1}y + g_i(x,y)y^2)$$

where $g_i(x,y) \in \mathbb{Z}_p[x,y] \subset \mathbb{Z}_p$

and $g_i(x,y)$ are all in \mathbb{Z}_p (all the series converge) with $g_1(x,y) = 0$. Thus

$$F(x + y) = F(x) + F'(x)y + zy^2,$$

where $z = \sum_{i \geq 2} c_i g_i(x,y) \in \mathbb{Z}_p$.

To prove (2), the analogue of (5.4), we use $|x^i - y^i|_p \leq |x - y|_p$ for all $x, y \in \mathbb{Z}_p$ and $i \geq 0$:

$$F(x) - F(y) = \sum_{i \geq 1} c_i (x^i - y^i) \implies |F(x) - F(y)|_p \leq \max_{i \geq 1} |c_i|_p |x^i - y^i|_p \leq \max_{i \geq 1} |c_i|_p |x - y|_p,$$

which is at most $|x - y|_p$ since all $|c_i|_p$ are at most 1.

If $F(X)$ converges on $p\mathbb{Z}_p$ but not necessarily on \mathbb{Z}_p, so the coefficients c_i are in \mathbb{Z}_p but need not tend to 0, the proofs of (1) and (2) remain valid for $x, y \in p\mathbb{Z}_p$ after checking some details: in the proof of (1), the series for $F(x)$ and $F'(x)$ converge when $x \in \mathbb{Z}_p$, while the series $\sum_{i \geq 1} c_i g_i(x,y)$ converges since $|g_i(x,y)|_p \leq \max(|x|_p,|y|_p)^i - 2$ by the binomial theorem that gave rise to $g_i(x,y)$. The proof of (2) carries over with no changes at all provided $x, y \in p\mathbb{Z}_p$ so that $F(x)$ and $F(y)$ converge. \qed

Here is a power series version of Theorem 4.1 for series over \mathbb{Z}_p that converge on \mathbb{Z}_p.

Theorem 8.2. Let $f(X)$ be a power series with coefficients in \mathbb{Z}_p that converges on \mathbb{Z}_p. If an $a \in \mathbb{Z}_p$ satisfies

$$|f(a)|_p < |f'(a)|_p^2$$

then there is a unique $\alpha \in \mathbb{Z}_p$ such that $f(\alpha) = 0$ and $|\alpha - a|_p < |f'(a)|_p$. Moreover,

1. $|\alpha - a|_p = |f(a)/f'(a)|_p < |f'(a)|_p$.
2. $|f'(a)|_p = |f'(a)|_p$.

In this theorem, $f'(a)$ makes sense for $a \in \mathbb{Z}_p$ since $f'(X)$ converges on \mathbb{Z}_p: the coefficients of $f(X)$ tend to 0 since $f(1)$ converges so the coefficients of $f'(X)$ also tend to 0 and thus $f'(X)$ converges on \mathbb{Z}_p.

Proof. Using Lemma 8.1 in place of (5.3) and (5.4), the proof of Theorem 4.1 using Newton’s method carries over word for word to the setting of power series with \(\mathbb{Z}_p \)-coefficients that converge on \(\mathbb{Z}_p \). □

The basic version of Hensel’s lemma is true for power series as a special case of the strong version proved above: if \(f(X) \) is a power series over \(\mathbb{Z}_p \) that converge on \(\mathbb{Z}_p \) and an \(a \in \mathbb{Z}_p \) satisfies \(f(a) \equiv 0 \mod p \) and \(f'(a) \equiv 0 \mod p \) then there is a unique \(\alpha \in \mathbb{Z}_p \) such that \(f(\alpha) = 0 \) and \(\alpha \equiv a \mod p \).

Like Theorem 5.4, the basic and strong form of Hensel’s lemma for power series with \(\mathbb{Z}_p \)-coefficients that converge on \(\mathbb{Z}_p \) are equivalent, with a proof similar to the polynomial case, but care is needed since part of the proof uses convergent power series in two variables. Details are left to the reader. Check also that Theorem 7.1 and its proof carry over to power series over \(\mathbb{Z}_p \) that converge on \(\mathbb{Z}_p \), where a simple root of a power series is a root at which the derivative is nonzero.

