HENSEL’S LEMMA
KEITH CONRAD

1. Introduction

In the p-adic integers, congruences are approximations: for a and b in \mathbb{Z}_p, $a \equiv b \mod p^n$ is the same as $|a - b|_p \leq 1/p^n$. Turning information modulo one power of p into similar information modulo a higher power of p can be interpreted as improving an approximation.

Example 1.1. The number 7 is a square mod 3: $7 \equiv 1^2 \mod 3$. Although $7 \not\equiv 1^2 \mod 9$, we can write 7 as a square mod 9 by replacing 1 with 1 + 3: $7 \equiv (1 + 3)^2 \mod 9$. Here are expressions of 7 as a square modulo further powers of 3:

$$
7 \equiv (1 + 3 + 3^2)^2 \mod 3^3,
7 \equiv (1 + 3 + 3^2)^2 \mod 3^4,
7 \equiv (1 + 3 + 3^2 + 2 \cdot 3^4)^2 \mod 3^5,
\vdots
7 \equiv (1 + 3 + 3^2 + 2 \cdot 3^4 + 2 \cdot 3^7 + 3^8 + 3^9 + 2 \cdot 3^{10})^2 \mod 3^{11}.
$$

If we can keep going indefinitely then 7 is a perfect square in \mathbb{Z}_3 with square root $1 + 3 + 3^2 + 2 \cdot 3^4 + 2 \cdot 3^7 + 3^8 + 3^9 + 2 \cdot 3^{10} + \cdots$.

That we really can keep going indefinitely is justified by Hensel’s lemma, which will provide conditions under which the root of a polynomial mod p can be lifted to a root in \mathbb{Z}_p, such as the polynomial $X^2 - 7$ with $p = 3$: its two roots mod 3 can both be lifted to square roots of 7 in \mathbb{Z}_3.

We will first give a basic version of Hensel’s lemma, illustrate it with examples, and then give a stronger version that can be applied in cases where the basic version is inadequate.

2. A Basic Version of Hensel’s Lemma

Theorem 2.1 (Hensel’s lemma). If $f(X) \in \mathbb{Z}_p[X]$ and $a \in \mathbb{Z}_p$ satisfies

$$
f(a) \equiv 0 \mod p, \quad f'(a) \neq 0 \mod p
$$

then there is a unique $\alpha \in \mathbb{Z}_p$ such that $f(\alpha) = 0$ and $\alpha \equiv a \mod p$.

Example 2.2. Let $f(X) = X^2 - 7$. Then $f(1) = -6 \equiv 0 \mod 3$ and $f'(1) = 2 \neq 0 \mod 3$, so Hensel’s lemma tells us there is a unique 3-adic integer α such that $\alpha^2 = 7$ and $\alpha \equiv 1 \mod 3$.

We saw approximations to α in Example 1.1, e.g., $\alpha \equiv 1 + 3 + 3^2 + 2 \cdot 3^4 \mod 3^5$.

Proof. We will prove by induction that for each $n \geq 1$ there is an $a_n \in \mathbb{Z}_p$ such that

- $f(a_n) \equiv 0 \mod p^n$,
- $a_n \equiv a \mod p$.

The case $n = 1$ is trivial, using $a_1 = a$. If the inductive hypothesis holds for n, we seek $a_{n+1} \in \mathbb{Z}_p$ such that

- $f(a_{n+1}) \equiv 0 \mod p^{n+1}$,
- $a_{n+1} \equiv a \mod p$.

Since \(f(a_{n+1}) \equiv 0 \mod p^{n+1} \Rightarrow f(a_{n+1}) \equiv 0 \mod p^n \), each root of \(f(X) \mod p^{n+1} \) reduces to a root of \(f(X) \mod p^n \). By the inductive hypothesis there is a root \(a_n \mod p^n \), so we seek a \(p \)-adic integer \(a_{n+1} \) such that \(a_{n+1} \equiv a_n \mod p^n \) and \(f(a_{n+1}) \equiv 0 \mod p^{n+1} \). Writing

\[
a_{n+1} = a_n + p^n t_n
\]

for some \(t_n \in \mathbb{Z}_p \) to be determined, can we make \(f(a_n + p^n t_n) \equiv 0 \mod p^{n+1} \)?

To compute \(f(a_n + p^n t_n) \mod p^{n+1} \), we use a polynomial identity:

\[
(2.1) \quad f(X + Y) = f(X) + f'(X)Y + (X, Y) Y^2
\]

for some polynomial \(g(X, Y) \in \mathbb{Z}_p[X, Y] \). This formula comes from isolating the first two terms in the binomial theorem: writing \(f(X) = \sum_{i=0}^d c_i X^i \) we have

\[
f(X + Y) = \sum_{i=0}^d c_i X^i + \sum_{i=1}^d ic_i X^{i-1} Y + \sum_{i=1}^d g_i(X, Y) Y^2 = f(X) + f'(X)Y + g(X, Y) Y^2,
\]

where \(g_i(X, Y) = \sum_{i=1}^d c_i g_i(X, Y) \in \mathbb{Z}_p[X, Y] \). This gives us the desired identity.\(^1\)

To make (2.1) numerical, for all \(x \) and \(y \) in \(\mathbb{Z}_p \) the number \(z := g(x, y) \) is in \(\mathbb{Z}_p \), so

\[
(2.2) \quad x, y \in \mathbb{Z}_p \implies \boxed{f(x + y) = f(x) + f'(x)y + zy^2, \text{ where } z \in \mathbb{Z}_p.}
\]

In this formula set \(x = a_n \) and \(y = p^n t_n \):

\[
(2.3) \quad \begin{align*}
f(a_n + p^n t_n) &= f(a_n) + f'(a_n)p^n t_n + zp^{2n} t_n, \\
&= f(a_n) + f'(a_n)p^n t_n \equiv 0 \mod p^{n+1}
\end{align*}
\]

since \(2n \geq n + 1 \). In \(f'(a_n)p^n t_n \mod p^{n+1} \), the factors \(f'(a_n) \) and \(t_n \) only matter mod \(p \) since there is already a factor of \(p^n \) and the modulus is \(p^{n+1} \). Recalling that \(a_n \equiv a \mod p \), we get \(f'(a_n)p^n t_n \equiv f'(a)p^n t_n \mod p^{n+1} \). Therefore from (2.3),

\[
f(a_n + p^n t_n) \equiv 0 \mod p^{n+1} \iff f(a_n) + f'(a)p^n t_n \equiv 0 \mod p^{n+1} \\
\iff f'(a) t_n \equiv -f(a_n)/p^n \mod p
\]

where the ratio \(f(a_n)/p^n \) is in \(\mathbb{Z}_p \) since we assumed that \(f(a_n) \equiv 0 \mod p^n \). There is a solution for \(t_n \) in the congruence mod \(p \) since we assumed that \(f'(a) \not\equiv 0 \mod p \).

Armed with this choice of \(t_n \) and setting \(a_{n+1} = a_n + p^n t_n \), we have \(f(a_{n+1}) \equiv 0 \mod p^{n+1} \) and \(a_{n+1} \equiv a_n \mod p^n \), so in particular \(a_{n+1} \equiv a \mod p \). This completes the induction.

Starting with \(a_1 = a \), our inductive argument has constructed a sequence \(a_1, a_2, a_3, \ldots \) in \(\mathbb{Z}_p \) such that \(f(a_n) \equiv 0 \mod p^n \) and \(a_{n+1} \equiv a_n \mod p^n \) for all \(n \). The second condition, \(a_{n+1} \equiv a_n \mod p^n \), implies that \(\{a_n\} \) is a Cauchy sequence in \(\mathbb{Z}_p \). Let \(\alpha \) be its limit in \(\mathbb{Z}_p \).

We want to show \(f(\alpha) = 0 \) and \(\alpha \equiv a \mod p \).

From \(a_{n+1} \equiv a_n \mod p^n \) for all \(n \) we get \(a_m \equiv a_n \mod p^n \) for all \(m > n \), so \(\alpha \equiv a_n \mod p^n \) by letting \(m \to \infty \). At \(n = 1 \) we get \(\alpha \equiv a \mod p \). For general \(n \),

\[
\alpha \equiv a_n \mod p^n \implies f(\alpha) \equiv f(a_n) \equiv 0 \mod p^n \implies |f(\alpha)|_p \leq \frac{1}{p^n}.
\]

Since this estimate holds for all \(n \), \(f(\alpha) = 0 \).

\(^1\)The identity (2.1) is similar to Taylor’s formula: \(f(x + h) = f(x) + f'(x)h + (f''(x)/2!h^2 + \cdots \). The catch is that terms in Taylor’s formula have factorials in the denominator, which can require some extra care when reducing modulo powers of \(p \). Think about \(f''(x)/2! \mod 2 \), for instance. What (2.1) essentially does is extract the first two terms of Taylor’s formula and say that what remains has \(p \)-adic integral coefficients, so (2.1) can be reduced mod \(p \), or mod \(p^n \) for all \(n \geq 1 \).
It remains to show that the unique root of $f(X)$ in \mathbb{Z}_p is congruent to a mod p. Suppose $f(\beta) = 0$ and $\beta \equiv a \mod p$. To show $\beta = \alpha$ we will show $\beta \equiv \alpha \mod p^n$ for all n. The case $n = 1$ is clear since α and β are both congruent to a mod p. Suppose $n \geq 1$ and we know that $\beta \equiv \alpha \mod p^n$. Then $\beta = \alpha + p^n\gamma_n$ with $\gamma_n \in \mathbb{Z}_p$, so a calculation similar to (2.3) implies

$$f(\beta) = f(\alpha + p^n\gamma_n) \equiv f(\alpha) + f'(\alpha)p^n\gamma_n \mod p^{n+1}.$$

Both α and β are roots of $f(X)$, so $0 \equiv f'(\alpha)p^n\gamma_n \mod p^{n+1}$. Thus $f'(\alpha)\gamma_n \equiv 0 \mod p$. Since $f'(\alpha) \equiv f'(\alpha) \not\equiv 0 \mod p$, we have $\gamma_n \equiv 0 \mod p$, which implies $\beta \equiv \alpha \mod p^{n+1}$.

