FACTORING AFTER DEDEKIND

KEITH CONRAD

Let K be a number field and p be a prime number. When we factor (p) = pOg into
prime ideals, say
(p) = pi' -y’
we refer to the data of the e;’s, the exponents f; in the norms Np; = p/i, and g (the number
of p;’s), as the “shape” of the factorization of (p). (What we are leaving out of this is
explicit information about generators for the ideals p;.) Similarly, if a monic polynomial in
F,[T] factors into monic irreducibles as

mi (1) - -7y (T)",

we refer to the exponents e;, the degrees deg m;, and g as the “shape” of the factorization
of the polynomial in F,[T]. (This leaves out knowledge of the m;’s themselves as polyno-
mials.) There is a lovely theorem of Dedekind, building on earlier work of Kummer, which
describes a polynomial in Z[T'] whose factorization in F, [T for all but finitely many primes
p determines the shape of the factorization of pOg. In other words, factoring (p) into prime
ideals for all but finitely many p can be done by factoring a polynomial over a finite field
instead.

Theorem 1 (Dedekind). Let K be a number field and o € Ok such that K = Q(«). Let
f(T) be the minimal polynomial of o in Z[T). For any prime p not dividing [Ok : Z[a]],
write

f(T)=m(T) - my(T)% mod p
where the m;(T)’s are distinct monic irreducibles in ¥,[T]. Then (p) = pOk factors into
prime ideals as

(p) =9y -0y’

where there is a bijection between the p;’s and 7;(T)’s such that Np; = pi®8™i  In particular,
this applies for all p if O = Z[a].

Before proving Theorem 1, let’s look at two examples.

Example 2. Let K = Q(v/d) with d a squarefree integer. Then O = Z[w] where w = v/d
if d = 2,3 mod 4 and w = (14++/d)/2 if d = 1 mod 4. In the first case, w is a root of T2 — d,
so the way a prime p factors in O is reflected by how T2 —d factors in F,[T]. In the second
case, w is a root of T? — T + (1 —d) /4, so the way this polynomial factors modulo p tells us
how p factors in Og.

For instance, Table 1 shows how 72 — 10 factors modulo the first few primes and then
how the first few primes factor into prime ideals in Z[v/10]. Table 2 shows corresponding
information for the ring of integers Z[(1++/5)/2] of Q(+/5) using the polynomial 72 —T —1,
which has (1++1/5)/2 as a root. (Warning: since the ring of integers is not Z[v/5], we can’t
tell how all prime numbers factor in Q(v/5) by seeing how T2 — 5 factors. For example, (2)
is prime in Z[(1 + v/5)/2] because T? — T'— 1 mod 2 is irreducible; if you look instead at
how T2 — 5 mod 2 factors, you might be misled into thinking (2) = p2, but that is false.)
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p | T?-10modp | (p)
2 T2 p3
3(T=1)(T+1)| paps
5 T P2
7 T% - 10 (7)
11 T? - 10 (11)
13| (T —=6)(T—7) | p13pis

TABLE 1. Factoring in Q(1/10)

T? —T —1mod p

P (p)
2 T2+ T+1 (2)
3 T? -T -1 (3)
5 (T +2)? P2
7 T2 -T -1 (7)
1| (T —4)(T—-8) |puph
13 T2 -T -1 (13)

TABLE 2. Factoring in Q(v/5)

Regardless of the value of d mod 4, Z[V/d] is a subring of Ok with index 1 or 2. What
this means, by Theorem 1, is that in all cases we can determine how any odd prime p factors
in Ok by factoring T? — d mod p, even if O # Z[Vd]. We look at Q(1/5) again in this
light in Table 3. The prime 2 can’t be factored this way (T2 — 5 is reducible mod 2, but
2 stays prime in the integers of Q(v/5)), and Theorem 1 doesn’t apply to the prime 2 and

polynomial 72 — 5 anyway since 2 | [Of : Z[v/5]]. For the remaining primes in Table 3, the
shapes of the factorizations in Tables 2 and 3 match up prime by prime.

