FERMAT'S LAST THEOREM FOR REGULAR PRIMES

KEITH CONRAD

For a prime p, we call p regular when the class number $h_p = h(\mathbb{Q}(\zeta_p))$ of the pth cyclotomic field is not divisible by p. For instance, all primes $p \leq 19$ have $h_p = 1$, so they are regular. Since $h_{23} = 3$, 23 is regular. All primes less then 100 are regular except for 37, 59, and 67: $h_{37} = 37$, $h_{59} = 3 \cdot 59 \cdot 233$, and $h_{67} = 67 \cdot 12739$. It is known that there are infinitely many irregular primes, and heuristics and tables suggest around 61% of primes should be regular [8, p. 63], but the infinitude of regular primes is still an open problem.

The significance of a prime p being regular is that if the pth power of an ideal a in $\mathbb{Z}[\zeta_p]$ is principal, then a is itself principal. Indeed, if a^p is principal, then it is trivial in the class group of $\mathbb{Q}(\zeta_p)$. Since p doesn’t divide h_p, this means a is trivial in the class group, so a is a principal ideal.

The concept of regular prime was introduced by Kummer in his work on Fermat’s Last Theorem (FLT). He proved the following result in 1847.

Theorem 1. For a regular prime $p \geq 3$, the equation $x^p + y^p = z^p$ does not have a solution in positive integers x, y, z.

This was a huge advance on FLT compared to work preceding it: before Kummer, FLT for prime exponents\(^1\) was only completely settled for exponents 3 (Euler in 1770, with a gap), 5 (Germain in 1823, Dirichlet and Lagrange in 1825) and 7 (Lamé in 1839).\(^2\) After Kummer, FLT was known for the odd primes below 100 except 37, 59, and 67. Our goal here is to prove Theorem 1.

Since p is a fixed prime, we henceforth write ζ_p simply as ζ. The complex conjugate of an element α in $\mathbb{Q}(\zeta)$ is written as $\bar{\alpha}$. Since complex conjugation is an automorphism of this field, whose Galois group over \mathbb{Q} is abelian, $\sigma(\bar{\alpha}) = \sigma(\alpha)$ for α in $\mathbb{Q}(\zeta)$ and σ in $\text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$.

We start with some lemmas valid in the pth cyclotomic field for odd prime p.

Lemma 1. In $\mathbb{Z}[\zeta]$, the numbers $1 - \zeta, 1 - \zeta^2, \ldots, 1 - \zeta^{p-1}$ are all associates and $1 + \zeta$ is a unit. Also $p = u(1 - \zeta)^{p-1}$ for some unit u and $(1 - \zeta)$ is the only prime ideal in $\mathbb{Z}[\zeta]$ dividing p.

Proof. For $1 \leq j \leq p - 1$, $(1 - \zeta^j)/(1 - \zeta) = 1 + \zeta + \cdots + \zeta^{j-1}$ lies in $\mathbb{Z}[\zeta]$. Writing $1 \equiv j' \mod p$, we see the reciprocal $(1 - \zeta)/(1 - \zeta^j) = (1 - \zeta^{j'})/(1 - \zeta^j)$ lies in $\mathbb{Z}[\zeta^j] = \mathbb{Z}[\zeta]$. So $1 - \zeta^j$ is a unit multiple of $1 - \zeta$. In particular, taking $j = 2$ (we can do this since $2 \leq p - 1$) shows $1 + \zeta$ is a unit.

Setting $X = 1$ in the equation $1 + X + \cdots + X^{p-1} = \prod_{j=1}^{p-1} (X - \zeta^j)$ gives

$$p = \prod_{j=1}^{p-1} (1 - \zeta^j) = \prod_{j=1}^{p-1} \frac{1 - \zeta^j}{1 - \zeta} (1 - \zeta) = u(1 - \zeta)^{p-1},$$

\(^1\)Fermat himself had proved FLT for exponent 4.