Remark 2.3. An argument similar to the last paragraph shows for all $n \geq 1$ that $f(X)$ has a unique root mod p^n that reduces to a mod p. So in Theorem 2.1 we can think about the uniqueness of the lifting of the mod p root in two ways: it has a unique lifting to a root in \mathbb{Z}_p or it has a unique lifting to a root in $\mathbb{Z}/(p^n)$ for all $n \geq 1$.

Here are five applications of Hensel's lemma.

Example 2.4. Let $f(X) = X^3 - 2$. We have $f(3) \equiv 0 \mod 5$ and $f'(3) \not\equiv 0 \mod 5$, therefore Hensel's lemma with initial approximation $a = 3$ tells us there is a unique cube root of 2 in \mathbb{Z}_5 that is congruent to 3 mod 5. Explicitly, it is $3 + 2 \cdot 5^2 + 2 \cdot 5^3 + 3 \cdot 5^4 + \cdots$.

Example 2.5. Let $f(X) = X^3 - 2X - 2$. We have $f(0) \equiv 0 \mod 2$ and $f(1) \equiv 0 \mod 2$, while $f'(0) \equiv 1 \mod 2$ and $f'(1) \equiv 0 \mod 2$. Therefore Hensel's lemma with initial approximation $a = 0$ implies there is a unique $\alpha \in \mathbb{Z}_2$ such that $f(\alpha) = 0$ and $\alpha \equiv 0 \mod 2$. Explicitly, $\alpha = 2 + 2^2 + 2^4 + 2^7 + \cdots$.

Although 1 is a root of $f(X)$ mod 2, it does not lift to a root in \mathbb{Z}_2 since it doesn't even lift to a root mod 4: $f(1) \equiv 2 \mod 4$ and $f(3) \equiv 2 \mod 4$, so if $\beta \in \mathbb{Z}_2$ and $\beta \equiv 1 \mod 2$ then $\beta \equiv 1$ or 3 mod 4 and therefore $f(\beta) \equiv 2 \not\equiv 0 \mod 4$.

Example 2.6. For each positive integer n not divisible by p and each $u \equiv 1 \mod p\mathbb{Z}_p$, u is an nth power in \mathbb{Z}_p^\times. Apply Hensel's lemma to $f(X) = X^n - u$ with initial approximation $a = 1$: $f(1) = 1 - u \equiv 0 \mod p$ and $f'(1) = n \not\equiv 0 \mod p$. Therefore there is a unique solution to $\alpha^n = u$ in \mathbb{Z}_p such that $\alpha \equiv 1 \mod p$. Example 1.1 is the case $u = 7$, $p = 3$, and $n = 2$: 7 has a unique 3-adic square root that is $\equiv 1 \mod 3$.

Example 2.7. For an odd prime p, suppose $u \in \mathbb{Z}_p^\times$ is a square mod p. We will show u is a square in \mathbb{Z}_p. For example, 2 is a square mod 7 since $2 \equiv 3^2 \mod 7$, and it will follow that 2 is a square in \mathbb{Z}_7.

Write $u \equiv a^2 \mod p$, so $a \not\equiv 0 \mod p$. For the polynomial $f(X) = X^2 - u$ we have $f(a) \equiv 0 \mod p$ and $f'(a) = 2a \not\equiv 0 \mod p$, since p is not 2, so Hensel's lemma tells us that $f(X)$ has a root in \mathbb{Z}_p that reduces to a mod p, which means u is a square in \mathbb{Q}_p. Conversely, if $u \in \mathbb{Z}_p^\times$ is a p-adic square, say $u = v^2$, then $1 \equiv |v|^2_p$, so $v \in \mathbb{Z}_p^\times$ and $u \equiv v^2 \mod p$. Thus the elements of \mathbb{Z}_p^\times that are squares in \mathbb{Q}_p are precisely those that reduce to squares mod p. For example, the nonzero squares mod 7 are 1, 2, and 4, so $u \in \mathbb{Z}_7^\times$ is a 7-adic square if and only if $u \equiv 1, 2, 4 \mod 7$.

This result can have problems when $p = 2$ because $2a \equiv 0 \mod 2$. In fact the lifting of a square root mod 2 to a 2-adic square root really does have a problem: $3 \equiv 1^2 \mod 2$ but 3 is not a square in \mathbb{Z}_2 since 3 is not a square mod 4 (the squares mod 4 are 0 and 1). And 3 is not a square in \mathbb{Q}_2 either because a hypothetical square root in \mathbb{Q}_2 would have to be in \mathbb{Z}_2: if $a^2 = 3$ in \mathbb{Q}_2 then $|a|_2 = |3|_2 = 1$, so $|a|_2 = 1$, and thus $\alpha \in \mathbb{Z}_2^\times \subset \mathbb{Z}_2$.

Example 2.8. For each integer k between 0 and $p - 1$, $k^p \equiv k \mod p$. Letting $f(X) = X^p - X$, we have $f(k) \equiv 0 \mod p$ and $f'(k) = pk^{p-1} - 1 \equiv -1 \not\equiv 0 \mod p$. Hensel's lemma implies that there is a unique $\omega_k \in \mathbb{Z}_p$ such that $\omega_k^p = \omega_k$ and $\omega_k \equiv k \mod p$. For instance,
\(\omega_0 = 0 \) and \(\omega_1 = 1 \). When \(p > 2 \), \(\omega_{p-1} = -1 \). Other \(\omega_k \) for \(p > 2 \) are more interesting. For \(p = 5 \), \(\omega_k \) is a root of \(X^5 - X \). \(\omega_k \) in that ball and therefore divisible by \(p \) contains no \(\omega \leq k \leq p - 1 \) are distinct since they are already distinct when reduced mod \(p \), so \(X^p - X = X(X^{p-1} - 1) \) splits completely in \(\mathbb{Z}_p[X] \). Its roots in \(\mathbb{Z}_p \) are 0 and \(p \)-adic \((p-1)\text{th roots of unity} \).

3. Roots of Unity in \(\mathbb{Q}_p \) via Hensel’s Lemma

Hensel’s lemma is often considered to be a method of finding roots to polynomials, but that is just one aspect: the existence of a root. There is also a uniqueness part to Hensel’s lemma: it tells us there is a unique root within a certain distance of an approximate root. We’ll use the uniqueness to find all of the roots of unity in \(\mathbb{Q}_p \).

Theorem 3.1. The roots of unity in \(\mathbb{Q}_p \) are the \((p-1)\)th roots of unity for \(p \) odd and \(\pm 1 \) for \(p = 2 \).

Proof. If \(x^n = 1 \) in \(\mathbb{Q}_p \) then \(|x|^p = 1 \), so \(|x|_p = 1 \). This means every root of unity in \(\mathbb{Q}_p \) lies in \(\mathbb{Z}_p^\times \). Therefore we work in \(\mathbb{Z}_p^\times \) right from the start.

First let’s consider roots of unity of order relatively prime to \(p \). Assume \(\zeta_1 \) and \(\zeta_2 \) are roots of unity in \(\mathbb{Z}_p^\times \) with order prime to \(p \). Letting \(m \) be the product of the orders of these roots of unity, they are both roots of \(f(X) = X^m - 1 \) and \(m \) is prime to \(p \). Since \(|f'(\zeta_1)|_p = |m\zeta_1^{m-1}|_p = 1 \), the uniqueness aspect of Hensel’s lemma implies that the only root \(\alpha \) of \(X^m - 1 \) satisfying \(|\alpha - \zeta_1|_p < 1 \) is \(\zeta_1 \). So if \(\zeta_2 \equiv \zeta_1 \mod p \mathbb{Z}_p \) then \(\zeta_2 = \zeta_1 \): distinct roots of unity in \(\mathbb{Z}_p^\times \) having order prime to \(p \) must be incongruent mod \(p \). In Example 2.8 we found in each nonzero coset mod \(p \mathbb{Z}_p \) a root of \(X^{p-1} - 1 \), and \(p-1 \) is prime to \(p \). Therefore each congruence class mod \(p \mathbb{Z}_p \) contains a \((p-1)\)th root of unity, so the only roots of unity of order prime to \(p \) in \(\mathbb{Q}_p \) are the roots of \(X^{p-1} - 1 \).

Now we consider roots of unity of \(p \)-power order. We will show the only \(p \)th root of unity in \(\mathbb{Z}_p^\times \) is 1 for odd \(p \) and the only 4th roots of unity in \(\mathbb{Z}_p^\times \) are \(\pm 1 \). This implies the only \(p \)th power roots of unity in \(\mathbb{Z}_p^\times \) are 1 for odd \(p \) and \(\pm 1 \) for \(p = 2 \). (For instance, if there were a nontrivial \(p \)th power root of unity in \(\mathbb{Q}_p \) for \(p \neq 2 \) then there would be a root of unity in \(\mathbb{Q}_p \) of order \(p \), but we’re going to show there aren’t any of those.)

