DEDEKIND'S INDEX THEOREM

KEITH CONRAD

1. Introduction

Let $K=\mathbf{Q}(\alpha)$ where α is an algebraic integer with minimal polynomial $f(T) \in \mathbf{Z}[T]$. For a prime p, Dedekind [3, Sect. 2] showed the prime ideal decomposition of p in \mathcal{O}_{K} can be read off from the irreducible factorization of $f(T) \bmod p$ in $\mathbf{F}_{p}[T]$ provided $p \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$:

$$
\begin{equation*}
f(T) \equiv \bar{\pi}_{1}(T)^{e_{1}} \cdots \bar{\pi}_{g}(T)^{e_{g}} \bmod p \Longrightarrow p \mathcal{O}_{K}=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{g}^{e_{g}}, \tag{1.1}
\end{equation*}
$$

where $\bar{\pi}_{1}(T), \ldots, \bar{\pi}_{g}(T)$ are distinct monic irreducibles in $\mathbf{F}_{p}[T], \mathrm{N}\left(\mathfrak{p}_{i}\right)=p^{\operatorname{deg} \bar{\pi}_{i}}$, and $\mathfrak{p}_{i}=$ ($p, \pi_{i}(\alpha)$) where $\pi_{i}(T)$ is an arbitrary monic lift of $\bar{\pi}_{i}(T)$ to $\mathbf{Z}[T]$.

If $p \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ then the factorization of $p \mathcal{O}_{K}$ may or may not match that of $f(T) \bmod p$.
Example 1.1. If $K=\mathbf{Q}(\sqrt[3]{12})$ and $f(T)=T^{3}-12$ then $f(T) \equiv T^{3} \bmod 2$ and $2 \mathcal{O}_{K}=\mathfrak{p}^{3}$, but the factorization of $2 \mathcal{O}_{K}$ is not based on (1.1) with $\alpha=\sqrt[3]{12}$ since $\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{12}]\right]=2$: $\mathcal{O}_{K}=\mathbf{Z}+\mathbf{Z} \sqrt[3]{12}+\mathbf{Z} \sqrt[3]{18}=\mathbf{Z}+\mathbf{Z} \sqrt[3]{12}+\mathbf{Z} \sqrt[3]{12}^{2} / 2$.

We can instead rewrite K as $\mathbf{Q}(\sqrt[3]{18})$, set $f(T)=T^{3}-18$, and now $\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{18}]\right]=3$, an index not divisible by 2 , so the factorization $T^{3}-18 \equiv T^{3} \bmod 2$ implies $2 \mathcal{O}_{K}=\mathfrak{p}^{3}$.
Example 1.2. If $K=\mathbf{Q}(\sqrt[3]{10})$ and $f(T)=T^{3}-10$ then $f(T) \equiv(T-1)^{3} \bmod 3$ but $3 \mathcal{O}_{K}=$ $\mathfrak{p q}^{2}$. Here $\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{10}]\right]=3$. It turns out that $\mathcal{O}_{K}=\mathbf{Z}[\alpha]$ for $\alpha=\left(\sqrt[3]{10}^{2}+\sqrt[3]{10}+1\right) / 3$, whose minimal polynomial over \mathbf{Q} is $T^{3}-T^{2}-3 T-3$ and $T^{3}-T^{2}-3 T-3 \equiv(T-1) T^{2} \bmod 3$.

Example 1.3. The number $\alpha=\sqrt{10+3 \sqrt{10}}$ is a root of $f(T)=T^{4}-20 T^{2}+10$, which is irreducible over \mathbf{Q} (why?). Set $K=\mathbf{Q}(\alpha)$. We have $f(T) \equiv(T-1)^{2}(T-2)^{2} \bmod 3$ but it turns out that 3 splits completely in K. Here $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]=9$ and the factorization of $3 \mathcal{O}_{K}$ can't be found by (1.1) since $3 \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\beta]\right]$ for all β in \mathcal{O}_{K} such that $K=\mathbf{Q}(\beta)$.

We can apply (1.1) to primes not dividing $\operatorname{disc}(f)$ since $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]^{2} \mid \operatorname{disc}(f)$. To know whether (1.1) applies to a prime dividing $\operatorname{disc}(f)$, we want to know which prime factors of $\operatorname{disc}(f)$ in fact divide $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$. For an arbitrary prime p, here is a necessary and sufficient condition for $p \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ that does not require knowing \mathcal{O}_{K}.
Theorem 1.4. Let $K=\mathbf{Q}(\alpha)$ where α is an algebraic integer with minimal polynomial $f(T) \in \mathbf{Z}[T]$. For a prime p, let the monic irreducible factorization of $f(T) \bmod p$ be

$$
\begin{equation*}
f(T) \equiv \bar{\pi}_{1}(T)^{e_{1}} \cdots \bar{\pi}_{g}(T)^{e_{g}} \bmod p \tag{1.2}
\end{equation*}
$$

Let $\pi_{j}(T)$ be a monic lift of $\bar{\pi}_{j}(T)$ to $\mathbf{Z}[T]$ and define $F(T) \in \mathbf{Z}[T]$ by

$$
\begin{equation*}
f(T)=\pi_{1}(T)^{e_{1}} \cdots \pi_{g}(T)^{e_{g}}+p F(T) \tag{1.3}
\end{equation*}
$$

Then $p\left|\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right] \Longleftrightarrow \bar{\pi}_{j}(T)\right| \bar{F}(T)$ in $\mathbf{F}_{p}[T]$ for some j such that $e_{j} \geq 2$.
This is due to Dedekind [3, Sect. 3], so we call it Dedekind's index theorem. (It is called Dedekind's criterion by Cohen [2, Theorem 6.1.4(2)] and Pohst and Zassenhaus [6, p. 295].)

2. EXAMPLES

Before proving Dedekind's index theorem, let's look at some examples of it at work. Since $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]^{2} \mid \operatorname{disc}(f)$, the only primes that might divide $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ are primes dividing $\operatorname{disc}(f)$ with multiplicity at least 2 .
Example 2.1. Let $K=\mathbf{Q}(\sqrt[3]{12})$ and $f(T)=T^{3}-12$. Since $\operatorname{disc}(f(T))=-3888=-2^{4} \cdot 3^{5}$, the only possible prime factors of $\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{12}]\right]$ are 2 or 3 .

Case 1: $p=2$.
Since $f(T) \equiv T^{3} \bmod 2$, take $\pi_{1}(T)=T$. Write

$$
f(T)=T^{3}+2 F(T) \text { for } F(T)=-6
$$

so $F(T) \equiv 0 \bmod 2$. Therefore $\bar{\pi}_{1}(T) \mid \bar{F}(T)$ in $\mathbf{F}_{2}[T]$, so $2 \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{12}]\right]$.
Case 2: $p=3$.
Since $f(T) \equiv T^{3} \bmod 3$, take $\pi_{1}(T)=T$. Then

$$
f(T)=T^{3}+3 F(T) \text { for } F(T)=-4,
$$

so $\bar{\pi}_{1}(T) \nmid \bar{F}(T)$ in $\mathbf{F}_{3}[T]$. Thus $3 \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{12}]\right]$.
Example 2.2. Let $K=\mathbf{Q}(\sqrt[3]{10})$ and $f(T)=T^{3}-10$. Since $\operatorname{disc}(f(T))=-2700=$ $-2^{2} \cdot 3^{3} \cdot 5^{2}$, the only possible prime factors of $\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{10}]\right]$ are 2,3 , and 5.

Case 1: $p=2$.
Since $f(T) \equiv T^{3} \bmod 2$, take $\pi_{1}(T)=T$. Then

$$
f(T)=T^{3}+2 F(T) \text { for } F(T)=-5
$$

so $\bar{\pi}_{1}(T) \nmid \bar{F}(T)$ in $\mathbf{F}_{2}[T]$. Thus $2 \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{10}]\right]$.
Case 2: $p=3$.
Since $f(T) \equiv(T-1)^{3} \bmod 3$, take $\pi_{1}(T)=T-1$. Then

$$
f(T)=(T-1)^{3}+3 F(T) \text { for } F(T)=T^{2}-T-3,
$$

so $F(T) \equiv T(T-1) \bmod 3$. Thus $\bar{\pi}_{1}(T) \mid \bar{F}(T)$ in $\mathbf{F}_{3}[T]$, so $3 \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{10}]\right]$.
Case 3: $p=5$.
Since $f(T) \equiv T^{3} \bmod 5$, take $\pi_{1}(T)=T$. Then

$$
f(T)=T^{3}+5 F(T) \text { for } F(T)=-2,
$$

so $\bar{\pi}_{1}(T) \nmid \bar{F}(T)$ in $\mathbf{F}_{5}[T]$. Thus $5 \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{10}]\right]$.
Example 2.3. Let $K=\mathbf{Q}(\sqrt[3]{2})$ and $f(T)=T^{3}-2$, so $\operatorname{disc}(f(T))=-108=-2^{2} \cdot 3^{3}$. The only primes that might divide $\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{2}]\right]$ are 2 and 3 .

Case 1: $p=2$.
Since $f(T) \equiv T^{3} \bmod 2$, take $\pi_{1}(T)=T$. Then

$$
f(T)=T^{3}+2 F(T) \text { for } F(T)=-1
$$

so $\bar{\pi}_{1}(T) \nmid \bar{F}(T)$ in $\mathbf{F}_{2}[T]$. Thus $2 \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{2}]\right]$.
Case 2: $p=3$.
Since $f(T) \equiv(T+1)^{3} \bmod 3$, take $\pi_{1}(T)=T+1$. Then

$$
f(T)=(T+1)^{3}+3 F(T) \text { for } F(T)=-T^{2}-T-1
$$

so $F(T) \equiv-(T+2)^{2} \bmod 3$. Thus $\bar{\pi}_{1}(T) \nmid \bar{F}(T)$ in $\mathbf{F}_{3}[T]$, so $3 \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{2}]\right]$.
By Cases 1 and $2,\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{2}]\right]=1$, so $\mathcal{O}_{K}=\mathbf{Z}[\sqrt[3]{2}]$.

