EXISTENCE OF FROBENIUS ELEMENTS (D'APRÈS FROBENIUS)

KEITH CONRAD

We lift residue field automorphisms by the proof of Frobenius [1, p. 699] that Frobenius elements exist. Dedekind and Hilbert independently proved the same result [2, p. 561].

Let A be a Dedekind domain with fraction field $K, L / K$ be a finite Galois extension and B be the integral closure of A in E. Let $G=\operatorname{Gal}(L / K), \mathfrak{P}$ be a prime in $B, \mathfrak{p}=\mathfrak{P} \cap A$, and $\mathrm{D}(\mathfrak{P} \mid \mathfrak{p})$ be the decomposition group at \mathfrak{P} in G. We will show the natural homomorphism $\mathrm{D}(\mathfrak{P} \mid \mathfrak{p}) \rightarrow$ Aut $_{A / \mathfrak{p}}(B / \mathfrak{P})$ is onto: for each $\tau \in \operatorname{Aut}_{A / \mathfrak{p}}(B / \mathfrak{P})$, some $\sigma \in G$ satisfies

$$
\begin{equation*}
\overline{\sigma(x)}=\tau(\bar{x}) \tag{1}
\end{equation*}
$$

for all $x \in B$, where \bar{t} means $t \bmod \mathfrak{P}$. Then $\sigma(\mathfrak{P})=\mathfrak{P}$, so σ is in $\mathrm{D}(\mathfrak{P} \mid \mathfrak{p})$ and reduces to τ.
Since L / K is separable, B is a finitely generated A-module. Therefore we can write

$$
B=\sum_{j=1}^{n} A \omega_{j}
$$

for an $n \geq 1$. (Since A may not be a PID, the ω_{j} 's may not be an A-basis and n may not be $[L: K]$.) We seek $\sigma \in G$ such that (1) holds for $x=\omega_{1}, \ldots, \omega_{n}$. Then (1) holds for all $x \in B$ by A-linearity. Consider the multivariable polynomial

$$
\begin{equation*}
\varphi\left(Y, X_{1}, \ldots, X_{n}\right)=\prod_{\sigma \in G}\left(Y-\sigma\left(\omega_{1}\right) X_{1}-\cdots-\sigma\left(\omega_{n}\right) X_{n}\right) \tag{2}
\end{equation*}
$$

in $B\left[Y, X_{1}, \ldots, X_{n}\right]$. By symmetry, the coefficients of $\varphi\left(Y, X_{1}, \ldots, X_{n}\right)$ are in $B \cap K=A$.
Substituting $\omega_{1} X_{1}+\cdots+\omega_{n} X_{n}$ for Y in (2) kills the polynomial:

$$
\varphi\left(\omega_{1} X_{1}+\cdots+\omega_{n} X_{n}, X_{1}, \ldots, X_{n}\right)=0
$$

in $B\left[X_{1}, \ldots, X_{n}\right]$. Reducing coefficients modulo \mathfrak{P},

$$
\begin{equation*}
\bar{\varphi}\left(\overline{\omega_{1}} X_{1}+\cdots+\overline{\omega_{n}} X_{n}, X_{1}, \ldots, X_{n}\right)=\overline{0} \tag{3}
\end{equation*}
$$

in $(B / \mathfrak{P})\left[X_{1}, \ldots, X_{n}\right]$. Note $\bar{\varphi}\left(Y, X_{1}, \ldots, X_{n}\right)$ lies in $(A / \mathfrak{p})\left[Y, X_{1}, \ldots, X_{n}\right]$.
Make τ a ring automorphism of $(B / \mathfrak{P})\left[X_{1}, \ldots, X_{n}\right]$ by acting on coefficients. Then

$$
\begin{equation*}
\bar{\varphi}\left(\tau\left(\bar{\omega}_{1}\right) X_{1}+\cdots+\tau\left(\overline{\omega_{n}}\right) X_{n}, X_{1}, \ldots, X_{n}\right)=\overline{0} \tag{4}
\end{equation*}
$$

in $(B / \mathfrak{P})\left[X_{1}, \ldots, X_{n}\right]$ by applying τ to both sides of (3), since the coefficients of $\bar{\varphi}$ (as a polynomial in $\left.Y, X_{1}, \ldots, X_{n}\right)$ are in A / \mathfrak{p} and thus are fixed by τ.

Recalling the definition of φ in (2), equation (4) says that

$$
\begin{equation*}
\prod_{\sigma \in G}\left(\left(\tau\left(\overline{\omega_{1}}\right)-\overline{\sigma\left(\omega_{1}\right)}\right) X_{1}+\cdots+\left(\tau\left(\overline{\omega_{n}}\right)-\overline{\sigma\left(\omega_{n}\right)}\right) X_{n}\right)=\overline{0} \tag{5}
\end{equation*}
$$

in the domain $(B / \mathfrak{P})\left[X_{1}, \ldots, X_{n}\right]$. Some σ-factor in (5) is $\overline{0}$, so $\overline{\sigma\left(\omega_{j}\right)}=\tau\left(\overline{\omega_{j}}\right)$ for all j and we're done.

Here is a second proof of the theorem in the special case that the residue field extension is separable (e.g., finite residue fields). ${ }^{1}$ It is similar to the first proof but uses only singlevariable polynomials. I learned the argument from Benjamin Steinberg.