We first consider odd \(p \) and suppose \(\zeta^p = 1 \) in \(\mathbb{Z}_p^\times \). Since \(\zeta^p \equiv \zeta \mod p \mathbb{Z}_p \), we have \(\zeta \equiv 1 \mod p \mathbb{Z}_p \). For the polynomial \(f(X) = X^p - 1 \) we have \(|f'(\zeta)|_p = |p\zeta^{p-1}|_p = 1/p \), so the uniqueness in Hensel’s lemma implies that the ball

\[\{ x \in \mathbb{Q}_p : |x - \zeta|_p < |f'(\zeta)|_p \} = \{ x \in \mathbb{Q}_p : |x - \zeta|_p \leq 1/p^2 \} = \zeta + p^2 \mathbb{Z}_p \]

contains no \(p \)th root of unity except for \(\zeta \). We will now show that \(\zeta \equiv 1 \mod p^2 \mathbb{Z}_p \), so 1 is in that ball and therefore \(\zeta = 1 \).

Write \(\zeta = 1 + py \), where \(y \in \mathbb{Z}_p \). Then

\[1 = \zeta^p = (1 + py)^p = 1 + p(py) + \sum_{k=2}^{p-1} \binom{p}{k}(py)^k + (py)^p. \]

For \(2 \leq k \leq p - 1 \), \(\binom{p}{k} \) is divisible by \(p \), so all terms in the sum over \(2 \leq k \leq p - 1 \) are divisible by \(p^3 \). The last term \((py)^p \) is also divisible by \(p^3 \) (since \(p \geq 3 \)). Therefore if we reduce the above equation modulo \(p^3 \) we get

\[1 \equiv 1 + p^2y \mod p^3 \implies 0 \equiv p^2y \mod p^3. \]
Therefore y is divisible by p, so $\zeta \equiv 1 \mod p^2$ and this forces $\zeta = 1$.

Now we turn to $p = 2$. We want to show the only 4th roots of unity in \mathbb{Z}_2^\times are ± 1. This won’t use Hensel’s lemma. If $\zeta \in \mathbb{Z}_2^\times$ is a 4th root of unity and $\zeta \neq \pm 1$ then $\zeta^2 = -1$, so $\zeta^2 \equiv -1 \mod 4\mathbb{Z}_2$. However,

$$\zeta \in \mathbb{Z}_2^\times \implies \zeta \equiv 1 \text{ or } 3 \mod 2\mathbb{Z}_2 \implies \zeta^2 \equiv 1 \mod 4\mathbb{Z}_2$$

and $1 \not\equiv -1 \mod 4\mathbb{Z}_2$.

For each prime p, a root of unity is a (unique) product of a root of unity of p-power order and a root of unity of order prime to p, so the only roots of unity in \mathbb{Q}_p are the roots of $X^{p-1} - 1$ for $p \neq 2$ and ± 1 for $p = 2$. □

4. A Stronger Version of Hensel’s Lemma

The hypotheses of Theorem 2.1 are $f(a) \equiv 0 \mod p$ and $f'(a) \not\equiv 0 \mod p$. This means $a \mod p$ is a simple root of $f(X) \mod p$. We will now discuss a more general version of Hensel’s lemma than Theorem 2.1. It can be applied to cases where $a \mod p$ is a multiple root of $f(X) \mod p$: $f(a) \equiv 0 \mod p$ and $f'(a) \equiv 0 \mod p$. This will allow us to describe squares in \mathbb{Z}_2^\times and, more generally, pth powers in \mathbb{Z}_p^\times.

Theorem 4.1 (Hensel’s lemma). Let $f(X) \in \mathbb{Z}_p[X]$ and $a \in \mathbb{Z}_p$ satisfy

$$|f(a)|_p < |f'(a)|_p^2.$$

There is a unique $\alpha \in \mathbb{Z}_p$ such that $f(\alpha) = 0$ and $|\alpha - a|_p < |f'(a)|_p$. Moreover,

1. $|\alpha - a|_p = |f(a)/f'(a)|_p < |f'(a)|_p$,
2. $|f'(a)|_p = |f'(a)|_p$.

Since $f'(a) \in \mathbb{Z}_p$, $|f'(a)|_p \leq 1$. If $|f'(a)|_p = 1$ then the hypotheses of Theorem 4.1 reduce to those of Theorem 2.1: saying $|f(a)|_p < 1$ and $|f'(a)|_p = 1$ means $f(a) \equiv 0 \mod p$ and $f'(a) \not\equiv 0 \mod p$. Theorem 4.1 actually goes beyond the conclusions of Theorem 2.1 when the hypotheses of Theorem 2.1 hold, since we learn in Theorem 4.1 exactly how far away the root α is from the approximate root a. But the main point of Theorem 4.1 is that it allows for the possibility that $|f'(a)|_p < 1$, which isn’t covered by Theorem 2.1 at all.

We will prove Theorem 4.1 by two methods, in Sections 5 and 6. Here are some applications where the polynomial has a multiple root mod p.

Example 4.2. Let $f(X) = X^4 - 7X^3 + 2X^2 + 2X + 1$. Then $f(X) \equiv (X+1)^2(X^2+1) \mod 3$ and we notice $2 \mod 3$ is a double root. Since $|f(2)|_3 = 1/27$ and $|f'(2)|_3 = | \cdot 42|_3 = 1/3$, the condition $|f(2)|_3 < |f'(2)|_3^2$ holds, so there is a unique root α of $f(X)$ in \mathbb{Z}_3 such that $|\alpha - 2|_3 < 1/3$, i.e., $\alpha \equiv 2 \mod 9$.

In fact there are two roots of $f(X)$ in \mathbb{Z}_3:

$$2 + 2 \cdot 3^2 + 2 \cdot 3^3 + 2 \cdot 3^4 + 2 \cdot 3^6 + \cdots \text{ and } 2 + 3^2 + 3^4 + 2 \cdot 3^5 + 2 \cdot 3^6 + \cdots.$$

The second root reduces to $2 \mod 9$, and is α. The first root reduces to $5 \mod 9$, and its existence can be verified by checking $|f(5)|_3 = 1/27 < |f'(5)|_3^2 = 1/9$.

Example 4.3. Let $f(X) = X^3 - 10$ and $g(X) = X^3 - 5$. We have $f(X) \equiv (X-1)^3 \mod 3$ and $g(X) \equiv (X-2)^3 \mod 3$: 1 is an approximate 3-adic root of $f(X)$ and 2 is an approximate 3-adic root of $g(X)$. We want to see if they can be refined to genuine 3-adic roots. The basic form of Hensel’s lemma in Theorem 2.1 can’t be used since the polynomials do not have simple roots mod 3. Instead we will try to use the stronger form of Hensel’s lemma in Theorem 4.1.

Since $|f(1)|_3 = 1/9$ and $|f'(1)|_3 = 1/3$, we don’t have $|f(1)|_3 < |f'(1)|_3^2$, so Theorem 4.1 can’t be used on $f(X)$ with $a = 1$. However, $|f(4)|_3 = 1/27$ and $|f'(4)|_3 = 1/3$, so we can
use Theorem 4.1 on \(f(X)\) with \(a = 4\): there is a unique root \(\alpha\) of \(X^3 - 10\) in \(\mathbb{Z}_3\) satisfying \(|\alpha - 4|_3 < 1/3\), so \(\alpha \equiv 4 \mod 9\). The expansion of \(\alpha\) begins as \(1 + 3 + 3^2 + 2 \cdot 3^6 + 3^7 + \cdots\).

Turning to \(g(X)\), we have \(|g(2)|_3 = 1/3\) and \(|g'(2)|_3 = 1/9\), so we can’t apply Theorem 4.1 with \(a = 2\). In fact there is no root of \(g(X)\) in \(\mathbb{Q}_3\). If there were a root \(\alpha\) in \(\mathbb{Q}_3\) then \(\alpha^3 = 5\), so \(|\alpha|_3 = 1\), and thus \(\alpha \in \mathbb{Z}_3\). Then \(\alpha^3 \equiv 5 \mod 3^n\), so \(5\) would be a cube modulo every power of \(3\). But \(5\) is not a cube modulo \(9\) (the only cubes mod \(9\) are 0, 1, and 8). Therefore the mod \(3\) root of \(X^3 - 5\) does not lift to a 3-adic root of \(X^3 - 5\).

Theorem 4.4. If \(u \in \mathbb{Z}_2^\times\) then \(u\) is a square in \(\mathbb{Q}_2\) if and only if \(u \equiv 1 \mod 8\mathbb{Z}_2\).

Proof. If \(u = v^2\) in \(\mathbb{Q}_2\) then \(1 = |v|_2^2\), so \(v \in \mathbb{Z}_2^\times\). In \(\mathbb{Z}_2 / 8\mathbb{Z}_2 \cong \mathbb{Z} / 8\mathbb{Z}\), the units are 1, 3, 5, and 7, whose squares are all congruent to 1 mod \(8\), so \(u = v^2 \equiv 1 \mod 8\mathbb{Z}_2\). To show, conversely, that all \(u \in \mathbb{Z}_2^\times\) satisfying \(u \equiv 1 \mod 8\mathbb{Z}_2\) are squares in \(\mathbb{Z}_2^\times\), let \(f(X) = X^2 - u\) and use \(a = 1\) in Theorem 4.1. We have \(|f(1)|_2 = |1 - u|_2 \leq 1/8\) and \(|f'(1)|_2 = |2|_2 = 1/2\), so \(|f(1)|_2 < |f'(1)|_2^2\). Therefore \(X^2 - u\) has a root in \(\mathbb{Z}_2\), so \(u\) is a square in \(\mathbb{Z}_2\).

