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It is rash to assert that a mathematical theorem cannot be proved in a par-
ticular way.1

Euclid’s proof of the infinitude of the primes is a paragon of simplicity: given a finite
list of primes, multiply them together and add one. The resulting number, say N , is not
divisible by any prime on the list, so any prime factor of N is a new prime.

Some special cases of Dirichlet’s theorem admit a simple proof following Euclid’s model,
such as the case of 1 mod 4 or 5 mod 6. (We mean by ‘Dirichlet’s theorem’ only the assertion
that a congruence class contains infinitely many primes, not the stronger assertion about
the density of such primes.) One property that these Euclidean proofs of special cases of
Dirichlet’s theorem have in common is that they use a polynomial, varying from one case
to the next, whose integer values have restricted prime factors.

Specifically, a Euclidean proof of Dirichlet’s theorem for a mod m involves, at the very
least, the construction of a nonconstant polynomial h(T ) ∈ Z[T ] for which any prime
factor p of any integer h(n) satisfies, with finitely many exceptions, either p ≡ 1 mod m or
p ≡ a mod m, and infinitely many primes of the latter type occur.

Here are some cases where Euclidean proofs of Dirichlet’s theorem exist.

• 1 mod d: p | Φd(n) for some n implies p ≡ 1 mod d or p | 2d. (The notation Φd(T )
means the dth cyclotomic polynomial.)
• 3 mod 8: p | n2 + 2 for some n implies p ≡ 1 or 3 mod 8, or p = 2.
• 4 mod 5: p | n2 − 5 for some n implies p ≡ 1 or 4 mod 5, or p = 2, 5.
• 6 mod 7: p | n3 + n2 − 2n− 1 for some n implies p ≡ 1 or 6 mod 7, or p = 7.
• −1 mod d: see [3].

Is there a Euclidean proof of Dirichlet’s theorem for the congruence class 2 mod 5? What
we seek is a polynomial h(T ) ∈ Z[T ] such that all prime factors of all integers h(n) are,
with finitely many exceptions, either 1 or 2 mod 5 and infinitely many primes p ≡ 2 mod 5
arise in this way.

A polynomial h(T ) ∈ Z[T ] will be called a Euclidean polynomial for a mod m, where
(a,m) = 1, if the prime factors of all h(n), with finitely many exceptions, satisfy either p ≡
1 mod m or p ≡ a mod m, and infinitely many primes of the latter kind occur. Whatever
a ‘Euclidean’ proof of Dirichlet’s theorem for a mod m ought to be, at the end of such a
proof we should have a Euclidean polynomial for a mod m.

The following theorems of Schur [8] and Murty [5] show Euclidean polynomials (and thus
Euclidean proofs of Dirichlet’s theorem) are quite restricted.

Theorem 1 (Schur, 1912). If a2 ≡ 1 mod m, then a Euclidean polynomial for a mod m
exists.

Theorem 2 (Murty, 1988). If there is a Euclidean polynomial for a mod m, then a2 ≡
1 mod m.

1G. H. Hardy, Collected Papers, Vol. I, p. 549
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For example, since 22 ≡ 4 6≡ 1 mod 5, there is no Euclidean polynomial for 2 mod 5, so
there is no proof of Dirichlet’s theorem for 2 mod 5 that can mimic Euclid’s proof of the
infinitude of the primes.

Remark 3. In Dickson’s book on the history of number theory [2, p. 419], the section Ele-
mentary proofs of the existence of an infinitude of primes in special arithmetic progressions
says E. Lucas in 1878 had found an elementary proof for primes of the form 5n + 2. His
argument [4, p. 309] uses the numbers an = F2n/F2n−1 , where Fm is the mth Fibonacci
number. (If d | m then Fd | Fm, so an ∈ Z for all n ≥ 1.) The sequence {an} begins

1, 3, 7, 47, 2207, 4870847, 23725150497407, . . .

and grows very quickly, e.g., a10 has 108 digits. Lucas wrote that an ≡ 2 mod 5 when n ≥ 3,
which is true, and his proof involved showing each an has a prime factor that is 2 mod 5,
which is false: the prime factorization of a8 is pq where p ≡ 3 mod 5 and q ≡ 4 mod 5, and
the prime factorization of a9 is pqr where p ≡ 1 mod 5, q ≡ 3 mod 4, and r ≡ 4 mod 5.
Lucas clearly didn’t know the prime factorization of a8 or a9, and WolframAlpha can’t fully
factor a10 (its known prime factors are 3 mod 5).

