
EQUIVALENCE OF ABSOLUTE VALUES

KEITH CONRAD

1. Introduction

An absolute value | · | on a field K defines a metric on K by d(x, y) = |x− y|, from which
we get open subsets and closed subsets of K relative to | · |. Different absolute values always
define different metrics since the absolute value can be recovered from the metric it defines
(|x| = d(x, 0)), but different absolute values could define the same concept of open subset.

Example 1.1. On R let | · | be the usual absolute value. Another absolute value on R is

|x|′ =
√
|x| (the triangle inequality for | · |′ comes from

√
a+ b ≤

√
a+
√
b for a, b ≥ 0). The

condition |x− a|′ < r is the same as |x− a| < r2, so open balls in R defined by | · | and | · |′
are the same (even if the radii don’t match). Open subsets for an absolute value are unions
of open balls for that absolute value, so the open subsets of R for | · | and | · |′ coincide.

Definition 1.2. Two absolute values on a field K are called equivalent if they define the
same open subsets of K.

In Example 1.1, | · | and
√
| · | on R are equivalent absolute values. In Section 2 we will

show equivalent absolute values are always related in a similar way to the absolute values in
the example: one is a power of the other. In Section 3 we will show inequivalent (nontrivial)
absolute values behave independently as far as convergence is concerned.

2. Equivalent absolute values and powers

Theorem 2.1. Let K be a field and | · | and | · |′ be two absolute values on K. They are
equivalent if and only if | · |′ = | · |t for some t > 0.

Remark 2.2. This theorem is not saying that if | · | is an absolute value then | · |t is an
absolute value for all t > 0. If 0 < t ≤ 1 then | · |t is an absolute value, but if t > 1 then
| · |t might not satisfy the triangle inequality (e.g., if | · | is the usual absolute value on R).

Proof. The proof is easy if | · | or | · |′ is trivial: for the trivial absolute value on K all subsets
of K are open, and this is not true otherwise (one-element subsets of K are not open for a
nontrivial absolute value), so the trivial absolute value on K is equivalent only to itself.

From now on let | · | and | · |′ be nontrivial absolute values on K.
(⇐=) If | · |′ = | · |t then the open balls in K for | · | and | · |′ are the same (even if not for

the same radii):

(2.1) {x : |x− a| < r} = {x : |x− a|′ < rt}, {x : |x− a|′ < r} = {x : |x− a| < r1/t}.
As in Example 1.1, the open subsets of K for | · | and | · |′ are the same since open subsets
for an absolute value are the unions of open balls for that absolute value.

(=⇒) Since we are assuming the open subsets of K defined by | · | and | · |′ are the same,
we can use the term “open subset” unambiguously for both absolute values. However, we
can’t yet say the open balls for one absolute value are also open balls for the other absolute
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value (but it will turn out to be so after the theorem is proved, by (2.1)). All we can be
sure of is that an open ball for one absolute value is an open subset for the other absolute
value.

First we will show that |x| < 1⇐⇒ |x|′ < 1. This is based on the following incompatible
consequences of the conditions |x| < 1 and |x| ≥ 1.

(1) If |x| < 1 then |xn| → 0, so for all open subsets U of K containing 0 there is an
N ≥ 1 such that n ≥ N =⇒ xn ∈ U .

(2) If |x| ≥ 1 then |xn| ≥ 1 for all n, so there is an open subset U of K containing 0
(namely {y : |y| < 1}) such that xn 6∈ U for all n.

These are true with | · |′ in place of | · |, so the conditions |x| < 1 and |x|′ < 1 are each
equivalent to saying for every open subset U containing 0 that xn ∈ U for all but finitely
many n, so |x| < 1⇐⇒ |x|′ < 1.

The rest of the proof will follow from |x| < 1⇐⇒ |x|′ < 1. First, |x| > 1⇐⇒ |x|′ > 1:

(2.2) |x| > 1⇐⇒
∣∣∣∣1x
∣∣∣∣ < 1⇐⇒

∣∣∣∣1x
∣∣∣∣′ < 1⇐⇒ |x|′ > 1.

Thus

(2.3) |x| = 1⇐⇒ |x| 6< 1 and |x| 6> 1⇐⇒ |x|′ 6< 1 and |x|′ 6> 1⇐⇒ |x|′ = 1.

