
FACTORING AFTER DEDEKIND

KEITH CONRAD

Let K be a number field and p be a prime number. When we factor (p) = pOK into
prime ideals, say

(p) = pe11 · · · p
eg
g ,

we refer to the data of the ei’s, the exponents fi in the norms Npi = pfi , and g (the number
of pi’s), as the “shape” of the factorization of (p). (What we are leaving out of this is
explicit information about generators for the ideals pi.) Similarly, if a monic polynomial in
Fp[T ] factors into monic irreducibles as

π1(T )e1 · · ·πg(T )eg ,

we refer to the exponents ei, the degrees deg πi, and g as the “shape” of the factorization
of the polynomial in Fp[T ]. (This leaves out knowledge of the πi’s themselves as polyno-
mials.) There is a lovely theorem of Dedekind, building on earlier work of Kummer, which
describes a polynomial in Z[T ] whose factorization in Fp[T ] for all but finitely many primes
p determines the shape of the factorization of pOK . In other words, factoring (p) into prime
ideals for all but finitely many p can be done by factoring a polynomial over a finite field
instead.

Theorem 1 (Dedekind). Let K be a number field and α ∈ OK such that K = Q(α). Let
f(T ) be the minimal polynomial of α in Z[T ]. For any prime p not dividing [OK : Z[α]],
write

f(T ) ≡ π1(T )e1 · · ·πg(T )eg mod p

where the πi(T )’s are distinct monic irreducibles in Fp[T ]. Then (p) = pOK factors into
prime ideals as

(p) = pe11 · · · p
eg
g

where there is a bijection between the pi’s and πi(T )’s such that Npi = pdeg πi. In particular,
this applies for all p if OK = Z[α].

Before proving Theorem 1, let’s look at two examples.

Example 2. Let K = Q(
√
d) with d a squarefree integer. Then OK = Z[ω] where ω =

√
d

if d ≡ 2, 3 mod 4 and ω = (1 +
√
d)/2 if d ≡ 1 mod 4. In the first case, ω is a root of T 2− d,

so the way a prime p factors in OK is reflected by how T 2−d factors in Fp[T ]. In the second
case, ω is a root of T 2−T + (1− d)/4, so the way this polynomial factors modulo p tells us
how p factors in OK .

For instance, Table 1 shows how T 2 − 10 factors modulo the first few primes and then
how the first few primes factor into prime ideals in Z[

√
10]. Table 2 shows corresponding

information for the ring of integers Z[(1+
√

5)/2] of Q(
√

5) using the polynomial T 2−T −1,
which has (1+

√
5)/2 as a root. (Warning: since the ring of integers is not Z[

√
5], we can’t

tell how all prime numbers factor in Q(
√

5) by seeing how T 2− 5 factors. For example, (2)
is prime in Z[(1 +

√
5)/2] because T 2 − T − 1 mod 2 is irreducible; if you look instead at

how T 2 − 5 mod 2 factors, you might be misled into thinking (2) = p2, but that is false.)
1
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p T 2 − 10 mod p (p)

2 T 2 p2
2

3 (T − 1)(T + 1) p3p
′
3

5 T 2 p2
5

7 T 2 − 10 (7)
11 T 2 − 10 (11)
13 (T − 6)(T − 7) p13p

′
13

Table 1. Factoring in Q(
√

10)

p T 2 − T − 1 mod p (p)

2 T 2 + T + 1 (2)
3 T 2 − T − 1 (3)
5 (T + 2)2 p2

5

7 T 2 − T − 1 (7)
11 (T − 4)(T − 8) p11p

′
11

13 T 2 − T − 1 (13)

Table 2. Factoring in Q(
√

5)

Regardless of the value of d mod 4, Z[
√
d] is a subring of OK with index 1 or 2. What

this means, by Theorem 1, is that in all cases we can determine how any odd prime p factors
in OK by factoring T 2 − d mod p, even if OK 6= Z[

