
THE GALOIS GROUP OF xn − x− 1 OVER Q

KEITH CONRAD

1. Introduction

In 1956, Selmer [5] proved xn − x− 1 is irreducible for all n ≥ 2.1 Its splitting field over
Q turns out to have Galois group Sn. This provides an example that’s easy to remember
of a family of irreducible polynomials over Q of each degree with a full symmetric group as
Galois group. We will use algebraic number theory (inertia groups) to compute the Galois
group of the splitting field of xn − x − 1 over Q and look briefly at the ring of integers
generated by a root of xn − x− 1.

2. Galois group of xn − x− 1 over Q

The Galois group of the splitting field of xn − x − 1 over Q was first determined for all
n ≥ 2 by Nart and Vila [2].

Theorem 2.1 (Nart, Vila). The splitting field of xn − x− 1 over Q has Galois group Sn.

This was later proved independently by Osada [3, Corollary 3] (or [4, Theorem 1, Remark
p. 441]). While we focus on xn − x− 1 for concreteness, the treatments in [2], [3], and [4]
are concerned with Galois groups over Q of more general irreducible trinomials.

Proof. Our proof will be given in two steps. The first step is just group theory, and the
second step is algebraic number theory justifying the application of the first step to xn−x−1.

Step 1: The Galois group of the splitting field of xn − x − 1 over Q embeds into Sn by
acting on the roots of xn − x− 1 and fixing a labeling of the roots. This action makes the
Galois group a transitive subgroup of Sn since xn − x − 1 is irreducible over Q. We will
prove a sufficient condition for a transitive subgroup G of Sn to be Sn when n ≥ 2: G is
generated by transpositions. We will show this in two ways.

Our first proof is taken from [3, Lemma 5]. Relabeling the roots if necessary, we can
assume that G contains the transposition (12). The transpositions (12), (13), . . . , (1n) are
known to be a generating set for Sn.2 We will show they are all in G. The result is obvious
if n = 2, so take n ≥ 3. Pick k from 3 to n. We want to show (1k) ∈ G. Since G acts
transitively on {1, 2, . . . , n} and is assumed to be generated by transpositions, there are
transpositions τ1, τ2, . . . , τr in G such that

(τr · · · τ2τ1)(2) = k,

and we can assume each τi moves the number (τi−1 · · · τ1)(2) since otherwise τi could
be removed from the equation without affecting its validity. Set j1 = τ1(2) and ji =
(τiτi−1 · · · τ1)(2) for i = 2, . . . , r − 1, so τ1 = (2, j1), τ2 = (j1, j2), . . . , τr−1 = (jr−2, jr−1),

1See https://kconrad.math.uconn.edu/blurbs/ringtheory/irredselmerpoly.pdf for a simpler proof
of the irreducibility.

2See Theorem 2.2 in https://kconrad.math.uconn.edu/blurbs/grouptheory/genset.pdf.
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and τr = (jr−1, k). with each τi being an actual transposition (not the identity). The path
we get from 2 to k by applying these transpositions is

2→ j1 → j2 → · · · → jr−2 → k.

We can assume no ji is 2, since otherwise (τr · · · τi+1)(2) = k and we could drop the initial
transpositions τ1, . . . , τi from consideration.

Set g := τr · · · τ2τ1 ∈ G. If none of j1, . . . , jr−1 are 1, then g(1) = 1 so G contains
g(12)g−1 = (g(1), g(2)) = (1k). If some ji is 1 then τi+1(1) = τi+1(ji) = ji+1. Set h =
τrτr−1 · · · τi+1 ∈ G, so h(1) = k. Also h(2) = 2 since none of ji, ji+1, . . . , jr−1, k equal 2.
Then G contains h(12)h−1 = (h(1), h(2)) = (k, 2) = (2k) so G also contains (12)(2k)(12) =
(1k).

Our second proof that G = Sn is taken from [6, Lemma 1, §10.2], where it is shown more
generally that a transitive subgroup of Sn that contains a transposition and is generated
by cycles of prime order must be all of Sn. We specialize to the case that the generating
cycles are 2-cycles.

