DISCRIMINANTS AND RAMIFIED PRIMES

KEITH CONRAD

1. Introduction

A prime number p is said to be ramified in a number field K if the prime ideal factorization

$$(1.1) (p) = p \mathfrak{O}_K = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_q^{e_g}$$

has some e_i greater than 1. If every e_i equals 1, we say p is unramified in K.

Example 1.1. In $\mathbf{Z}[i]$, the only prime that ramifies is 2: $(2) = (1+i)^2$.

Example 1.2. Let $K = \mathbf{Q}(\alpha)$ where α is a root of $f(T) = T^3 - 9T - 6$. Then $6 = \alpha^3 - 9\alpha = \alpha(\alpha - 3)(\alpha + 3)$. For $m \in \mathbf{Z}$, $\alpha + m$ has minimal polynomial f(T - m) in $\mathbf{Q}[T]$, so $N_{K/\mathbf{Q}}(\alpha + m) = -f(-m) = m^3 - 9m + 6$ and the principal ideal $(\alpha - m)$ has norm

$$N(\alpha - m) = |m^3 - 9m + 6|.$$

Therefore $N(\alpha) = 6$, $N(\alpha - 3) = 6$, and $N(\alpha + 3) = 6$. It follows that $(\alpha) = \mathfrak{p}_2\mathfrak{p}_3$, $(\alpha - 3) = \mathfrak{p}_2'\mathfrak{p}_3$, and $(\alpha + 3) = \mathfrak{p}_2'\mathfrak{p}_3$ (so, in particular, $\alpha + 3$ and $\alpha - 3$ are unit multiples of each other). Thus

$$(2)(3) = (6) = (\alpha)(\alpha - 3)(\alpha + 3) = \mathfrak{p}_2\mathfrak{p}_2^{\prime 2}\mathfrak{p}_3^3,$$

so $(2) = \mathfrak{p}_2^2 \mathfrak{p}_2'$ and $(3) = \mathfrak{p}_3^3$. This shows 2 and 3 are ramified in K. Note that one of the exponents in the factorization of (2) exceeds 1 while the other equals 1.

One way to think about ramified primes is in terms of the ring structure of $\mathcal{O}_K/(p)$. By (1.1) and the Chinese Remainder Theorem,

$$\mathfrak{O}_K/(p) \cong \mathfrak{O}_K/\mathfrak{p}_1^{e_1} \times \cdots \times \mathfrak{O}_K/\mathfrak{p}_g^{e_g}.$$

If some e_i is greater than 1, then the quotient ring $\mathcal{O}_K/\mathfrak{p}_i^{e_i}$ has a nonzero nilpotent element (use the reduction modulo $\mathfrak{p}_i^{e_i}$ of any element of $\mathfrak{p}_i - \mathfrak{p}_i^{e_i}$), so the product ring (1.2) has a nonzero nilpotent element. If each e_i equals 1, then $\mathcal{O}_K/(p)$ is a product of (finite) fields, and a product of fields has no nonzero nilpotent elements. Thus, p ramifies in K if and only if $\mathcal{O}_K/(p)$ has a nonzero nilpotent element.

In Sections 2 and 3 we will prove the following result of Dedekind [2], which characterizes the prime numbers ramifying in a number field K in terms of its discriminant.¹

Theorem 1.3 (Dedekind). For a number field K, a prime p ramifies in K if and only if p divides the integer $\operatorname{disc}_{\mathbf{Z}}(\mathcal{O}_K)$.

Recall $\operatorname{disc}_{\mathbf{Z}}(\mathfrak{O}_K) := \operatorname{disc}_{K/\mathbf{Q}}(\alpha_1, \dots, \alpha_n)$ where $\{\alpha_1, \dots, \alpha_n\}$ is any **Z**-basis of \mathfrak{O}_K . The generalization of Theorem 1.3 to a relative extension of number fields is in Section 4.

¹In [1, pp. 36-37], Dedekind said he announced this result for the first time on September 20, 1871.