To prove there is t > 0 such that |x|′ = |x|t for all x ∈ K we can assume x 6= 0 and also
|x| 6= 1 since |x| = 1 ⇐⇒ |x|′ = 1 by (2.3) (a value for t doesn’t matter). It suffices to
prove |x|′ = |x|t when |x| > 1 (replace x with 1/x to settle the case 0 < |x| < 1). To have
|x|′ = |x|t for some t > 0 and all x ∈ K with |x| > 1 means t = log |x|′/ log |x| when |x| > 1,
so we want to prove the ratio

log |x|′

log |x|
is the same for all x such that |x| > 1. The common value of this ratio would be t.

Let x and y in K satisfy |x| > 1 and |y| > 1. Then also |x|′ > 1 and |y|′ > 1 by (2.2). To
prove log |x|′/ log |x| = log |y|′/ log |y|, assume these two real numbers are not equal. Then
without loss of generality log |x|′/ log |x| < log |y|′/ log |y|. The logarithms are all positive,
so log |x|′/ log |y|′ < log |x|/ log |y|. There is a rational number lying in between:

log |x|′

log |y|′
<
m

n
<

log |x|
log |y|

for some positive integers m and n. Then

log |x|′

log |y|′
<
m

n
=⇒ n log |x|′ < m log |y|′ =⇒ |xn|′ < |ym|′ =⇒

∣∣∣∣ xnym
∣∣∣∣′ < 1

and
m

n
<

log |x|
log |y|

=⇒ m log |y| < n log |x| =⇒ |ym| < |xn| =⇒
∣∣∣∣ xnym

∣∣∣∣ > 1,

and this contradicts the equivalence of |z| < 1 with |z|′ < 1 for all z ∈ K. �

Corollary 2.3. For nontrivial absolute values |·| and |·|′ on a field K, if |x| < 1 =⇒ |x|′ < 1
for all x ∈ K, then the absolute values are equivalent.
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Proof. We will prove |x|′ < 1 =⇒ |x| < 1. Thus |x| < 1 ⇐⇒ |x|′ < 1, and the part of the
proof of Theorem 2.1 that follows from this, starting from (2.2), implies | · |′ = | · |t for some
t > 0, so | · | and | · |′ are equivalent.

We argue by contradiction. Assume it is not true that |x|′ < 1 =⇒ |x| < 1 in general.
Then there is an x0 ∈ K such that |x0|′ < 1 and |x0| ≥ 1. Since | · | is nontrivial, there is
an a ∈ K such that 0 < |a| < 1. From |1/x0| ≤ 1 we get |1/xn0 | ≤ 1 for all n ≥ 1, so∣∣∣∣ axn0

∣∣∣∣ ≤ |a| < 1 =⇒
∣∣∣∣ axn0

∣∣∣∣′ < 1

since, by hypothesis, always |x| < 1 =⇒ |x|′ < 1. Clearing denominators,

(2.4) |a|′ < |xn0 |′

for all n. Since |x0|′ < 1, we have |xn0 |′ → 0, but this contradicts (2.4) for large enough n.
Therefore there is no such x0, so |x|′ < 1 =⇒ |x| < 1. �

Corollary 2.4. For nontrivial absolute values |·| and |·|′ on a field K, if |x| ≤ 1 =⇒ |x|′ ≤ 1
for all x ∈ K, then the absolute values are equivalent.

Proof. By Corollary 2.3, it suffices to prove |x| < 1 =⇒ |x|′ < 1 for x ∈ K.
We have by hypothesis |x| < 1 =⇒ |x|′ ≤ 1, so we want to show there is no x ∈ K such

that |x| < 1 and |x|′ = 1. Assume some x0 ∈ K satisfies |x0| < 1 and |x0|′ = 1. For every
a ∈ K, from |x0| < 1 we get |axn0 | → 0, so |axn0 | < 1 for all large n. Then |axn0 |′ ≤ 1 for all
large n. Since |x0|′ = 1 we have |a|′ ≤ 1, so all elements of K× have absolute value at most
1. This implies | · |′ is trivial, since otherwise |a|′ > 1 for some a. We were assuming from
the start that | · |′ is nontrivial, so we have a contradiction. Thus the condition |x| < 1 must
always imply |x|′ < 1. �

Corollary 2.5. Let | · | and | · |′ be nontrivial absolute values | · | and | · |′ on a field K.