We will prove by induction that for all m ≤ n there is a subset M ⊂ {1, 2, . . . , n} of
size m such that Sym(M) ⊂ G, where Sym(M) is the subgroup of Sn consisting of the
permutations that fix the elements in the complement of M , so Sym(M) ∼= Sm. The case
m = 1 is obvious since the identity of Sn belongs to G. Suppose now that 1 ≤ m < n
and we have such a subset M of size m. We will show by contradiction that there is a
transposition τ = (ij) in G such that i ∈M and j 6∈M . If there were no such transposition
in G, then every transposition (ij) in G has i and j both in M or both not in M . Thus all
transpositions in G preserve M and its complement, so G preserves M and its complement
(the group G is generated by transpositions), but that contradicts the transitivity of G on
{1, 2, . . . , n}. Therefore some (ij) ∈ G has i ∈ M and j 6∈ M . Let M ′ = M ∪ {j}, so
|M ′| = m + 1 ≤ n. Let H = 〈Sym(M), (ij)〉, so H ⊂ G and Sym(M) ⊂ H ⊂ Sym(M ′).
Since Sym(M) links every element of M to i, and (ij) links i to j, H links every element
of M ′ to j. Therefore H acts transitively on M ′, so [H : StabH(j)] = |M ′| = m+ 1. What
is StabH(j)? Each element of this stabilizer group fixes the complement of M ′ as well as
j, so StabH(j) ⊂ Sym(M). The reverse containment is obvious, so StabH(j) = Sym(M).
Thus |H| = |Sym(M)|(m+ 1) = (m+ 1)!, so H = Sym(M ′). That proves Sym(M ′) ⊂ G.

Step 2: We will now show that the Galois group of the splitting field of xn − x− 1 over
Q is generated by transpositions. Then Step 1 implies the group is Sn.

Let K be the splitting field of xn − x − 1 over Q and G = Gal(K/Q). By algebraic
number theory, G is generated by its nontrivial inertia subgroups I(p|p), where p runs over
the nonzero prime ideals of OK that ramify over Q. We will show each nontrivial I(p|p)
is generated by a transposition of the roots of xn − x − 1. Suppose σ ∈ I(p|p) and σ is
nontrivial. There is some root α of xn−x−1 such that σ(α) 6= α. But also σ(α) ≡ α mod p
because σ ∈ I(p|p), so xn − x − 1 has α mod p as a multiple root in characteristic p. We
will show xn−x−1 mod p has at most one multiple root, and its multiplicity as a root is 2.
Then for each root β of xn − x− 1 other than α or σ(α), the reduction β mod p is a simple
root of xn − x − 1 mod p, so the necessary congruence σ(β) ≡ β mod p implies σ(β) = β.
Thus, as a permutation of the roots of xn − x− 1, σ is the transposition (α σ(α)).

Suppose r is a multiple root of xn−x−1 in characteristic p. Then r is a root of xn−x−1
and its derivative: rn−r−1 = 0 and nrn−1−1 = 0 in characteristic p. The second equation
implies n 6= 0 and rn = r/n in characteristic p, so r/n = r + 1. Thus (1/n − 1)r = 1, so
(1−n)r = n. Thus n− 1 6= 0 and r = n/(1−n) ∈ Fp. Therefore the only possible multiple
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root of xn − x − 1 in characteristic p is n/(1 − n) mod p. To see that it is a root with
multiplicity two, if it is a multiple root at all, consider the second derivative n(n− 1)xn−2,
whose value at r is n(n − 1)rn−2, which is nonzero in characteristic p. Thus r is a root of
xn − x− 1 mod p with multiplicity two. �

Remark 2.2. The reasoning in Step 2 works for xn+δx+ε where δ, ε ∈ {±1}, so if xn+δx+ε
is irreducible over Q then its Galois group over Q is isomorphic to Sn. Such polynomials
where δ or ε is 1 are reducible for some n, e.g., x5 + x− 1 = (x2 − x+ 1)(x3 + x2 − 1).3

A reader who does not know algebraic number theory won’t understand Step 2 in the
above proof, but if the goal is to prove xn − x − 1 has Galois group Sn only for a specific
n, not for all n ≥ 2, then the above proof can be replaced by a different criterion for a
transitive subgroup G of Sn to equal Sn: G contains a transposition and a p-cycle for a
prime p > n/2.4 For example, consider n = 12: if the Galois group of x12 − x − 1 over Q
contains a transposition and a 7-cycle or 11-cycle, then the Galois group is S12. Factoring
x12 − x− 1 mod p for several p, we find the following factorizations modulo 17 and 47:

(x− 3)(x− 15)(x3 + 6x2 + 7x+ 6)(x7 + 12x6 + 13x5 + 15x4 + 6x3 + 16x2 + 14x+ 9) mod 17,

(x2 +33x+19)(x5 +28x4 +28x3 +14x2 +26x+42)(x5 +33x4 +24x3 +38x2 +x+1) mod 47.

