DISCRIMINANTS AND RAMIFIED PRIMES

KEITH CONRAD

1. INTRODUCTION

A prime number p is said to be ramified in a number field K if the prime ideal factorization
(1.1) (p) = pOx =p§ - pg’
has some e; greater than 1. If every e; equals 1, we say p is unramified in K.
Example 1.1. In Z[i], the only prime that ramifies is 2: (2) = (1 +1)2.

Example 1.2. Let K = Q(a) where « is a root of f(T) = T3 — 9T — 6. Then 6 =
a® —9a = a(a — 3)(a+3). For m € Z, a + m has minimal polynomial f(T —m) in Q[T],
so Ng/q(a+m) = —f(—m) =m? — 9m + 6 and the principal ideal (@ —m) has norm

N(a —m) = |m3 — 9m + 6|.

Therefore N(a) = 6, N(aw — 3) = 6, and N(a + 3) = 6. It follows that (a) = paps,
(v — 3) = phps, and (o + 3) = phps (so, in particular, & + 3 and « — 3 are unit multiples of
each other). Thus

(2)(3) = (6) = (a)(a = 3)(cv + 3) = pop5'p3,

so (2) = p3p, and (3) = p3. This shows 2 and 3 are ramified in K. Note that one of the
exponents in the factorization of (2) exceeds 1 while the other equals 1.

One way to think about ramified primes is in terms of the ring structure of Og /(p). By
(1.1) and the Chinese Remainder Theorem,

(1.2) Or/(p) = Ok [PT % -+ x O /Py’

If some e; is greater than 1, then the quotient ring O /p;* has a nonzero nilpotent element
(use the reduction modulo p;* of any element of p; — p;*), so the product ring (1.2) has a
nonzero nilpotent element. If each e; equals 1, then Ox/(p) is a product of (finite) fields,
and a product of fields has no nonzero nilpotent elements. Thus, p ramifies in K if and only
if Ok /(p) has a nonzero nilpotent element.

In Sections 2 and 3 we will prove the following result of Dedekind [2], which characterizes
the prime numbers ramifying in a number field K in terms of its discriminant.’

Theorem 1.3 (Dedekind). For a number field K, a prime p ramifies in K if and only if p
divides the integer discz(Ok).

Recall discz(Of) = discg/q(a1, .., an) where {1, ..., an} is any Z-basis of Ox. The
generalization of Theorem 1.3 to a relative extension of number fields is in Section 4.

ln [1, pp. 36-37], Dedekind said he announced this result for the first time on September 20, 1871.
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2. A SPECIAL CASE

We will first consider Theorem 1.3 in the special case that there is an o € Ok such that
K = Q(a) and p 1 [Og : Z[a]]. (If O = Z[a] we can use the same « for all p.) The
treatment of the general case in Section 3 will not rely on the case that p 1 [Ox : Z[a]]
for some «, but this special case is technically simpler. We will just sketch the basic ideas
behind it.

Proof. Assume for a prime p that there’s a € Ok such that K = Q(«) and pt [0k : Z[]].
Let f(T') be the minimal polynomial of a over Q, so f(7T') is monic in Z[T]. and the
Dedekind—Kummer theorem tells us that the way pOg factors into prime ideals matches
the way f(7') mod p factors into monic irreducibles in (Z/pZ)[T].

Writing the prime ideal factorization of pOg as in (1.1), by definition p ramifies in O
if and only if some e; > 1. The factorization of the mod p reduction f(T) in (Z/pZ)[T]
matches (1.1), in the sense that

ATy =miteomy?

for some distinct monic irreducibles m; € (Z/pZ)[T].

The irreducible polynomials 7;(7T")’s are separable (all irreducibles over a finite field are
separable), so some e; > 1 if and only if f(7') has a repeated root in a splitting field over
Z/pZ. This is equivalent to f(7') having discriminant 0, so p ramifies in O if and only if
disc(f) = 0 in Z/pZ.

Since the discriminant of a monic polynomial is a universal polynomial in its coefficients
(consider the quadratic case, where T2 4 bT + ¢ has discriminant b? — 4c), discriminants
of monic polynomials behave well under reduction: disc(f(7") mod p) = disc(f(T")) mod p.

Therefore disc(f(T")) = 0 in Z/pZ if and only if disc(f) = 0 mod p. Thus p ramifies in Og
if and only if p | disc(f). Since

disc(f) = disc(Z[a]) = [0k : Z[a]]? discz(Ok)
and p 1 [Ok : Z[a]], we have p | disc(f) if and only if p | discz(Ok). O

3. THE GENERAL CASE

To prove Theorem 1.3 for every prime number p, even if p | [Og : Z[a]] for all o € Ok
such that K = Q(a),? we will examine discriminants of ring extensions to show computing
the discriminant commutes with reduction mod p: discz(Ok) mod p = discz/,z(Ok /(p))-
Then we will use (1.2) to write discg/,z(Ok/(p)) as a product of discriminants of rings of
type O /p¢ and compute the discriminants of these particular rings.