2. A Special case

We will first consider Theorem 1.3 in the special case that there is an $\alpha \in \mathcal{O}_K$ such that $K = \mathbf{Q}(\alpha)$ and $p \nmid [\mathcal{O}_K : \mathbf{Z}[\alpha]]$. (If $\mathcal{O}_K = \mathbf{Z}[\alpha]$ we can use the same α for all p.) The treatment of the general case in Section 3 will not rely on the case that $p \nmid [\mathcal{O}_K : \mathbf{Z}[\alpha]]$ for some α , but this special case is technically simpler. We will just sketch the basic ideas behind it.

Proof. Assume for a prime p that there's $\alpha \in \mathcal{O}_K$ such that $K = \mathbf{Q}(\alpha)$ and $p \nmid [\mathcal{O}_K : \mathbf{Z}[\alpha]]$. Let f(T) be the minimal polynomial of α over \mathbf{Q} , so f(T) is monic in $\mathbf{Z}[T]$. and the Dedekind–Kummer theorem tells us that the way $p\mathcal{O}_K$ factors into prime ideals matches the way f(T) mod p factors into monic irreducibles in $(\mathbf{Z}/p\mathbf{Z})[T]$.

Writing the prime ideal factorization of $p\mathcal{O}_K$ as in (1.1), by definition p ramifies in \mathcal{O}_K if and only if some $e_i > 1$. The factorization of the mod p reduction $\overline{f}(T)$ in $(\mathbf{Z}/p\mathbf{Z})[T]$ matches (1.1), in the sense that

$$\overline{f}(T) = \pi_1^{e_1} \cdots \pi_g^{e_g}$$

for some distinct monic irreducibles $\pi_i \in (\mathbf{Z}/p\mathbf{Z})[T]$.

The irreducible polynomials $\pi_i(T)$'s are separable (all irreducibles over a finite field are separable), so some $e_i > 1$ if and only if $\overline{f}(T)$ has a repeated root in a splitting field over $\mathbf{Z}/p\mathbf{Z}$. This is equivalent to $\overline{f}(T)$ having discriminant 0, so p ramifies in \mathcal{O}_K if and only if $\mathrm{disc}(\overline{f}) = 0$ in $\mathbf{Z}/p\mathbf{Z}$.

Since the discriminant of a monic polynomial is a universal polynomial in its coefficients (consider the quadratic case, where $T^2 + bT + c$ has discriminant $b^2 - 4c$), discriminants of monic polynomials behave well under reduction: $\operatorname{disc}(f(T) \bmod p) = \operatorname{disc}(f(T)) \bmod p$. Therefore $\operatorname{disc}(\overline{f}(T)) = 0$ in $\mathbf{Z}/p\mathbf{Z}$ if and only if $\operatorname{disc}(f) \equiv 0 \bmod p$. Thus p ramifies in \mathcal{O}_K if and only if $p \mid \operatorname{disc}(f)$. Since

$$\operatorname{disc}(f) = \operatorname{disc}(\mathbf{Z}[\alpha]) = [\mathcal{O}_K : \mathbf{Z}[\alpha]]^2 \operatorname{disc}_{\mathbf{Z}}(\mathcal{O}_K)$$

and $p \nmid [\mathcal{O}_K : \mathbf{Z}[\alpha]]$, we have $p \mid \mathrm{disc}(f)$ if and only if $p \mid \mathrm{disc}_{\mathbf{Z}}(\mathcal{O}_K)$.

3. The general case

To prove Theorem 1.3 for every prime number p, even if $p \mid [\mathfrak{O}_K : \mathbf{Z}[\alpha]]$ for all $\alpha \in \mathfrak{O}_K$ such that $K = \mathbf{Q}(\alpha)$, we will examine discriminants of ring extensions to show computing the discriminant commutes with reduction mod p: $\mathrm{disc}_{\mathbf{Z}}(\mathfrak{O}_K)$ mod $p = \mathrm{disc}_{\mathbf{Z}/p\mathbf{Z}}(\mathfrak{O}_K/(p))$. Then we will use (1.2) to write $\mathrm{disc}_{\mathbf{Z}/p\mathbf{Z}}(\mathfrak{O}_K/(p))$ as a product of discriminants of rings of type $\mathfrak{O}_K/\mathfrak{p}^e$ and compute the discriminants of these particular rings.