Theorem 4.5. If \(p \neq 2\) and \(u \in \mathbb{Z}_p^\times\), then \(u\) is a \(p\)th power in \(\mathbb{Q}_p\) if and only if \(u\) is a \(p\)th power modulo \(p^2\).

Proof. If \(u = v^p\) in \(\mathbb{Q}_p\) then \(1 = |v|_p^p\), so \(v \in \mathbb{Z}_p^\times\): we only need to look for \(p\)th roots of \(u\) in \(\mathbb{Z}_p^\times\). Let \(f(x) = x^p - u\). In order to use Theorem 4.1 on \(f(X)\), we seek an \(a \in \mathbb{Z}_p^\times\) such that \(|f(a)|_p < |f'(a)|_p^2\). This means \(|a^p - u|_p < |pa^{p-1}u|_p = 1/p^2\), or equivalently \(a^p \equiv u \mod p^3\).

So provided \(u\) is a \(p\)th power modulo \(p^2\), Theorem 4.1 tells us that \(x^p - u\) has a root in \(\mathbb{Z}_p\), so \(u\) is a \(p\)th power. The criterion in the theorem, however, has modulus \(p^2\) rather than \(p^3\). We need to do some work to bootstrap an approximate \(p\)th root from modulus \(p^2\) to modulus \(p^3\) in order for Theorem 4.1 to apply.

Suppose \(u \equiv a^p \mod p^2\) for some \(a \in \mathbb{Z}_p\). Then \(a \in \mathbb{Z}_p^\times\) and \(u/a^p \equiv 1 \mod p^2\). Write \(u/a^p \equiv 1 + p^2c \mod p^3\), where \(0 \leq c \leq p - 1\). By the binomial theorem,

\[
(1 + pc)^p = 1 + p(pc) + \sum_{k=2}^{p} \binom{p}{k} (pc)^k.
\]

The terms for \(k \geq 3\) are obviously divisible by \(p^3\) and the term at \(k = 2\) is \(\binom{p}{2}(pc)^2 = \frac{p-1}{2}p^3c^2\), which is also divisible by \(p^3\) since \(p > 2\).

Therefore \(1 + pc)^p \equiv 1 + p^2c \mod p^3\), so \(u/a^p \equiv (1 + pc)^p \mod p^3\). Now we can write \(u/a^p(1 + pc)^p \equiv 1 \mod p^3\).

From Theorem 4.1, a \(p\)-adic integer that is congruent to 1 mod \(p^3\) is a \(p\)th power (see the first paragraph again). Thus \(u/(a^p(1 + pc)^p)\) is a \(p\)th power, so \(u\) is a \(p\)th power.

Remark 4.6. Hensel’s lemma in Theorem 4.1 says a root mod \(p\) lifts uniquely to a root in \(\mathbb{Z}_p\) under weaker conditions than Hensel’s lemma in Theorem 2.1, but it does not guarantee a unique lift mod \(p^n\), unlike in Theorem 2.1 (Remark 2.3). Consider Example 4.3: in \(\mathbb{Z}_5\), \(X^3 = 10\) has one solution \(1 + 3 + 3^2 + 2 \cdot 3^6 + \cdots\), but for \(n \geq 2\), \(X^3 \equiv 10 \mod 3^n\) has 3 solutions, not 1. One solution mod \(3^n\) lifts to modulus \(3^{n+1}\) and two don’t. (For instance, solutions mod 27 are 4, 13, and 22 and only 13 lifts to solutions mod 81, in fact to 13, 40, and 67 mod 27.) This is consistent with a unique root in \(\mathbb{Z}_3\) since the 3 solutions mod \(3^n\) are congruent modulo \(3^{n-1}\) and thus are close: they have a common limit in \(\mathbb{Z}_3\) as \(n \to \infty\).
5. First Proof of Theorem 4.1: Newton’s Method

Our first proof of Theorem 4.1 will use Newton’s method and is a modification of [4, Chap. II, §2, Prop. 2].

Proof. As in Newton’s method from real analysis, define a sequence \(\{a_n\} \) in \(\mathbb{Q}_p \) by \(a_1 = a \) and

\[
a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}
\]

for \(n \geq 1 \). Set \(t = |f(a)/f'(a)^2|_p < 1 \). We will show by induction on \(n \) that

(i) \(|a_n|_p \leq 1 \), i.e., \(a_n \in \mathbb{Z}_p \),
(ii) \(|f'(a_n)|_p = |f'(a_1)|_p \),
(iii) \(|f(a_n)|_p \leq |f'(a_1)|_p^2 t^{2^n-1} \).

For \(n = 1 \) these conditions are all clear. Note in particular that we have equality in (iii) and \(f'(a_1) \neq 0 \) since \(|f(a_1)|_p < |f'(a_1)|_p^2 \).

For the inductive step, we need two polynomial identities. The first one is

\[
f(x + y) = f(x) + f'(x)y + g(x, y)y^2
\]

for some \(g(x, y) \in \mathbb{Z}_p[X, Y] \), which is just (2.1) from the proof of Theorem 2.1. Then

\[
x, y \in \mathbb{Z}_p \implies \left| f(x + y) = f(x) + f'(x)y + zy^2, \text{ where } z \in \mathbb{Z}_p \right|
\]

The second polynomial identity we need is that for all \(F(X) \in \mathbb{Z}_p[X] \),

\[
F(X) - F(Y) = (X - Y)G(X, Y)
\]

for some \(G(X, Y) \in \mathbb{Z}_p[X, Y] \). This comes from \(X - Y \) being a factor of \(X^i - Y^i \) for all \(i \geq 1 \). Writing \(F(X) = \sum_{i=0}^m b_i X^i \),

\[
F(X) - F(Y) = \sum_{i=1}^m b_i (X^i - Y^i)
\]

and we can factor \(X - Y \) out of each term on the right. For \(x \) and \(y \) in \(\mathbb{Z}_p \), \(G(x, y) \in \mathbb{Z}_p \), so

\[
x, y \in \mathbb{Z}_p \implies \left| F(x) - F(y) \right|_p = |x - y|_p |G(x, y)|_p \leq |x - y|_p
\]

Assume (i), (ii), and (iii) are true for \(n \). To prove (i) for \(n + 1 \), first note \(a_{n+1} \) is defined since \(f'(a_n) \neq 0 \) by (ii). To prove (i) it suffices to show \(|f(a_n)/f'(a_n)|_p \leq 1 \). Using (ii) and (iii) for \(n \), we have \(|f(a_n)/f'(a_n)|_p = |f(a_n)/f'(a_1)|_p \leq |f'(a_1)|_p^2 t^{2^n-1} \leq 1 \).

To prove (ii) for \(n + 1 \), (iii) for \(n \) implies \(|f(a_n)|_p < |f'(a_1)|_p^2 \) since \(t < 1 \) (and \(|f'(a_1)|_p \neq 0 \)), so by (5.4) with \(F(X) = f'(X) \),

\[
|f'(a_{n+1}) - f'(a_n)|_p \leq |a_{n+1} - a_n|_p = \frac{|f(a_n)|_p}{|f'(a_n)|_p} = \frac{|f(a_n)|_p}{|f'(a_1)|_p} < |f'(a_1)|_p
\]

so \(|f'(a_{n+1})|_p = |f'(a_1)|_p \).

To prove (iii) for \(n + 1 \), we use (5.3) with \(x = a_n \) and \(y = -f(a_n)/f'(a_n) \):

\[
f(a_{n+1}) = f(x + y) = f(a_n) + f'(a_n) \left(-\frac{f(a_n)}{f'(a_n)} \right) + z \left(\frac{f(a_n)}{f'(a_n)} \right)^2 = z \left(\frac{f(a_n)}{f'(a_n)} \right)^2,
\]

where \(z \in \mathbb{Z}_p \). Thus, by (iii) for \(n \),

\[
|f(a_{n+1})|_p \leq \left| \frac{f(a_n)}{f'(a_n)} \right|^2 \leq |f(a_n)|_p^2 |f'(a_1)|_p^2 t^{2^n-1} \leq |f'(a_1)|_p^2 t^{2^n}.
\]

This completes the induction.
Now we show \(\{a_n\} \) is Cauchy in \(\mathbb{Q}_p \). From the recursive definition of this sequence,
\[
|a_{n+1} - a_n|_p = \left| \frac{f(a_n)}{f'(a_n)} \right|_p = \left| \frac{f(a_n)}{f'(a_1)} \right|_p t^{2n-1},
\]
where we used (ii) and (iii). Thus \(\{a_n\} \) is Cauchy. Let \(\alpha \) be its limit, so \(|\alpha|_p \leq 1 \) by (i), i.e., \(\alpha \in \mathbb{Z}_p \). Letting \(n \to \infty \) in (ii) and (iii) we get \(|f'(\alpha)|_p = |f'(a_1)|_p = |f'(a)|_p \) and \(f(\alpha) = 0 \).