√
d]. We look at Q(

√
5) again in this

light in Table 3. The prime 2 can’t be factored this way (T 2 − 5 is reducible mod 2, but
2 stays prime in the integers of Q(

√
5)), and Theorem 1 doesn’t apply to the prime 2 and

polynomial T 2 − 5 anyway since 2 | [OK : Z[
√

5]]. For the remaining primes in Table 3, the
shapes of the factorizations in Tables 2 and 3 match up prime by prime.

p T 2 − 5 mod p (p)

2 (T − 1)2 (2)
3 T 2 − 5 (3)
5 T 2 p2

5

7 T 2 − 5 (7)
11 (T − 4)(T − 7) p11p

′
11

13 T 2 − 5 (13)

Table 3. Factoring in Q(
√

5)

Example 3. Let K = Q( 4
√

2). Without knowing OK explicitly, certainly Z[ 4
√

2] ⊂ OK .
Also, disc(Z[ 4

√
2]) = −2048 = −211 and disc(Z[ 4

√
2]) = [OK : Z[ 4

√
2]]2 disc(OK), so any

prime p 6= 2 does not divide the index [OK : Z[ 4
√

2]]. Hence the way T 4 − 2 factors modulo
p is also the way (p) = pOK factors in OK for all p 6= 2. Some sample calculations are in
Table 4.

Now that the reader has sufficient motivation to care about Theorem 1, let’s prove it.
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p T 4 − 2 mod p (p)

3 (T 2 + T + 2)(T 2 + 2T + 2) p9p
′
9

5 T 4 − 2 (5)
7 (T − 2)(T − 5)(T 2 + 4) p7p

′
7p49

11 (T 2 + 4T + 8)(T 2 + 7T + 8) p121p
′
121

73 (T − 18)(T − 25)(T − 48)(T − 55) p73p
′
73p

′′
73p

′′′
73

Table 4. Factoring in Q( 4
√

2)

Proof. The main idea is that when p - [OK : Z[α]] we will show the rings OK/(p) and
Fp[T ]/(f(T )) are isomorphic. Then we will determine the shapes of the factorizations of
(p) and f(T ) mod p in the same way from the structure of these isomorphic rings.

Let m = [OK : Z[α]], so

(1) mOK ⊂ Z[α] ⊂ OK .

For any prime p, there is a natural ring homomorphism Z[α]/(p)→ OK/(p). When p does
not divide m, (1) implies the map Z[α]/(p)→ OK/(p) is onto: let mm′ ≡ 1 mod pZ, so for
any x ∈ OK we have x ≡ m′ ·mx mod pOK and mx ∈ Z[α], so m′ ·mx ∈ Z[α] too. Both
Z[α] and OK are free rank n Z-modules, so Z[α]/(p) and OK/(p) both have size pn, hence
the surjective ring homomorphism between them is an isomorphism:

Z[α]/(p) ∼= OK/(p).

Now we turn Z[α]/(p) into a quotient ring of Fp[T ]. We have Z[T ]/(f(T )) ∼= Z[α] as
rings by h(T ) mod f(T ) 7→ h(α), reducing both sides of the isomorphism modulo p implies

Z[α]/(p) ∼= Z[T ]/(f(T ), p)1 ∼= (Z/pZ)[T ]/(f(T )) = Fp[T ]/(f(T )).

Thus Fp[T ]/(f(T )) and OK/(p) are isomorphic rings, since both are isomorphic to Z[α]/(p).

Let f(T ) = π1(T )e1 · · ·πg(T )eg in Fp[T ] where the πi(T )’s are distinct monic irreducibles
and ai ≥ 1. How can we determine g, ei, and deg πi for all i from the structure of the ring
Fp[T ]/(f(T ))? The number g is the number of maximal ideals in Fp[T ]/(f(T )). Indeed,the

maximal ideals of Fp[T ]/(f(T )) are the ideals of the form M/(f(T )) where M is a maximal

ideal of Fp[T ] containing (f(T )). Any maximal ideal in Fp[T ]/(f(T )) has the form (π) for

one monic irreducible π in Fp[T ], and (π) contains (f(T )) precisely when π | f(T ) in Fp[T ].