Definition 3.1. Let A be a commutative ring and B be a ring extension of A that is a finite free A-module:

$$B = Ae_1 \oplus \cdots \oplus Ae_n$$
.

Then we set

$$\operatorname{disc}_A(e_1,\ldots,e_n) = \operatorname{det}(\operatorname{Tr}_{B/A}(e_ie_j)) \in A.$$

²Dedekind wrote in [1, p. 37] that he first proved Theorem 1.3 in the special case of Section 2 above and was able to prove the general case only after many unsuccessful attempts. He presented the special case first in [2, §3] since it's much simpler than the method he used for the general case in [2, §§4-6].

Remark 3.2. The discriminant of a basis is an algebraic concept of "volume". To explain this viewpoint, we should think about $\operatorname{Tr}_{B/A}(xy)$ as an analogue of the dot product $v \cdot w$ in \mathbf{R}^n . For a basis v_1, \ldots, v_n in \mathbf{R}^n , the ordinary Euclidean volume of the parallelotope

$$\left\{ \sum_{i=1}^{n} a_i v_i : 0 \le a_i \le 1 \right\}$$

having edges v_i is $\sqrt{|\det(v_i \cdot v_j)|}$. The discriminant of an A-basis of B uses the A-valued pairing $\langle x, y \rangle = \text{Tr}_{B/A}(xy)$ on B in place of the **R**-valued dot product on \mathbf{R}^n and we just drop the absolute value and the square root when we make the algebraic analogue.

How are the discriminants of two A-module bases for B related? Pick a second basis e'_1, \ldots, e'_n of B as an A-module. Then

$$e_i' = \sum_{j=1}^n a_{ij} e_j,$$

where $a_{ij} \in A$ and the change of basis matrix (a_{ij}) has determinant in A^{\times} . Then

$$\operatorname{Tr}_{B/A}(e_i'e_j') = \operatorname{Tr}_{B/A}\left(\sum_{k=1}^n a_{ik}e_k \sum_{\ell=1}^n a_{j\ell}e_\ell\right)$$
$$= \sum_{k=1}^n \sum_{\ell=1}^n a_{ik}\operatorname{Tr}_{B/A}(e_ke_\ell)a_{j\ell},$$

so

$$(\operatorname{Tr}_{B/A}(e_i'e_j')) = (a_{ij})(\operatorname{Tr}_{B/A}(e_ie_j))(a_{ij})^{\top}.$$

Therefore

$$\operatorname{disc}_A(e'_1,\ldots,e'_n) = (\det(a_{ij}))^2 \operatorname{disc}_A(e_1,\ldots,e_n).$$

We set

$$\operatorname{disc}_A(B) = \operatorname{disc}_A(e_1, \dots, e_n) \in A$$

for any A-module basis $\{e_1, \ldots, e_n\}$ of B. It is well-defined up to a unit square. In particular, the condition $\operatorname{disc}_A(B) = 0$ is independent of the choice of basis.

Given a number field K, ramification of the prime p in K has been linked to the structure of the ring $\mathcal{O}_K/(p)$ in Section 1. Let's look at the discriminant of this ring over $\mathbf{Z}/p\mathbf{Z}$. Letting K have degree n over \mathbf{Q} , the ring \mathcal{O}_K is a free rank-n \mathbf{Z} -module, say

$$\mathfrak{O}_K = \bigoplus_{i=1}^n \mathbf{Z}\omega_i.$$

Reducing both sides modulo p,

$$\mathcal{O}_K/(p) = \bigoplus_{i=1}^n (\mathbf{Z}/p\mathbf{Z})\overline{\omega}_i,$$

so $\mathcal{O}_K/(p)$ is a vector space over $\mathbf{Z}/p\mathbf{Z}$ of dimension n. The discriminant of \mathcal{O}_K is $\mathrm{disc}_{\mathbf{Z}}(\mathcal{O}_K)$. The next lemma says reduction modulo p commutes (in a suitable sense) with the formation of discriminants.