Example 2.4. Let $K=\mathbf{Q}(\sqrt[3]{44})$ and $f(T)=T^{3}-44$. Since $\operatorname{disc}(f(T))=-52272=$ $-2^{4} \cdot 3^{3} \cdot 11^{2}$, the only possible prime factors of $\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{44}]\right]$ are 2,3 , and 11 .

Case 1: $p=2$.
From $f(T) \equiv T^{3} \bmod 2$, take $\pi_{1}(T)=T$. Then

$$
f(T)=T^{3}+2 F(T) \text { for } F(T)=-22,
$$

so $F(T) \equiv 0 \bmod 2$. Therefore $\bar{\pi}_{1}(T) \mid \bar{F}(T)$ in $\mathbf{F}_{2}[T]$, so $2 \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{44}]\right]$.
Case 2: $p=3$.
From $f(T) \equiv(T+1)^{3} \bmod 3$, take $\pi_{1}(T)=T+1$. Then

$$
f(T)=(T+1)^{3}+3 F(T) \text { for } F(T)=-T^{2}-T-15,
$$

so $F(T) \equiv-T(T+1) \bmod 3$, which shows $\bar{\pi}_{1}(T) \mid \bar{F}(T)$ in $\mathbf{F}_{3}[T]$. Thus $3 \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{44}]\right]$.
Case 3: $p=11$.
From $f(T) \equiv T^{3} \bmod 11$, take $\pi_{1}(T)=T$. Then

$$
f(T)=T^{3}+11 F(T) \text { for } F(T)=-4,
$$

so $\bar{\pi}_{1}(T) \nmid \bar{F}(T)$ in $\mathbf{F}_{11}[T]$. Thus $11 \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{44}]\right]$.
Example 2.5. Let $K=\mathbf{Q}(\alpha)$ where α is a root of $f(T)=T^{3}-T^{2}-2 T-8$. Since $\operatorname{disc}(f(T))=-2012=-2^{2} \cdot 503$, the only prime that might divide $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ is 2 .

From $f(T) \equiv T^{2}(T+1) \bmod 2$, take $\pi_{1}(T)=T$, and $\pi_{2}(T)=T+1$. Then

$$
f(T)=T^{2}(T+1)+2 F(T) \text { for } F(T)=-T^{2}-T-4,
$$

so $F(T) \equiv T(T+1) \bmod 2$. Since $\bar{\pi}_{1}(T) \mid \bar{F}(T)$ in $\mathbf{F}_{2}[T], 2 \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$.
Example 2.6. Let $K=\mathbf{Q}(\alpha)$ where α is a root of $f(T)=T^{3}+2 T+4$, which is irreducible over \mathbf{Q} since it is irreducible mod 3 . Since $\operatorname{disc}(f(T))=-464=-2^{4} \cdot 29$, the only possible prime factor of $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ is 2 .

From $f(T) \equiv T^{3} \bmod 2$, take $\pi_{1}(T)=T$. Then

$$
f(T)=T^{3}+2 F(T) \text { for } F(T)=T+2,
$$

so $F(T) \equiv T \bmod 2$. Therefore $\bar{\pi}_{1}(T) \mid \bar{F}(T)$ in $\mathbf{F}_{2}[T]$, so $2 \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$.
Example 2.7. Let $K=\mathbf{Q}(\alpha)$ where α is a root of $f(T)=T^{3}+2 T+22$. Since $\operatorname{disc}(f(T))=$ $-13100=-2^{2} \cdot 5^{2} \cdot 131$, the only primes that might divide $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ are 2 and 5 .

Case 1: $p=2$.
From $f(T) \equiv T^{3} \bmod 2$, take $\pi_{1}(T)=T$. Then

$$
f(T)=T^{3}+2 F(T) \text { for } F(T)=T+11,
$$

so $F(T) \equiv T+1 \bmod 2$. Therefore $\bar{\pi}_{1}(T) \nmid \bar{F}(T)$ in $\mathbf{F}_{2}[T]$, so $2 \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$.
Case 2: $p=5$.
From $f(T) \equiv(T+2)(T-1)^{2} \bmod 5$, take $\pi_{1}(T)=T+2$ and $\pi_{2}(T)=T-1$. Then

$$
f(T)=(T+2)(T-1)^{2}+5 F(T) \text { for } F(T)=T+4
$$

so $F(T) \equiv T-1 \bmod 5$. Therefore $\bar{\pi}_{2}(T) \mid \bar{F}(T)$ in $\mathbf{F}_{5}[T]$, so $5 \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$.

Example 2.8. Let $K=\mathbf{Q}(\alpha)$ where $\alpha=\sqrt{10+3 \sqrt{10}}$ is a root of $f(T)=T^{4}-20 T^{2}+10$. Since $\operatorname{disc}(f(T))=20736000=2^{11} \cdot 3^{4} \cdot 5^{3}$, primes dividing $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ can only be 2 , 3 , or 5.

Case 1: $p=2$.
From $f(T) \equiv T^{4} \bmod 2$, take $\pi_{1}(T)=T$. Then

$$
f(T)=T^{4}+2 F(T) \text { for } F(T)=-10 T^{2}+5
$$

so $F(T) \equiv 1 \bmod 2$. Therefore $\bar{\pi}_{1}(T) \nmid \bar{F}(T)$ in $\mathbf{F}_{2}[T]$, so $2 \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$.
Case 2: $p=3$.
From $f(T) \equiv(T-1)^{2}(T-2)^{2} \bmod 3$, take $\pi_{1}(T)=T-1$ and $\pi_{2}(T)=T-2$. Then

$$
f(T)=(T-1)^{2}(T-2)^{2}+3 F(T) \text { for } F(T)=2 T^{3}-11 T^{2}+4 T+2
$$

so $F(T) \equiv 2(T-1)^{2}(T-2) \bmod 3$. Since $\bar{F}(T)$ in $\mathbf{F}_{3}[T]$ is divisible by $\bar{\pi}_{1}(T)\left(\right.$ or $\left.\bar{\pi}_{2}(T)\right)$,

$3 \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$.

Case 3: $p=5$.
From $f(T) \equiv T^{4} \bmod 5$, take $\pi_{1}(T)=T$. Then

$$
f(T)=T^{4}+5 F(T) \text { for } F(T)=-4 T^{2}+2,
$$

so $F(T) \equiv T^{2}+2 \bmod 5$. Therefore $\bar{\pi}_{1}(T) \nmid \bar{F}(T)$ in $\mathbf{F}_{5}[T]$, so $5 \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$.
Example 2.9. Let $K=\mathbf{Q}(\alpha)$ where α is a root of $f(T)=T^{4}+2 T^{2}+3 T+1$. Since $\operatorname{disc}(f(T))=117=3^{2} \cdot 13$, the only prime that might divide $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ is 3 .

Since $f(T) \equiv\left(T^{2}+1\right)^{2} \bmod 3$, take $\pi_{1}(T)=T^{2}+1$. Then

$$
f(T)=\left(T^{2}+1\right)^{2}+3 F(T) \text { for } F(T)=T
$$

so $\bar{\pi}_{1}(T) \nmid \bar{F}(T)$ in $\mathbf{F}_{3}[T]$. Therefore $3 \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$, so $\mathcal{O}_{K}=\mathbf{Z}[\alpha]$.
Example 2.10. Let $K=\mathbf{Q}(\alpha)$ and $f(T)=T^{4}+T^{2}+4$. Since $\operatorname{disc}(f(T))=14400=$ $2^{6} \cdot 3^{2} \cdot 5^{2}$, the only possible prime factors of $\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[4]{5}]\right]$ are 2,3 , and 5 .

Case 1: $p=2$.
From $f(T) \equiv T^{2}(T+1)^{2} \bmod 2$, take $\pi_{1}(T)=T$ and $\pi_{2}(T)=T+1$. Then

$$
f(T)=T^{2}(T+1)^{2}+2 F(T) \text { for } F(T)=-T^{3}+2,
$$

so $F(T) \equiv T^{3} \bmod 2$. Therefore $\bar{\pi}_{1}(T) \mid \bar{F}(T)$ in $\mathbf{F}_{2}[T]$, so $2 \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$.
Case 2: $p=3$.
From $f(T) \equiv(T+1)^{2}(T+2)^{2} \bmod 3$, take $\pi_{1}(T)=T+1$ and $\pi_{2}(T)=T+2$. Then

$$
f(T)=(T+1)^{2}(T+2)^{2}+3 F(T) \text { for } F(T)=-2 T^{3}-4 T^{2}-4 T
$$

so $F(T) \equiv T\left(T^{2}+2 T+2\right) \bmod 3$. In $\mathbf{F}_{3}[T], \bar{F}(T)$ is not divisible by $\bar{\pi}_{1}(T)$ or $\bar{\pi}_{2}(T)$, so $3 \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$.