For each maximal ideal M of Fp[T ]/(f(T )), writing it as (πi)/(f(T )), we have

(Fp[T ]/(f(T )))/M ∼= Fp[T ]/(πi(T )),

whose size is pdeg πi . So counting the size of the residue ring modulo M tells us the degree
of the irreducible polynomial associated to M . Finally, we show the multiplicity ei of
πi(T ) in the factorization of f(T ) is the number of different positive integral powers of
M . Under the reduction map Fp[T ] → Fp[T ]/(f(T )), the ideal (πi) maps onto the ideal

M = (πi)/(f(T )), so we can compute powers of M by computing powers of (πi) in Fp[T ]

first and then reducing. For k ≥ 1, the kth power of (πi) in Fp[T ] is (πi)
k = (πki ), whose

1The ideal (f(T ), p) need not be prime in Z[T ], e.g., (T 2 + 1, 5) is not prime in Z[T ] since T 2 + 1 mod 5
is reducible: T 2 +1 ≡ (T − 2)(T − 3) mod 5 and (T − 2)(T − 3) ∈ (T 2 +1, 5) with T − 2, T − 3 6∈ (T 2 +1, 5).
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image in Fp[T ]/(f(T )) is ((πki ) + (f(T )))/(f(T )). This image is also Mk. Since

(πki ) + (f(T )) = (gcd(πki , f(T ))) =

{
(πki ), if 1 ≤ k < ei,

(πeii ), if k ≥ ei,
we have

Mk =

{
(πki )/(f(T )), if 1 ≤ k < ei,

(πeii )/(f(T )), if k ≥ ei.
Thus the positive integral powers of M in Fp[T ]/(f(T )) are the ideals (πki )/(f(T )) for

1 ≤ k ≤ ei. The ring modulo such an ideal is isomorphic to Fp[T ]/(πki ), which has different
size for different k, so these powers of M are different from each other.

To summarize, the monic irreducible factors of f(T ) in Fp[T ] are in bijection with the

maximal ideals of the ring Fp[T ]/(f(T )). For each monic irreducible factor, its degree as a

polynomial and its multiplicity in the factorization of f(T ) can be read off from counting the
size of the residue ring modulo the corresponding maximal ideal in Fp[T ] and the number
of different positive powers of this maximal ideal.

Now we turn to OK/(p). Factor (p) = pe11 · · · p
eg
g with distinct primes pi and ei ≥ 1. (We

use the same notation g, ei as in the polynomial factorization because we’ll see these are the
same parameters, but we will not be using the polynomial information in our discussion,
so this duplication of notation should not lead to any confusion.) Let Npi = pfi . Every
maximal ideal of OK/(p) has the form p/(p) where p is a maximal ideal of OK containing
(p), and containing (p) is the same as dividing (p), so p is one of p1, . . . , pg. This shows the
maximal ideals of OK/(p) are in bijection with the prime factors of (p): they all look like
pi/(p) for some i = 1, 2, . . . , g. For each maximal ideal pi/(p) in OK/(p), its residue ring
(OK/(p))/(pi/(p)) ∼= OK/pi has size Npi = pfi . What are the powers of pi/(p) in OK/(p)?
They are images of powers of pi in OK under the reduction map OK → OK/(p). The image
of pki under this reduction is (pki + (p))/(p) and