T? — 5 mod p

P (p)
2 (T -1)? (2)
3 T? -5 (3)
5 T P2
7 T? -5 (7)
1L | (T =4)(T —7) | pr1piy
13 T? -5 (13)

TABLE 3. Factoring in Q(v/5)

Example 3. Let K = Q(v/2). Without knowing Ox explicitly, certainly Z[v/2] C Ox.
Also, disc(Z[v/2]) = —2048 = 2! and disc(Z[v2]) = [0k : Z[V/2]]? disc(Ok), so any
prime p # 2 does not divide the index [Of : Z[v/2]]. Hence the way T* — 2 factors modulo

p is also the way (p) = pOx factors in O for all p # 2. Some sample calculations are in
Table 4.

Now that the reader has sufficient motivation to care about Theorem 1, let’s prove it.
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p T* — 2 mod p (p)

3 (T? 4+ T+ 2)(T? + 2T + 2) Poph

5 T -2 (5)

7 (T —2)(T = 5)(T% + 4) p7P7Pa
11 (T? + 4T + 8)(T? + 7T + 8) p121970
73 | (T' = 18)(T — 25)(T — 48)(T" — 55) | pr3p7sp7sb7s

TABLE 4. Factoring in Q(v/2)

Proof. The main idea is that when p 1 [Og : Z[a]] we will show the rings Ox/(p) and
F,[T]/(f(T)) are isomorphic. Then we will determine the shapes of the factorizations of
(p) and f(T') mod p in the same way from the structure of these isomorphic rings.

Let m =[Ok : Z]a]], so

(1) mQOg C Z[Oé] C Ok.

For any prime p, there is a natural ring homomorphism Z[a]/(p) — Ok /(p). When p does
not divide m, (1) implies the map Z[a]/(p) — Ok /(p) is onto: let mm’ =1 mod pZ, so for
any ¢ € O we have x = m’ - mz mod pOx and ma € Z[a], so m’ - mx € Z[a] too. Both
Z[a] and Ok are free rank n Z-modules, so Z[a]/(p) and O /(p) both have size p™, hence
the surjective ring homomorphism between them is an isomorphism:

Z[a]/(p) = Ok /(p).

Now we turn Z[a]/(p) into a quotient ring of F,[T]. We have Z[T]/(f(T)) = Z]o] as
rings by A(T) mod f(T) — h(«a), reducing both sides of the isomorphism modulo p implies

Z[al/(p) = Z[T]/(F(T).p)" = (Z/pZ)[T]/(J(T)) = Fp[T]/(F(T)).

Thus Fp[T]/(f(T)) and Ok /(p) are isomorphic rings, since both are isomorphic to Z[a]/(p).
Let f(T) = m(T)% -+ 7m4(T)% in F,[T] where the m;(T")’s are distinct monic irreducibles
and a; > 1. How can we determine g, e;, and degm; for all ¢ from the structure of the ring

F,[T]/(f(T))? The number g is the number of maximal ideals in F,[T]/(f(T)). Indeed,the
maximal ideals of F,,[T]/(f(T)) are the ideals of the form M/(f(T)) where M is a maximal
ideal of F,[T] containing (f(T)). Any maximal ideal in F,[T]/(f(T)) has the form (r) for
one monic irreducible 7 in F,[T], and () contains (f(T')) precisely when 7 | f(T) in F,[T].

For each maximal ideal M of F,[T]/(f(T)), writing it as (m;)/(f(T)), we have
(Fp[T1/(F(T)))/M = Fy[T]/(m:(T)),

whose size is p So counting the size of the residue ring modulo M tells us the degree
of the irreducible polynomial associated to M. Finally, we show the multiplicity e; of
7;(T) in the factorization of f(T) is the number of different positive integral powers of
M. Under the reduction map F,[T] — F,[T]/(f(T)), the ideal (m;) maps onto the ideal
M = (m;)/(f(T)), so we can compute powers of M by computing powers of (r;) in F,[T]
first and then reducing. For k > 1, the kth power of (m;) in F,[T] is (m)* = (7F), whose

(2

I

deg m;

IThe ideal (f(T), p) need not be prime in Z[T), e.g., (T? + 1,5) is not prime in Z[T] since T + 1 mod 5
is reducible: T2 41 = (T —2)(T —3) mod 5 and (T —2)(T —3) € (T? +1,5) with T — 2,7 -3 & (T + 1, 5).
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Thus the positive integral powers of M in F,[T]/(f(T)) are the ideals (7¥)/(f(T)) for
1 < k < e;. The ring modulo such an ideal is isomorphic to F,[T]/(¥), which has different
size for different k, so these powers of M are different from each other.