\(^2\)Two accounts of Lamé’s flawed 1847 work on FLT for general odd prime exponents are [5, pp. 6–8] and https://math.stackexchange.com/questions/953462.
where \(a \) is a unit. Taking norms, \(p^{p-1} = N(1 - \zeta)^{p-1} \), so \((1 - \zeta)\) has prime norm and thus is a prime ideal. Since \((p) = (1 - \zeta)^{p-1} \), \((1 - \zeta)\) is the only prime ideal factor of \(p \).

\[\Box \]

Lemma 2. For \(v \in \mathbf{Z}[[\zeta]]^{\times} \), \(v/\overline{v} \) is a root of unity.

Proof. For \(\sigma \in \text{Gal}(\mathbf{Q}(\zeta)/\mathbf{Q}) \), \(\sigma(\overline{v}) = \overline{\sigma v} \), so \(v/\overline{v} \) and all of its \(\mathbf{Q} \)-conjugates have absolute value 1. Therefore, by a theorem of Kronecker, \(v/\overline{v} \) is a root of unity [8, Lemma 1.6].

The roots of unity in \(\mathbf{Z}[[\zeta]] \) are \(\pm \zeta^j \), and in fact one can show in the preceding lemma that \(v/\overline{v} \) is a power of \(\zeta \) (i.e., no minus sign), but we won’t need that more precise statement. (For a proof, see [8, p. 4].)

Before Fermat’s Last Theorem was completely settled in the 1990s, work on it for prime exponent \(p \) fell into two traditional cases:

Case I: show no solution \((x, y, z)\) in pairwise relatively prime integers where \(p \nmid xyz \),

Case II: show no solution \((x, y, z)\) in pairwise relatively prime integers where \(p \mid xyz \).

From the relative primality, in Case II \(p \) divides exactly one of \(x, y, \) or \(z \). Experience shows Case II is much harder to treat than Case I using cyclotomic methods.

From now on, \(p \) is a regular prime.

Case I: Suppose \(x^p + y^p = z^p \) where \(x, y, z \) are nonzero integers with \(p \) not dividing \(x, y, \) or \(z \). We may of course assume \(x, y, \) and \(z \) are pairwise relatively prime. We will derive a contradiction when \(p \) is regular.

In \(\mathbf{Z}[[\zeta]] \), factor Fermat’s equation as

\[(1) \quad z^p = x^p + y^p = \prod_{j=0}^{p-1} (x + \zeta^j y). \]

Let’s show the factors on the right side generate relatively prime ideals. For \(0 \leq j < j' \leq p - 1 \), a common ideal factor \(\mathfrak{d} \) of \((x + \zeta^j y)\) and \((x + \zeta^{j'} y)\) must be a factor of the difference

\[x + \zeta^j y - x - \zeta^{j'} y = \zeta^j y (1 - \zeta^{j-j}) = v y (1 - \zeta) \]

for some unit \(v \). (Here we use Lemma 1.) Since \(y (1 - \zeta) \) divides \(yp \), we have \(\mathfrak{d} \mid (yp) \). We also know, by (1), that \(\mathfrak{d} \) divides \((z)^p \). Since \(yp \) and \(z^p \) are relatively prime integers, we conclude \(\mathfrak{d} \) is the unit ideal, so the ideals \((x + \zeta^j y)\) are relatively prime.

The product of these ideals is the \(p \)-th power \((z)^p \), so unique ideal factorization implies each factor is a \(p \)-th power. Taking \(j = 1 \),

\[(x + \zeta y) = a^p \]

for some ideal \(a \). Therefore \(a^p \) is trivial in the class group of \(\mathbf{Q}(\zeta) \). Assuming \(p \) is regular, we deduce that \(a \) is trivial in the class group, so \(a \) is principal, say \(a = (t) \) with \(t \in \mathbf{Z}[[\zeta]] \).