Case 3: $p=5$.
From $f(T) \equiv\left(T^{2}-2\right)^{2} \bmod 5$, take $\pi_{1}(T)=T^{2}-2$. Then

$$
f(T)=\left(T^{2}-2\right)^{2}+5 F(T) \text { for } F(T)=T^{2},
$$

so $\bar{F}(T)$ in $\mathbf{F}_{5}[T]$ is not divisible by $\bar{\pi}_{1}(T)$ or $\bar{\pi}_{2}(T)$. Therefore $5 \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[4]{5}]\right]$.
Example 2.11. Let's generalize Example 2.6. Say $f(T)=T^{n}+a_{n-1} T^{n-1}+\cdots+a_{1} T+a_{0}$ in $\mathbf{Z}[T]$ for $n \geq 2$ and $p \mid a_{j}$ for all j. Then $f(T) \equiv T^{n} \bmod p$, so

$$
f(T)=T^{n}+p F(T) \text { for } F(T)=\frac{a_{n-1}}{p} T^{n-1}+\cdots+\frac{a_{1}}{p} T+\frac{a_{0}}{p} .
$$

By Dedekind's index theorem with $\pi_{1}(T)=T, p \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ if and only if $\bar{F}(T)$ is divisible by T in $\mathbf{F}_{p}[T]$, which is equivalent to $p^{2} \mid a_{0}$ in \mathbf{Z}. Thus $p \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ if and only if $p^{2} \nmid a_{0}$, which is equivalent to $f(T)$ being Eisenstein at p. (This is false for $n=1$, e.g., $f(T)=T$.)
Example 2.12. Suppose $f(T) \bmod p$ is separable. Then every e_{j} is 1 in Theorem 1.4, so $p \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$. That also follows from the fact that $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ divides $\operatorname{disc}(f)$ and $\operatorname{disc}(f) \not \equiv 0 \bmod p$ by separability of $f(T) \bmod p$.
Example 2.13. Let $f_{n}(T)=T^{n}-T-1$. For each $n \geq 2, f_{n}(T)$ is irreducible over $\mathbf{Q} .{ }^{1}$ There is a general discriminant formula

$$
\operatorname{disc}\left(T^{n}+a T+b\right)=(-1)^{n(n-1) / 2}\left((-1)^{n-1}(n-1)^{n-1} a^{n}+n^{n} b^{n-1}\right),
$$

and for $a=-1$ and $b=-1$ this becomes

$$
\operatorname{disc}\left(f_{n}(T)\right)=(-1)^{n(n-1) / 2+1}\left((n-1)^{n-1}+(-n)^{n}\right)
$$

Let $K_{n}=\mathbf{Q}\left(\alpha_{n}\right)$, where α_{n} is a root of $f_{n}(T)$, so $\left[K_{n}: \mathbf{Q}\right]=n$. Numerical data suggest $\operatorname{disc}\left(f_{n}(T)\right)$ is nearly always squarefree. When it is squarefree, $\mathcal{O}_{K_{n}}=\mathbf{Z}\left[\alpha_{n}\right]$. The first n where $\operatorname{disc}\left(f_{n}(T)\right)$ is not squarefree is $n=130$, with $\operatorname{disc}\left(f_{130}(T)\right)$ divisible by 83^{2} (and not by the square of another prime). It turns out that

$$
\begin{equation*}
T^{130}-T-1 \equiv(T-8)^{2}(T-20) \bar{\pi}_{22}(T) \bar{\pi}_{42}(T) \bar{\pi}_{63}(T) \bmod 83 \tag{2.1}
\end{equation*}
$$

where $\bar{\pi}_{d}(T)$ is monic irreducible of degree d in $\mathbf{F}_{83}[T]$. We'll use Dedekind's index theorem to show $83 \mid\left[\mathcal{O}_{K_{130}}: \mathbf{Z}\left[\alpha_{130}\right]\right]$.

Let $\pi_{d}(T)$ be a monic lift of $\bar{\pi}_{d}(T)$ to $\mathbf{Z}[T]$, so

$$
T^{130}-T-1=(T-8)^{2}(T-20) \pi_{22}(T) \pi_{42}(T) \pi_{63}(T)+83 F(T)
$$

for some $F(T) \in \mathbf{Z}[T]$. The only repeated factor of $T^{130}-T-1 \bmod 83$ is $(T-8)^{2}$, and it turns out that $F(8) \equiv 0 \bmod 83$, so $(T-8) \mid \bar{F}(T)$ in $\mathbf{F}_{83}[T]$. Therefore $\left[\mathcal{O}_{K_{130}}: \mathbf{Z}\left[\alpha_{130}\right]\right]$ is divisible by 83 .

3. Proof of Dedekind's index theorem

Now we'll prove Dedekind's index theorem using Dedekind's argument in [3, Sect. 3].
Proof. ($\Longleftarrow)$ We prove the contrapositive: if $p \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ then $\bar{\pi}_{j}(T) \nmid \bar{F}(T)$ in $\mathbf{F}_{p}[T]$ whenever $e_{j} \geq 2$, where e_{j} is taken from (1.2).

If $\bar{\pi}_{j}(T) \mid \bar{F}(T)$ in $\mathbf{F}_{p}[T]$ for some j then $F(T)=\pi_{j}(T) A(T)+p B(T)$ for some $A(T)$ and $B(T)$ in $\mathbf{Z}[T]$, which upon setting $T=\alpha$ shows $F(\alpha) \in\left(p, \pi_{j}(\alpha)\right)$. Thanks to (1.1), which can be used since $p \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$, we have $\mathfrak{p}_{j}=\left(p, \pi_{j}(\alpha)\right)$, so $\mathfrak{p}_{j} \mid(F(\alpha))$. We will show for $e_{j} \geq 2$ that $\mathfrak{p}_{j} \nmid(F(\alpha))$, so $\bar{\pi}_{j}(T) \nmid \bar{F}(T)$ in $\mathbf{F}_{p}[T]$.

In (1.3), set $T=\alpha$ to get

$$
\pi_{1}(\alpha)^{e_{1}} \cdots \pi_{g}(\alpha)^{e_{g}}=-p F(\alpha)
$$

so we have an equation of principal ideals

$$
\begin{equation*}
\left(\pi_{1}(\alpha)\right)^{e_{1}} \cdots\left(\pi_{g}(\alpha)\right)^{e_{g}}=(p)(F(\alpha)) . \tag{3.1}
\end{equation*}
$$

To get $\mathfrak{p}_{j} \nmid(F(\alpha))$ from this, we'll compute the highest power of \mathfrak{p}_{j} on both sides.
Since $\mathfrak{p}_{j}=\left(p, \pi_{j}(\alpha)\right)=\operatorname{gcd}\left((p),\left(\pi_{j}(\alpha)\right)\right)$ and $e_{j} \geq 2, \mathfrak{p}_{j}^{2} \mid(p)$ by the factorization of (p) in (1.1). Thus $\mathfrak{p}_{j}^{2} \nmid\left(\pi_{j}(\alpha)\right)$, so \mathfrak{p}_{j} divides $\left(\pi_{j}(\alpha)\right)$ just once. For $i \neq j, \mathfrak{p}_{i}$ and \mathfrak{p}_{j} are distinct

[^0]prime ideals, so $\mathfrak{p}_{j} \nmid\left(\pi_{i}(\alpha)\right)$, (otherwise \mathfrak{p}_{j} divides $\operatorname{gcd}\left((p),\left(\pi_{i}(\alpha)\right)\right)=\mathfrak{p}_{i}$, which it doesn't). On the left side of (3.1), the highest power of \mathfrak{p}_{j} in its factorization is therefore e_{j}. Since $\mathfrak{p}_{j}^{e_{j}} \mid(p)$, (3.1) tells us $\mathfrak{p}_{j} \nmid(F(\alpha))$.
(\Longrightarrow) Assuming $p \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$, we will show $\bar{F}(T)$ is divisible by some $\bar{\pi}_{j}(T)$ in $\mathbf{F}_{p}[T]$ such that $\bar{\pi}_{j}(T)^{2} \mid \bar{f}(T)$ (i.e., $e_{j} \geq 2$ in (1.2)).

That $\mathcal{O}_{K} / \mathbf{Z}[\alpha]$ has order divisible by p implies some $\beta \in \mathcal{O}_{K}$ is in $(1 / p) \mathbf{Z}[\alpha]-\mathbf{Z}[\alpha]$. Therefore

$$
p \beta=c_{0}+c_{1} \alpha+\cdots+c_{n-1} \alpha^{n-1}
$$

where $n=[K: \mathbf{Q}]=\operatorname{deg} f$ and the coefficients c_{j} are integers where at least one of them is not divisible by p. In $\mathbf{F}_{p}[T]$, set

$$
\bar{A}(T)=\operatorname{gcd}\left(\bar{c}_{0}+\bar{c}_{1} T+\cdots+\bar{c}_{n-1} T^{n-1}, \bar{f}(T)\right) .
$$

This is a proper factor of $\bar{f}(T)$ since the first term in the gcd is nonzero of degree less than n, and for simplicity take $\bar{A}(T)$ to be a monic gcd. Write

$$
\begin{equation*}
\bar{f}(T)=\bar{A}(T) \bar{B}(T) \text { in } \mathbf{F}_{p}[T], \tag{3.2}
\end{equation*}
$$

so $\bar{B}(T)$ is monic and nonconstant.
By unique factorization in $\mathbf{F}_{p}[T], \bar{A}(T)$ and $\bar{B}(T)$ are complementary factors in the irreducible factorization $\prod_{j=1}^{g} \bar{\pi}_{j}(T)^{e_{j}}$ of $\bar{f}(T)$. Let $A(T)$ and $B(T)$ be the monic lifts of $\bar{A}(T)$ and $\bar{B}(T)$ to $\mathbf{Z}[T]$ that are built from the monic lifts $\pi_{j}(T)$ of $\bar{\pi}_{j}(T)$, so

$$
A(T) B(T)=\prod_{j=1}^{g} \pi_{j}(T)^{e_{j}}=f(T)-p F(T)
$$

Setting $T=\alpha$,

$$
\begin{equation*}
A(\alpha) B(\alpha)=-p F(\alpha) \tag{3.3}
\end{equation*}
$$