To show \(|\alpha - a|_p = |f(a)/f'(a)|_p \), it’s true if \(f(a) = 0 \) since then \(a_n = a_1 = a \) for all \(n \), so \(\alpha = a \). If \(f(a) \neq 0 \) then we will show \(|a_n - a|_p = |f(a)/f'(a)|_p \) for all \(n \geq 2 \) and let \(n \to \infty \).

When \(n = 2 \) use the definition of \(a_2 \) in terms of \(a_1 = a \). For all \(n \geq 2 \), by (5.5)
\[
|a_{n+1} - a_n|_p \leq |f'(a_1)|_p t^{2n-1} \leq |f'(a_1)|_p t^2 < |f'(a_1)|_p t = |f'(a)|_p t = \left| \frac{f(a)}{f'(a)} \right|_p,
\]
where \(t \in (0, 1) \) since \(f(a) \neq 0 \).

If \(|a_n - a|_p = |f(a)/f'(a)|_p \) then \(|a_{n+1} - a_n|_p < |a_n - a|_p \) by (5.6), so \(|a_{n+1} - a|_p = |(a_{n+1} - a_n) + (a_n - a)|_p = |a_n - a|_p = |f(a)/f'(a)|_p \).

The last thing to do is show \(\alpha \) is the only root of \(f(X) \) in the ball \(\{x \in \mathbb{Z}_p : |x - a|_p < |f'(a)|_p\} \). This will not use anything about Newton’s method. Assume \(f(\beta) = 0 \) and \(|\beta - a|_p < |f'(a)|_p \). Since \(|\alpha - a|_p < |f'(a)|_p \), we have \(|\beta - \alpha|_p < |f'(a)|_p \). Write \(\beta = \alpha + h \), so \(h \in \mathbb{Z}_p \). Then by (5.3),
\[
0 = f(\beta) = f(\alpha + h) = f(\alpha) + f'(\alpha)h + zh^2 = f'(\alpha)h + zh^2
\]
for some \(z \in \mathbb{Z}_p \). If \(h \neq 0 \) then \(f'(\alpha) = -zh \), so \(|f'(\alpha)|_p \leq |h|_p = |\beta - \alpha|_p < |f'(a)|_p \). But \(|f'(\alpha)|_p = |f'(a)|_p \), so we have a contradiction. Thus \(h = 0 \), i.e., \(\beta = \alpha \). \(\square \)

Before we give a second proof of Theorem 4.1, it’s worth noting that the \(a_n \)’s converge to \(\alpha \) very rapidly. From the inequality \(|a_{n+1} - a_n|_p \leq |f'(a_1)|_p t^{2n-1} \) for all \(n \geq 1 \) we obtain by the strong triangle inequality \(|a_m - a_n|_p \leq |f'(a_1)|_p t^{2n-1} \) for all \(m > n \). Letting \(m \to \infty \),
\[
|\alpha - a_n|_p \leq |f'(a_1)|_p t^{2n-1} = |f'(a)|_p t^{2n-1} = |f'(a)|_p \left| \frac{f(a)}{f'(a)} \right|_p^{2n-1}.
\]
Since \(|f(a)/f'(a)|_p < 1 \), the exponent \(2^{n-1} \) tells us that the number of initial \(p \)-adic digits in \(a_n \) that agree with those in the limit \(\alpha \) is at least doubling at each step.

Example 5.1. Let \(f(X) = X^2 - 7 \) in \(\mathbb{Q}_3[X] \). It has two roots in \(\mathbb{Z}_3 \):
\[
\begin{align*}
r &= 1 + 3 + 3^2 + 2 \cdot 3^4 + 2 \cdot 3^7 + 3^8 + 3^9 + \cdots, \\
s &= 2 + 3 + 3^2 + 2 \cdot 3^3 + 2 \cdot 3^5 + 2 \cdot 3^6 + 3^8 + 3^9 + \cdots.
\end{align*}
\]
Starting with \(a_1 = 1 \), for which \(|f(a_1)/f'(a_1)|_3 = 1/3 \), Newton’s recursion (5.1) has limit \(\alpha \) where \(|\alpha - a_1|_3 < |f'(a_1)|_3 = 1/3 \), so \(\alpha \equiv a_1 \equiv 1 \mod 3 \). Thus \(\alpha = r \). For example,
\[
a_4 = \frac{977}{368} = 1 + 3 + 3^2 + 2 \cdot 3^4 + 2 \cdot 3^7 + 3^9 + 3^{10} + \cdots,
\]
which has the same 3-adic digits as \(r \) up through terms including \(3^7 \) (the first 8 digits). The estimate in (5.7) says \(|r - a_n|_3 \leq |f'(a_1)|_3 (1/3)^{2n-1} = (1/3)^{2n-1} \) for all \(n \). Using a computer, this inequality is an equality for \(1 \leq n \leq 10 \).

Example 5.2. Let \(f(X) = X^2 - 17 \) in \(\mathbb{Q}_2[X] \). It has two roots in \(\mathbb{Z}_2 \):
\[
\begin{align*}
r &= 1 + 2^3 + 2^5 + 2^6 + 2^7 + 2^9 + \cdots, \\
s &= 1 + 2 + 2^2 + 2^4 + 2^8 + \cdots.
\end{align*}
\]

\footnote{The case \(f(a) = 0 \) was not covered in an earlier draft and this omission was found when this proof was formalized using the Lean theorem prover [5, p. 8].}
Using Newton’s recursion (5.1) for $f(X)$ with initial seed $a \in \mathbb{Z}_2^x$, we need $|a^2 - 17|_2 < |2a|_2^2$, which is the same as $a^2 \equiv 17 \mod 8$, and this congruence works for all $a \in \mathbb{Z}_2^x$. Therefore (5.1) with $a_1 \in \mathbb{Z}_2^x$ converges to r or s. Since $|f'(a)|_2 = 1/2$ for $a \in \mathbb{Z}_2^x$, (5.1) with $a_1 = a$ has a limit α satisfying $|\alpha - a|_2 < |f'(a)|_2 = 1/2$, so $\alpha \equiv a \mod 4$: if $a \equiv 1 \mod 4$ then $\alpha = r$, and if $a \equiv 3 \mod 4$ then $\alpha = s$. By (5.7), $|\alpha - a|_2 |f(a)/f'(a)^2|_2 = (1/2)(4|a^2 - 17|_2)^{2n-1}$. For a few choices of a, this inequality is an equality for $1 \leq n \leq 10$:

- When $a = 1$, $|r - a|_2 = (1/2)^{2n+1}$ for $1 \leq n \leq 10$.
- When $a = 3$, $|s - a|_2 = (1/2)^{2n+1}$ for $1 \leq n \leq 10$.
- When $a = 5$, $|r - a|_2 = (1/2)^{2n+1}$ for $1 \leq n \leq 10$.

Example 5.3. Let’s solve $X^2 - 1 = 0$ in \mathbb{Q}_3. This might seem silly, since we know the solutions are ±1, but let’s check how an initial approximation affects the 3-adic limit. We use $a_1 = 2$. (If we used $a_1 = 1$ then $a_n = 1$ for all n, which is not interesting.) When $f(X) = X^2 - 1$ the recursion for Newton’s method is

$$a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)} = a_n - \frac{a_n^2 - 1}{2a_n} = \frac{a_n^2 + 1}{2a_n} = \frac{1}{2} \left(a_n + \frac{1}{a_n} \right).$$

Since $|f(2)|_3 = \frac{1}{3}$, Newton’s recursion with $a_1 = 2$ converges in \mathbb{Q}_3. What is the limit? Since $a_1 \equiv -1 \mod 3$, we have $a_n \equiv -1 \mod 3$ for all n by induction: if $a_n \equiv -1 \mod 3$ then $a_{n+1} = (1/2)(a_n + 1/a_n) \equiv (1/2)(-1 + 1/(-1)) \equiv (1/2)(-2) \equiv -1 \mod 3$. Thus $\lim_{n \to \infty} a_n = -1$ in \mathbb{Q}_3. What makes this interesting is that in \mathbb{R} all a_n are positive so the sequence of rational numbers $\{a_n\}$ converges to 1 in \mathbb{R} and to -1 in \mathbb{Q}_3. The table below illustrates the rapid convergence in \mathbb{R} and \mathbb{Q}_3 (the 3-adic expansion of -1 is $2 = 2222\ldots$).

<table>
<thead>
<tr>
<th>n</th>
<th>a_n</th>
<th>Decimal approx.</th>
<th>3-adic approx.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2.000000000</td>
<td>20000000</td>
</tr>
<tr>
<td>2</td>
<td>5/4</td>
<td>1.250000000</td>
<td>22202022</td>
</tr>
<tr>
<td>3</td>
<td>41/40</td>
<td>1.025000000</td>
<td>22222022</td>
</tr>
<tr>
<td>4</td>
<td>3281/3280</td>
<td>1.000030487</td>
<td>22222222</td>
</tr>
</tbody>
</table>

Theorem 4.1 has Theorem 2.1 as the special case when $|f'(a)|_p = 1$. Using a change of variables, we will show Theorem 4.1 follows from Theorem 2.1, so the basic and strong versions of Hensel’s lemma are in fact equivalent!

Theorem 5.4. Theorem 2.1 implies Theorem 4.1.

