GALOIS GROUPS OVER Q AND FACTORIZATIONS MOD p

KEITH CONRAD

For a monic irreducible polynomial f(T) in $\mathbf{Z}[T]$ of degree n, let K be its splitting field over \mathbf{Q} . Writing the roots of f(T) as $\alpha_1, \ldots, \alpha_n$, each element of $\operatorname{Gal}(K/\mathbf{Q})$ is determined by how it permutes the n roots of f(T), and this embeds $\operatorname{Gal}(K/\mathbf{Q})$ into S_n .¹

The following striking theorem of Dedekind tells us cycle types of elements of $Gal(K/\mathbf{Q})$ as a permutation of the roots of f(T) by how f(T) factors modulo primes.

Theorem 1 (Dedekind). Let f and K be as above. For each prime p where $p \nmid \operatorname{disc} f$, let (1) $f(T) \equiv \pi_1(T) \cdots \pi_k(T) \mod p$,

where the $\pi_j(T)$'s are distinct monic irreducibles in $\mathbf{F}_p[T]$. There is a σ in $\text{Gal}(K/\mathbf{Q})$ that permutes the roots of f(T) in K with cycle type (d_1, d_2, \ldots, d_k) , where $d_j = \text{deg } \pi_j$ for all j.

This is easier to use than to prove. For some uses, see both https://kconrad.math.uconn.edu/blurbs/galoistheory/galoisaspermgp.pdf or https://kconrad.math.uconn.edu/blurbs/galoistheory/galoisSnAn.pdf. To prove the theorem, we'll use algebraic number theory (Frobenius elements of prime ideals).

Proof. Let \mathfrak{p} be a prime ideal over p in K. We'll show p is unramified in K and the Frobenius element $\operatorname{Fr}(\mathfrak{p}|p)$ in $\operatorname{Gal}(K/\mathbb{Q})$ permutes the roots of f(T) with the desired cycle type.

Since $p \nmid \operatorname{disc} f$, p is unramified in $\mathbf{Q}(\alpha_1)$, so p is also unramified in the Galois closure of $\mathbf{Q}(\alpha_1)$ over \mathbf{Q} , which is K. Thus $\operatorname{Fr}(\mathfrak{p}|p)$ is a uniquely defined element of $\operatorname{Gal}(K/\mathbf{Q})$.

Reducing the factorization $f(T) = (T - \alpha_1) \cdots (T - \alpha_n)$ in $\mathcal{O}_K[T]$ modulo the ideal \mathfrak{p} ,

(2)
$$\overline{f}(T) = (T - \overline{\alpha}_1) \cdots (T - \overline{\alpha}_n) \text{ in } (\mathcal{O}_K/\mathfrak{p})[T]$$

Since $p \nmid \text{disc } f$ we know $f(T) \mod p$ is separable, so the reductions $\overline{\alpha}_i$ are distinct. Comparing (1) in $\mathbf{F}_p[T]$ and (2) in the larger ring $(\mathcal{O}_K/\mathfrak{p})[T]$, the reductions $\overline{\alpha}_i$ are the roots of $\overline{\pi}_1(T), \ldots, \overline{\pi}_k(T)$ in $\mathcal{O}_K/\mathfrak{p}$ in some order with no repetitions.

Let $\overline{\pi}_1(T)$ have a root $\overline{\alpha}_i$. By the theory of finite fields, if γ is one root of an irreducible in $\mathbf{F}_p[T]$ of degree d, then all the roots are iterated pth powers $\gamma, \gamma^p, \gamma^{p^2}, \ldots, \gamma^{p^{d-1}}$. Thus the roots of $\overline{\pi}_1(T)$ are $\overline{\alpha}_i, \overline{\alpha}_i^p, \ldots, \overline{\alpha}_i^{p^{d_1-1}}$, and $\overline{\alpha}_i^{p^{d_1}} = \overline{\alpha}_i$. The effect of $\varphi := \operatorname{Fr}(\mathfrak{p}|p)$ on $\mathcal{O}_K/\mathfrak{p}$ is to act as the pth power, so we can rewrite the roots of $\overline{\pi}_1(T)$ as $\overline{\alpha}_i, \overline{\varphi(\alpha_i)}, \ldots, \overline{\varphi^{d_1-1}(\alpha_i)}$, and $\overline{\varphi^{d_1}(\alpha_i)} = \overline{\alpha}_i$. Since distinct roots of f(T) stay distinct mod $\mathfrak{p}, \varphi^{d_1}(\alpha_i) = \alpha_i$ in K and no smaller iterate of φ can fix α_i . Thus φ acts as a d_1 -cycle on the roots of f(T) that reduce mod \mathfrak{p} to roots of $\overline{\pi}_1(T)$.

We can apply the same argument to the roots of f(T) that reduce mod \mathfrak{p} to roots of each of the other polynomials $\overline{\pi}_2(T), \ldots, \overline{\pi}_k(T)$: the roots of f(T) that reduce mod \mathfrak{p} to the roots of $\overline{\pi}_j(T)$ are permuted by $\operatorname{Fr}(\mathfrak{p}|p)$ as a d_j -cycle. Different $\overline{\pi}_j(T)$ have different roots since $\overline{f}(T)$ is separable, so $\operatorname{Fr}(\mathfrak{p}|p)$ acts on the roots of f(T) with cycle type (d_1, d_2, \ldots, d_k) . \Box

¹Changing the indexing of the roots will change this embedding by conjugation in S_n , so $\text{Gal}(K/\mathbf{Q})$ as a subgroup of S_n is well-defined up to conjugation.