In $\mathbf{F}_{p}[T]$, we can write $\bar{A}(T)$ as an $\mathbf{F}_{p}[T]$-linear combination using its definition as a gcd:

$$
\bar{A}(T)=\left(\bar{c}_{0}+\bar{c}_{1} T+\cdots+\bar{c}_{n-1} T^{n-1}\right) u(T)+\bar{f}(T) v(T)
$$

We can set $T=\alpha$ on both sides as long as we view the values on both sides in $\mathcal{O}_{K} / p \mathcal{O}_{K}$:

$$
A(\alpha) \equiv\left(c_{0}+c_{1} \alpha+\cdots+c_{n-1} \alpha^{n-1}\right) u(\alpha) \equiv(p \beta) u(\alpha) \equiv 0 \bmod p \mathcal{O}_{K}
$$

since $\beta \in \mathcal{O}_{K}$. Thus $p \mid A(\alpha)$ in \mathcal{O}_{K}.
Since $A(\alpha) / p$ is an algebraic integer in K, it satisfies a monic relation of integral dependence over \mathbf{Z}, say

$$
\left(\frac{A(\alpha)}{p}\right)^{d}+a_{d-1}\left(\frac{A(\alpha)}{p}\right)^{d-1}+\cdots+a_{1}\left(\frac{A(\alpha)}{p}\right)+a_{0}=0
$$

for some $d \geq 1$ and integers a_{0}, \ldots, a_{d-1}. Multiply through by p^{d} :

$$
\begin{equation*}
A(\alpha)^{d}+p a_{d-1} A(\alpha)^{d-1}+\cdots+p^{d-1} a_{1} A(\alpha)+p^{d} a_{0}=0 . \tag{3.4}
\end{equation*}
$$

Every polynomial in $\mathbf{Z}[T]$ vanishing at α is divisible by $f(T)$ in $\mathbf{Z}[T]$, so

$$
A(T)^{d}+p a_{d-1} A(T)^{d-1}+\cdots+p^{d-1} a_{1} A(T)+p^{d} a_{0}=f(T) h(T)
$$

for some $h(T) \in \mathbf{Z}[T]$. Reducing both sides modulo p,

$$
\bar{A}(T)^{d}=\bar{f}(T) \bar{h}(T)=\bar{A}(T) \bar{B}(T) \bar{h}(T)
$$

in $\mathbf{F}_{p}[T]$. Therefore each irreducible factor of $\bar{B}(T)$ in $\mathbf{F}_{p}[T]$ divides $\bar{A}(T)$.
We explained earlier why $\bar{B}(T)$ is nonconstant, so $\bar{B}(T)$ has a monic irreducible factor, say $\bar{\pi}(T)$. Then $\bar{\pi}(T) \mid \bar{A}(T)$ too, so $\bar{\pi}(T)^{2} \mid \bar{f}(T)$ by (3.2). That shows $\bar{\pi}(T)$ is some $\bar{\pi}_{j}(T)$ where $e_{j} \geq 2$. Next we will show $\bar{\pi}(T) \mid \bar{F}(T)$.

Multiply both sides of (3.4) by $B(\alpha)^{d}$ and use (3.3):

$$
p^{d}(-F(\alpha))^{d}+p^{d} a_{d-1} B(\alpha)(-F(\alpha))^{d-1}+\cdots+p^{d} a_{1} B(\alpha)^{d-1}(-F(\alpha))+p^{d} a_{0} B(\alpha)^{d}=0 .
$$

Each term on the left has a factor p^{d}, so divide through by p^{d} :

$$
(-F(\alpha))^{d}+a_{d-1} B(\alpha)(-F(\alpha))^{d-1}+\cdots+a_{1} B(\alpha)^{d-1}(-F(\alpha))+a_{0} B(\alpha)^{d}=0 .
$$

Therefore

$$
(-F(T))^{d}+a_{d-1} B(T)(-F(T))^{d-1}+\cdots+a_{1} B(T)^{d-1}(-F(T))+a_{0} B(T)^{d}=f(T) k(T)
$$

for some $k(T) \in \mathbf{Z}[T]$. Reduce both sides modulo p. Since $\bar{f}(T)$ and $\bar{B}(T)$ are divisible by $\bar{\pi}(T)$ in $\mathbf{F}_{p}[T]$, we get $\bar{\pi}(T) \mid \bar{F}(T)$ in $\mathbf{F}_{p}[T]$.

4. An algebraic integer not in $\mathbf{Z}[\alpha]$ when $p \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$

If $p \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ then $\mathcal{O}_{K} / \mathbf{Z}[\alpha]$ has order divisible by p : there's some $h(\alpha) \in \mathbf{Z}[\alpha]$ such that $h(\alpha) / p \in \mathcal{O}_{K}-\mathbf{Z}[\alpha]$. In principle, we can find $h(\alpha)$ by searching for an algebraic integer among representatives of the $p^{n}-1$ nonzero cosets of $(1 / p) \mathbf{Z}[\alpha] / \mathbf{Z}[\alpha]$; there is at least one. Such a brute force search is not necessary: Dedekind gave a method of constructing $h(\alpha)$ from a choice of $\bar{\pi}_{j}(T)$ dividing $\bar{F}(T)$ with $e_{j} \geq 2$ in (1.2). Such $\bar{\pi}_{j}(T)$ exists by Dedekind's index theorem because $p \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$.
Theorem 4.1. With the notation of Theorem 1.4, suppose $\bar{\pi}(T) \mid \bar{F}(T)$ in $\mathbf{F}_{p}[T]$ where $\bar{\pi}(T)^{2} \mid \bar{f}(T)$. Here are two ways to build $h(T) \in \mathbf{Z}[T]$ such that $h(\alpha) / p \in \mathcal{O}_{K}-\mathbf{Z}[\alpha]$.

- If $h(T) \in \mathbf{Z}[T]$ is a monic lift of $\bar{f}(T) / \bar{\pi}(T)$ to $\mathbf{Z}[T]$, then $h(\alpha) / p \in \mathcal{O}_{K}-\mathbf{Z}[\alpha]$.
- If $f(T)=\pi(T) q(T)+r(T)$ in $\mathbf{Z}[T]$ where $\operatorname{deg} r<\operatorname{deg} \pi$, then $q(\alpha) / p \in \mathcal{O}_{K}-\mathbf{Z}[\alpha]$, so use $h(T)=q(T) .{ }^{2}$
In the second method, $\bar{r}(T)=0$ in $\mathbf{F}_{p}[T]$ since $\bar{\pi}(T) \mid \bar{f}(T)$ and $\pi(T)$ is monic, but $r(T) \neq 0$ in $\mathbf{Z}[T]$: otherwise $\pi(T) \mid f(T)$, which would contradict the irreducibility of $f(T)$ in $\mathbf{Z}[T]$, since $\operatorname{deg} \pi \leq(\operatorname{deg} f) / 2$ from $\bar{\pi}(T)^{2} \mid \bar{f}(T)$.

The table below shows how Theorem 4.1 works in previous examples, leading to algebraic integers in $\mathcal{O}_{K}-\mathbf{Z}[\alpha]$ in the last column.

Example	$f(T)$	p	$\pi(T)$	$h(T)$	$h(\alpha) / p \in \mathcal{O}_{K}-\mathbf{Z}[\alpha]$
2.1	$T^{3}-12$	2	T	T^{2}	$\sqrt[3]{12}^{2} / 2$
2.2	$T^{3}-10$	3	$T-1$	$T^{2}+T+1$	$\left(\sqrt[3]{10}^{2}+\sqrt[3]{10}^{10}+1\right) / 3$
2.4	$T^{3}-44$	2	T	T^{2}	$\sqrt[3]{44}^{2} / 2$
2.4	$T^{3}-44$	3	$T+1$	$T^{2}-T+1$	$\left(\sqrt[3]{44}^{2}-\sqrt[3]{44}^{4}+1\right) / 3$
2.5	$T^{3}-T^{2}-2 T-8$	2	T	$T^{2}+T$	$\left(\alpha^{2}+\alpha\right) / 2$
2.6	$T^{3}+2 T+4$	2	T	T^{2}	$\alpha^{2} / 2$
2.7	$T^{3}+2 T+22$	5	$T-1$	$T^{2}+T+3$	$\left(\alpha^{2}+\alpha+3\right) / 5$
2.8	$T^{4}-20 T^{2}+10$	3	$T-1$	$(T-1)(T+1)^{2}$	$(\alpha-1)(\alpha+1)^{2} / 3$
2.8	$T^{4}-20 T^{2}+10$	3	$T+1$	$(T+1)(T-1)^{2}$	$(\alpha+1)(\alpha-1)^{2} / 3$
2.10	$T^{4}+T^{2}+4$	2	T	$T^{3}+T$	$\left(\alpha^{3}+\alpha\right) / 2$

[^1]Remark 4.2. In the first and third rows, $\sqrt[3]{12}^{2} / 2=\sqrt[3]{18}$ and $\sqrt[3]{44}^{2} / 2=\sqrt[3]{242}$.
Here are two general examples using $h(T)=T^{n-1}$, which includes $T^{3}-12, T^{3}-44$, and $T^{3}+2 T+4$ for $p=2$.

- If $f(T)=T^{n}-p^{2} m$ for $n \geq 2$ and $m \in \mathbf{Z}$, then $\alpha^{n-1} / p \notin \mathbf{Z}[\alpha]$ and $\alpha^{n-1} / p \in \mathcal{O}_{K}$ since α^{n-1} / p is integral over $\mathbf{Z}[\alpha]$:

$$
\left(\frac{\alpha^{n-1}}{p}\right)^{2}=\frac{\alpha^{2(n-1)}}{p^{2}}=\alpha^{n-2} \frac{\alpha^{n}}{p^{2}}=\alpha^{n-2} m \in \mathbf{Z}[\alpha] .
$$

This fits Theorem 4.1 with $\pi(T)=T, F(T)=-p m$, and $h(T)=T^{n-1}$.