For power series over \(\mathbb{Z}_p \) that converge on \(p\mathbb{Z}_p \) but not necessarily on \(\mathbb{Z}_p \), here is a version of Hensel’s Lemma.

Theorem 8.3. Let \(f(X) \) be a power series with coefficients in \(\mathbb{Z}_p \) that converges on \(p\mathbb{Z}_p \). If an \(a \in p\mathbb{Z}_p \) satisfies

\[
|f(a)|_p < |f'(a)|_p^2
\]

then there is a unique \(\alpha \in p\mathbb{Z}_p \) such that \(f(\alpha) = 0 \) and \(|\alpha - a|_p < |f'(\alpha)|_p^2 \). Moreover,

1. \(|\alpha - a|_p = |f(a)/f'(a)|_p < |f'(\alpha)|_p \),
2. \(|f'(\alpha)|_p = |f'(a)|_p \).

Proof. The proof of Theorem 8.2 (including its use of Lemma 8.1) carries over with the complete space \(p\mathbb{Z}_p \) replacing the complete space \(\mathbb{Z}_p \) as the set containing the approximate roots \(a_n \) and the root \(\alpha \) that is their limit. □

In the proof of Hensel’s lemma for polynomials by Newton’s method, the upper bounds on \(|f(a_n)|_p \) and \(|a_{n+1} - a_n|_p \) carry over to Hensel’s lemma for a power series, whether in the form of Theorem 8.2 or 8.3: \(|f(a_n)|_p \leq |f'(a)|_p |(f(a)|_p|f'(a)|_p^2|_p)^{2n-1} \) and \(|a_{n+1} - a_n|_p \leq |f'(a)|_p |f(a)/f'(a)|_p^{2n-1} \). Using the strong triangle inequality in the second bound for \(a_{n+1} - a_n = (a_m - a_{m-1}) + \cdots + (a_{n+1} - a_n) \) when \(m > n \) and then letting \(m \to \infty \), we get the bound from (5.7) all over again, but this time for power series:

\[
|\alpha - a_n|_p \leq |f'(\alpha)|_p \left| \frac{f(a)}{f'(a)^2} \right|_p^{2n-1}.
\]

Example 8.4. For \(c \in \mathbb{Z}_p \), set \((1 + X)^c = \sum_{n>0} \binom{c}{n} x^n \), where \(\binom{c}{n} = \frac{(c-1)\cdots(c-n+1)}{n!} \). Since \(c \) is a \(p \)-adic limit of positive integers (use truncations of the \(p \)-adic expansion of \(c \)), the number \(\binom{c}{n} \) is a \(p \)-adic limit of integers and thus \(\binom{c}{n} \in \mathbb{Z}_p \). For \(c \in \mathbb{Z}_p - \{0, 1, 2, 3, \ldots\} \), \(\binom{c}{n} \) is \(\mathbb{Z}_p \) infinitely often (for those \(n \) whose base \(p \) expansion is an initial part of the \(p \)-adic expansion of \(c \)), so \((1 + X)^c \) has coefficients in \(\mathbb{Z}_p \) that do not tend to 0 and thus \((1 + X)^c \) converges on \(p\mathbb{Z}_p \) but not on \(\mathbb{Z}_p \).

Consider \(f(X) = \sqrt[7]{7} - 10 \), where \(\sqrt[7]{7} = 1 + 3 + 3^2 + 2 \cdot 3^4 + \cdots \) in \(\mathbb{Z}_3 \). For each \(a \in 3\mathbb{Z}_3 \), \(f(a) \equiv 0 \mod 3 \) and \(f'(a) = \sqrt[7]{7}(1 + a)^{\sqrt[7]{7} - 1} \equiv \sqrt[7]{7} \not\equiv 0 \mod 3 \), so by Theorem 8.3 there is a unique solution to \(f(a) = 0 \) in \(3\mathbb{Z}_3 \) by using Newton’s method with initial value \(a_1 = a \). Taking \(a = 0 \), \(f(a_1) = -9 \) and \(f'(a_1) = \sqrt[7]{7} \not\equiv 0 \mod 3 \). Using (8.1) for \(f(X) = (1 + X)^{\sqrt[7]{7}} - 10 \), \(|\alpha - a_n|_3 \leq (1/9)^{2n-1} = (1/3)^{2n} \). Taking \(n = 3 \),