Proof. Suppose $f(X) \in \mathbb{Z}_p[X]$ and $a \in \mathbb{Z}_p$ satisfies $|f(a)|_p < |f'(a)|_p^2$. We will use Theorem 2.1 to show $f(X)$ has a unique root $\alpha \in \mathbb{Z}_p$ such that $|\alpha - a|_p < |f'(a)|_p$, and in fact $|\alpha - a|_p = |f(a)/f'(a)|_p$ and $|f'(\alpha)|_p = |f'(a)|_p$.

Since $|f(a)|_p < |f'(a)|_p^2$, set $b = f(a)/f'(a)^2$, so $f(a) = f'(a)^2b$ and $|b|_p < 1$. A root $\alpha \in \mathbb{Z}_p$ of $f(X)$ where $|\alpha - a|_p < |f'(a)|_p$ is a root of the form $a + f'(a)s$ with $|s|_p < 1$. We thus want to show $f(a + f'(a)s) = 0$ for a unique $s \in \mathbb{Z}_p$ with $|s|_p < 1$ and also show that in fact $|s|_p = |f(a)/f'(a)^2|$. By the polynomial identity (5.2), there is $g(X,Y) \in \mathbb{Z}_p[X,Y]$ such that

$$f(X + Y) = f(X) + f'(X)Y + g(X,Y)Y^2,$$

so for all $s \in \mathbb{Z}_p$,

$$f(a + f'(a)s) = f(a) + f'(a)(f'(a)s) + g(a, f'(a)s)(f'(a)s)^2$$

$$= f'(a)^2b + f'(a)^2s + g(a, f'(a)s)f'(a)^2s^2$$

$$= f'(a)^2(b + s + g(a, f'(a)s)s^2).$$

Set $h(X) = b + X + g(a, f'(a)X)X^2 \in \mathbb{Z}_p[X]$. Since $h(X)$ has constant term $b = f(a)/f'(a)^2$ and linear coefficient 1, $|h(0)|_p = |b|_p < 1$ and $|h'(0)|_p = |1|_p = 1$. Theorem 2.1 implies
there is a unique $\beta \in \mathbb{Z}_p$ such that $h(\beta) = 0$ and $|\beta|_p < 1$, so $\alpha := a + f'(a)\beta$ is the unique root of $f(X)$ in \mathbb{Z}_p such that $|\alpha - a|_p < |f'(a)|_p$.

To show $|\alpha - a|_p = |f(a)/f'(a)|_p$, rewrite this as $|\beta|_p = |f(a)/f'(a)^2|_p$. If $\beta = 0$ then $\alpha = a$, so $f(a) = 0$ and thus $|f(a)/f'(a)^2|_p = 0 = |\beta|_p$. If $\beta \neq 0$ then from

$$0 = h(\beta) = b + \beta + g(a, f'(a)\beta)^2$$

we get $|b + \beta|_p = |g(a, f'(a)\beta)^2|_p \leq |\beta|^2_p < |\beta|_p$, so $|\beta|_p = |b|_p = |f(a)/f'(a)^2|_p$.

That $|f'(\alpha)|_p = |f(a)|_p$ follows from $|\alpha - a|_p < |f'(a)|_p$: by (5.4), $|f'(\alpha) - f'(a)|_p \leq |\alpha - a|_p < |f'(a)|_p$, so $|f'(\alpha)|_p = |f'(a)|_p$.

\[\square \]

Example 5.5. Let $f(X) = X^3 - 10$ with approximate root $a = 4$ in \mathbb{Z}_3. We can’t apply Theorem 2.1 directly to $f(X)$ to show there is a solution to $f(\alpha) = 0$ in \mathbb{Z}_3 with α close to 4 since $f'(4) = 48 \equiv 0 \pmod{3}$. From the proof of Theorem 5.4 we compute

$$f(X + Y) = (X + Y)^3 - 10 = X^3 + 3X^2Y + 3XY^2 + Y^3 - 10 = f(X) + f'(X)Y + (3X + Y)Y^2.$$

Then

$$f(4 + 48X) = f(4) + f'(4)(48X) + (12 + 48X)(48X)^2 = 54 + 48^2X + (12 + 48X)(48X)^2 = 48^2h(X)$$

where

$$h(X) = \frac{54}{48^2} + X + (12 + 48X)X^2 = \frac{3}{128} + X + 12X^2 + 48X^3.$$

Since $h(0) \equiv 0 \pmod{3}$ and $h'(0) = 1 \not\equiv 0 \pmod{3}$, $h(X)$ has a unique root $\beta \in 3\mathbb{Z}_3$ and that gives us a root $\alpha = 4 + 48\beta$ of $f(X)$.

By Theorem 2.1, each solution of $h(x) \equiv 0 \pmod{3^n}$ with $x \equiv 0 \pmod{3}$ lifts uniquely to a solution of $h(x) \equiv 0 \pmod{3^{n+1}}$ but such uniqueness of lifting at each “finite level” is not true for solving $f(x) \equiv 0 \pmod{3^n}$; see Remark 4.6. This different behavior is compatible because of the 48 (a multiple of 3) appearing on both sides of $f(4 + 48X) = 48^2h(X)$.

For example, suppose we want to solve $f(t) \equiv 0 \pmod{81}$ in \mathbb{Z}_3 with $t \equiv 4 \pmod{3}$. Then we can write $t = 4 + 48x$ with $x \in \mathbb{Z}_3$ since 48 is divisible by 3 just once, so

$$f(4 + 48x) \equiv 0 \pmod{81} \iff 48^2h(x) \equiv 0 \pmod{81} \iff h(x) \equiv 0 \pmod{9}.$$

Note the modulus decreased from 81 to 9. The unique solution of $h(x) \equiv 0 \pmod{9}$ is 3 mod 9, and that is the same as $t = 4 + 48x \equiv 4 + 48 \cdot 3 \equiv 13 \pmod{27}$. The modulus increased from 9 to 27 since congruences $x \equiv 9 \pmod{27}$ are the same as congruences $x \equiv 27 \pmod{27}$ when multiplying by 48. We have shown $f(t) \equiv 0 \pmod{81}$ is the same as $t \equiv 13 \pmod{27}$, and there are three liftings of 13 from mod 27 to mod 81: 13, 40, and 67.

6. Second Proof of Theorem 4.1: Contraction Mappings

Newton’s method produces a sequence converging to a root of $f(X)$ by iterating the function $x - f(x)/f'(x)$ with initial value $a_1 = a$ where $|f(a)|_p < |f'(a)|_p$. A root can also be found with a different iteration $\varphi(x) = x - f(x)/f'(a)$, where again $|f(a)|_p < |f'(a)|_p$. The denominator is $f'(a)$, not $f'(x)$, so it doesn’t change. We will show φ is a contraction mapping on a suitable ball around a. Then the contraction mapping theorem will imply φ has a (unique) fixed point α in that ball.\(^3\) The condition $\varphi(\alpha) = \alpha$ says $\alpha - f(\alpha)/f'(a) = \alpha$, so $f(\alpha) = 0$ and we have a root of $f(X)$. Filling in the details leads to the following second proof of Theorem 4.1. If you’re not interested in a second proof, go to the next section.

\(^3\)There is an analogous method in real analysis to simplify Newton’s method to the contraction mapping theorem by fixing the denominator in the recursion. See [2, Thm. 1.2, p. 164].
Proof. For \(r \in [0, 1] \) to be determined, set \(\mathcal{B}_a(r) = \{ x \in \mathbb{Q}_p : |x - a|_p \leq r \} \), so \(\mathcal{B}_a(r) \subset \mathbb{Z}_p \).

Set
\[
\varphi(x) = x - \frac{f(x)}{f'(a)}.
\]

We seek an \(r \) such that \(\varphi \) maps \(\mathcal{B}_a(r) \) back to itself and is a contraction on that ball.

To show \(\varphi \) is a contraction on some ball around \(a \), we want to estimate
\[
|\varphi(x) - \varphi(y)|_p = \left| x - y - \frac{f(x) - f(y)}{f'(a)} \right|
\]
for all \(x \) and \(y \) near \(a \) in order to make this \(\leq \lambda|x - y|_p \) for some \(\lambda < 1 \).