(i) If |x| < 1 =⇒ |x|′ ≤ 1 for all x ∈ K, then | · | and | · |′ are equivalent.
(ii) If | · | and | · |′ are inequivalent, then there is x ∈ K such that |x| < 1 and |x|′ > 1.

Proof. The proof of Corollary 2.4 works here verbatim, since all we used in that proof was
|x| < 1 =⇒ |x|′ ≤ 1, not the stated hypothesis |x| ≤ 1 =⇒ |x|′ ≤ 1. That proves (i). We
get (ii) from (i) since (ii) is the contrapositive of (i). �

3. Independent approximations with inequivalent absolute values

Two equivalent absolute values define the same concept of convergence and limit: if | · |
and | · |′ are equivalent then | · |′ = | · |t by Theorem 2.1, so |xn − x| → 0 is the same as
|xn − x|′ → 0. (A proof of this without Theorem 2.1 is in the appendix.) In this section we
show every finite set of inequivalent nontrivial absolute values on K has no relations among
the notions of limit that each of the absolute values defines on K.

Lemma 3.1. If | · |1, . . . , | · |n are a finite list of inequivalent nontrivial absolute values on
a field K, where n ≥ 2, then there is an x ∈ K such that |x|1 > 1 and |x|i < 1 for i 6= 1.

Proof. We use induction on n.
The base case n = 2 follows from Corollary 2.5: if there were no x such that |x|1 > 1

and |x|2 < 1, then |x|2 < 1 =⇒ |x|1 ≤ 1 for all x in K, and that implies | · |1 and | · |2 are
equivalent by Corollary 2.5.

Now take n ≥ 3 and assume the lemma is proved for all sets of n − 1 inequivalent
nontrivial absolute values on K. By induction there is y ∈ K such that |y|1 > 1 and
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|y|i < 1 for i = 2, . . . , n − 1, and by the base case there is z ∈ K such that |z|1 > 1 and
|z|n < 1. Neither y nor z is 0 since they have some absolute value greater than 1.

Case 1: |y|n ≤ 1. We can use x = ykz for large enough k:

|x|i = |y|ki |z|i,

so for large k we have |x|1 > 1 (because |y|1 > 1, regardless of the value of |z|1) and |x|i < 1
for i = 2, . . . , n−1 (because |y|i < 1, regardless of the value of |z|i). At i = n, since |y|n ≤ 1
we have |x|n ≤ |z|n < 1.

Case 2: |y|n > 1. The ratio yk/(1 + yk) has different limiting behavior relative to an
absolute value | · | depending on whether |y| < 1 or |y| > 1:

|y| < 1 =⇒ yk → 0 =⇒ yk

1 + yk
→ 0

1 + 0
= 0,

and

|y| > 1 =⇒ 1

yk
→ 0 =⇒ yk

1 + yk
=

1

1/yk + 1
→ 1

0 + 1
= 1,

where the convergence in both cases is relative to |·|. That is, if |y| < 1 then |yk/(1+yk)| → 0
and if |y| > 1 then |yk/(1+yk)−1| → 0. (If |y| = 1 we can’t say anything about the behavior
of yk/(1 + yk), but this won’t matter for us because |y|i 6= 1 for all i from 1 to n.)

Since |y|1 > 1 and |y|n > 1 we have∣∣∣∣ yk

1 + yk
− 1

∣∣∣∣
1

→ 0,

∣∣∣∣ yk

1 + yk
− 1

∣∣∣∣
n

→ 0

as k →∞. Since |y|i < 1 for 2 ≤ i ≤ n− 1 we have∣∣∣∣ yk

1 + yk

∣∣∣∣
i

→ 0

for 2 ≤ i ≤ n− 1.
For k ≥ 1 set

xk =
yk

1 + yk
z.

We will show that we can use x = xk for a sufficiently large k. If i = 1 or n then relative to
| · |i we have yk/(1 + yk)→ 1, so xk → z and thus |xk|i → |z|i. Since |z|1 > 1 and |z|n < 1,
we get |xk|1 > 1 and |xk|n < 1 for large k. For 2 ≤ i ≤ n − 1, relative to | · |i we have
yk/(1 + yk)→ 0, so xk → 0 and thus |xk|i < 1 for large k. �

Remark 3.2. Lemma 3.1 does not extend to infinite sets of inequivalent nontrivial absolute
values. For example, on Q with the classical absolute value | · |∞ and the p-adic absolute
values | · |p there is no x ∈ Q satisfying |x|∞ > 1 and |x|p < 1 for all primes p. Having
|x|p < 1 for all primes p means the reduced form numerator of x is divisible by every prime
number, so x = 0, but then it is not true that |x|∞ > 1.