Definition 3.1. Let A be a commutative ring and B be a ring extension of A that is a
finite free A-module:

B=Ae1 ©--- D Ae,.
Then we set
disca(er, ..., en) = det(Trp a(eej)) € A.

2Dedekind wrote in [1, p. 37] that he first proved Theorem 1.3 in the special case of Section 2 above and
was able to prove the general case only after many unsuccessful attempts. He presented the special case first
in [2, §3] since it’s much simpler than the method he used for the general case in [2, §§4-6].
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Remark 3.2. The discriminant of a basis is an algebraic concept of “volume”. To explain
this viewpoint, we should think about Trp,4(7y) as an analogue of the dot product v-w in
R”. For a basis v1,...,v, in R", the ordinary Euclidean volume of the parallelotope

n
{Zaivi :0 S a; S 1}
=1

having edges v; is /| det(v; - vj)|. The discriminant of an A-basis of B uses the A-valued
pairing (x,y) = Trg/a(7y) on B in place of the R-valued dot product on R™ and we just
drop the absolute value and the square root when we make the algebraic analogue.

How are the discriminants of two A-module bases for B related? Pick a second basis
el,... e, of B asan A-module. Then

n
, e .- "
€; = Qij€j,
Jj=1

where a;; € A and the change of basis matrix (a;;) has determinant in A*. Then

n n
Trpa(eies) = Trp/a (Z aiker Y aj€€£>
k=1 =1

n n
=3 ) i Trp alerce)aje,

k=1 (=1
o)
(Trp/a(eie))) = (aij)(TTB/A(eiej))(aij)T-
Therefore
disca(e], ..., eh) = (det(a;;))* discaler, ..., en).
We set

disca(B) = disca(eq,...,en) € A
for any A-module basis {ey, ..., e,} of B. It is well-defined up to a unit square. In particular,
the condition disc4(B) = 0 is independent of the choice of basis.
Given a number field K, ramification of the prime p in K has been linked to the structure
of the ring O /(p) in Section 1. Let’s look at the discriminant of this ring over Z /pZ. Letting
K have degree n over Q, the ring O is a free rank-n Z-module, say

OK = é Zwl-.
i=1

Reducing both sides modulo p,

n

Ok/(p) = EP(Z/pZ)w;,
i=1
so Ok /(p) is a vector space over Z/pZ of dimension n. The discriminant of O is discz (O ).
The next lemma says reduction modulo p commutes (in a suitable sense) with the formation
of discriminants.

Lemma 3.3. Choosing bases appropriately for Ok and Ok /(p),
discz(Ox) mod p = discz/pz(0k /(p))-
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Proof. Pick a Z-basis wy, ... ,wy, of Ox. The reductions w,...,w, in Ox/(p) are a Z/pZ-
basis, so the multiplication matrix [mg] for any x € O, with respect to the basis {w;},
reduces modulo p to the multiplication matrix [mz| for T on Og/(p) with respect to the
basis {w;}. Therefore

Trox /) (2/pz)(T) = Tr(mz) = Tr(m,) mod p = Trg, /z(x) mod p.

Thus, the mod p reduction of the matrix (Trg, /z(wiw;)) is (Tro, /() /(z/pz) (@iw;)). Now
take determinants.

Lemma 3.4. Let A be a commutative ring and By and By be commutative ring extensions
of A that are each finite free A-modules. Then, choosing A-module bases appropriately,

discq (B x Bg) = disc4(B7) disc4(Ba).
Proof. Pick A-module bases for By and Bs:

Bl = G?Aei, B2 = @Af]
= j=

As an A-module basis for B; X By we will use the m + n elements ey, ...,em, f1,.-., fn
Since e;f; = 0 in By x By, the matrix whose determinant is disca(B1 x Bs) is a block
diagonal matrix
<<Tr(Bl><Bg)/A(€iek)) 0 )
O (Tr(ByxBa)/a(fife))

For any z € Bj, multiplication by x on By X Bs kills the By component and acts on the
Bi-component in the way x multiplies on By, so a matrix for multiplication by x on Bj X By
is a matrix whose upper left block is a matrix for multiplication by x on B; and other blocks
are (. Thus

Tl“(leBQ)/A(l‘) = TI"Bl/A(l‘) for x € Bj.
Similarly, Tr(p, x B,)/a(%) = Trp,/a(x) for z € By. Thus

((Tr(B1><Bg)/A(eiek)) 0 ) _ ((TrBl/A(eiek)> O )
O (Tr(B, x By a(fife)) 0O (Trp,/a(fife)))’
and taking determinants gives
disc4(B1 X By) = disca(B1) disca(Bs). O