- If $f(T)=T^{n}+a_{n-1} T^{n-1}+\cdots+a_{0}$ for $n \geq 2, p \mid a_{j}$ for all $j<n$, and $p^{2} \mid a_{0}$, then $\alpha^{n-1} / p \notin \mathbf{Z}[\alpha]$ and $\alpha^{n-1} / p \in \mathcal{O}_{K}$ since α^{n-1} / p is integral over $\mathbf{Z}[\alpha]$: from $\alpha^{n}=-\sum_{j=0}^{n-1} a_{j} \alpha^{j}$,

$$
\left(\frac{\alpha^{n-1}}{p}\right)^{2}=\frac{\alpha^{n}}{p^{2}} \alpha^{n-2}=-\sum_{j=0}^{n-1} \frac{a_{j}}{p^{2}} \alpha^{n-2+j}=-\left(\sum_{j=1}^{n-1} \frac{a_{j}}{p} \alpha^{j-1}\right) \frac{\alpha^{n-1}}{p}-\frac{a_{0}}{p^{2}} \alpha^{n-2} .
$$

This fits Theorem 4.1 with $\pi(T)=T, F(T)=-\sum_{j=0}^{n-1}\left(a_{j} / p\right) T^{j}$, and $h(T)=T^{n-1}$.
The general $f(T)$ is more complicated than these $(h(T)$ need not be a power of $T)$, but these special cases give some intuition for "why" the theorem might be true.

Now let's prove Theorem 4.1, following Dedekind [3, Sect. 3].
Proof. Of the two ways to build $h(T)$, the second way is a consequence of the first way since $q(T)$ must be monic and $\bar{f}(T)=\bar{q}(T) \bar{\pi}(T)$, so we can use $q(T)$ as $h(T)$.

If $h_{1}(T)$ and $h_{2}(T)$ are both monic lifts of $\bar{f}(T) / \bar{\pi}(T)$ to $\mathbf{Z}[T]$, then $h_{1}(T)=h_{2}(T)+p m(T)$ for some $m(T) \in \mathbf{Z}[T]$, so $h_{1}(\alpha) / p=h_{2}(\alpha) / p+m(\alpha)$ and $m(\alpha) \in \mathbf{Z}[\alpha]$. Therefore it suffices to prove the first method works for just one monic lift of of $\bar{f}(T) / \bar{\pi}(T)$ to $\mathbf{Z}[T]$: then it automatically works for all other monic lifts.

Let $\bar{\pi}(T)=\bar{\pi}_{j}(T)$. We will show $h(\alpha) / p \in \mathcal{O}_{K}-\mathbf{Z}[\alpha]$ for the specific monic lift $h(T):=$ $\prod_{i \neq j} \pi_{i}(T)^{e_{i}} \pi_{j}(T)^{e_{j}-1}$. The degree of $h(T)$ is less than n (the rank of $\mathbf{Z}[\alpha]$ as a \mathbf{Z}-module), so $h(\alpha) / p \notin \mathbf{Z}[\alpha]$ since the coefficient of its highest power of α is $1 / p$. It remains to show that $h(\alpha) / p \in \mathcal{O}_{K}$. We will prove this ratio is an algebraic integer by showing for each prime ideal \mathfrak{p} dividing (p) that the multiplicity of \mathfrak{p} in $(h(\alpha)$) is at least as large as the multiplicity of \mathfrak{p} in (p). Since $p \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$, we can not assume (p) factors in the same way as $\bar{f}(T)$ factors: (1.1) is unavailable to us.

Setting $T=\alpha$ in (1.3), $\pi_{1}(\alpha)^{e_{1}} \cdots \pi_{g}(\alpha)^{e_{g}}=-p F(\alpha)$, so $\pi(\alpha) h(\alpha)=-p F(\alpha)$ by the way we defined $h(T)$. Therefore we have the equation of principal ideals

$$
\begin{equation*}
\left(\pi_{1}(\alpha)\right)^{e_{1}} \cdots\left(\pi_{g}(\alpha)\right)^{e_{g}}=\left(\pi_{j}(\alpha)\right)(h(\alpha))=(p)(F(\alpha)) \tag{4.1}
\end{equation*}
$$

Let \mathfrak{p} be a prime ideal dividing (p), so \mathfrak{p} divides some $\left(\pi_{i}(\alpha)\right)$ by (4.1).
Case 1: $\pi_{i}(T) \neq \pi_{j}(T)$. In $\mathbf{F}_{p}[T], \bar{\pi}_{i}(T)$ and $\bar{\pi}_{j}(T)$ are distinct monic irreducibles, so they are relatively prime: $\bar{\pi}_{i}(T) u(T)+\bar{\pi}_{j}(T) v(T)=1$, so $\pi_{i}(T) U(T)+\pi_{j}(T) V(T)=1+p M(T)$ where $U(T), V(T), M(T) \in \mathbf{Z}[T]$. Setting $T=\alpha, \pi_{i}(\alpha) U(\alpha)+\pi_{j}(\alpha) V(\alpha)=1+p M(\alpha)$. Since \mathfrak{p} divides (p) and $\left(\pi_{i}(\alpha)\right), \pi_{j}(\alpha) V(\alpha) \equiv 1 \bmod \mathfrak{p}$, so $\mathfrak{p} \nmid\left(\pi_{j}(\alpha)\right)$.

Therefore the second equation in (4.1) implies the multiplicity of \mathfrak{p} in $(h(\alpha))$ is at least as large as the multiplicity of \mathfrak{p} in (p).

Case 2: $\pi_{i}(T)=\pi_{j}(T)$.

Now \mathfrak{p} divides (p) and $\left(\pi_{j}(\alpha)\right)$. Let \mathfrak{p} divide (p) with multiplicity a, divide $\left(\pi_{j}(\alpha)\right)$ with multiplicity b, and divide $(F(\alpha))$ with multiplicity c :

$$
(p)=\mathfrak{p}^{a} \mathfrak{a}, \quad\left(\pi_{j}(\alpha)\right)=\mathfrak{p}^{b} \mathfrak{b}, \quad(F(\alpha))=\mathfrak{p}^{c} \mathfrak{c},
$$

where \mathfrak{p} does not divide $\mathfrak{a}, \mathfrak{b}$, or \mathfrak{c}. We have $a \geq 1, b \geq 1$, and $c \geq 0$.
The argument in Case 1 shows a prime ideal dividing (p) divides only one of the ideals $\left.\left(\pi_{1}(\alpha)\right), \ldots,\left(\pi_{g}(\alpha)\right)\right)$, so the multiplicity of \mathfrak{p} in the first product of (4.1) is $e_{j} b$, while its multiplicity in the third product of (4.1) is $a+c$. Therefore

$$
e_{j} b=a+c
$$

Since $(h(\alpha))=\prod_{k \neq j}\left(\pi_{k}(\alpha)\right)^{e_{k}}\left(\pi_{j}(\alpha)\right)^{e_{j}-1}$, the multiplicity of \mathfrak{p} in $(h(\alpha))$ is $\left(e_{j}-1\right) b$. We want to show this is at least as large as the multiplicity of \mathfrak{p} in $(p): e_{j} b-b \geq a$. That is the same as $a+c-b \geq a$, or in other words $c \geq b$. Why is $c \geq b$? We'll break this up into two cases depending on which of a or b is larger.

Case (i) $b \geq a$. Since $e_{j} \geq 2, a+c=e_{j} b \geq 2 b$, so $c-b \geq b-a \geq 0$, and thus $c \geq b$.
Case (ii): $b \leq a$. Since $\bar{\pi}_{j}(T) \mid \bar{F}(T)$ in $\mathbf{F}_{p}[T], F(T)=\pi_{j}(T) H(T)+p J(T)$ for some $H(T)$ and $J(T)$ in $\mathbf{Z}[T]$. Therefore $F(\alpha)=\pi_{j}(\alpha) H(\alpha)+p J(\alpha)$ in $\mathbf{Z}[\alpha] \subset \mathcal{O}_{K}$. The multiplicity of \mathfrak{p} in $\left(\pi_{j}(\alpha)\right)$ is b and the multiplicity of \mathfrak{p} in (p) is a. Since $b \leq a, \mathfrak{p}^{b}$ divides $\left(\pi_{j}(\alpha)\right)$ and (p), so $\pi_{j}(\alpha) H(\alpha)+p J(\alpha) \equiv 0 \bmod \mathfrak{p}^{b}$. Thus $\mathfrak{p}^{b} \mid(F(\alpha))$, which implies $b \leq c$.

This completes the proof.
Remark 4.3. In the proof of Theorem 4.1, we did not need Dedekind's index theorem. The proof starts with some $\bar{\pi}_{j}(T)$ dividing $\bar{F}(T)$ with $e_{j} \geq 2$ in (1.2) and constructs an algebraic integer not in $\mathbf{Z}[\alpha]$ of the form $h(\alpha) / p$ where $h(T) \in \mathbf{Z}[T]$. In $\mathcal{O}_{K} / \mathbf{Z}[\alpha], h(\alpha) / p$ has order p, so $p \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$. Hence the proof of Theorem 4.1 is actually a second proof of (\Longleftarrow) in Dedekind's index theorem. Dedekind gave both of the proofs of the direction (\Longleftarrow) in his index theorem that are shown here.

If $p \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ and we use Theorem 4.1 to find a number $\beta \in \mathcal{O}_{K}-\mathbf{Z}[\alpha]$, it is not necessarily the case that $\mathbf{Z}[\alpha] \subset \mathbf{Z}[\beta]$. Here is an example of this.
Example 4.4. Let $\alpha=\sqrt[3]{12}, \beta=\sqrt[3]{18}$, and $K=\mathbf{Q}(\sqrt[3]{12})=\mathbf{Q}(\sqrt[3]{18})$. Since $\alpha=\beta^{2} / 3$ and $\beta=\alpha^{2} / 2, \alpha$ and β are in \mathcal{O}_{K} but $\beta \notin \mathbf{Z}[\alpha]$ and $\alpha \notin \mathbf{Z}[\beta]$.

