EXISTENCE OF FROBENIUS ELEMENTS (D'APRÈS FROBENIUS)

KEITH CONRAD

We lift residue field automorphisms by the proof of Frobenius [1, p. 699] that Frobenius elements exist. Dedekind and Hilbert independently proved the same result [2, p. 561].

Let A be a Dedekind domain with fraction field F, E/F be a finite Galois extension and B be the integral closure of A in E. Let $G = \operatorname{Gal}(E/F)$, \mathfrak{P} be a prime in B, $\mathfrak{p} = \mathfrak{P} \cap A$, and $D(\mathfrak{P}|\mathfrak{p})$ be the decomposition group at \mathfrak{P} in G. We will show the natural homomorphism $D(\mathfrak{P}|\mathfrak{p}) \to \operatorname{Aut}_{A/\mathfrak{p}}(B/\mathfrak{P})$ is onto: for each $\tau \in \operatorname{Aut}_{A/\mathfrak{p}}(B/\mathfrak{P})$, some $\sigma \in G$ satisfies

$$(1) \overline{\sigma(x)} = \tau(\overline{x})$$

for all $x \in B$, where \bar{t} means $t \mod \mathfrak{P}$. Then $\sigma(\mathfrak{P}) = \mathfrak{P}$, so σ is in $D(\mathfrak{P}|\mathfrak{p})$ and reduces to τ . Since E/F is separable, B is a finitely generated A-module. Therefore we can write

$$B = \sum_{j=1}^{n} A\omega_j$$

for an $n \ge 1$. (Since A may not be a PID, the ω_j 's may not be an A-basis and n may not be [E:F].) We seek $\sigma \in G$ such that (1) holds for $x = \omega_1, \ldots, \omega_n$. Then (1) holds for all $x \in B$ by A-linearity. Consider the multivariable polynomial

(2)
$$\varphi(Y, X_1, \dots, X_n) = \prod_{\sigma \in G} (Y - \sigma(\omega_1) X_1 - \dots - \sigma(\omega_n) X_n)$$

in $B[Y, X_1, ..., X_n]$. By symmetry, the coefficients of $\varphi(Y, X_1, ..., X_n)$ are in $B \cap F = A$. Substituting $\omega_1 X_1 + \cdots + \omega_n X_n$ for Y in (2) kills the polynomial:

$$\varphi(\omega_1 X_1 + \dots + \omega_n X_n, X_1, \dots, X_n) = 0$$

in $B[X_1,\ldots,X_n]$. Reducing coefficients modulo \mathfrak{P} ,

(3)
$$\overline{\varphi}(\overline{\omega_1}X_1 + \dots + \overline{\omega_n}X_n, X_1, \dots, X_n) = \overline{0}$$

in $(B/\mathfrak{P})[X_1,\ldots,X_n]$. Note $\overline{\varphi}(Y,X_1,\ldots,X_n)$ lies in $(A/\mathfrak{p})[Y,X_1,\ldots,X_n]$. Make τ a ring automorphism of $(B/\mathfrak{P})[X_1,\ldots,X_n]$ by acting on coefficients. Then

$$\overline{\varphi}(\tau(\overline{\omega}_1)X_1 + \dots + \tau(\overline{\omega}_n)X_n, X_1, \dots, X_n) = \overline{0}$$

in $(B/\mathfrak{P})[X_1,\ldots,X_n]$ by applying τ to both sides of (3), since the coefficients of $\overline{\varphi}$ (as a polynomial in Y,X_1,\ldots,X_n) are in A/\mathfrak{p} and thus are fixed by τ .

Recalling the definition of φ in (2), equation (4) says that

(5)
$$\prod_{\sigma \in G} ((\tau(\overline{\omega_1}) - \overline{\sigma(\omega_1)}) X_1 + \dots + (\tau(\overline{\omega_n}) - \overline{\sigma(\omega_n)}) X_n) = \overline{0}$$

in the domain $(B/\mathfrak{P})[X_1,\ldots,X_n]$. Some σ -factor in (5) is $\overline{0}$, so $\overline{\sigma(\omega_j)} = \tau(\overline{\omega_j})$ for all j and we're done.

Here is a second proof of the theorem when the residue field extension is separable (e.g., finite residue fields). It is similar to the first proof but uses only single-variable polynomials. I learned the argument from Benjamin Steinberg.