Thus

\[x + \zeta y = ut^p \]

for some unit \(u \) in \(\mathbf{Z}[[\zeta]] \). (If we assumed \(\mathbf{Z}[[\zeta]] \) is a UFD, this deduction would’ve been immediate from knowing the numbers \(x + \zeta^j y \) are pairwise relatively prime: their product is a \(p \)-th power so each one is a \(p \)-th power, up to unit multiple. We can get this conclusion from the weaker assumption that \(h_p \) is not divisible by \(p \) rather than that \(h_p = 1 \).

\[^3 \text{For } p \geq 5, \text{ there are units in } \mathbf{Z}[[\zeta]] \text{ of infinite order, such as } \zeta + \zeta^{-1} \text{ since } (\zeta + \zeta^{-1}) \sum_{k=0}^{(p-1)/2} \zeta^{4k+1} = (\zeta^{2(p+1)} - 1)/(\zeta^2 - 1) = 1 \text{ by summing a finite geometric series.} \]
Writing $t = b_0 + b_1 \zeta + \cdots + b_{p-1} \zeta^{p-2}$, with b_j in \mathbb{Z}, we get

\[(2) \quad t^p \equiv b_0 + b_1 + \cdots + b_{p-2} \mod p\mathbb{Z}[\zeta],\]

so $t^p \equiv t^p \mod p\mathbb{Z}[\zeta]$.

By Lemma 2, $u/\overline{u} = \pm \zeta^j$ for some j between 0 and $p - 1$. If $u/\overline{u} = \zeta^j$ then

\[x + \zeta y = u t^p \]
\[= \zeta^j \overline{u} t^p \]
\[\equiv \zeta^j \overline{u} t^p \mod p\mathbb{Z}[\zeta] \]
\[\equiv \zeta^j(x + \zeta y) \mod p\mathbb{Z}[\zeta].\]

Thus

\[(3) \quad u/\overline{u} = \zeta^j \implies x + y\zeta - y\zeta^{j-1} - x\zeta^j \equiv 0 \mod p\mathbb{Z}[\zeta].\]

Similarly,

\[(4) \quad u/\overline{u} = -\zeta^j \implies x + y\zeta + y\zeta^{j-1} + x\zeta^j \equiv 0 \mod p\mathbb{Z}[\zeta].\]

We want to show neither of these congruences can hold when $0 \leq j \leq p - 1$ and x and y are integers prime to p.

Since x and y are nonzero mod p, these congruences appear to show linear dependence over $\mathbb{Z}/(p)$ among some powers of ζ in $\mathbb{Z}[\zeta]/(p)$. However, in $\mathbb{Z}[\zeta]/(p)$ the powers $1, \zeta, \ldots, \zeta^{p-2}$ are linearly independent over $\mathbb{Z}/(p)$ since

\[\mathbb{Z}[\zeta]/(p) \cong \mathbb{Z}[X]/(p, \Phi_p(X)) \cong (\mathbb{Z}/(p))[X]/\Phi_p(X) \cong (\mathbb{Z}/(p))[X]/(X - 1)^{p-1},\]

and \(\{1, X, \ldots, X^{p-2}\}\) is a basis of the last ring, over $\mathbb{Z}/(p)$. For those $j \leq p - 1$ such that $1, \zeta, \zeta^{j-1}, \zeta^j$ are distinct powers in the set $\{1, \zeta, \ldots, \zeta^{p-2}\}$, i.e., as long as $0, 1, j - 1, j$ are distinct integers with $j \leq p - 2$, (3) and (4) both yield a contradiction. So when $3 \leq j \leq p - 2$, there is a contradiction in Case I.

The rest of the proof is an accounting exercise in handling the remaining cases $j = 0, 1, 2$, and $p - 1$.

First of all, we may take $p \geq 5$, since the equation $x^3 + y^3 = z^3$ has no solutions in integers prime to 3. (Even the congruence $x^3 + y^3 \equiv z^3 \mod 9$ has no solutions in numbers prime to 3, since the cubes of units mod 9 are ± 1.)