It can be shown that $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]=2$ and $\left[\mathcal{O}_{K}: \mathbf{Z}[\beta]\right]=3$, so $A:=\mathbf{Z}[\alpha]+\mathbf{Z}[\beta]$ is an additive group such that $\mathbf{Z}[\alpha] \subset A \subset \mathcal{O}_{K}$ and $\mathbf{Z}[\beta] \subset A \subset \mathcal{O}_{K}$, so $\left[\mathcal{O}_{K}: A\right]$ divides 2 and 3 . Therefore $\left[\mathcal{O}_{K}: A\right]=1$, which tells us

$$
\mathcal{O}_{K}=A=\mathbf{Z}+\mathbf{Z} \alpha+\mathbf{Z} \alpha^{2}+\mathbf{Z}+\mathbf{Z} \beta+\mathbf{Z} \beta^{2}=\mathbf{Z}+\mathbf{Z} \alpha+\mathbf{Z} \beta
$$

since $\alpha^{2}=2 \beta$ and $\beta^{2}=3 \alpha$.
In a number field K, \mathcal{O}_{K} might have the form $\mathbf{Z}[\gamma]$ for some γ or it might not.
Example 4.5. If $K=\mathbf{Q}(\sqrt[3]{12})$ then $\mathcal{O}_{K}=\mathbf{Z}[\gamma]$ where $\gamma=\sqrt[3]{12}+\sqrt[3]{18}$, but if $K=\mathbf{Q}(\sqrt[3]{52})$ then $\mathcal{O}_{K} \neq \mathbf{Z}[\gamma]$ for all γ in \mathcal{O}_{K}.

This illustrates why Theorems 1.4 and 4.1 can't always be iterated to enlarge a subring $\mathbf{Z}[\alpha]$ in stages to reach all of \mathcal{O}_{K}, but Theorem 1.4 is a preliminary step in the following algorithm that computes \mathcal{O}_{K} and is called the "round 2" algorithm.

Step 1: Write a number field K as $\mathbf{Q}(\alpha)$ for $\alpha \in \mathcal{O}_{K}$ with minimal polynomial $f(T)$.
Step 2: Since $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]^{2} \mid \operatorname{disc}(f)$, factor $\operatorname{disc}(f)$ to assemble a list of primes p such that $\overline{p^{2} \mid} \operatorname{disc}(f)$. These are the possible prime factors of $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$.

Step 3: Use Dedekind's index theorem on the primes at the end of Step 2 to determine the finite set of primes that divide $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$. If there are no such primes then $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]=1$, so $\mathcal{O}_{K}=\mathbf{Z}[\alpha]$ and we are done. If $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]>1$, then let S be the set of prime factors of $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$.

Step 4: For $p \in S$, and an order \mathcal{O} in K, such as $\mathbf{Z}[\alpha]$, we want to build an order \mathcal{O}_{p} containing \mathcal{O} with $p \nmid\left[\mathcal{O}_{K}: \mathcal{O}_{p}\right]$.

Set $I_{p}=\left\{x \in \mathcal{O}: x^{m} \equiv 0 \bmod p \mathcal{O}\right.$ for some $\left.m \geq 1\right\}$. This is a nonzero ideal in \mathcal{O} (the radical of the ideal $p \mathcal{O})$, e.g., $p \in I_{p}$. Let \mathcal{O}^{\prime} be the multiplier ring of I_{p} in K :

$$
\mathcal{O}^{\prime}=\left\{x \in K: x I_{p} \subset I_{p}\right\}
$$

so $\mathcal{O} \subset \mathcal{O}^{\prime} \subset \mathcal{O}_{K}$. Methods of computing I_{p} and \mathcal{O}^{\prime} starting from a \mathbf{Z}-basis of \mathcal{O}, are in [2, Sect.6.1.1].

Step 5: For \mathcal{O}^{\prime} as in Step 4, $\left[\mathcal{O}^{\prime}: \mathcal{O}\right]$ is a power of p : since $p \in I_{p}, p \mathcal{O}^{\prime} \subset I_{p} \subset \mathcal{O}$, so $\mathcal{O} \subset \mathcal{O}^{\prime} \subset(1 / p) \mathcal{O}$. Thus $\left[\mathcal{O}^{\prime}: \mathcal{O}\right] \mid p^{n}$, where $n=[K: \mathbf{Q}]$.

- If \mathcal{O}^{\prime} is bigger than \mathcal{O} then the highest power of p dividing $\left[\mathcal{O}_{K}: \mathcal{O}^{\prime}\right]$ is less than the highest ower of p dividing $\left[\mathcal{O}_{K}: \mathcal{O}\right]$. Rename \mathcal{O}^{\prime} as \mathcal{O} and repeat Step 4.
- If $\mathcal{O}^{\prime}=\mathcal{O}$ then $p \nmid\left[\mathcal{O}_{K}: \mathcal{O}\right]$. This result, due to Pohst and Zassenhaus, is not obvious! A proof is in [2, Sect.6.1.3]. (The converse is true too: if $p \nmid\left[\mathcal{O}_{K}: \mathcal{O}\right]$ then $\left[\mathcal{O}^{\prime}: \mathcal{O}\right]$ is a p-power dividing $\left[\mathcal{O}_{K}: \mathcal{O}\right]$, so $\left[\mathcal{O}^{\prime}: \mathcal{O}\right]=1$ and thus $\mathcal{O}^{\prime}=\mathcal{O}$.) Set $\mathcal{O}_{p}=\mathcal{O}$.
Step 6: Run through Steps 4 and 5 for each $p \in S$, starting with the initial order \mathcal{O} being $\mathbf{Z}[\bar{\alpha}]$, to get an order \mathcal{O}_{p} containing $\mathbf{Z}[\alpha]$ such that $p \nmid\left[\mathcal{O}_{K}: \mathcal{O}_{p}\right]$.

Set $A:=\sum_{p \in S} \mathcal{O}_{p}$. This additive subgroup of \mathcal{O}_{K} contains \mathcal{O}_{p} for each p in S, so $p \nmid\left[\mathcal{O}_{K}: A\right]$ for $p \in S$. Since $\mathbf{Z}[\alpha] \subset A \subset \mathcal{O}_{K},\left[\mathcal{O}_{K}: A\right]$ is 1 (as in Example 4.4), so $\mathcal{O}_{K}=A=\sum_{p \in S} \mathcal{O}_{p}$. That "computes" \mathcal{O}_{K} in terms of the rings \mathcal{O}_{p} for $p \in S$.

5. Existence of element with index not divisible by p

Here are the key items we have discussed about primes p and indices $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$.
(1) If there is an $\alpha \in \mathcal{O}_{K}$ such that $K=\mathbf{Q}(\alpha)$ and $p \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$, then we can read off how $p \mathcal{O}_{K}$ decomposes into prime ideals from the way $f(T) \bmod p$ decomposes into irreducibles in $\mathbf{F}_{p}[T]$, where $f(T)$ is the minimal polynomial of α over \mathbf{Q}.
(2) If there is an $\alpha \in \mathcal{O}_{K}$ such that $K=\mathbf{Q}(\alpha)$, then a necessary and sufficient condition for $p \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ is a divisibility criterion in $\mathbf{F}_{p}[T]$ (Dedekind's index theorem).
(3) When $p \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$, there is a systematic way to find an element of order p in $\mathcal{O}_{K} / \mathbf{Z}[\alpha]$ (Theorem 4.1).
A natural issue to address that would round out this list of properties is how to determine if there is an α in \mathcal{O}_{K} such that $K=\mathbf{Q}(\alpha)$ and $p \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$. Here we don't pick α and look for p such that $p \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$, but pick p and look for α such that $p \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$. The index of K is

$$
i(K):=\operatorname{gcd}\left(\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]\right)
$$

where the gcd runs over all α in \mathcal{O}_{K} such that $K=\mathbf{Q}(\alpha)$. We have $p \nmid i(K)$ if and only there is an α such that $p \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$. If $i(K)>1$ then $\mathcal{O}_{K} \neq \mathbf{Z}[\alpha]$ for all α in \mathcal{O}_{K}.

From (1.1), which is a consequence of $p \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ for some α but makes no direct reference to α, we get a necessary condition for $p \nmid i(K)$ in terms of the prime ideal factorization $p \mathcal{O}_{K}=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{g}^{e_{g}}:$ writing $\mathrm{N}\left(\mathfrak{p}_{i}\right)=p^{f_{i}}$, there must be distinct monic irreducibles $\bar{\pi}_{1}(T), \ldots, \bar{\pi}_{g}(T)$ in $\mathbf{F}_{p}[T]$ such that $\operatorname{deg}\left(\bar{\pi}_{i}(T)\right)=f_{i}$ for $i=1, \ldots, g$.

Example 5.1. Since $\mathbf{F}_{2}[T]$ has two irreducibles of degree 1 and one irreducible of degree 2, if $2 \mathcal{O}_{K}$ has at least three prime ideal factors with residue field degree 1 (making $[K: \mathbf{Q}] \geq 3$) or at least two prime ideal factors with residue field degree 2 (making $[K: \mathbf{Q}] \geq 4$) then it's impossible to have $2 \nmid i(K)$: for all α in \mathcal{O}_{K} that generate $K / \mathbf{Q},\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ is even. An example of the first case is $K=\mathbf{Q}(\beta)$ where β is a root of $T^{3}-T^{2}-2 T-8$ (a cubic field in which 2 splits completely) and an example of the second case is $K=\mathbf{Q}(\gamma)$ where γ is a root of $T^{4}-3 T^{2}-4 T+5$ (a quartic field in which $(2)=\mathfrak{p p}^{\prime}$ with $f(\mathfrak{p} \mid 2)=f\left(\mathfrak{p}^{\prime} \mid 2\right)=2$).