Lemma 3.3. Choosing bases appropriately for \mathcal{O}_K and $\mathcal{O}_K/(p)$,

$$\operatorname{disc}_{\mathbf{Z}}(\mathfrak{O}_K) \bmod p = \operatorname{disc}_{\mathbf{Z}/p\mathbf{Z}}(\mathfrak{O}_K/(p)).$$

Proof. Pick a **Z**-basis $\omega_1, \ldots, \omega_n$ of \mathcal{O}_K . The reductions $\overline{\omega}_1, \ldots, \overline{\omega}_n$ in $\mathcal{O}_K/(p)$ are a $\mathbf{Z}/p\mathbf{Z}$ -basis, so the multiplication matrix $[m_x]$ for any $x \in \mathcal{O}_K$, with respect to the basis $\{\omega_i\}$, reduces modulo p to the multiplication matrix $[m_{\overline{x}}]$ for \overline{x} on $\mathcal{O}_K/(p)$ with respect to the basis $\{\overline{\omega}_i\}$. Therefore

$$\operatorname{Tr}_{(\mathcal{O}_K/(p))/(\mathbf{Z}/p\mathbf{Z})}(\overline{x}) = \operatorname{Tr}(m_{\overline{x}}) = \operatorname{Tr}(m_x) \bmod p = \operatorname{Tr}_{\mathcal{O}_K/\mathbf{Z}}(x) \bmod p.$$

Thus, the mod p reduction of the matrix $(\operatorname{Tr}_{\mathcal{O}_K/\mathbf{Z}}(\omega_i\omega_j))$ is $(\operatorname{Tr}_{(\mathcal{O}_K/(p))/(\mathbf{Z}/p\mathbf{Z})}(\overline{\omega}_i\overline{\omega}_j))$. Now take determinants.

Lemma 3.4. Let A be a commutative ring and B_1 and B_2 be commutative ring extensions of A that are each finite free A-modules. Then, choosing A-module bases appropriately,

$$\operatorname{disc}_A(B_1 \times B_2) = \operatorname{disc}_A(B_1) \operatorname{disc}_A(B_2).$$

Proof. Pick A-module bases for B_1 and B_2 :

$$B_1 = \bigoplus_{i=1}^m Ae_i, \quad B_2 = \bigoplus_{j=1}^n Af_j.$$

As an A-module basis for $B_1 \times B_2$ we will use the m + n elements $e_1, \ldots, e_m, f_1, \ldots, f_n$. Since $e_i f_j = 0$ in $B_1 \times B_2$, the matrix whose determinant is $\operatorname{disc}_A(B_1 \times B_2)$ is a block diagonal matrix

$$\begin{pmatrix} (\operatorname{Tr}_{(B_1 \times B_2)/A}(e_i e_k)) & O \\ O & (\operatorname{Tr}_{(B_1 \times B_2)/A}(f_j f_\ell)) \end{pmatrix}.$$

For any $x \in B_1$, multiplication by x on $B_1 \times B_2$ kills the B_2 component and acts on the B_1 -component in the way x multiplies on B_1 , so a matrix for multiplication by x on $B_1 \times B_2$ is a matrix whose upper left block is a matrix for multiplication by x on B_1 and other blocks are 0. Thus

$$\operatorname{Tr}_{(B_1 \times B_2)/A}(x) = \operatorname{Tr}_{B_1/A}(x) \text{ for } x \in B_1.$$