To summarize, the monic irreducible factors of f(T) in F,[T] are in bijection with the
maximal ideals of the ring F,[T]/(f(T)). For each monic irreducible factor, its degree as a
polynomial and its multiplicity in the factorization of f(T) can be read off from counting the
size of the residue ring modulo the corresponding maximal ideal in F,[T] and the number
of different positive powers of this maximal ideal.

Now we turn to O /(p). Factor (p) = p{* - - pg’ with distinct primes p; and e; > 1. (We
use the same notation g, e; as in the polynomial factorization because we’ll see these are the
same parameters, but we will not be using the polynomial information in our discussion,
so this duplication of notation should not lead to any confusion.) Let Np; = pfi. Every
maximal ideal of O /(p) has the form p/(p) where p is a maximal ideal of O containing
(p), and containing (p) is the same as dividing (p), so p is one of py,...,pg. This shows the
maximal ideals of O /(p) are in bijection with the prime factors of (p): they all look like
pi/(p) for some i = 1,2,...,g. For each maximal ideal p;/(p) in O /(p), its residue ring
(O1/(p))/(9:/(p)) = O /p; has size Np; = p. What are the powers of p,/(p) in O /(p)?
They are images of powers of p; in O under the reduction map Ox — O /(p). The image
of p¥ under this reduction is (p¥ + (p))/(p) and

pF,  if1<k<e,

k = ocd(pF —
p; + (p) = ged(pf, () {p?’ T

so the positive integral powers of p;/(p) are the ideals p¥/(p) for 1 < k < e;. Such ideals are
different for different & (for instance, the quotients of O /(p) by these ideals are rings of
different size), so e; is the number of different positive integral powers of p;/(p) in Ok /(p).
We have read off the shape of the factorization of (p) from the ring structure of Ox/(p)
in the same way that we did for the shape of the factorization of f(T') from the structure
of F,[T]/(f(T)): for each maximal ideal in O /(p), count the size of its residue ring as a
power of p and also count the number of different positive powers of the maximal ideal.
Such counting over all maximal ideals returns the same answers for isomorphic finite rings,
so the isomorphism between F,[T]/(f(T)) and O /(p) shows the factorizations of f(7T') and
(p) have the same shape. O

Corollary 4. Let K = Q(«) and a € Og have minimal polynomial f(T) in Z[T]. For any
prime p not dividing disc(Z[a]), the shapes of the factorizations of (p) in O and f(T) in
F,[T] agree. In particular, if f(T) mod p is separable then the shapes of the factorizations
of (p) and f(T) agree.

Proof. Since disc(Z[a]) = [0 : Z[a]]?disc(Ok), if p 1 disc(Z[a]) then p { [0k : Z[a]],
so Theorem 1 applies to p. The ring discriminant disc(Z[«]) and polynomial discriminant
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disc(f) are equal, and if f(7") mod p is separable then disc(f) # 0 mod p (and conversely!),
so we can apply Theorem 1 to all primes p such that f(7') mod p is separable. O

In practice, Corollary 4 is the way one applies Theorem 1 to factor most primes, because
the hypotheses in Corollary 4 are computable in terms of a alone; no knowledge of the full
ring O is required and all but finitely many primes don’t divide disc(Z[«]). If p | disc(Z[a]),
how can we determine the factorization of pOx? Well, try to change a: look for a 5 € Ok
such that K = Q(f) and p does not divide disc(Z[g]) instead. If we can do this, then we
can factor (p) using the minimal polynomial of 5 in place of that of a.

Example 5. Let K = Q(a) where « is a root of T3+27+22 (Eisenstein at 2, so irreducible).
Since disc(Z[a]) = —22-52-131, any prime p # 2, 5, or 131 can be factored in O by factoring
T3+2T+22 in Fy[T]. The number 8 = 1(a®+a—2) generates K (since 8 € K, [K : Q] =3
is prime, and 8 ¢ Q),% 3 is a root of T3 + 2T?% + 4T — 2, and disc(Z[3]) = —22 - 131. This
discriminant is not divisible by 5, so the way 5 factors in O is the way T3 4 272 + 4T — 2
factors in F5[T]. The factorization is (7' — 1)(T — 3)(T — 4), so 50k = pspspr where each
prime ideal has norm 5.