Theorem 3.3. If | · |1, . . . , | · |n are inequivalent nontrivial absolute values on a field K,
where n ≥ 2, then for all choices of x1, . . . , xn in K and ε > 0 there is an x ∈ K such that

|x− xi|i < ε

for i = 1, . . . , n.
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Proof. First we will treat the special case that (x1, x2, . . . , xn) = (1, 0, . . . , 0). We seek
c ∈ K such that |c− 1|1 < ε and |c|i < ε for i = 2, . . . , n. By Lemma 3.1 there is an a ∈ K
such that |a|1 > 1 and |a|i < 1 for i 6= 1. Then ak/(1 + ak) = 1/(1/ak + 1) → 1 relative
to | · |1 since |a|1 > 1 and ak/(1 + ak) → 0 relative to | · |i for i 6= 1 since |a|i < 1, so for
large k the number c = ak/(1 + ak) in K satisfies |c− 1|1 < ε and |c|i < ε for i = 2, . . . , n.
Permuting the roles of the different absolute values, we get a similar result with |·|1 replaced
by the other absolute values in the list.

For a general n-tuple (x1, . . . , xn) in Kn, and each i = 1, . . . , n, there is ci ∈ K such that
|ci − 1|i is very small and |ci|j is very small for all j 6= i. Define the linear combination

x := c1x1 + c2x2 + · · ·+ cnxn =
n∑
j=1

cjxj .

This has coefficient ci close to 1 relative to | · |i and coefficients cj close to 0 relative to | · |i
for j 6= i, so relative to | · |i the linear combination x above is close to∑

j 6=i
0 · xj + 1 · xi = xi

relative to | · |i, which is what we want for the theorem.
More explicitly, for each i

|x− xi|i =

∣∣∣∣∣∣
∑
j 6=i

cjxj + (ci − 1)xi

∣∣∣∣∣∣
i

≤
∑
j 6=i
|cj |i|xj |i + |ci − 1|i|xi|i,

so if we set s > maxi,j |xi|j and we pick each ci in K so that |ci − 1|i ≤ ε/(ns) and
|ci|j ≤ ε/(ns) for j 6= i, then for each i

|x− xi|i ≤
∑
j 6=i

ε

ns
|xj |i +

ε

ns
|xi|i ≤

ε

ns
(|x1|i + · · ·+ |xn|i) <

ε

ns
(ns) = ε. �

The following theorem is an application of Theorem 3.3 to compare two absolute values
on a Galois extension that both extend a common absolute value on the base field.

Theorem 3.4. Let E/F be a finite Galois extension and | · | be a nontrivial non-Archimedean
absolute value on F . Assume there is an extension | · |E of | · | to an absolute value on E.

(i) For σ ∈ Gal(E/F ), |x|σ := |σ(x)|E for x ∈ E is an absolute value on E extending
| · |, and if | · |σ is equivalent to | · |τ where σ, τ ∈ Gal(E/F ), then | · |σ = | · |τ .

(ii) Every absolute value on E extending | · | is | · |σ for some σ ∈ Gal(E/F ).

This theorem shows that if there are extensions of | · | to an absolute value of E, then all
of them come from one of them by using pre-composition of one with elements of Gal(E/F ).
It can be proved that | · | extends to an absolute value on E in at least one way.

Proof. (i): It is left to the reader to check that | · |σ is an absolute value on E extending | · |.
If | · |σ and | · |τ are equivalent on E then there is t > 0 such that |x|σ = |x|tτ for all x ∈ E,
so |σ(x)|E = |τ(x)|tE . When x ∈ F this becomes |x| = |x|t. Since | · | is nontrivial, there is
an x ∈ F such that |x| 6= 0 or 1, so t = 1. Thus |σ(x)|E = |τ(x)|E for all x ∈ E.

(ii): We will argue by contradiction. Assume there’s an absolute value |·|′E on E extending
| · | such that | · |′E is different from all | · |σ for σ ∈ Gal(E/F ). We’re going to use this to
construct c ∈ E such that |c| = 1 and |c| < 1, which would be a contradiction.