Similarly, $\operatorname{Tr}_{(B_1 \times B_2)/A}(x) = \operatorname{Tr}_{B_2/A}(x)$ for $x \in B_2$. Thus

$$\begin{pmatrix} (\operatorname{Tr}_{(B_1\times B_2)/A}(e_ie_k)) & O \\ O & (\operatorname{Tr}_{(B_1\times B_2)/A}(f_jf_\ell)) \end{pmatrix} = \begin{pmatrix} (\operatorname{Tr}_{B_1/A}(e_ie_k)) & O \\ O & (\operatorname{Tr}_{B_2/A}(f_jf_\ell)) \end{pmatrix},$$

and taking determinants gives

$$\operatorname{disc}_A(B_1 \times B_2) = \operatorname{disc}_A(B_1) \operatorname{disc}_A(B_2).$$

Now we prove Theorem 1.3.

Proof. We have $p \mid \operatorname{disc}_{\mathbf{Z}}(\mathcal{O}_K)$ if and only if $\operatorname{disc}_{\mathbf{Z}}(\mathcal{O}_K) \equiv 0 \mod p$. By Lemma 3.3

$$\operatorname{disc}_{\mathbf{Z}}(\mathfrak{O}_K) \bmod p = \operatorname{disc}_{\mathbf{Z}/p\mathbf{Z}}(\mathfrak{O}_K/(p)),$$

so $p \mid \operatorname{disc}_{\mathbf{Z}}(\mathfrak{O}_K)$ if and only if $\operatorname{disc}_{\mathbf{Z}/p\mathbf{Z}}(\mathfrak{O}_K/(p)) = \overline{0}$ in $\mathbf{Z}/p\mathbf{Z}$.

In (1.2), each factor $\mathfrak{O}_K/\mathfrak{p}_i^{e_i}$ is a $\mathbf{Z}/p\mathbf{Z}$ -vector space since $p \in \mathfrak{p}_i^{e_i}$. Using (1.2) and Lemma 3.4,

$$\operatorname{disc}_{\mathbf{Z}/p\mathbf{Z}}(\mathfrak{O}_K/(p)) = \prod_{i=1}^g \operatorname{disc}_{\mathbf{Z}/p\mathbf{Z}}(\mathfrak{O}_K/\mathfrak{p}_i^{e_i}).$$

Therefore we need to show for any prime number p and prime-power ideal \mathfrak{p}^e such that $\mathfrak{p}^e \mid (p)$ that $\operatorname{disc}_{\mathbf{Z}/p\mathbf{Z}}(\mathfrak{O}_K/\mathfrak{p}^e)$ is $\overline{0}$ in $\mathbf{Z}/p\mathbf{Z}$ if and only if e > 1. (Recall that the vanishing of a discriminant is independent of the choice of basis.)

Suppose e > 1. Then any $x \in \mathfrak{p} - \mathfrak{p}^e$ is a nonzero nilpotent element in $\mathcal{O}_K/\mathfrak{p}^e$. By linear algebra over fields, such an \overline{x} can be used as part of a $\mathbf{Z}/p\mathbf{Z}$ -basis of $\mathcal{O}_K/\mathfrak{p}^e$, say $\{\overline{x}_1, \ldots, \overline{x}_n\}$ with $\overline{x} = \overline{x}_1$. Writing the trace map $\mathrm{Tr}_{(\mathcal{O}_K/\mathfrak{p}^e)/(\mathbf{Z}/p\mathbf{Z})}$ as Tr for short, the first column of the matrix $(\mathrm{Tr}(\overline{x}_i\overline{x}_j))$ contains the numbers $\mathrm{Tr}(\overline{x}_i\overline{x})$. These traces are all $\overline{0}$: $\overline{x}_i\overline{x}$ is nilpotent, so the linear transformation $m_{\overline{x}_i\overline{x}}$ on $\mathcal{O}_K/\mathfrak{p}^e$ is nilpotent and thus its eigenvalues all equal zero. Since one column of the trace-pairing matrix $(\mathrm{Tr}(\overline{x}_i\overline{x}_j))$ is all $\overline{0}$, $\mathrm{disc}_{\mathbf{Z}/p\mathbf{Z}}(\mathcal{O}_K/\mathfrak{p}^e) = \overline{0}$.