Can $j = p - 1$? If so, then the left side of the congruence in (3) becomes

\[x(1 - \zeta^{p-1}) + y(\zeta - \zeta^p) = 2x + (x + y)\zeta + x(\zeta^2 + \cdots + \zeta^{p-3}) + (x - y)\zeta^p - 2,\]

which contradicts linear independence of $1, \zeta, \ldots, \zeta^{p-2}$ mod p over $\mathbb{Z}/(p)$ by looking at the coefficient of, say, ζ^2. There is a similar contradiction in (4) if $j = p - 1$.

Can $j = 0$? If so, then (3) becomes $y(\zeta - \zeta^{-1}) \equiv 0 \mod p\mathbb{Z}[\zeta]$. Since y is not divisible by p, we can divide by it and get $\zeta^2 - 1 \equiv 0 \mod p$, which contradicts linear independence of 1 and ζ^2 mod p since $p \geq 5$. Similarly, (4) with $j = 0$ implies $2x\zeta + y\zeta^2 + y \equiv 0 \mod p$, so again we get a contradiction.

Setting $j = 2$ in (3) or (4) leads to contradictions of linear independence as well. We now are left with the case $j = 1$. In this case (4) implies $(x + y)(1 + \zeta) \equiv 0 \mod p$, so $x + y \equiv 0 \mod p\mathbb{Z}$. (Here we use Lemma 1.) Thus $z^p = x^p + y^p \equiv (x + y)^p \equiv 0 \mod p$, so p divides z. That violates the condition of Case I. The only remaining case is $j = 1$ in (3).
To summarize, we have shown that if \(x^p + y^p = z^p \) and \(x, y, z \) are not divisible by \(p \), then \(x + \zeta y = ut^p \) where \(u/\overline{u} = \zeta \). Setting \(j = 1 \) in (3) yields
\[
(5) \quad x(1 - \zeta) + y(\zeta - 1) \equiv 0 \mod p.
\]
Writing \(p = u(1 - \zeta)^{p-1} \), (5) implies
\[
x \equiv y \mod (1 - \zeta)^{p-2}.
\]

Since \(p - 2 \geq 1 \) and \(x \) and \(y \) are in \(\mathbb{Z} \), this forces \(x \equiv y \mod p\mathbb{Z} \). Running through the proof with \(y \) and \(-z\) interchanged, we get \(x \equiv -z \mod p\mathbb{Z} \), so
\[
0 = x^p + y^p - z^p \equiv 3x^p \mod p.
\]
Since \(p \neq 3 \) and \(x \) is prime to \(p \), we have a contradiction. This settles Case I for \(p \) a regular prime. \(\square \)

Although we used congruences to prove the nonsolvability of \(x^p + y^p = z^p \) in integers prime to \(p \) (when \(p \) is regular), there often are solutions to \(x^p + y^p \equiv z^p \mod q \) for large \(q \) and \(x, y, z \) all prime to \(p \). For instance, \(17 + 30^7 \equiv 31 \mod 49 \) and from this one can solve \(x^7 + y^7 \equiv z^7 \mod 7 \) in numbers prime to 7, for every \(m \). So it is rather hard to try proving nonsolvability of Fermat’s equation with odd prime exponent using congruences in \(\mathbb{Z} \). (This is why many crank proofs of FLT, based on elementary number theory, are doomed to failure.) What we used in the above proof were congruences in \(\mathbb{Z}[\zeta] \), not in \(\mathbb{Z} \).

We now pass to Case II. Our treatment is taken largely from [7, pp. 31–33].