Now we prove Theorem 1.3.
Proof. We have p | discz(Ok) if and only if discz(Ox) = 0 mod p. By Lemma 3.3
discz(0Ok) mod p = discz/pz(OK/(p)),

so p | discz(O) if and only if discg,z(Ox/(p)) = 0 in Z/pZ.
In (1.2), each factor O /p;* is a Z/pZ-vector space since p € p;'. Using (1.2) and Lemma
3.4,

g
discz/pz(0x/(p)) = | [ discz/pz (O /p7).
i=1
Therefore we need to show for any prime number p and prime-power ideal p¢ such that
p¢ | (p) that discy/,z(0k /p®) is 0 in Z/pZ if and only if e > 1. (Recall that the vanishing
of a discriminant is independent of the choice of basis.)
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Suppose e > 1. Then any = € p — p°© is a nonzero nilpotent element in Og /p°. By linear
algebra over fields, such an T can be used as part of a Z/pZ-basis of O /p€, say {Z1,...,ZTn}
with Z = 7;. Writing the trace map Tr(o, /pe)/(z/pz) @ Tr for short, the first column of the
matrix (Tr(Z;Z;)) contains the numbers Tr(Z;Z). These traces are all 0: Z;Z is nilpotent,
so the linear transformation mz,z on O /p® is nilpotent and thus its eigenvalues all equal
zero. Since one column of the trace-pairing matrix (Tr(Z;7;)) is all 0, discg 7 (Ox /p®) = 0.

Now suppose e = 1. Then Ok /p® = O /p is a finite field of characteristic p. We want
to prove discz,,z(Ox /p) # 0. If this discriminant is 0, then (because O /p is a field) the
trace function Tr: O /p — Z/pZ is identically zero. However, from the theory of finite
fields, this trace function can be written as a polynomial function:

Te(t) =t + 7 + 7 - +17
where p" = |Og/p|. Since Tr(t) as a polynomial in ¢ has smaller degree than the size of
Og /p, the function Tr(¢) is not identically zero on O /p. Therefore the discriminant of a
finite extension of Z/pZ does not equal zero. O

4. THE RELATIVE CASE

Ramified primes and discriminants can be defined for an extension of number fields E/F
where the base field F' need not be Q. This is called the relative case, while the study of
number field extensions with base field Q is called the absolute case.

To define the discriminant of E/F, a direct copying of the definition over Q is possible
if O is PID. In this case O is a free Op-module. We say a prime 7 in Op is ramified in E
when the ideal 7Og has a repeated prime ideal factor and is unramified otherwise. When
{ai1,...,an} is an Op-basis of Op the number discg,p(a1,...,ay) is nonzero in Op and
changing the Op-basis of O changes this number by a unit square in Op.

Example 4.1. Let F' = Q(i) and E = F(v/—5). Then O = Z[i] and it can be shown that
Or = Op[V—5] = Z[i][V—5], so {1,v/—5} is a Z[i]-basis of Og. Since
. — . TI‘E/F(l].) TI'E/F(].'\/—5) o 2 0 _
discg/p(1, vV —=5) = det <TI"E/F(\/?5‘ 1) Trpe(v_5v=5)) = det 0 —10) = 20,

the discriminant of E/F is —20 up to a unit square in Z[i]. Another Z[i]-basis of O is
{i,v/=5} and discg/p(i, vV —5) = det( 702 _qo) = 20, which differs from —20 by a unit square
factor —1 = i2.

Numbers in a PID that differ by a unit factor have the same prime factors, so whether or

not a prime in Op divides discg/, rlal,...,a,) does not depend on the choice of Op-basis.
Here is how Theorem 1.3 generalizes to E/F when Of is a PID.

Theorem 4.2. For an extension of number fields E/F where Op is a PID, a prime 7 in F

ramifies in E if and only if = divides discgp(a1, ..., an) where {ay, ..., an} is an Op-basis
of Op.
Proof. Use the method of proof of Section 3 with Z replaced by Op. g

Example 4.3. In Example 4.1, 20 has prime factorization — (1 +i)%(1 + 2i)(1 — 2i), in Z]i]
so the primes in Z[i] that ramify in Z[i,/—5] are 1 + ¢, 1 + 2¢, and 1 — 2i.

What do we do when Op is not necessarily a PID? A (nonzero) prime ideal p in Op, is
called ramified in E if the ideal pOf has a repeated prime ideal factor in O and unramified
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otherwise. It can be shown that when E' = F(«) with a € O and « has minimal polynomial
f(T) in F[T], the prime p is unramified in E if (but not necessarily only if) disc(f(7T)) #
0 mod p. A nonzero number in O has only finitely many prime ideal factors, so all but
finitely many prime ideals in O are unramified in FE.

The discriminant of E//F is an ideal in O, called the discriminant ideal 0 /p. It is defined
as the ideal in Op generated by the numbers discg/p(au, ... , ) where {a1,...,a,} runs
over all F-bases of E that are contained in Op.% If one F-basis of E contained in O is
in the Op-span of another F-basis of E contained in O, then the discriminant of the first
basis is a multiple of the discriminant of the second basis, so if O has an Op-basis, then
0p/r is a principal ideal with the discriminant of any Op-basis of O being a generator.

Theorem 1.3 has the following generalization to the relative case, whose proof is more
technical than that of Theorem 1.3 and is omitted.

Theorem 4.4. For an extension of number fields E/F, a prime p in F ramifies in E if
and only if p divides the discriminant ideal 0p/p .
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