\[
\alpha \equiv a_3 \equiv 3^2 + 2 \cdot 3^3 + 2 \cdot 3^4 + 3^5 + 2 \cdot 3^6 \mod 3^8.
\]
The number on the right is 1926. As a reality check, let’s confirm that \(f(a_3) \) is 3-adically small. Since \(|f(x) − f(y)|_3 ≤ |x − y|_3 \) for \(x, y \in \mathbb{Z}_3 \), \(f(a_3) \equiv f(1926) \mod 3^8 \). Since 1926 is divisible by 9, so \(1926^n \equiv 0 \mod 3^8 \) for \(n ≥ 4 \), and the power series coefficients of \(f(X) \) are all in \(\mathbb{Z}_3 \), \(f(1926) \equiv −9 + \sum_{n=1}^{3}(\sqrt[3]{n})1926^n \mod 3^8 \). With a computer, the right side is 0 mod 3^8.

Example 8.5. For \(p > 2 \) and \(c \in 1 + p\mathbb{Z}_p \), set \(f(X) = e^X − c \). The \(p \)-adic disc of convergence for \(e^X \) (and thus for \(e^X − c \)) on \(\mathbb{Q}_p \). Since \(f(0) = 1 − c \) and \(f′(0) = 1 \), we have \(|f(0)|_p ≤ 1/p \) and \(|f′(0)|_p = 1 \). Therefore Theorem 8.3 tells us there is a unique \(α \in p\mathbb{Z}_p \) such that \(e^α = c \) and \(|α|_p < 1 \), and in fact \(|α|_p = |f(0)|_p = |c−1|_p \). This \(α \) in \(p\mathbb{Z}_p \) for which \(e^α = c \) is the \(p \)-adic logarithm of \(c \).

By (8.1) with \(a = 0 \), \(|α − a_n|_p ≤ |1 − c|_p^{2^{n−1}} \). For instance, if we want to solve \(e^α = −2 \) for \(α \in 3\mathbb{Z}_3 \) and compute \(α \mod 3^5 \), use Newton’s method with \(f(x) = e^x + 2 \). Then \(|α − a_n|_3 ≤ |1 − (−2)|_3^{2^{n−1}} = 1/3^{2^{n−1}} \). The upper bound is at most 1/3^5 for \(n ≥ 4 \), so take \(n = 4 \). The Newton’s method recursion is \(a_{n+1} = a_n − f(a_n)/f′(a_n) = a_n − (e^{a_n} + 2)/e^{a_n} = a_n − 1 − 2/e^{a_n} \). By computer, the term for \(a_4 \) in the table below satisfies \(e^{a_4} \equiv −2 \mod 3^{15} \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(a_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>−3</td>
</tr>
<tr>
<td>3</td>
<td>(2 \cdot 3 + 2 \cdot 3^2 + 3^5 + 2 \cdot 3^7 + 2 \cdot 3^{10} + \cdots)</td>
</tr>
<tr>
<td>4</td>
<td>(2 \cdot 3 + 2 \cdot 3^2 + 3^5 + 3^6 + 2 \cdot 3^8 + 3^9 + \cdots)</td>
</tr>
</tbody>
</table>

9. Hensel’s lemma beyond \(\mathbb{Q}_p \)

The proofs of Hensel’s lemma work for polynomials with coefficients in a field \(K \) complete with respect to an absolute value satisfying the strong triangle inequality: \(|x + y| ≤ \max(|x|, |y|) \) for all \(x \) and \(y \) in \(K \). Set \(Ω = \{ x ∈ K : |x| ≤ 1 \} \).

Theorem 9.1. If a polynomial \(f(X) \) has coefficients in \(Ω \) and some \(a ∈ Ω \) satisfies

\[
|f(a)| < |f′(a)|^2
\]

then there is a unique \(α ∈ Ω \) such that \(f(α) = 0 \) and \(|α − a| < |f′(α)| \). Moreover, \(|α − a| = |f(a)/f′(a)| < |f′(a)| \) and \(|f′(α)| = |f′(a)| \neq 0 \).