Case II. Assume Fermat’s equation has a solution in nonzero integers \(x, y, z \) with at least one number divisible by \(p \). Since \(p \) is odd, we may write the equation in the symmetric form \(x^p + y^p = z^p \). If \(p \) divides two of \(x, y, z \), then it divides the third as well. So removing the highest common factor of \(p \) from the three numbers, we can assume \(p \) divides only one of the numbers, say \(p | z \). Writing \(z = p^r z_0 \), with \(z_0 \) prime to \(p \) and \(r \geq 1 \), Fermat’s equation reads
\[
(6) \quad x^p + y^p + w(1 - \zeta)^{p(r-1)} z_0^p = 0.
\]
for some unit \(w \) in \(\mathbb{Z}[\zeta] \) and \(p \) not dividing \(xy z_0 \). Since \((1 - \zeta) \) is the only prime over \(p \) in \(\mathbb{Z}[\zeta] \) and \(x, y, z_0 \) are in \(\mathbb{Z} \), saying \(xy z_0 \) is not divisible by \(p \) in \(\mathbb{Z} \) is equivalent to saying \(xy z_0 \) is not divisible by \((1 - \zeta) \) in \(\mathbb{Z}[\zeta] \). We now suitably generalize the form of (6), thereby making it easier to prove a stronger result.

Theorem 2. For a regular prime \(p \geq 3 \), there do not exist \(\alpha, \beta, \gamma \) in \(\mathbb{Z}[\zeta] \), all nonzero, such that
\[
(7) \quad \alpha^p + \beta^p + \varepsilon (1 - \zeta)^n \gamma^p = 0,
\]
where \(\varepsilon \in \mathbb{Z}[\zeta]^\times \), \(n \geq 1 \), and \((1 - \zeta) \) does not divide \(\alpha \beta \gamma \).

In particular, (6) and Theorem 2 show Fermat’s Last Theorem for exponent \(p \) has no solution in Case II when \(p \) is regular. The need for allowing a unit coefficient \(\varepsilon \) other than \(1 \) is already evident in how Theorem 2 is applied to Case II of FLT.

Proof. By (7), we have the ideal equation
\[
(8) \quad \prod_{j=0}^{p-1} (\alpha + \zeta^j \beta) = (1 - \zeta)^n \gamma^p.
\]
Since \(\gamma \) is nonzero, the left side is nonzero, so \(\alpha + \beta, \alpha + \zeta \beta, \ldots, \alpha + \zeta^{p-1} \beta \) are all nonzero.
Unlike Case I, the factors on the left side will not be relatively prime ideals. The plan of the proof is to analyze the ideal factorization of each term on the left and then use the regularity hypothesis to prove certain ideals are principal.

We will work often with congruences in $\mathbb{Z}[\zeta]/(1 - \zeta)$ and $\mathbb{Z}[\zeta]/(1 - \zeta)^2$. Note $\mathbb{Z}[\zeta]/(1 - \zeta) \cong \mathbb{Z}/(p)$ and (for $p \geq 3$) $\mathbb{Z}[\zeta]/(1 - \zeta)^2 \cong (\mathbb{Z}/(p))[X]/(1 - X)^2$. For a number $\delta(1 - \zeta)$ considered modulo $(1 - \zeta)^2$, δ only matters modulo $1 - \zeta$, so there are p multiples of $1 - \zeta$ in $\mathbb{Z}[\zeta]/(1 - \zeta)^2$.

Because $\alpha + \zeta^j \beta \equiv \alpha + \beta \mod (1 - \zeta)$ and the prime $(1 - \zeta)$ divides some factor on the left side of (8), it divides all factors on the left side. We want to show some $\alpha + \zeta^{j_0} \beta$ is divisible by $1 - \zeta$ twice, i.e., $\alpha + \zeta^{j_0} \beta \equiv 0 \mod (1 - \zeta)^2$.

Assume, to the contrary, that $1 - \zeta$ divides each factor on the left side of (8) exactly once. (That is, assume $n = 1$.) Then each of the p factors on the left side of (8) reduces to a nonzero multiple of $1 - \zeta \mod (1 - \zeta)^2$. (Convince yourself of this.) However, there are $p - 1$ distinct nonzero multiples of $1 - \zeta$ modulo $(1 - \zeta)^2$, so we must have

$$\alpha + \zeta^j \beta \equiv \alpha + \zeta^{j'} \beta \mod (1 - \zeta)^2$$

for some $0 \leq j < j' \leq p - 1$. Therefore $(1 - \zeta^{j' - j}) \beta \equiv 0 \mod (1 - \zeta)^2$. Since $1 - \zeta^{j' - j}$ is a unit multiple of $1 - \zeta$, this congruence forces $1 - \zeta$ to divide β. But that violates the hypothesis of the theorem.