[^0]By the primitive element theorem, $B / \mathfrak{P}=(A / \mathfrak{p})(\bar{\gamma})$ for some $\gamma \in B$, and we can assume $\bar{\gamma} \neq \overline{0}$ since the case $B / \mathfrak{P}=A / \mathfrak{p}$ is trivial. Using the Chinese remainder theorem, there is a $\beta \in B$ such that

$$
\begin{equation*}
\beta \equiv \gamma \bmod \mathfrak{P}, \quad \beta \equiv 0 \bmod \sigma^{-1}(\mathfrak{P}) \text { for all } \sigma \in G-D(\mathfrak{P} \mid \mathfrak{p}) \tag{6}
\end{equation*}
$$

Set $f(Y)=\prod_{\sigma \in G}(Y-\sigma(\beta))$, which has coefficients in $B \cap K=A$.
In $(B / \mathfrak{P})[Y], \bar{f}(Y)$ has the factor $Y-\bar{\beta}=Y-\bar{\gamma}$, so $\bar{f}(\bar{\gamma})=\overline{0}$. Let $m(Y)$ be the minimal polynomial of $\bar{\gamma}$ over A / \mathfrak{p}, so

$$
m(Y) \mid \bar{f}(Y) \text { in }(A / \mathfrak{p})[Y]
$$

We will refine this in $(B / \mathfrak{P})[Y]$ by looking more closely at the factors of $\bar{f}(Y)$ in $(B / \mathfrak{P})[Y]$ using (6). For $\sigma \in D(\mathfrak{P} \mid \mathfrak{p})$,

$$
\begin{equation*}
\beta \equiv \gamma \bmod \mathfrak{P} \Longrightarrow \sigma(\beta) \equiv \sigma(\gamma) \bmod \mathfrak{P} \tag{7}
\end{equation*}
$$

since $\sigma(\mathfrak{P})=\mathfrak{P}$. For $\sigma \in G-D(\mathfrak{P} \mid \mathfrak{p}), \sigma^{-1}(\mathfrak{P}) \neq \mathfrak{P}$, so

$$
\begin{equation*}
\beta \equiv 0 \bmod \sigma^{-1}(\mathfrak{P}) \Longrightarrow \sigma(\beta) \equiv 0 \bmod \mathfrak{P} \tag{8}
\end{equation*}
$$

By (7) and (8),

$$
f(Y) \equiv \prod_{\sigma \in D(\mathfrak{P} \mid \mathfrak{p})}(Y-\sigma(\gamma)) \cdot Y^{d} \bmod \mathfrak{P}
$$

where d is the number of σ in G but not in $D(\mathfrak{P} \mid \mathfrak{p})$. The polynomial $m(Y)$ is not divisible by Y since $\bar{\gamma} \neq \overline{0}$, so in $(B / \mathfrak{P})[Y]$ we can improve $m(Y) \mid \bar{f}(Y)$ to

$$
m(Y) \mid \prod_{\sigma \in D(\mathfrak{P} \mid \mathfrak{p})}(Y-\overline{\sigma(\gamma)}) \text { in }(B / \mathfrak{P})[Y] .
$$

Note this product runs over $D(\mathfrak{P} \mid \mathfrak{p})$, not G.
For $\tau \in \operatorname{Aut}_{A / \mathfrak{p}}(B / \mathfrak{P})$, extend it to a ring automorphism of $(B / \mathfrak{P})[Y]$ by acting on coefficients. We have $(Y-\bar{\gamma}) \mid m(Y)$ in $(B / \mathfrak{P})[Y]$ since $m(\bar{\gamma})=0$, and $\tau(m(Y))=m(Y)$ since $m(Y) \in(A / \mathfrak{p})[Y]$, so $(Y-\tau(\bar{\gamma})) \mid m(Y)$ in $(B / \mathfrak{P})[Y]$. Therefore $Y-\tau(\bar{\gamma})=Y-\overline{\sigma(\gamma)}$ for some $\sigma \in D(\mathfrak{P} \mid \mathfrak{p})$, so

$$
\begin{equation*}
\tau(\bar{\gamma})=\overline{\sigma(\gamma)} \tag{9}
\end{equation*}
$$

in B / \mathfrak{P}. Since $B / \mathfrak{P}=(A / \mathfrak{p})[\bar{\gamma}]$, taking (A / \mathfrak{p})-linear combinations of powers of both sides of (9) implies $\tau(\bar{x})=\overline{\sigma(x)}$ for all $\bar{x} \in B / \mathfrak{P}$, so we're done.

References

[1] F. G. Frobenius, Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppe, Sitzungsberichte der Koniglich Preuisschen Akademie der Wissenschaften zu Berlin (1896), 689-703; Gesammelte Abhandlungen II, 719-733. Online at https://www. biodiversitylibrary.org/item/93035\#page/719/mode/1up.
[2] T. Hawkins, "The Mathematics of Frobenius in Context," Springer-Verlag, New York, 2013.

[^0]: ${ }^{1}$ There are Galois L / K with an inseparable residue field extension. See the second example in https:// kconrad.math.uconn.edu/blurbs/gradnumthy/sepfield-and-insep-resfield.pdf.