The largest m such that all units modulo m square to 1 (and thus Dirichlet’s theorem
can be proved by Euclidean methods for all the possibilities modulo m) is m = 24. A
treatment of Dirichlet’s theorem along Euclidean lines for m = 24 is given in [1], which was
the starting point for Murty’s work (see [6]). His paper [5] appeared in a journal that is not
widely available and was not reviewed on MathSciNet. An updated account of the work
from [5] and [8] is in [7], which is available online (and has a MathSciNet review).

Between Theorems 1 and 2, the second is more unexpected, so we will focus on that. Its
proof will require interpreting Euclidean polynomials in the language of algebraic number
theory, as well as an application of the Chebotarev density theorem. This last point is quite
ironic, since it means the proof that you can’t prove special cases of Dirichlet’s theorem in
a certain way (à la Euclid) will use a result that is deeper than Dirichlet’s theorem itself.

To transform Euclidean polynomials into something about number fields, note that the
divisibility condition p | h(n), for some n ∈ Z, is equivalent to h mod p having a root in
Z/pZ. For any polynomial h(T ) ∈ Z[T ], set

Spl1(h) := {p : p | h(n) for some n} = {p : h mod p has a linear factor in (Z/pZ)[T ]}.
For example, Spl1(T

2 + 1) = {p ≡ 1 mod 4} ∪ {2}. There is no simple description of
Spl1(T

5 − T + 1), the set of primes modulo which T 5 − T + 1 has a root.
For any number field K, set

Spl1(K) := {p : some p dividing p in K has f(p|p) = 1}.
For example, Spl1(Q(i)) = {p ≡ 1 mod 4} ∪ {2}.
In words, p lies in Spl1(h) when h has a root mod p, while p lies in Spl1(K) when p has

a prime ideal factor in K whose residue field is Z/pZ.
To prove Theorem 2, we introduce some notation to codify the relation between Euclidean

polynomials and Spl1 sets. Fix a positive integer m. For any nonconstant polynomial h(T )
in Z[T ] and any number field K, set

S1(m,h) := {b mod m : p ≡ b mod m for infinitely many p ∈ Spl1(h)}
and

S1(m,K) := {b mod m : p ≡ b mod m for infinitely many p ∈ Spl1(K)}.
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These are subsets of (Z/mZ)×. For irreducible h, with θ a root of h, Spl1(h) and Spl1(Q(θ))
coincide, with perhaps finitely many exceptions (these exceptions arise if Z[θ] is not the ring
of integers of Q(θ)), so S1(m,h) and S1(m,Q(θ)) are equal without exceptions.

In this notation, a Euclidean polynomial for a mod m is an h(T ) such that S1(m,h) =
{1, a mod m}.

The following theorem is the main technical step in the proof of Theorem 2.

Theorem 4. For any number field K, the subset S1(m,K) of (Z/mZ)× is a subgroup. In
fact, S1(m,K) is the image of Gal(K(ζm)/K)→ Gal(Q(ζm)/Q).

Proof. First we classify the congruence classes making up S1(m,K). We claim

(1) S1(m,K) = {q mod m : q ∈ Spl1(K), q unramified in K(ζm)}.
One inclusion is trivial: since each congruence class in S1(m,K) contains infinitely many

primes from Spl1(K), certainly each such class is represented by a prime in Spl1(K) that
doesn’t ramify in K(ζm), so the left side of (1) is contained in the right side. For the reverse
inclusion, choose q in Spl1(K) with q unramified in K(ζm). We will produce infinitely many
p in Spl1(K) that satisfy p ≡ q mod m, thus establishing (1).