Thus $n \geq 2$ and some $\alpha + \zeta^{j_0} \beta \equiv 0 \mod (1 - \zeta)^2$. By the previous paragraph, j_0 is unique. Replacing β with $\zeta^{j_0} \beta$ in the statement of the theorem, we may assume that $j_0 = 0$, so $\alpha + \beta \equiv 0 \mod (1 - \zeta)^2$ and $\alpha + \zeta \beta \not\equiv 0 \mod (1 - \zeta)^2$ for $1 \leq j \leq p - 1$.

Since $\alpha \beta \not\equiv 0 \mod 1 - \zeta$, a common divisor of two factors on the left side of (8) must be $\mathfrak{d}(1 - \zeta)$, where $\mathfrak{d} = (\alpha, \beta)$. Note $1 - \zeta$ is independent of j, so it must appear as a pth power on the left side of (8). The complementary divisor of $(1 - \zeta)\mathfrak{d}$ in $(\alpha + \zeta^j \beta)$ must be a pth power by considering the right side of (8) and unique factorization of ideals. Therefore

$$(\alpha + \zeta^j \beta) = \mathfrak{d}(1 - \zeta)c_j^p$$

where $1 \leq j \leq p - 1$ and $(1 - \zeta)$ does not divide $c_0, c_1, \ldots, c_{p-1}$.

Taking ratios, we see that $c_j^p c_0^{-p}$ is a principal fractional ideal. Since p is regular, $c_j c_0^{-1}$ is a principal fractional ideal, so $c_j c_0^{-1} = t_j \mathbb{Z}[\zeta]$, where $t_j \in \mathbb{Q}(\zeta)\times$ is prime to $1 - \zeta$. The equation of ideals

$$(\alpha + \zeta^j \beta)(\alpha + \beta)^{-1} = (t_j)^p (1 - \zeta)^{-p(n-1)}$$

can be written as an elementwise equation

$$\frac{\alpha + \zeta^j \beta}{\alpha + \beta} = \frac{\varepsilon_j t_j^p}{(1 - \zeta)^{p(n-1)}}$$

where $1 \leq j \leq p - 1$ and $\varepsilon_j \in \mathbb{Z}[\zeta]^\times$.

Now consider, out of nowhere (!), the elementwise equation

$$\zeta(\alpha + \zeta \beta) + (\alpha + \zeta \beta) - (1 + \zeta)(\alpha + \beta) = 0.$$

Note $\zeta = \zeta^{n-1}$. Dividing by $\alpha + \beta \not\equiv 0$ and using (9),

$$\frac{\zeta \varepsilon_{p-1} t_{p-1}^p}{(1 - \zeta)^{p(n-1)}} + \frac{\varepsilon_{1} t_{1}^p}{(1 - \zeta)^{p(n-1)}} - (1 + \zeta) = 0.$$