Conversely, if \(f(X) \) has a simple root \(α ∈ Ω \), then for \(a ∈ K \) such that \(|a − α| < |f′(α)| \) then we have \(|f′(α)| = |f′(a)| \) and \(|f(a)| < |f′(a)|^2 \).

Theorems 5.4 and 7.1 also carry over to \(\mathbb{Q}[X] \), with the same proofs (the proofs over \(\mathbb{Z}_p \) were written specifically to make sure the proofs carry over to \(Ω \) with no changes):

Theorem 9.2. The following properties of polynomials in \(Ω[X] \) are equivalent.

1. If \(f(X) ∈ Ω[X] \) and there is an \(a ∈ Ω \) such that \(|f(a)| < 1 \) and \(|f′(a)| = 1 \) then there is a unique \(α ∈ Ω \) such that \(f(α) = 0 \) and \(|α − a| < 1 \),
 2. If \(f(X) ∈ Ω[X] \) and there is an \(a ∈ Ω \) such that \(|f(a)| < |f′(a)|^2 \) then there is a unique \(α ∈ Ω \) such that \(f(α) = 0 \) and \(|α − a| < |f′(a)| \), and in fact \(|α − a|_p = |f(a)/f′(a)|_p \)

Theorem 9.3. If \(f(X) ∈ Ω[X] \) has a simple root \(α \) in \(Ω \), then for all \(a ∈ Ω \) that are close enough to \(α \) we have \(|f′(α)| = |f′(a)| \) and \(|f(a)| < |f′(a)|^2 \). In particular, these conditions hold when \(|a − α| < |f′(α)| \).

For power series, everything written above about series with coefficients in \(\mathbb{Z}_p \) in Section 8 carries over to power series with coefficients in \(Ω \) of both types that were described over \(\mathbb{Z}_p \); both those that converge on \(Ω \) (so coefficients tend to 0) having a root in \(Ω \) and those that

4A 3-adicity check, since we’re not working over the reals?
converge on \(\{ x \in \mathfrak{o} : |x| < 1 \} \) (coefficients are in \(\mathfrak{o} \) but need not tend to 0) having a root in \(\mathfrak{o} \) with absolute value less than 1. We record below the statements of these generalizations, leaving the proofs (similar to the polynomial case in most respects) to the reader.

Theorem 9.4. Let \(f(X) \) be a power series with coefficients in \(\mathfrak{o} \) that converges on \(\mathfrak{o} \).

If an \(a \in \mathfrak{o} \) satisfies
\[
|f(a)| < |f'(a)|^2
\]
then there is a unique \(\alpha \in \mathfrak{o} \) such that \(f(\alpha) = 0 \) and \(|\alpha - a| < |f'(a)| \). Moreover,
\[
(1) \quad |\alpha - a| = |f(a)/f'(a)| < |f'(a)|,
(2) \quad |f'(\alpha)| = |f'(a)|.
\]

Theorem 9.5. Let \(f(X) \) be a power series with coefficients in \(\mathfrak{o} \) that converges on \(\{ x \in \mathfrak{o} : |x| < 1 \} \).

If an \(a \in \mathfrak{o} \) with \(|a| < 1 \) satisfies
\[
|f(a)| < |f'(a)|^2
\]
then there is a unique \(\alpha \in \mathfrak{o} \) with \(|\alpha| < 1 \) such that \(f(\alpha) = 0 \) and \(|\alpha - a| < |f'(a)| \). Moreover,
\[
(1) \quad |\alpha - a| = |f(a)/f'(a)| < |f'(a)|,
(2) \quad |f'(\alpha)| = |f'(a)|.
\]

For a version of Hensel’s lemma where \(\mathbb{Z}_p \) is replaced by a complete local ring (possibly not an integral domain, so division is more delicate), see [3, Theorem 7.3]. For a version of Hensel’s lemma dealing with zeros of several polynomials in several variables, see [1].

References