Pick q | q in K with f(q|q) = 1. Since q is unramified in K(ζm), q is unramified in K(ζm).
Then the Frobenius element σ = Frq(K(ζm)/K) in Gal(K(ζm)/K) has

(2) σ|Q(ζm) = N q mod m = q mod m.

By the Chebotarev density theorem for the cyclotomic extension K(ζm)/K, there are in-
finitely many p in K such that

• p is unramified in K(ζm)
• Frp(K(ζm)/K) = σ
• fp(K/Q) = 1.

The last condition follows from the positive density of p with Frobenius element σ and
the full density of p with absolute degree 1.

Setting pZ = p ∩ Z, p lies in Spl1(K) by construction and

(3) σ|Q(ζm) = p mod m.

Comparing (2) and (3), we have p ≡ q mod m.
Having proved (1), we now turn to showing S1(m,K) is the image of Gal(K(ζm)/K)→

Gal(Q(ζm)/Q). Denote this image as H.
Pick a congruence class in S1(m,K), say q mod m in the notation of (1). We have already

seen in (2) that q mod m is the restriction to Q(ζm) of the Frobenius element Frq(K(ζm)/K),
where q lies over q in K with f(q|q) = 1. That means q mod m lies in H, so S1(m,K) ⊂ H.

To establish the reverse inclusion, let b mod m ∈ H, say b mod m = σ|Q(ζm) where
σ ∈ Gal(K(ζm)/K).

By the Chebotarev density theorem for cyclotomic extensions, σ = Frp(K(ζm)/K) for
infinitely many p in K with fp(K/Q) = 1. Let pZ = p ∩Z, so p is in Spl1(K) and N p = p.
Then

σ|Q(ζm) = N p mod m = p mod m,

so p ≡ b mod m. Since the number of such p is infinite, b mod m is in S1(m,K). �

The fact that the set S1(m,K) is a group may seem surprising, since we did not directly
prove S1(m,K) is closed under multiplication, or even that it contains the identity. This
follows only after Theorem 4 is concluded, though the condition that 1 mod m ∈ S1(m,K)

3



does admit a direct verification, as follows. Infinitely many rational primes p split completely
in the field K(ζm), and (with the exception of p = 2 if m = 2) all such p satisfy p ≡
1 mod m and p ∈ Spl1(K). If the reader is hoping for a direct proof that S1(m,K) is closed
under multiplication, we don’t have one to offer. Instead, we will give below a nonabelian
generalization of Theorem 4 in which the analogue of S1(m,K) will usually not be a group.

But first let’s return to Theorem 2 and derive it from Theorem 4. We start with a
congruence class a mod m where (a,m) = 1 and assume this congruence class admits a Eu-
clidean polynomial, say h(T ). That is, we assume S1(m,h) = {1, a mod m}. For each irre-
ducible factor g(T ) of h(T ), Spl1(g) contains infinitely many p ≡ 1 mod m since S1(m, g) =
S1(m,Q(θ)), where g(θ) = 0. By the pigeonhole principle, at least one such irreducible
factor g must have infinitely many p ≡ a mod m in Spl1(g), so S1(m, g) = {1, a mod m}.
(That is, if a mod m admits a Euclidean polynomial, then it admits an irreducible Eu-
clidean polynomial.) Identifying S1(m, g) with S1(m,Q(θ)), where g(θ) = 0, Theorem 4
implies {1, a mod m} is a group, so a2 ≡ 1 mod m. This settles Theorem 2 and explains
what makes the condition a2 ≡ 1 mod m distinctive: it characterizes when {1, a mod m} is
a group.

As a generalization of Theorem 4, we replace the cyclotomic extension Q(ζm)/Q with
an arbitrary finite Galois extension E/F of number fields. Let K/F be an arbitrary finite
extension, and set

Spl1(K/F ) := {p in F : some P dividing p in K has f(P|p) = 1}.