From the factorization mod 17, the Galois group of x12− x− 1 over Q contains an element
σ that permutes the roots with cycle type (1, 1, 3, 7), so σ3 is a 7-cycle on the roots. From
the factorization mod 47, the Galois group contains an element τ that permutes the roots
with cycle type (2, 5, 5), so τ5 is a transposition of the roots.

3. The ring of integers associated to xn − x− 1

If f(x) ∈ Z[x] is monic irreducible with squarefree discriminant and root α then Q(α)
has ring of integers Z[α]. The discriminant of xn− x− 1 is squarefree for 2 ≤ n ≤ 100, and
based on a probabilistic heuristic, Boyd, Martin, and Thom [1] conjecture that the density
of n such that disc(xn − x− 1) is squarefree is around 99.34%.

There is a known formula for the discriminant of xn + ax+ b:

disc(xn + ax+ b) = (−1)n(n−1)/2((−1)n−1(n− 1)n−1an + nnbn−1).

Taking a = −1 and b = −1,

disc(xn − x− 1) = (−1)n(n−1)/2+1((n− 1)n−1 + (−n)n).

The first n for which the discriminant of xn − x− 1 is not squarefree is n = 130:

disc(x130 − x− 1) = 129129 + 130130,

which is divisible by 832 (and not by the square of another prime).

Theorem 3.1. If α130 − α− 1 = 0 then Z[α] is not the ring of integers of Q(α).

Proof. Let K = Q(α). If its ring of integers OK is Z[α] ∼= Z[x]/(x130−x− 1), then for each
prime p the decomposition of (p) in OK matches how x130 − x− 1 mod p factors. Working
in F83[x], PARI gives a factorization into monic irreducibles

(3.1) x130 − x− 1 ≡ (x− 8)2(x− 20)f22(x)f42(x)f63(x) mod 83

3See the appendix of https://kconrad.math.uconn.edu/blurbs/ringtheory/irredselmerpoly.pdf for
a classification of the n where xn + δx+ ε is irreducible.

4See Theorem 2.1 in https://kconrad.math.uconn.edu/blurbs/galoistheory/galoisSnAn.pdf.
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where fd(x) has degree d. We will use (3.1) to explain in two ways why OK 6= Z[α].
Method 1: Dedekind’s index theorem. Let F22(x), F42(x), and F63(x) be monic lifts of

f22(x), f42(x), and f42(x) to Z[x], so

x130 − x− 1 = (x− 8)2(x− 20)F22(x)F42(x)F63(x) + 83F (x)

for some F (x) ∈ Z[x]. Since the only repeated prime factor of x130 − x − 1 in F83[x] is
(x−8)2, Dedekind’s index theorem5 implies that 83 | [OK : Z[α]] if and only if (x−8) | F (x)
in F83[x]. Using PARI, F (8) ≡ 0 mod 83, so (x− 8) | F (x) and therefore 83 | [OK : Z[α]].

Method 2: p-adic factorization. We modify an argument by David Speyer [7] for the case
n = 257. If OK = Z[α] then (3.1) implies the ideal (83) in OK has two prime ideal factors
with residue field degree 1. Prime ideal factors of (83) in OK with residue field degree 1 are
in bijection with roots of x130− x− 1 in Q83. Using PARI, x130− x− 1 has 3 roots in Q83:
approximately 8 + 12 · 83 + . . ., 8 + 74 · 83 + . . ., and 20 + 30 · 83 + . . .. Therefore (83) has
three prime ideal factors in OK of residue field degree 1 and OK 6= Z[α]. �

The page https://oeis.org/A238194 lists known n where disc(xn−x−1) is not square-
free. For n ≤ 1000, they are 130, 257, 487, 528, 815, and 897.
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