Observe that, using the polynomial for o, we have 7% +2T +22 = (T —1)(T — 3) mod 5,
which would predict the wrong factorization of 5 in O.

Example 6. Let K = Q(+/10), so Z[/10] C Ok. Since disc(Z[v/10]) = —2700 = —22.33.52,
any prime p other than 2, 3, or 5 can be factored in Ox by seeing how T3 — 10 factors in
Fy[T].

Let 8 = % + %\3@ + %m This is integral, being a root of 7% — T? — 3T — 3. The
discriminant of Z[f] is —300 = —22 - 3 - 52, which is still divisible by 2, 3, and 5. However,
notice the exponent of 3 is just 1. Since disc(Z[f]) = [0 : Z[B]]? disc(Ok), [Ox : Z[3]] is
not divisible by 3. Therefore Theorem 1, rather than Corollary 4, tells us that the way 3
factors in O is the way T2 — T2 — 3T — 3 factors modulo 3: the polynomial modulo 3 is
T?(T — 1), so 30k = p3ph.

We knew we weren’t justified in factoring 3 in Ok by factoring 72 — 10 mod 3, and now
we see for sure that the two factorizations don’t match: 7% — 10 = (T — 1) mod 3.

Because disc(Of) is a factor of disc(Z[a]) for any o € O which generates K over Q, no
prime factor of disc(Of) will ever be factored using Corollary 4. Since Theorem 1 is about
[Ok : Z[a]] rather than its multiple disc(Z[a]), if we know O well enough to compute the
indices [Og : Z[a]] for varying «, we may hope that, for any prime number p, there is an
a such that [Og : Z[«]] is not divisible by p. Then Theorem 1 will tell us the shape of the
factorization of (p) from the shape of the factorization of f(7') mod p, where f(T) is the
minimal polynomial of o over Q. Alas, there are some number fields K such that a certain
prime number divides the index [Og : Z[a]] for all o in Ok. Then it is not possible to
determine the factorization of that prime number by the method of Theorem 1.

Example 7. Let K = Q() where v — 4% — 2y — 8 = 0. We will call this Dedekind’s field.
Since disc(Z[y]) = —22- 503, Corollary 4 tells us that any prime p other than 2 and 503 can
be factored in O by factoring T3 — T? — 2T — 8 mod p. Table 5 shows how this works.

It can be shown that [Ox : Z[y]] = 2, so by Theorem 1 we can also get the factorization
of 503 by factoring the same cubic:

T3 —T? — 2T — 8 = (T — 299)(T — 354)% mod 503,

2Since K = Q(B), there must be a formula for « in terms of 3. Explicitly, o = —% — 8 — 2.
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p‘T3—T2—2T—8m0dp‘ (p)

3 T3 —-T? 2T -8 (3)

5 (T —1)(T* +3) psp2s
59 | (T'—=11)(T — 20)(T — 29) | psobsePso
TABLE 5. Factoring in Dedekind’s field

so (503) = pp’ where Np = 503 and Np’ = 5032. If we naively try to apply Theorem 1 to
p = 2 in Dedekind’s field using the same cubic we get an incorrect result: 7% -T2 —2T -8 =
T%(T + 1) mod 2, but (2) is not of the form p3p,: it decomposes as paphph.

In fact, we can’t use Theorem 1 to factor 2 in Dedekind’s field because it can be shown
that [Ox : Z[«a]] is even for every o € Op. Historically, K was the first known number
field for which O does not have the form Z[a] for some a. It was found by Dedekind [1,
pp. 30-36], and even though he described K using a root of f(X) = X3 — X? —2X — 8, it
often appears in the literature using a root of —f(—X) = X3+ X? — 2X + 8, which makes
it harder to remember the signs of the coefficients.

So far we have used the shape of a factorization of a polynomial over F), to tell us the
shape of the factorization of p in O, but we have said nothing about how to find generators
of the prime ideals dividing pOg. Generators can be written down using the irreducible
factors of the polynomial modulo p.