Clearing denominators,

$$\zeta \varepsilon_{p-1} t_{p-1}^p + \varepsilon_{1} t_{1}^p - (1 + \zeta)(1 - \zeta)^{p(n-1)} = 0.$$
Write \(t_j = x_j/y_j \) for some \(x_j, y_j \in \mathbb{Z} [\zeta] \). Since \(t_j \) is prime to \(1 - \zeta \) and \(1 - \zeta \) generates a prime ideal, \(x_j \) and \(y_j \) are each divisible by the same power of \(1 - \zeta \). We can remove this factor from both \(x_j \) and \(y_j \) and thus assume \(x_j \) and \(y_j \) are prime to \(1 - \zeta \). Feeding the formulas \(t_1 = x_1/y_1 \) and \(t_{p-1} = x_{p-1}/y_{p-1} \) into (10) and then clearing denominators,
\[
\zeta \varepsilon_{p-1} c_{p-1}^p + \varepsilon_1 c_1^p - (1 + \zeta)(1 - \zeta)^{p(n-1)} c_0^p = 0
\]
where \(c_0, c_1, c_{p-1} \in \mathbb{Z} [\zeta] \) are prime to \((1 - \zeta) \). Dividing by the (unit) coefficient of \(c_{p-1}^p \),
\[
(11) \quad c_{p-1}^p + \frac{\varepsilon_1}{\zeta} c_1^p - \frac{1 + \zeta}{\zeta} (1 - \zeta)^{p(n-1)} c_0^p = 0.
\]
This equation is very similar to (7), with \(n \) replaced by \(n - 1 \). Note, for instance, the coefficient of \((1 - \zeta)^{p(n-1)} c_0^p \) is a unit in \(\mathbb{Z} [\zeta] \) and \(c_0, c_1, c_{p-1} \) are prime to \((1 - \zeta) \).

Comparing (7) and (11), note the coefficient of \(\beta^p \) is 1 while the coefficient of \(c_1^p \) is surely not 1. If the coefficient of \(c_1^p \) were a \(p \)th power (necessarily the \(p \)th power of another unit, since the coefficient is itself a unit), then we could absorb the coefficient into \(c_1^p \) and obtain an equation just like that in the statement of the theorem, with \(n \) replaced by \(n - 1 \).

To show the coefficient of \(c_1^p \) is a \(p \)th power, consider (11) modulo \(p \):
\[
c_{p-1}^p + \frac{\varepsilon_1}{\zeta} c_1^p \equiv 0 \mod p\mathbb{Z} [\zeta].
\]
Since \(c_{p-1}^p \) and \(c_1^p \) are congruent to rational integers mod \(p\mathbb{Z} [\zeta] \) (see (2)), and also \(c_1 \) is prime to \(1 - \zeta \), we can invert \(c_1 \) modulo \(p\mathbb{Z} [\zeta] \) to get
\[
\frac{\varepsilon_1}{\zeta} \equiv \text{ rational integer } \mod p\mathbb{Z} [\zeta].
\]

Now we invoke a deep fact.

Kummer’s Lemma: Let \(p \) is regular and \(u \) be a unit in \(\mathbb{Z} [\zeta] \). If there is some \(m \in \mathbb{Z} \) such that \(u \equiv m \mod p\mathbb{Z} [\zeta] \), then \(u \) is the \(p \)th power of a unit in \(\mathbb{Z} [\zeta] \).

For proofs of Kummer’s Lemma, see [1, p. 377] or [8, Theorem 5.36]. Somewhere in a proof of Kummer’s Lemma a connection needs to be made between units in \(\mathbb{Z} [\zeta] \) and the class number \(h_p \). Two connections, which each serve as the basis for a proof of Kummer’s Lemma, are the facts that 1) adjoining the \(p \)th root of a unit to \(\mathbb{Q} (\zeta) \) is an abelian unramified extension, whose degree over \(\mathbb{Q} (\zeta) \) must divide \(h_p \) by class field theory, and 2) the index of the group of real cyclotomic units in \(\mathbb{Q} (\zeta) \) as a subgroup of all real units is equal to the “plus part” of \(h_p \) [8, Theorem 8.2].

Thanks to Kummer’s Lemma, we can replace the coefficient of \(c_1^p \) in (11) with 1, obtaining
\[
c_{p-1}^p + c_1^p + \varepsilon (1 - \zeta)^{p(n-1)} c_0^p = 0.
\]
This has the same form and conditions as the original equation, but \(n \geq 1 \) is replaced with \(n - 1 \). Since we showed that in fact \(n \geq 2 \), we have \(n - 1 \geq 1 \), so we have a contradiction by descent.

The greatest difference between our proofs of Case I and Case II is the use of Kummer’s Lemma in Case II, which amounts to using subtle relations between the class number and the unit group of the \(p \)th cyclotomic field. We could afford to be largely ignorant about \(\mathbb{Z} [\zeta]^{\times} \) in the proof of Case I for regular primes, and the proof was much simpler.