Write \(f(X) \) as a polynomial in \(X - a \), say \(f(X) = \sum_{i=0}^d b_i(X - a)^i \). Then \(b_0 = f(a) \), \(b_1 = f'(a) \), and \(b_i \in \mathbb{Z}_p \) for \(i > 1 \). For all \(x \) and \(y \) in \(\mathbb{Q}_p \),
\[
f(x) - f(y) = \sum_{i=1}^d b_i((x - a)^i - (y - a)^i) = f'(a)(x - y) + \sum_{i=2}^d b_i((x - a)^i - (y - a)^i),
\]
so
\[
\varphi(x) - \varphi(y) = x - y - \frac{f(x) - f(y)}{f'(a)} = -\frac{1}{f'(a)} \sum_{i=2}^d b_i((x - a)^i - (y - a)^i).
\]

(If \(d \leq 1 \) then the sum on the right is empty.) In the polynomial identity
\[
X^i - Y^i = (X - Y) \sum_{j=0}^{i-1} X^{i-1-j} Y^j
\]
for \(i \geq 2 \) set \(X = x - a \) and \(Y = y - a \). Then
\[
|(x - a)^i - (y - a)^i|_p = |x - y|_p \left| \sum_{j=0}^{i-1} (x - a)^{i-1-j} (y - a)^j \right|_p
\]
\[
\leq |x - y|_p \max_{0 \leq j \leq i-1} |x - a|_p^{i-1-j} |y - a|_p^j
\]
\[
\leq |x - y|_p \max(|x - a|_p, |y - a|_p)^{i-1}
\]
\[
\leq |x - y|_p \max(|x - a|_p, |y - a|_p)
\]
when \(|x - a|_p \) and \(|y - a|_p \) are both at most 1. Therefore from (6.1),
\[
|x - a|_p, |y - a|_p \leq 1 \implies |\varphi(x) - \varphi(y)|_p \leq \frac{|x - y|_p \max(|x - a|_p, |y - a|_p)}{|f'(a)|_p},
\]
so for \(\lambda \in [0, 1] \),
\[
|x - a|_p, |y - a|_p \leq \lambda |f'(a)|_p \implies |\varphi(x) - \varphi(y)|_p \leq \lambda |x - y|_p.
\]

If we can find \(\lambda \in [0, 1] \), perhaps depending on \(a \) and \(f(X) \), such that
\[
|x - a|_p \leq \lambda |f'(a)|_p \implies |\varphi(x) - a|_p \leq \lambda |f'(a)|_p
\]
then (6.2) will tell us that \(\varphi \) is a contraction mapping on the closed ball around \(a \) of radius \(\lambda |f'(a)|_p \). We will see that if \(|f(a)|_p < |f'(a)|^2_p \) then a choice for \(\lambda \) is \(|f(a)|_p / |f'(a)|^2_p \). In fact, we want to do more: show the condition \(|f(a)|_p < |f'(a)|^2_p \) arises naturally by trying to make (6.3) work for some unknown \(\lambda \).

For \(\lambda \in (0, 1) \), when \(|x - a|_p \leq \lambda |f'(a)|_p \) we have
\[
|\varphi(x) - a|_p \leq \lambda |f'(a)|_p \iff \left| x - a - \frac{f(x)}{f'(a)} \right|_p \leq \lambda |f'(a)|_p \iff \left| \frac{f(x)}{f'(a)} \right|_p \leq \frac{1}{\lambda}.
\]
Returning to the formula \(f(X) = \sum_{i=0}^{d} b_i (X - a)^i \), where \(b_0 = f(a) \) and \(b_1 = f'(a) \),

\[
(6.4) \quad \frac{f(x)}{f'(a)} = \frac{f(a)}{f'(a)} + (x - a) + \sum_{i=2}^{d} \frac{b_i}{f'(a)} (x - a)^i.
\]

When \(|x - a|_p \leq \lambda f'(a)|_p\), which is less than \(|f'(a)|_p \leq 1\), we have for \(i \geq 2 \) that

\[
\left| \frac{b_i}{f'(a)} (x - a)^i \right|_p \leq \frac{|x - a|^2}{|f'(a)|_p} \leq \lambda^2 |f'(a)|_p \leq \lambda |f'(a)|_p,
\]

so by (6.4)

\[
\left| \frac{f(x)}{f'(a)} \right|_p \leq \lambda |f'(a)|_p \iff \left| \frac{f(a)}{f'(a)} \right|_p \leq \lambda |f'(a)|_p \iff \left| \frac{f(a)}{f'(a)^2} \right|_p \leq \lambda.
\]

To make this occur for some \(\lambda < 1 \) is equivalent to requiring \(|f(a)/f'(a)^2|_p < 1 \). Therefore if \(|f(a)|_p < |f'(a)|_p^2 \) and we set \(\lambda = |f(a)/f'(a)|_p \), the mapping \(\varphi(x) = x - f(x)/f'(a) \) is a contraction on the closed ball around \(a \) with radius \(\lambda |f'(a)|_p = |f(a)/f'(a)|_p \) and contraction constant \(\lambda \). Any closed ball in \(\mathbb{Q}_p \) is complete, so the contraction mapping theorem implies that the sequence \(\{a_n\} \) defined recursively by \(a_1 = a \) and

\[
(6.5) \quad a_{n+1} = \varphi(a_n) = a_n - \frac{f(a_n)}{f'(a)}
\]

for \(n \geq 1 \) converges to the unique fixed point of \(\varphi \) in \(\mathcal{B}_a(|f(a)/f'(a)|_p) \). By the definition of \(\varphi \), a fixed point of \(\varphi \) is the same thing as a zero of \(f(X) \), so there is a unique \(\alpha \) in \(\mathbb{Q}_p \) satisfying \(f(\alpha) = 0 \) and \(|\alpha - a|_p \leq |f(a)/f'(a)|_p \).

To finish this proof of Theorem 4.1 we need to show \(|\alpha - a|_p = |f(a)/f'(a)|_p \), \(\alpha \) is the unique root of \(f(X) \) in \(\mathbb{Z}_p \) such that \(|\alpha - a|_p < |f'(a)|_p \), and \(|f'(a)|_p = |f'(a)|_p \).

\[
|\alpha - a|_p = |f(a)/f'(a)|_p: \text{ We have } |a_2 - a|_p = |a_2 - a_1|_p = |f(a_1)/f'(a)|_p = |f(a)/f'(a)|_p,
\]

and for all \(n \)

\[
|a_{n+1} - a_n|_p = |\varphi^n(a) - \varphi^{n-1}(a)|_p = |\varphi^{n-1}(\varphi(a)) - \varphi^{n-1}(a)|_p \leq \lambda^{n-1}|a_2 - a_1|_p < \left| \frac{f(a)}{f'(a)} \right|_p.
\]

Then \(|a_n - a|_p = |f(a)/f'(a)|_p \) for all \(n \) by induction, so \(|\alpha - a|_p = |f(a)/f'(a)|_p \) by letting \(n \to \infty \).

\(\alpha \) is the unique root of \(f(X) \) such that \(|\alpha - a|_p < |f'(a)|_p \): This was proved at the end of the first proof of Theorem 4.1 without needing Newton’s method. We won’t rewrite the proof.

\[
|f'(a)|_p = |f'(a)|_p: \text{ Since } a_1 = a, \text{ of course } |f'(a)|_p = |f'(a)|_p. \text{ If } |f'(a_n)|_p = |f'(a)|_p \text{ for some } n \geq 1 \text{ then }
\]

\[
|f'(a_{n+1}) - f'(a_n)|_p \leq |a_{n+1} - a_n|_p \leq \left| \frac{f(a)}{f'(a)} \right|_p
\]

where the first inequality is from (5.4) and the second inequality is from \(a_n \) and \(a_{n+1} \) both lying in the closed ball around \(a \) of radius \(|f(a)/f'(a)|_p \). Thus \(|f'(a_{n+1}) - f'(a_n)|_p < |f'(a)|_p = |f'(a)|_p \), so \(|f'(a_{n+1})|_p = |f'(a_n)|_p = |f'(a)|_p \). We’ve shown \(|f'(a_n)|_p = |f'(a)|_p \) for all \(n \), and letting \(n \to \infty \) gives us \(|f'(a)|_p = |f'(a)|_p \).

It’s worthwhile to compare the recursions from Newton’s method and from the contraction mapping theorem:

- Newton’s method: \(a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)} \), with \(a_1 = a \) and \(|f(a)|_p < |f'(a)|_p^2 \).
- Contraction mapping: \(a_{n+1} = a_n - \frac{f(a_n)}{f'(a)} \), with \(a_1 = a \) and \(|f(a)|_p < |f'(a)|_p^2 \).
The difference is the denominators \(f'(a_n) \) and \(f'(a) \), and this has a profound effect on the rate of convergence. In Newton’s method, (5.7) tells us

\[
(6.6) \quad |\alpha - a_n|_p \leq |f'(a)|_p \frac{|f(a)|_p}{|f'(a)|_p^2}.
\]

To find an estimate on \(|\alpha - a_n|_p \) from the contraction mapping theorem, the recursion given by (6.5) implies \(|a_{n+1} - a_n|_p = |\varphi^{n-1}(a_2) - \varphi^{n-1}(a_1)|_p \leq |a_2 - a_1|_p \lambda^{n-1} \) for all \(n \geq 1 \), where \(a_2 - a_1 = f(a)/f'(a) \) and \(\lambda = |f(a)/f'(a)|_p^2 \). If \(m > n \) the strong triangle inequality implies

\[
|a_m - a_n|_p \leq \max_{n \leq j \leq m-1} |a_{j+1} - a_j|_p \leq |a_2 - a_1|_p \lambda^{n-1} = \left| \frac{f(a)}{f'(a)} \right|_p \lambda^{n-1}.
\]

Letting \(m \to \infty \) yields

\[
(6.7) \quad |\alpha - a_n|_p \leq \left| \frac{f(a)}{f'(a)} \right|_p \left| \frac{f(a)}{f'(a)} \right|^{n-1}.
\]

Since the upper bound in (6.6) goes to 0 much faster than the upper bound in (6.7), we can anticipate that \(|\alpha - a_n|_p \) would shrink to 0 faster when \(\{a_n\} \) is produced from Newton’s recursion compared to the contraction mapping recursion. In particular, when \(|f(a)/f'(a)|_p^2 = 1/p \), the decay bound in (6.6) goes to 0 like \((1/p)^{2n-1}\) while in (6.7) the decay bound goes to 0 like \((1/p)^n\), so we expect there to be a doubling of correct \(p \)-adic digits at each step in Newton’s recursion while we get just one new correct \(p \)-adic digit at each step by the contraction mapping recursion. Let’s see an example.