Now suppose e = 1. Then $\mathcal{O}_K/\mathfrak{p}^e = \mathcal{O}_K/\mathfrak{p}$ is a finite field of characteristic p. We want to prove $\mathrm{disc}_{\mathbf{Z}/p\mathbf{Z}}(\mathcal{O}_K/\mathfrak{p}) \neq \overline{0}$. If this discriminant is $\overline{0}$, then (because $\mathcal{O}_K/\mathfrak{p}$ is a field) the trace function $\mathrm{Tr} \colon \mathcal{O}_K/\mathfrak{p} \to \mathbf{Z}/p\mathbf{Z}$ is identically zero. However, from the theory of finite fields, this trace function can be written as a polynomial function:

$$Tr(t) = t + t^p + t^{p^2} + \dots + t^{p^{r-1}}$$

where $p^r = |\mathcal{O}_K/\mathfrak{p}|$. Since Tr(t) as a polynomial in t has smaller degree than the size of $\mathcal{O}_K/\mathfrak{p}$, the function Tr(t) is not identically zero on $\mathcal{O}_K/\mathfrak{p}$. Therefore the discriminant of a finite extension of $\mathbf{Z}/p\mathbf{Z}$ does not equal zero.

4. The relative case

Ramified primes and discriminants can be defined for an extension of number fields E/F where the base field F need not be \mathbf{Q} . This is called the relative case, while the study of number field extensions with base field \mathbf{Q} is called the absolute case.

To define the discriminant of E/F, a direct copying of the definition over \mathbf{Q} is possible if \mathcal{O}_F is PID. In this case \mathcal{O}_E is a free \mathcal{O}_F -module. We say a prime π in \mathcal{O}_F is ramified in E when the ideal $\pi\mathcal{O}_E$ has a repeated prime ideal factor and is unramified otherwise. When $\{\alpha_1,\ldots,\alpha_n\}$ is an \mathcal{O}_F -basis of \mathcal{O}_E the number $\mathrm{disc}_{E/F}(\alpha_1,\ldots,\alpha_n)$ is nonzero in \mathcal{O}_F and changing the \mathcal{O}_F -basis of \mathcal{O}_E changes this number by a unit square in \mathcal{O}_F .

Example 4.1. Let $F = \mathbf{Q}(i)$ and $E = F(\sqrt{-5})$. Then $\mathcal{O}_F = \mathbf{Z}[i]$ and it can be shown that $\mathcal{O}_E = \mathcal{O}_F[\sqrt{-5}] = \mathbf{Z}[i][\sqrt{-5}]$, so $\{1, \sqrt{-5}\}$ is a $\mathbf{Z}[i]$ -basis of \mathcal{O}_E . Since

$$\operatorname{disc}_{E/F}(1,\sqrt{-5}) = \operatorname{det}\begin{pmatrix} \operatorname{Tr}_{E/F}(1\cdot 1) & \operatorname{Tr}_{E/F}(1\cdot \sqrt{-5}) \\ \operatorname{Tr}_{E/F}(\sqrt{-5}\cdot 1) & \operatorname{Tr}_{E/F}(\sqrt{-5}\sqrt{-5}) \end{pmatrix} = \operatorname{det}\begin{pmatrix} 2 & 0 \\ 0 & -10 \end{pmatrix} = -20,$$

the discriminant of E/F is -20 up to a unit square in $\mathbf{Z}[i]$. Another $\mathbf{Z}[i]$ -basis of \mathcal{O}_E is $\{i, \sqrt{-5}\}$ and $\mathrm{disc}_{E/F}(i, \sqrt{-5}) = \mathrm{det}(\begin{smallmatrix} -2 & 0 \\ 0 & -10 \end{smallmatrix}) = 20$, which differs from -20 by a unit square factor $-1 = i^2$.