Dedekind [3, Sect. 4] showed the necessary condition above for $p \nmid i(K)$ is sufficient too, so we have the following equivalence.

Theorem 5.2. Let $[K: \mathbf{Q}]=n$ and p be a prime. When $p \mathcal{O}_{K}$ has prime ideal factorization $\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{g}^{e_{g}}$ and $\mathrm{N}\left(\mathfrak{p}_{i}\right)=p^{f_{i}}$, we have $p \nmid i(K)$ if and only if there are distinct monic irreducibles $\bar{\pi}_{1}(T), \ldots, \bar{\pi}_{g}(T)$ in $\mathbf{F}_{p}[T]$ such that $\operatorname{deg}\left(\bar{\pi}_{i}(T)\right)=f_{i}$ for $i=1, \ldots, g$.

Proof. We already indicated from (1.1) that if $p \nmid i(K)$, meaning $p \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ for a primitive integral α in K, then there are distinct monic irreducible $\bar{\pi}_{i}(T)$ in $\mathbf{F}_{p}[T]$ with degree f_{i} for $i=1, \ldots, g$.

Now assume there are distinct monic irreducible $\bar{\pi}_{i}(T) \in \mathbf{F}_{p}[T]$ such that $\operatorname{deg} \bar{\pi}_{i}(T)=f_{i}$ for $i=1, \ldots, g$. Let $\pi_{i}(T) \in \mathbf{Z}[T]$ be a monic liftting of $\bar{\pi}_{i}(T)$, so $\operatorname{deg}\left(\pi_{i}(T)\right)=\operatorname{deg}\left(\bar{\pi}_{i}(T)\right)=$ f_{i}. We will use these polynomials and the Chinese remainder theorem (among other tools) to show K / \mathbf{Q} has a primitive integral element α such that $p \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$, so $p \nmid i(K)$.

We break up the rest of the proof into four steps. If you find it too long, you can skip it.
Step 1: There is an $\alpha \in \mathcal{O}_{K}$ such that $\mathfrak{p}_{i}=\left(p, \pi_{i}(\alpha)\right)$ for $i=1, \ldots, g$.
The field $\mathcal{O}_{K} / \mathfrak{p}_{i}$ has order $p^{f_{i}}$. A standard property of finite fields is that each irreducible of degree f_{i} in $\mathbf{F}_{p}[T]$ has a root (in fact a full set of roots) in each field of size $p^{f_{i}}$. Therefore $\pi_{i}\left(r_{i}\right) \equiv 0 \bmod \mathfrak{p}_{i}$ for some $r_{i} \in \mathcal{O}_{K}$, so $\mathfrak{p}_{i} \mid\left(\pi_{i}\left(r_{i}\right)\right)$. Also $\mathfrak{p}_{i} \mid(p)$, so $\mathfrak{p}_{i} \mid\left(p, \pi_{i}\left(r_{i}\right)\right)$. It can happen that $\mathfrak{p}_{i} \neq\left(p, \pi_{i}\left(r_{i}\right)\right)$, and one reason would be that $\mathfrak{p}_{i}^{2} \mid(p)$ and $\mathfrak{p}_{i}^{2} \mid\left(\pi_{i}\left(r_{i}\right)\right)$. To fix that, if $\mathfrak{p}_{i}^{2} \mid\left(\pi_{i}\left(r_{i}\right)\right)$ then we can adjust r_{i} modulo \mathfrak{p}_{i} so that $\mathfrak{p}_{i}^{2} \nmid\left(\pi_{i}\left(r_{i}\right)\right)$, as follows.

Pick $\beta_{i} \in \mathfrak{p}_{i}-\mathfrak{p}_{i}^{2}$, so \mathfrak{p}_{i} divides $\left(\beta_{i}\right)$ just once. Then $\pi_{i}\left(r_{i}+\beta_{i}\right) \equiv \pi_{i}\left(r_{i}\right) \equiv 0 \bmod \mathfrak{p}_{i}$ while

$$
\pi_{i}\left(r_{i}+\beta_{i}\right)=\pi_{i}\left(r_{i}\right)+\pi_{i}^{\prime}\left(r_{i}\right) \beta_{i} \equiv \pi_{i}^{\prime}\left(r_{i}\right) \beta_{i} \bmod \mathfrak{p}_{i}^{2}
$$

from the assumption that $\pi_{i}\left(r_{i}\right) \equiv 0 \bmod \mathfrak{p}_{i}^{2}$. Since $\bar{\pi}_{i}(T)$ is separable in $\mathbf{F}_{p}[T], \pi_{i}\left(r_{i}\right) \equiv$ $0 \bmod \mathfrak{p}_{i}$ implies $\pi_{i}^{\prime}\left(r_{i}\right) \not \equiv 0 \bmod \mathfrak{p}_{i}^{2}$, so the ideal $\left(\pi_{i}^{\prime}\left(r_{i}\right) \beta_{i}\right)=\left(\pi_{i}^{\prime}\left(r_{i}\right)\right)\left(\beta_{i}\right)$ is divisible by \mathfrak{p}_{i} just once: $\mathfrak{p}_{i} \nmid\left(\pi_{i}^{\prime}\left(r_{i}\right)\right), \mathfrak{p}_{i} \mid\left(\beta_{i}\right)$, and $\mathfrak{p}_{i}^{2} \nmid\left(\beta_{i}\right)$. Replacing r_{i} by $r_{i}+\beta_{i}$ puts us in the situation that $\pi_{i}\left(r_{i}\right) \equiv 0 \bmod \mathfrak{p}_{i}$ as before and now $\pi_{i}\left(r_{i}\right) \not \equiv 0 \bmod \mathfrak{p}_{i}^{2}$, so \mathfrak{p}_{i} divides $\left(p, \pi_{i}\left(r_{i}\right)\right)$ just once.

Now let's use the Chinese remainder theorem: there is an $\alpha \in \mathcal{O}_{K}$ such that $\alpha \equiv r_{i} \bmod \mathfrak{p}_{i}^{2}$ for $i=1, \ldots, g$, so $\pi_{i}(\alpha) \equiv \pi_{i}\left(r_{i}\right) \equiv 0 \bmod \mathfrak{p}_{i}$ and $\pi_{i}(\alpha) \equiv \pi_{i}\left(r_{i}\right) \not \equiv 0 \bmod \mathfrak{p}_{i}^{2}$. We are going to show $\mathfrak{p}_{i}=\left(p, \pi_{i}(\alpha)\right)$. Since \mathfrak{p}_{i} divides (p) and divides $\left(\pi_{i}(\alpha)\right)$ just once, \mathfrak{p}_{i} divides $\left(p, \pi_{i}(\alpha)\right)$ just once. What other prime ideal divides $\left(p, \pi_{i}(\alpha)\right) ?$ If \mathfrak{q} is a prime ideal dividing $\left(p, \pi_{i}(\alpha)\right)$ then $\mathfrak{q} \mid(p)$, so \mathfrak{q} is some \mathfrak{p}_{j}. Then $\pi_{i}(\alpha) \equiv 0 \bmod \mathfrak{p}_{j}$. Also $\pi_{j}(\alpha) \equiv 0 \bmod \mathfrak{p}_{j}$, so $\alpha \bmod \mathfrak{p}_{j}$ is a common root in $\mathcal{O}_{K} / \mathfrak{p}_{j}$ of $\bar{\pi}_{i}(T)$ and $\bar{\pi}_{j}(T)$. Distinct monic irreducibles in $\mathbf{F}_{p}[T]$ don't have common roots in an extension field of \mathbf{F}_{p}, so $\bar{\pi}_{j}(T)=\bar{\pi}_{i}(T)$. That means $j=i$, so $\mathfrak{q}=\mathfrak{p}_{i}$: the only prime ideal dividing $\left(p, \pi_{i}(\alpha)\right)$ is \mathfrak{p}_{i}. Since \mathfrak{p}_{i} divides $\left(p, \pi_{i}(\alpha)\right)$ just once, $\left(p, \pi_{i}(\alpha)\right)=\mathfrak{p}_{i}$ for $i=1, \ldots, g$.

Step 2: For α as in Step $1, \mathfrak{p}_{i}^{e_{i}}=\left(p, \pi_{i}(\alpha)^{e_{i}}\right)$ for $i=1, \ldots, g$, where $p \mathcal{O}_{K}=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{g}^{e_{g}}$.

The ideal $\left(p, \pi_{i}(\alpha)^{e_{i}}\right)$ is the greatest common divisor of (p) and $\left(\pi_{i}(\alpha)\right)^{e_{i}}$. Let \mathfrak{q} be a prime ideal dividing $\left(p, \pi_{i}(\alpha)^{e_{i}}\right)$. Then $\mathfrak{q} \mid(p)$ and $\mathfrak{q} \mid\left(\pi_{i}(\alpha)\right)^{e_{i}}$, so \mathfrak{q} divides (p) and $\left(\pi_{i}(\alpha)\right)$. Since $\left(p, \pi_{i}(\alpha)\right)=\mathfrak{p}_{i}, \mathfrak{q}$ must be \mathfrak{p}_{i}, so $\left(p, \pi_{i}(\alpha)^{e_{i}}\right)$ is a power of \mathfrak{p}_{i}. The highest power of \mathfrak{p}_{i} dividing (p) is $\mathfrak{p}_{i}^{e_{i}}$, and $\mathfrak{p}_{i}^{e_{i}} \mid\left(\pi_{i}(\alpha)^{e_{i}}\right)$ since $\mathfrak{p}_{i} \mid\left(\pi_{i}(\alpha)\right)$, so $\left(p, \pi_{i}(\alpha)^{e_{i}}\right)=\mathfrak{p}_{i}^{e_{i}}$.