Theorem 8. In the notation of Theorem 1, when p; is the prime ideal corresponding to
mi(T) we have the formula p; = (p,1l;(a)) where 11;(T) is any polynomial in Z[T] that
reduces mod p to m;(T) mod p.

Let’s look at examples to understand how the formula for p; works before proving it.

Example 9. In Z[/10], 72 — 10 = (T + 1)(T — 1) mod 3, so the factorization of (3) in
Z[/10] is psps where p3 = (3,v/10 + 1) and pj = (3,/10 — 1). Another factorization mod 3
is T2—10 = (T+4)(T—7) mod 3, so these prime ideals are also (3,v/10+4) and (3,+/10—7).
It is easy to check the first of these ideals is p3 and the second is pf.

By the way, these ideals are non-principal since they have norm 3 while no element of
Z[/10] has absolute norm 3: if #2 — 10y = +3 then 22 = 43 mod 5, but neither 3 nor —3
is a square modulo 5.

To factor 5 in Z[/10], since T2 — 10 = T2 mod 5 we have (5) = (5,4/10)2. The prime
(5,4/10) is also non-principal since it has norm 5 and (exercise) no element of Z[+/10] has
norm =+£5.

Example 10. In Z[v/2], which is the ring of integers of Q(+/2), let’s factor 5. Since
T3 —2 = (T — 3)(T? + 3T + 4) mod 5 we have (5) = pspas. Explicitly,
Py =(5,V2-2), px=(5V4+3V2+4).

These ideals are actually principal, because we can find elements with norm 5 and 25. The
general formula for norms of elements is

NQ(%)/Q(a + V2 + V1) = a® + 20 + 4¢® — 6abe,

S0 NQ(%)/Q(H—%) = 5and Nq(%)/Q(S—&—%—i—Qﬁ) = 25. This means the ideal (1++/4) is
prime, and pj is the only ideal with norm 5, so (1++/4) = p5. Does ps divide (34 /2+2v/4)?
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Since p5 = (5, ¥/2—2), we have ¥/2 = 2 mod p5, 50 3+ V/2+2V/4 = 3+2+4 = 9 # 0 mod ps,
s0 p5 does not divide (3 + /2 + 2v/4). Therefore we must have (3 + /2 + 2v/4) = pos.

Now let’s prove Theorem 8.

Proof. Let’s look closely at the isomorphism between F,[T]/(f(T)) and Ok /(p) from the
proof of Theorem 1 to see how maximal ideals in these two rings are identified with each
other. When p does not divide [Og : Z[a]], we constructed the isomorphism using other
rings as intermediaries:

(2) Fy[T1/(f(T)) = Z[T]/(p, f(T)) = Z[e]/ (p) = Ok /(p)-

Working through these isomorphisms, a recipe for the composite isomorphism is this: pick
a congruence class h(T) mod f(T), lift it to h(T) € Z[T], reduce modulo (p, f(T')) and then
substitute in «a for X. What we get at the end is h(a) mod (p) € Ok /(p).

To figure out what the ideals p; are, we can just trace through the isomorphisms to
find the image in Ok /(p) of the maximal ideals of F,[T]/(f(T)). The maximal ideals in
F,[T]/(f(T)) are those of the form (7(T))/(f(T)) where 7(T') is a monic irreducible factor
of f(T). Let II(T) € Z[T) be alifting of (T into Z[T]. (We could choose the lifting so that
degII = deg m, but this is not required.) Looking at equation (2), the ideal (7(T))/(f(T))
in F,[T]/(f(T)) is identified with the ideal (p,II(T))/(p, f(T)) in Z[T]/(p, f(T)), and this
is identified with the ideal (p,II(«))/(p) in Ox/(p). This is the reduction from O of the
ideal (p,II(c)), which is necessarily maximal in Ok since (p,II(«))/(p) is maximal in Og.

Therefore the prime ideals dividing (p) in O are p; = (p,IL;(«)) as II;(T) runs over
lifts of the different monic irreducible factors m;(T') of f(T') mod p. If we choose our liftings
II;(T) to have the same degree as m;(T) for all i, which is possible, then Np; = pdeslli for
all 7. (Il
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