Example 6.1. Let \(f(X) = X^2 - 7 \) with \(a = 1 \), so \(|f(a)/f'(a)|_p = 1/3 \). The sequence \(\{a_n\} \) produced from the contraction mapping recursion (6.5) with \(a_1 = 1 \) has a limit \(\alpha \) and with a computer we find \(|\alpha - a_n|_p = (1/3)^n \) for \(1 \leq n \leq 10 \). The sequence \(\{a_n\} \) based on Newton’s recursion in Example 5.1 with \(a_1 = 1 \) has the same limit \(\alpha \), but a computer tells us that \(|\alpha - a_n|_p = (1/3)^{2n-1} \) for \(1 \leq n \leq 10 \), which is much smaller than \((1/3)^n\).

7. **The Inevitability of \(|f(a)|_p < |f'(a)|_p^2 \)**

In Theorem 4.1 we have \(|f'(a)|_p = |f'(a)|_p \neq 0 \), so Hensel’s lemma produces a simple root \(\alpha \) of \(f(X) \) in \(\mathbb{Z}_p \) that is close to \(a \). The criterion \(|f(a)|_p < |f'(a)|_p^2 \) in Theorem 4.1 is not just a sufficient condition for there to be a simple root of \(f(X) \) near \(a \) but it is also necessary, as the next theorem makes precise.

Theorem 7.1. If \(f(X) \in \mathbb{Z}_p[X] \) has a simple root \(\alpha \) in \(\mathbb{Z}_p \), then for all \(a \in \mathbb{Z}_p \) that are close enough to \(\alpha \) we have \(|f'(a)|_p = |f'(a)|_p \) and \(|f(a)|_p < |f'(a)|_p^2 \). In particular, these conditions hold when \(|a - \alpha|_p < |f'(a)|_p \).

Proof. By (5.4), \(|f'(a) - f'(\alpha)|_p \leq |\alpha - a|_p < |f'(\alpha)|_p \). Thus \(|f'(a)|_p = |f'(\alpha)|_p \). By (5.3),

\[
f(a) = f(\alpha + (a - \alpha)) = f(\alpha) + f'(\alpha)(a - \alpha) + z(a - \alpha)^2 = f'(\alpha)(a - \alpha) + z(a - \alpha)^2
\]

for some \(z \in \mathbb{Z}_p \). Both terms on the right side have absolute value less than \(|f'(\alpha)|_p^2 \) since \(|a - \alpha|_p < |f'(\alpha)|_p \), so \(|f(a)|_p < |f'(\alpha)|_p^2 = |f'(\alpha)|_p^2 \).

8. **Hensel’s Lemma for Power Series**

Hensel’s lemma can be applied to \(p \)-adic power series, not just polynomials. Here is the power series version of Theorem 4.1.
Theorem 8.1. Let $f(X)$ be a power series with coefficients in \mathbb{Z}_p that converges on \mathbb{Z}_p. If an $a \in \mathbb{Z}_p$ satisfies

$$|f(a)|_p < |f'(a)|_p^2$$

then there is a unique $\alpha \in \mathbb{Z}_p$ such that $f(\alpha) = 0$ and $|\alpha - a|_p < |f'(a)|_p$. Moreover,

1. $|\alpha - a|_p = |f(a)/f'(a)|_p < |f'(a)|_p$
2. $|f'(a)|_p = |f'(a)|_p$.

In this theorem, $f'(a)$ makes sense for $a \in \mathbb{Z}_p$ since $f'(X)$ converges on \mathbb{Z}_p: the coefficients of $f(X)$ tend to 0 since $f(1)$ converges so the coefficients of $f'(X)$ also tend to 0 and thus $f'(X)$ converges on \mathbb{Z}_p.

Proof. The proof of Theorem 4.1 used two properties of polynomials with coefficients in \mathbb{Z}_p: (5.3) and (5.4). These are both true for power series convergent on \mathbb{Z}_p as well. To prove the analogue of (5.3), let $f(X) = \sum_{i \geq 0} c_i X^i$, so $c_i \in \mathbb{Z}_p$ and $c_i \to 0$ as $i \to \infty$. For x and y in \mathbb{Z}_p,

$$f(x + y) = \sum_{i \geq 0} c_i (x + y)^i = c_0 + \sum_{i \geq 1} c_i (x^i + ix^{i-1}y + g_i(x,y)y^2)$$

where $g_i(x,y) \in \mathbb{Z}_p[x,y] \subset \mathbb{Z}_p$

$$= \sum_{i \geq 0} c_i x^i + \sum_{i \geq 1} ic_i x^{i-1}y + \sum_{i \geq 1} c_i g_i(x,y)y^2,$$

where we can break apart the series since $|c_i|_p \to 0$ as $i \to \infty$ and the numbers x, y, and $g_i(x,y)$ are all in \mathbb{Z}_p. Thus

$$f(x + y) = f(x) + f'(x)y + zy^2$$

where $z = \sum_{i \geq 1} c_i g_i(x,y) \in \mathbb{Z}_p$, and this is (5.3) for power series.

For the power series version of (5.4), set $F(X) = \sum_{i \geq 0} b_i X^i$ with $b_i \in \mathbb{Z}_p$ and $b_i \to 0$ (convergence on \mathbb{Z}_p). Since $|x^i - y^i|_p \leq |x - y|_p$ for all $x, y \in \mathbb{Z}_p$ and $i \geq 0$,

$$F(x) - F(y) = \sum_{i \geq 1} b_i (x^i - y^i) \implies |F(x) - F(y)|_p \leq \max_{i \geq 1} |b_i|_p |x^i - y^i|_p \leq \max_{i \geq 1} |b_i|_p |x - y|_p,$$

which is at most $|x - y|_p$ since all $|b_i|_p$ are at most 1.

Now check that, once we have (5.3) and (5.4) for power series convergent on \mathbb{Z}_p, the proof of Theorem 4.1 carries over word for word to the setting of power series convergent on \mathbb{Z}_p. □

The basic version of Hensel’s lemma is true for power series as a special case of the strong version proved above: if $f(X)$ is a power series convergent on \mathbb{Z}_p and an $a \in \mathbb{Z}_p$ satisfies $f(a) \equiv 0 \mod p$ and $f'(a) \equiv 0 \mod p$ then there is a unique $\alpha \in \mathbb{Z}_p$ such that $f(\alpha) = 0$ and $\alpha \equiv a \mod p$.

Like Theorem 5.4, the basic and strong form of Hensel’s lemma for power series convergent on \mathbb{Z}_p are equivalent, with a proof similar to the polynomial case, but care is needed since part of the proof uses convergent power series in two variables. Details are left to the reader. Check also that Theorem 7.1 and its proof carry over to power series convergent on \mathbb{Z}_p, where a simple root of a power series is a root at which the derivative is nonzero.
9. Hensel’s Lemma beyond \mathbb{Q}_p

The proofs of Hensel’s lemma work for polynomials with coefficients in a field K complete with respect to an absolute value satisfying the strong triangle inequality: $|x + y| \leq \max(|x|, |y|)$ for all x and y in K. Set $\mathfrak{o} = \{x \in K : |x| \leq 1\}$.

Theorem 9.1. If a polynomial $f(X)$ has coefficients in \mathfrak{o} and some $a \in \mathfrak{o}$ satisfies

$$|f(a)| < |f'(a)|^2$$

then there is a unique $\alpha \in \mathfrak{o}$ such that $f(\alpha) = 0$ and $|\alpha - a| < |f'(a)|$. Moreover, $|\alpha - a| = |f(a)/f'(a)| < |f'(a)|$ and $|f'(\alpha)| = |f'(a)| \neq 0$.

Conversely, if $f(X)$ has a simple root $\alpha \in \mathfrak{o}$, then for $a \in K$ such that $|a - \alpha| < |f'(\alpha)|$ then we have $|f'(a)| = |f'(\alpha)|$ and $|f(a)| < |f'(a)|^2$.

Theorems 5.4 and 7.1 also carry over to $\mathfrak{o}[X]$, with the same proofs.

Theorem 9.2. The following properties of polynomials in $\mathfrak{o}[X]$ are equivalent.

1. If $f(X) \in \mathfrak{o}[X]$ and there is an $a \in \mathfrak{o}$ such that $|f(a)| < 1$ and $|f'(a)| = 1$ then there is a unique $\alpha \in \mathfrak{o}$ such that $f(\alpha) = 0$ and $|\alpha - a| < 1$,

2. If $f(X) \in \mathfrak{o}[X]$ and there is an $a \in \mathfrak{o}$ such that $|f(a)| < |f'(a)|^2$ then there is a unique $\alpha \in \mathfrak{o}$ such that $f(\alpha) = 0$ and $|\alpha - a| < |f'(a)|$, and in fact $|\alpha - a|_p = |f(a)/f'(a)|_p$.

Theorem 9.3. If $f(X) \in \mathfrak{o}[X]$ has a simple root α in \mathfrak{o}, then for all $a \in \mathfrak{o}$ that are close enough to α we have $|f'(a)| = |f'(\alpha)|$ and $|f(a)| < |f'(\alpha)|^2$. In particular, these conditions hold when $|a - \alpha| < |f'(\alpha)|$.

Everything we said about Hensel’s lemma for power series over \mathbb{Z}_p in Section 8 carries over to power series with coefficients in \mathfrak{o} that converge on \mathfrak{o}.

For a version of Hensel’s lemma dealing with zeros of several polynomials in several variables, see [1].

References