pki + (p) = gcd(pki , (p)) =

{
pki , if 1 ≤ k < ei,

peii , if k ≥ ei,

so the positive integral powers of pi/(p) are the ideals pki /(p) for 1 ≤ k ≤ ei. Such ideals are
different for different k (for instance, the quotients of OK/(p) by these ideals are rings of
different size), so ei is the number of different positive integral powers of pi/(p) in OK/(p).
We have read off the shape of the factorization of (p) from the ring structure of OK/(p)
in the same way that we did for the shape of the factorization of f(T ) from the structure
of Fp[T ]/(f(T )): for each maximal ideal in OK/(p), count the size of its residue ring as a
power of p and also count the number of different positive powers of the maximal ideal.
Such counting over all maximal ideals returns the same answers for isomorphic finite rings,
so the isomorphism between Fp[T ]/(f(T )) and OK/(p) shows the factorizations of f(T ) and
(p) have the same shape. �

Corollary 4. Let K = Q(α) and α ∈ OK have minimal polynomial f(T ) in Z[T ]. For any
prime p not dividing disc(Z[α]), the shapes of the factorizations of (p) in OK and f(T ) in
Fp[T ] agree. In particular, if f(T ) mod p is separable then the shapes of the factorizations

of (p) and f(T ) agree.

Proof. Since disc(Z[α]) = [OK : Z[α]]2 disc(OK), if p - disc(Z[α]) then p - [OK : Z[α]],
so Theorem 1 applies to p. The ring discriminant disc(Z[α]) and polynomial discriminant
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disc(f) are equal, and if f(T ) mod p is separable then disc(f) 6≡ 0 mod p (and conversely!),
so we can apply Theorem 1 to all primes p such that f(T ) mod p is separable. �

In practice, Corollary 4 is the way one applies Theorem 1 to factor most primes, because
the hypotheses in Corollary 4 are computable in terms of α alone; no knowledge of the full
ring OK is required and all but finitely many primes don’t divide disc(Z[α]). If p | disc(Z[α]),
how can we determine the factorization of pOK? Well, try to change α: look for a β ∈ OK
such that K = Q(β) and p does not divide disc(Z[β]) instead. If we can do this, then we
can factor (p) using the minimal polynomial of β in place of that of α.

Example 5. Let K = Q(α) where α is a root of T 3+2T+22 (Eisenstein at 2, so irreducible).
Since disc(Z[α]) = −22 ·52 ·131, any prime p 6= 2, 5, or 131 can be factored in OK by factoring
T 3 +2T+22 in Fp[T ]. The number β = 1

5(α2 +α−2) generates K (since β ∈ K, [K : Q] = 3

is prime, and β 6∈ Q),2 β is a root of T 3 + 2T 2 + 4T − 2, and disc(Z[β]) = −22 · 131. This
discriminant is not divisible by 5, so the way 5 factors in OK is the way T 3 + 2T 2 + 4T − 2
factors in F5[T ]. The factorization is (T − 1)(T − 3)(T − 4), so 5OK = p5p

′
5p

′′
5 where each

prime ideal has norm 5.
Observe that, using the polynomial for α, we have T 3 +2T +22 ≡ (T −1)2(T −3) mod 5,

which would predict the wrong factorization of 5 in OK .

Example 6. LetK = Q( 3
√

10), so Z[ 3
√

10] ⊂ OK . Since disc(Z[ 3
√

10]) = −2700 = −22·33·52,
any prime p other than 2, 3, or 5 can be factored in OK by seeing how T 3 − 10 factors in
Fp[T ].

Let β = 1
3 + 1

3
3
√

10 + 1
3

3
√

100. This is integral, being a root of T 3 − T 2 − 3T − 3. The

discriminant of Z[β] is −300 = −22 · 3 · 52, which is still divisible by 2, 3, and 5. However,
notice the exponent of 3 is just 1. Since disc(Z[β]) = [OK : Z[β]]2 disc(OK), [OK : Z[β]] is
not divisible by 3. Therefore Theorem 1, rather than Corollary 4, tells us that the way 3
factors in OK is the way T 3 − T 2 − 3T − 3 factors modulo 3: the polynomial modulo 3 is
T 2(T − 1), so 3OK = p2

3p
′
3.