By the primitive element theorem, $B/\mathfrak{P}=(A/\mathfrak{p})(\overline{\gamma})$ for some $\gamma\in B$, and we can assume $\overline{\gamma}\neq \overline{0}$ since the case $B/\mathfrak{P}=A/\mathfrak{p}$ is trivial. Using the Chinese remainder theorem, there is a $\beta\in B$ such that

(6)
$$\beta \equiv \gamma \mod \mathfrak{P}, \quad \beta \equiv 0 \mod \sigma^{-1}(\mathfrak{P}) \text{ for all } \sigma \in G - D(\mathfrak{P}|\mathfrak{p}).$$

Set $f(Y) = \prod_{\sigma \in G} (Y - \sigma(\beta))$, which has coefficients in $B \cap F = A$.

In $(B/\mathfrak{P})[Y]$, $\overline{f}(Y)$ has the factor $Y - \overline{\beta} = Y - \overline{\gamma}$, so $\overline{f}(\overline{\gamma}) = \overline{0}$. Let m(Y) be the minimal polynomial of $\overline{\gamma}$ over A/\mathfrak{p} , so

$$m(Y) \mid \overline{f}(Y) \text{ in } (A/\mathfrak{p})[Y].$$

We will refine this in $(B/\mathfrak{P})[Y]$ by looking more closely at the factors of $\overline{f}(Y)$ in $(B/\mathfrak{P})[Y]$ using (6). For $\sigma \in D(\mathfrak{P}|\mathfrak{p})$,

(7)
$$\beta \equiv \gamma \bmod \mathfrak{P} \Longrightarrow \sigma(\beta) \equiv \sigma(\gamma) \bmod \mathfrak{P}$$

since $\sigma(\mathfrak{P}) = \mathfrak{P}$. For $\sigma \in G - D(\mathfrak{P}|\mathfrak{p}), \, \sigma^{-1}(\mathfrak{P}) \neq \mathfrak{P}$, so

(8)
$$\beta \equiv 0 \mod \sigma^{-1}(\mathfrak{P}) \Longrightarrow \sigma(\beta) \equiv 0 \mod \mathfrak{P}.$$

By (7) and (8),

$$f(Y) \equiv \prod_{\sigma \in D(\mathfrak{P}|\mathfrak{p})} (Y - \sigma(\gamma)) \cdot Y^d \mod \mathfrak{P}$$

where d is the number of σ in G but not in $D(\mathfrak{P}|\mathfrak{p})$. The polynomial m(Y) is not divisible by Y since $\overline{\gamma} \neq \overline{0}$, so in $(B/\mathfrak{P})[Y]$ we can improve $m(Y) \mid \overline{f}(Y)$ to

$$m(Y) \mid \prod_{\sigma \in D(\mathfrak{P}|\mathfrak{p})} (Y - \overline{\sigma(\gamma)}) \text{ in } (B/\mathfrak{P})[Y].$$

Note this product runs over $D(\mathfrak{P}|\mathfrak{p})$, not G.

For $\tau \in \operatorname{Aut}_{A/\mathfrak{p}}(B/\mathfrak{P})$, extend it to a ring automorphism of $(B/\mathfrak{P})[Y]$ by acting on coefficients. We have $(Y - \overline{\gamma}) \mid m(Y)$ in $(B/\mathfrak{P})[Y]$ since $m(\overline{\gamma}) = 0$, and $\tau(m(Y)) = m(Y)$ since $m(Y) \in (A/\mathfrak{p})[Y]$, so $(Y - \tau(\overline{\gamma})) \mid m(Y)$ in $(B/\mathfrak{P})[Y]$. Therefore $Y - \tau(\overline{\gamma}) = Y - \overline{\sigma(\gamma)}$ for some $\sigma \in D(\mathfrak{P}|\mathfrak{p})$, so

(9)
$$\tau(\overline{\gamma}) = \overline{\sigma(\gamma)}$$

in B/\mathfrak{P} . Since $B/\mathfrak{P} = (A/\mathfrak{p})[\overline{\gamma}]$, taking (A/\mathfrak{p}) -linear combinations of powers of both sides of (9) implies $\tau(\overline{x}) = \overline{\sigma(x)}$ for all $\overline{x} \in B/\mathfrak{P}$, so we're done.

References

- [1] F. G. Frobenius, Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppe, Sitzungsberichte der Koniglich Preuisschen Akademie der Wissenschaften zu Berlin (1896), 689-703; Gesammelte Abhandlungen II, 719-733. Online at https://www.biodiversitylibrary.org/item/93035#page/719/mode/1up.
- [2] T. Hawkins, "The Mathematics of Frobenius in Context," Springer-Verlag, New York, 2013.