Numbers in a PID that differ by a unit factor have the same prime factors, so whether or not a prime in \mathcal{O}_F divides $\mathrm{disc}_{E/F}(\alpha_1,\ldots,\alpha_n)$ does not depend on the choice of \mathcal{O}_F -basis. Here is how Theorem 1.3 generalizes to E/F when \mathcal{O}_F is a PID.

Theorem 4.2. For an extension of number fields E/F where \mathfrak{O}_F is a PID, a prime π in F ramifies in E if and only if π divides $\mathrm{disc}_{E/F}(\alpha_1,\ldots,\alpha_n)$ where $\{\alpha_1,\ldots,\alpha_n\}$ is an \mathfrak{O}_F -basis of \mathfrak{O}_E .

Proof. Use the method of proof of Section 3 with **Z** replaced by \mathcal{O}_F .

Example 4.3. In Example 4.1, 20 has prime factorization $-(1+i)^4(1+2i)(1-2i)$, in $\mathbf{Z}[i]$ so the primes in $\mathbf{Z}[i]$ that ramify in $\mathbf{Z}[i, \sqrt{-5}]$ are 1+i, 1+2i, and 1-2i.

What do we do when \mathcal{O}_F is not necessarily a PID? A (nonzero) prime ideal \mathfrak{p} in \mathcal{O}_F , is called ramified in E if the ideal $\mathfrak{p}\mathcal{O}_E$ has a repeated prime ideal factor in \mathcal{O}_E and unramified

otherwise. It can be shown that when $E = F(\alpha)$ with $\alpha \in \mathcal{O}_E$ and α has minimal polynomial f(T) in F[T], the prime \mathfrak{p} is unramified in E if (but not necessarily only if) $\mathrm{disc}(f(T)) \not\equiv 0 \mod \mathfrak{p}$. A nonzero number in \mathcal{O}_F has only finitely many prime ideal factors, so all but finitely many prime ideals in \mathcal{O}_F are unramified in E.

The discriminant of E/F is an ideal in \mathcal{O}_F , called the discriminant ideal $\mathfrak{d}_{E/F}$. It is defined as the ideal in \mathcal{O}_F generated by the numbers $\mathrm{disc}_{E/F}(\alpha_1,\ldots,\alpha_n)$ where $\{\alpha_1,\ldots,\alpha_n\}$ runs over all F-bases of E that are contained in \mathcal{O}_E . If one F-basis of E contained in \mathcal{O}_E is in the \mathcal{O}_F -span of another F-basis of E contained in \mathcal{O}_E , then the discriminant of the first basis is a multiple of the discriminant of the second basis, so if \mathcal{O}_E has an \mathcal{O}_F -basis, then $\mathfrak{d}_{E/F}$ is a principal ideal with the discriminant of any \mathcal{O}_F -basis of \mathcal{O}_E being a generator.

Theorem 1.3 has the following generalization to the relative case, whose proof is more technical than that of Theorem 1.3 and is omitted.

Theorem 4.4. For an extension of number fields E/F, a prime \mathfrak{p} in F ramifies in E if and only if \mathfrak{p} divides the discriminant ideal $\mathfrak{d}_{E/F}$.

References

- [1] R. Dedekind, Über den Zusammenhang zwischen der Theorie der ideale und der Theorie der höheren Congruenzen, Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 23 (1878), 3–37. URL https://eudml.org/doc/135827.
- [2] R. Dedekind, Über die Discriminanten endlicher Körper, Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 29 (1882), 1–56. URL https://eudml.org/doc/135869.

³The ideal $\mathfrak{d}_{E/F}$ can be defined in a second way using localizations: see https://math.stackexchange.com/questions/4875752/. Some work is needed to show this way of defining $\mathfrak{d}_{E/F}$ agrees with the first way presented above.