We knew we weren’t justified in factoring 3 in OK by factoring T 3 − 10 mod 3, and now
we see for sure that the two factorizations don’t match: T 3 − 10 ≡ (T − 1)3 mod 3.

Because disc(OK) is a factor of disc(Z[α]) for any α ∈ OK which generates K over Q, no
prime factor of disc(OK) will ever be factored using Corollary 4. Since Theorem 1 is about
[OK : Z[α]] rather than its multiple disc(Z[α]), if we know OK well enough to compute the
indices [OK : Z[α]] for varying α, we may hope that, for any prime number p, there is an
α such that [OK : Z[α]] is not divisible by p. Then Theorem 1 will tell us the shape of the
factorization of (p) from the shape of the factorization of f(T ) mod p, where f(T ) is the
minimal polynomial of α over Q. Alas, there are some number fields K such that a certain
prime number divides the index [OK : Z[α]] for all α in OK . Then it is not possible to
determine the factorization of that prime number by the method of Theorem 1.

Example 7. Let K = Q(γ) where γ3− γ2− 2γ − 8 = 0. We will call this Dedekind’s field.
Since disc(Z[γ]) = −22 · 503, Corollary 4 tells us that any prime p other than 2 and 503 can
be factored in OK by factoring T 3 − T 2 − 2T − 8 mod p. Table 5 shows how this works.

It can be shown that [OK : Z[γ]] = 2, so by Theorem 1 we can also get the factorization
of 503 by factoring the same cubic:

T 3 − T 2 − 2T − 8 ≡ (T − 299)(T − 354)2 mod 503,

2Since K = Q(β), there must be a formula for α in terms of β. Explicitly, α = −β2 − β − 2.
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p T 3 − T 2 − 2T − 8 mod p (p)

3 T 3 − T 2 − 2T − 8 (3)
5 (T − 1)(T 2 + 3) p5p25

59 (T − 11)(T − 20)(T − 29) p59p
′
59p

′′
59

Table 5. Factoring in Dedekind’s field

so (503) = pp′ where Np = 503 and Np′ = 5032. If we naively try to apply Theorem 1 to
p = 2 in Dedekind’s field using the same cubic we get an incorrect result: T 3−T 2−2T−8 ≡
T 2(T + 1) mod 2, but (2) is not of the form p2

2p
′
2: it decomposes as p2p

′
2p

′′
2.

In fact, we can’t use Theorem 1 to factor 2 in Dedekind’s field because it can be shown
that [OK : Z[α]] is even for every α ∈ OK . Historically, K was the first known number
field for which OK does not have the form Z[α] for some α. It was found by Dedekind [1,
pp. 30–36], and even though he described K using a root of f(X) = X3 −X2 − 2X − 8, it
often appears in the literature using a root of −f(−X) = X3 +X2 − 2X + 8, which makes
it harder to remember the signs of the coefficients.

So far we have used the shape of a factorization of a polynomial over Fp to tell us the
shape of the factorization of p in OK , but we have said nothing about how to find generators
of the prime ideals dividing pOK . Generators can be written down using the irreducible
factors of the polynomial modulo p.

Theorem 8. In the notation of Theorem 1, when pi is the prime ideal corresponding to
πi(T ) we have the formula pi = (p,Πi(α)) where Πi(T ) is any polynomial in Z[T ] that
reduces mod p to πi(T ) mod p.

Let’s look at examples to understand how the formula for pi works before proving it.

Example 9. In Z[
√

10], T 2 − 10 ≡ (T + 1)(T − 1) mod 3, so the factorization of (3) in
Z[
√

10] is p3p
′
3 where p3 = (3,

√
10 + 1) and p′3 = (3,

√
10− 1). Another factorization mod 3

is T 2−10 ≡ (T+4)(T−7) mod 3, so these prime ideals are also (3,
√

10+4) and (3,
√

10−7).
It is easy to check the first of these ideals is p3 and the second is p′3.