(Previously, when the base field was F = Q, we wrote Spl1(K) rather than Spl1(K/Q).)
In Gal(E/F ), primes in F that are unramified in E have Frobenius conjugacy classes

rather than Frobenius elements. With this modification, Theorem 4 generalizes as follows.

Theorem 5. As C varies over the conjugacy classes of Gal(E/F ), the union of all C
such that C = Frp(E/F ) for infinitely many p in Spl1(K/F ) forms the smallest subset of
Gal(E/F ) that 1) contains the image of Gal(EK/K) → Gal(E/F ) and 2) is closed under
conjugation.

Proof. Let S1(E,K) be the union of the conjugacy classes C in Gal(E/F ) such that C =
Frp(E/F ) for infinitely many p in Spl1(K/F ). (If F = Q and E = F (ζm), then S1(E,K)
the set S1(m,K) from before.)

To prove the theorem, we show

• Gal(E/E ∩K) ⊂ S1(E,K)
• S1(E,K) is closed under conjugation
• Each conjugacy class in S1(E,K) contains an element of Gal(E/E ∩K).

This will show S1(E,K) is the smallest subset of Gal(E/F ) that contains Gal(E/E ∩K)
and is closed under conjugation.

The second property above is immediate: as a union of conjugacy classes, S1(E,K) is
closed under conjugation.

To prove the first and third properties, we show S1(E,K) is the union of conjugacy classes
Frq(E/F ), where q lies in Spl1(K/F ) and q is unramified in EK. Any conjugacy class in
S1(E,K) is, by definition, a Frobenius class for infinitely many primes of Spl1(K/F ), so we
can arrange such a prime to be unramified in EK. For the reverse inclusion, let q be a prime
Spl1(K/F ) that is unramified in EK. Choose any Q in K lying over q with f(Q|q) = 1, so
Q is unramified in EK and NQ = N q.
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Choose any σ in the conjugacy class FrQ(EK/K), and write σ = (Q̃, EK/K) for Q̃

lying over Q in EK. Set q̃ = Q̃ ∩ E. From the definitions of Frobenius elements, σ|E =
(q̃, E/F ) ∈ Gal(E/F ), so σ|E lies in the conjugacy class Frq(E/F ).

By the Chebotarev density theorem for Gal(EK/K), there are infinitely many P in K
that are unramified in EK and satisfy FrP(EK/K) = FrQ(EK/K) and fP(K/F ) = 1.

Let p = P ∩ F , so p lies in Spl1(K/F ) and NP = N p. Discarding finitely many P, we
may assume p is unramified in EK.

Choose P̃ lying over P in EK such that σ = (P̃, EK/K). Note σ|E = (p̃, E/F ), where

p̃ = P̃ ∩ E, so the conjugacy classes Frp(E/F ) and Frq(E/F ) both contain σ|E and thus
coincide. This proves the conjugacy classes making up S1(E,K) are the Frobenius conjugacy
classes for primes in Spl1(K/F ) that are unramified in EK.

In the course of the above argument, we showed Frq(E/F ) contains σ|E for some (explicit)
σ in Gal(EK/K), and therefore each conjugacy class in S1(E,K) contains an element of
Gal(E/E ∩K). This settles the third item above.

As for the first item, that Gal(E/E∩K) ⊂ S1(E,K), pick any element of Gal(E/E∩K),
say σ|E where σ ∈ Gal(EK/K). The method of the proof so far shows σ|E = (p̃, E/F ) for
a prime p̃ in K where p = p̃ ∩ F lies in Spl1(K/F ) and p is unramified in EK. Therefore
σ|E is in S1(E,K). �

Since S1(E,K) is the smallest union of conjugacy classes containing a certain group,
it has no right to be a group automatically unless Gal(E/F ) is abelian, in which case
S1(E,K) = Gal(E/E ∩K).
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