\footnote{Or see \url{https://kconrad.math.uconn.edu/blurbs/gradnumthy/kummer.pdf}.}
Even if p is not regular, Case I continues to be easier than Case II. That is, it is much easier to show (when using cyclotomic methods) that there isn’t a solution to $x^p + y^p = z^p$ where $p \nmid xyz$ than where $p \mid xyz$. For example, a theorem of Wieferich [4, p. 221] says that if $x^p + y^p = z^p$ and p doesn’t divide x, y, or z, then $2^{p-1} \equiv 1 \mod p^2$. The only primes less than 3×10^9 satisfying this congruence are 1093 and 3511. Mirimanoff proved that also $3^{p-1} \equiv 1 \mod p^2$ if Case I has a solution, and neither 1093 nor 3511 satisfies this congruence. So that settles Case I for all odd primes below 3×10^9. In fact, it has been shown [8, p. 181] that a counterexample to Fermat in Case I for exponent p implies $q^{p-1} \equiv 1 \mod p^2$ for all primes $q \leq 89$, and that settles Case I for $p < 7.57 \times 10^{17}$.

When Kummer proved Fermat’s Last Theorem for a regular prime exponent p, he originally thought he proved a stronger result: for regular p, the equation $\alpha^p + \beta^p = \gamma^p$ has no solution in nonzero α, β, γ coming from the ring $\mathbb{Z}[\zeta]$, not just from the ring \mathbb{Z}. However, in the course of his proof he assumed α, β, γ are pairwise relatively prime elements, and that doesn’t make sense when $\mathbb{Z}[\zeta]$ is not a UFD. Nevertheless, Kummer’s proof did basically cover the more general setting of no solutions in $\mathbb{Z}[\zeta]$ and Hilbert patched it up. For a proof of that, see [3, Chap. 11] or [6, §V.3]. As in the treatment above, there are two cases: (i) none of α, β, γ are divisible by $1 - \zeta$ and (ii) at least one of α, β, γ is divisible by $1 - \zeta$. (Even if $\mathbb{Z}[\zeta]$ is not a UFD, $1 - \zeta$ generates a prime ideal in $\mathbb{Z}[\zeta]$, so divisibility by $1 - \zeta$ in $\mathbb{Z}[\zeta]$ behaves nicely.) Case (ii) is essentially identical to the proof we gave of Case II above.

What is known about Fermat’s Last Theorem for exponent p in $\mathbb{Z}[\zeta]$ when p is irregular? The first such prime is 37 and there are no solutions to $x^{37} + y^{37} = z^{37}$ for nonzero x, y, and z in the integers of the 37-th cyclotomic field.

Exercises

1. Find a regular prime $p \geq 3$ and an integer $m \geq 1$ for which the congruence $x^p + y^p \equiv z^p \mod (1 - \zeta_p)^m$ has no solutions $x, y, z \in \mathbb{Z}[\zeta_p]$ that are all prime to $1 - \zeta_p$.
2. Prove $\mathbb{Z}[\zeta_p]/(1 - \zeta_p)^2 \cong (\mathbb{Z}/(p))[X]/(1 - X)^2$ for $p \geq 3$ and not for $p = 2$.
3. Let K be a number field, with p_1, \ldots, p_r distinct primes of \mathcal{O}_K. For $\alpha \in K^\times$ with $\text{ord}_{p_j}(\alpha) = 0$ for all j, prove $\alpha = x/y$ for some $x, y \in \mathcal{O}_K$ that are both prime to all the p_j. Prove this first in the easier case when all the p_j are principal, and then when they need not be principal. (Hint: Thinking of primes as points and the multiplicity of a prime as an order of vanishing, the proof of [2, Prop. 2(2), Sect. 2.4] may provide some inspiration.)

References

5See https://mathoverflow.net/questions/56107.