By the way, these ideals are non-principal since they have norm 3 while no element of
Z[
√

10] has absolute norm 3: if x2 − 10y2 = ±3 then x2 ≡ ±3 mod 5, but neither 3 nor −3
is a square modulo 5.

To factor 5 in Z[
√

10], since T 2 − 10 ≡ T 2 mod 5 we have (5) = (5,
√

10)2. The prime
(5,
√

10) is also non-principal since it has norm 5 and (exercise) no element of Z[
√

10] has
norm ±5.

Example 10. In Z[ 3
√

2], which is the ring of integers of Q( 3
√

2), let’s factor 5. Since
T 3 − 2 ≡ (T − 3)(T 2 + 3T + 4) mod 5 we have (5) = p5p25. Explicitly,

p5 = (5,
3
√

2− 2), p25 = (5,
3
√

4 + 3
3
√

2 + 4).

These ideals are actually principal, because we can find elements with norm 5 and 25. The
general formula for norms of elements is

NQ( 3√2)/Q(a+ b
3
√

2 + c
3
√

4) = a3 + 2b3 + 4c3 − 6abc,

so NQ( 3√2)/Q(1+ 3
√

4) = 5 and NQ( 3√2)/Q(3+ 3
√

2+2 3
√

4) = 25. This means the ideal (1+ 3
√

4) is

prime, and p5 is the only ideal with norm 5, so (1+ 3
√

4) = p5. Does p5 divide (3+ 3
√

2+2 3
√

4)?
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Since p5 = (5, 3
√

2−2), we have 3
√

2 ≡ 2 mod p5, so 3+ 3
√

2+2 3
√

4 ≡ 3+2+4 ≡ 9 6≡ 0 mod p5,
so p5 does not divide (3 + 3

√
2 + 2 3

√
4). Therefore we must have (3 + 3

√
2 + 2 3

√
4) = p25.

Now let’s prove Theorem 8.

Proof. Let’s look closely at the isomorphism between Fp[T ]/(f(T )) and OK/(p) from the
proof of Theorem 1 to see how maximal ideals in these two rings are identified with each
other. When p does not divide [OK : Z[α]], we constructed the isomorphism using other
rings as intermediaries:

(2) Fp[T ]/(f(T )) ∼= Z[T ]/(p, f(T )) ∼= Z[α]/(p) ∼= OK/(p).

Working through these isomorphisms, a recipe for the composite isomorphism is this: pick
a congruence class h(T ) mod f(T ), lift it to h(T ) ∈ Z[T ], reduce modulo (p, f(T )) and then
substitute in α for X. What we get at the end is h(α) mod (p) ∈ OK/(p).

To figure out what the ideals pi are, we can just trace through the isomorphisms to
find the image in OK/(p) of the maximal ideals of Fp[T ]/(f(T )). The maximal ideals in

Fp[T ]/(f(T )) are those of the form (π(T ))/(f(T )) where π(T ) is a monic irreducible factor

of f(T ). Let Π(T ) ∈ Z[T ] be a lifting of π(T ) into Z[T ]. (We could choose the lifting so that
deg Π = deg π, but this is not required.) Looking at equation (2), the ideal (π(T ))/(f(T ))
in Fp[T ]/(f(T )) is identified with the ideal (p,Π(T ))/(p, f(T )) in Z[T ]/(p, f(T )), and this
is identified with the ideal (p,Π(α))/(p) in OK/(p). This is the reduction from OK of the
ideal (p,Π(α)), which is necessarily maximal in OK since (p,Π(α))/(p) is maximal in OK .

Therefore the prime ideals dividing (p) in OK are pi = (p,Πi(α)) as Πi(T ) runs over
lifts of the different monic irreducible factors πi(T ) of f(T ) mod p. If we choose our liftings
Πi(T ) to have the same degree as πi(T ) for all i, which is possible, then Npi = pdeg Πi for
all i. �
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