6 KEITH CONRAD

Since | · |′E restricts to | · | on F , just like all | · |σ, from | · |′E 6= | · |σ for all σ we get | · |′E is
inequivalent to all | · |σ by the same argument as in (i). Using Theorem 3.3 with | · |′E and
representative absolute values among the inequivalent | · |σ, there is x ∈ E such that

(3.1) |x− 1|σ < 1 for all σ ∈ Gal(E/F ) and |x|′E < 1.

(Note we quantify here over all σ, not just representatives for inequivalent | · |σ, because
equivalent absolute values | · |σ are in fact equal by (i).) Since |x − 1|σ = |σ(x − 1)|E =
|σ(x)− 1|E , rewrite (3.1) as

(3.2) |σ(x)− 1|E < 1 for all σ ∈ Gal(E/F ) and |x|′E < 1.

Because | · | is non-Archimedean, so is | · |E , so |σ(x)− 1|E < 1⇒ |σ(x)|E = 1. Therefore

|NE/F (x)| = |NE/F (x)|E =
∏

σ∈Gal(E/F )

|σ(x)|E = 1.

By a different argument, we’ll also show |NE/F (x)| < 1.
Set

f(T ) =
∏
σ

(T − σ(x)) = Tn + cn−1T
n−1 + · · ·+ c1T + c0,

so f(T ) ∈ F [T ] (its coefficients are fixed by Gal(E/F )). Each ci is, up to sign, a sum of
products of the σ(x), so from |σ(x)|E = 1 for all σ we get |ci| = |ci|E ≤ 1 (because | · |E is
non-Archimedean). For each root r = σ(x) of f(T ) we have

rn + cn−1r
n−1 + · · ·+ c1r + c0 = 0 =⇒ rn = −(cn−1r

n−1 + · · ·+ c1r + c0)

=⇒ |r|′nE ≤ max
0≤i≤n−1

|ci|′E |r|′iE ≤ max
0≤i≤n−1

|r|′iE

since |ci|′E = |ci| ≤ 1. If |r|′E > 1 then max0≤i≤n−1 |r|′iE = |r|′n−1E < |r|′nE , which contradicts
the above bound on |r|′nE , so |r|′E ≤ 1. Thus |σ(x)|′E ≤ 1 for all σ, so |NE/F (x)| =
|NE/F (x)|′E =

∏
σ |σ(x)|′E ≤ |x|′E < 1, which contradicts |NE/F (x)| = 1. �

Appendix A. Equivalence in terms of convergence

Theorem A.1. The following properties of absolute values | · | and | · |′ on a field K are
equivalent to each other.

(1) The open subsets of K defined by | · | and | · |′ are the same.
(2) The convergent subsequences and their limits in K defined by | · | and | · |′ are the

same.

Proof. (1) =⇒ (2): Convergence in K relative to an absolute value can be described in
terms of open subsets of K for that absolute value: to say |xn − x| → 0 in K means for
every open subset U ⊂ K relative to | · | such that x ∈ U , there is an N ≥ 1 such that
n ≥ N =⇒ xn ∈ U . By (1), U being open relative to | · | is also open relative to | · |′, so
for every open subset U ⊂ K relative to | · |′ such that x ∈ U , there is an N ≥ 1 such that
n ≥ N =⇒ xn ∈ U . Thus |xn − x|′ → 0.

(2) =⇒ (1): Since open subsets are complements of closed subsets, proving (1) is equiv-
alent to proving the closed subsets of K defined by | · | and | · |′ are the same. Let C ⊂ K
be closed relative to | · |. To show C is closed relative to | · |′, let {xn} be a sequence in C
that converges to some x ∈ K relative to | · |′: |xn − x|′ → 0. By hypothesis, |xn − x| → 0,
so x ∈ C since C is closed relative to | · |. Hence every sequence in C that converges in K
relative to | · |′ has its limit in C, so C is closed relative to | · |′.
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The proof that every closed subset of K relative to | · |′ is closed relative to | · | is the
same, with the roles of | · | and | · |′ exchanged. �

We can also prove (1) implies (2) by writing | · |′ = | · |t, from Theorem 2.1, since then it
is obvious that |xn − x| → 0 means the same thing as |xn − x|′ → 0. We did not use that
in the proof in order to show that the equivalence of (1) and (2) in Theorem A.1 does not
depend on explicit formulas relating | · | and | · |′.
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