Step 3: Evaluation at $\alpha \bmod \mathfrak{p}_{i}^{e_{i}}$ is a ring isomorphism $\mathbf{F}_{p}[T] /\left(\bar{\pi}_{i}(T)^{e_{i}}\right) \rightarrow \mathcal{O}_{K} / \mathfrak{p}_{i}^{e_{i}}$ for $i=\overline{1, \ldots}, g$.

The ring $\mathcal{O}_{K} / \mathfrak{p}_{i}^{e_{i}}$ has characteristic p since $p \equiv 0 \bmod \mathfrak{p}_{i}^{e_{i}}$. Thus evaluation at $\alpha \bmod \mathfrak{p}_{i}^{e_{i}}$ is a ring homomorphism $\mathbf{F}_{p}[T] \rightarrow \mathcal{O}_{K} / \mathfrak{p}_{i}^{e_{i}}$. We have $\pi_{i}(\alpha)^{e_{i}} \equiv 0 \bmod \mathfrak{p}_{i}^{e_{i}}$ since $\mathfrak{p}_{i} \mid\left(\pi_{i}(\alpha)\right)$, so $\bar{\pi}_{i}(T)^{e_{i}}$ is in the kernel: we get a ring homomorphism $\mathbf{F}_{p}[T] /\left(\bar{\pi}_{i}(T)^{e_{i}}\right) \rightarrow \mathcal{O}_{K} / \mathfrak{p}_{i}^{e_{i}}$ by $\bar{g}(T) \mapsto g(\alpha) \bmod \mathfrak{p}_{i}^{e_{i}}$. We will show this is injective, and therefore it is an isomorphism since $\left|\mathbf{F}_{p}[T] /\left(\bar{\pi}_{i}(T)^{e_{i}}\right)\right|=p^{e_{i} f_{i}}=\left|\mathcal{O}_{K} / \mathfrak{p}_{i}^{e_{i}}\right|$.

Each element of $\mathbf{F}_{p}[T] /\left(\bar{\pi}_{i}(T)^{e_{i}}\right)$ can be written uniquely in base $\bar{\pi}_{i}(T)$ as

$$
\begin{equation*}
\bar{c}_{0}(T)+\bar{c}_{1}(T) \bar{\pi}_{i}(T)+\cdots+\bar{c}_{e_{i}-1}(T) \bar{\pi}_{i}(T)^{e_{i}-1} \bmod \bar{\pi}_{i}(T)^{e_{i}} \tag{5.1}
\end{equation*}
$$

where the coefficients $\bar{c}_{k}(T)$ in $\mathbf{F}_{p}[T]$ are 0 or have degree less than $\operatorname{deg}\left(\bar{\pi}_{i}(T)\right)=f_{i}$. Suppose (5.1) is mapped to 0 in $\mathcal{O}_{K} / \mathfrak{p}_{i}^{e_{i}}$ after we substitute $\alpha \bmod \mathfrak{p}_{i}^{e_{i}}$ for T :

$$
c_{0}(\alpha)+c_{1}(\alpha) \pi_{i}(\alpha)+\cdots+c_{e_{i}-1}(\alpha) \pi_{i}(\alpha)^{e_{i}-1} \bmod \mathfrak{p}_{i}^{e_{i}} .
$$

We want the kernel of $\mathbf{F}_{p}[T] /\left(\bar{\pi}_{i}(T)^{e_{i}}\right) \rightarrow \mathcal{O}_{K} / \mathfrak{p}_{i}^{e_{i}}$ to be 0 , so all $\bar{c}_{k}(T)$ should be 0 in $\mathbf{F}_{p}[T]$. If any are not, let $k \leq e_{i}-1$ be minimal with $\bar{c}_{k}(T) \neq 0$ in $\mathbf{F}_{p}[T]$. Then

$$
c_{k}(\alpha) \pi_{i}(\alpha)^{k}+\cdots+c_{e_{i}-1}(\alpha) \pi_{i}(\alpha)^{e_{i}-1} \equiv 0 \bmod \mathfrak{p}_{i}^{e_{i}} .
$$

Since $k \leq e_{i}-1$, we can reduce the congruence to modulus \mathfrak{p}_{i}^{k+1} :

$$
c_{k}(\alpha) \pi_{i}(\alpha)^{k} \equiv 0 \bmod \mathfrak{p}_{i}^{k+1}
$$

so $\mathfrak{p}_{i}^{k+1} \mid\left(c_{k}(\alpha)\right)\left(\pi_{i}(\alpha)\right)^{k}$. The ideal $\left(\pi_{i}(\alpha)\right)$ is divisible by \mathfrak{p}_{i} just once by the method used to construct α in Step 1 (that is, $\alpha \equiv r_{i} \bmod \mathfrak{p}_{i}^{2}$ and $\left.\pi_{i}\left(r_{i}\right) \not \equiv 0 \bmod \mathfrak{p}_{i}^{2}\right)$, so $\mathfrak{p}_{i} \mid\left(c_{k}(\alpha)\right)$. Write that as $\bar{c}_{k}(\alpha)=0$ in the field $\mathcal{O}_{K} / \mathfrak{p}_{i}$. Since $\operatorname{deg}\left(\bar{c}_{k}(T)\right)<f_{i}$ and $\alpha \bmod \mathfrak{p}_{i}$ is the root of an irreducible $\bar{\pi}_{i}(T)$ of degree f_{i} in $\mathbf{F}_{p}[T], \alpha \bmod \mathfrak{p}_{i}$ is not the root of a polynomial in $\mathbf{F}_{p}[T]$ of degree less than f_{i}. Therefore $\bar{c}_{k}(T)=0$ in $\mathbf{F}_{p}[T]$, which is a contradiction.

Step 4: For α as in Step 1, $K=\mathbf{Q}(\alpha)$ and $p \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$.
$\overline{\text { By the }}$ Chinese remainder theorem, we can combine the isomorphisms $\mathbf{F}_{p}[T] /\left(\bar{\pi}_{i}(T)^{e_{i}}\right) \rightarrow$ $\mathcal{O}_{K} / \mathfrak{p}_{i}^{e_{i}}$ for $i=1, \ldots, g$ from Step 3 that use evaluation at $\alpha \bmod \mathfrak{p}_{i}^{e_{i}}$ to get an isomorphism

$$
\begin{equation*}
\mathbf{F}_{p}[T] /\left(\bar{\pi}_{1}(T)^{e_{1}} \cdots \bar{\pi}_{g}(T)^{e_{g}}\right) \rightarrow \mathcal{O}_{K} / p \mathcal{O}_{K} \tag{5.2}
\end{equation*}
$$

using evaluation at $\alpha \bmod p \mathcal{O}_{K}$.
Let $f(T)$ be the minimal polynomial of α over \mathbf{Q}, so $f(T)$ is monic in $\mathbf{Z}[T]$ and $\operatorname{deg} f \leq$ $[K: \mathbf{Q}]$. Also

$$
f(\alpha)=0 \Longrightarrow f(\alpha) \equiv 0 \bmod p \mathcal{O}_{K} \Longrightarrow \bar{\pi}_{1}(T)^{e_{1}} \cdots \bar{\pi}_{g}(T)^{e_{g}} \mid \bar{f}(T) \text { in } \mathbf{F}_{p}[T] \text { by (5.2). }
$$

Since f is monic,

$$
\operatorname{deg} f=\operatorname{deg} \bar{f} \geq \sum_{i=1}^{g} e_{i} \operatorname{deg}\left(\bar{\pi}_{i}\right)=\sum_{i=1}^{g} e_{i} f_{i}=[K: \mathbf{Q}] .
$$

Therefore $\operatorname{deg} f=[K: \mathbf{Q}]$, so $K=\mathbf{Q}(\alpha)$ and

$$
\bar{f}(T)=\bar{\pi}_{1}(T)^{e_{1}} \cdots \bar{\pi}_{g}(T)^{e_{g}}
$$

in $\mathbf{F}_{p}[T]$ since both sides are monic and the right side is a factor of the left side. We can rewrite (5.2) as an isomorphism

$$
\begin{equation*}
\mathbf{F}_{p}[T] /(\bar{f}(T)) \rightarrow \mathcal{O}_{K} / p \mathcal{O}_{K} \tag{5.3}
\end{equation*}
$$

using evaluation at $\alpha \bmod p \mathcal{O}_{K}$.
To prove $p \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$, we argue by contradiction. Suppose $p \mid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$, so $\mathcal{O}_{K} / \mathbf{Z}[\alpha]$ has order divisible by p and thus it has an element β of order $p: \beta \in \mathcal{O}_{K}-\mathbf{Z}[\alpha]$ and $p \beta \in \mathbf{Z}[\alpha]$. Write $p \beta=h(\alpha)$, where $h(T) \in \mathbf{Z}[T]$. Then $h(\alpha) \equiv 0 \bmod p \mathcal{O}_{K}$, so the isomorphism (5.3) vanishes on $\bar{h}(T)$, which means $\bar{f}(T) \mid \bar{h}(T)$ in $\mathbf{F}_{p}[T]$, so $h(T) \in(p, f(T))$ in $\mathbf{Z}[T]$. Evaluating that at $\alpha, h(\alpha) \in p \mathbf{Z}[\alpha]$ since $f(\alpha)=0$, so $\beta=h(\alpha) / p \in \mathbf{Z}[\alpha]$, which is a contradiction. Thus $p \nmid\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$.

The condition in Theorem 5.2 that is equivalent to $p \nmid i(K)$ can be described using inequalities. For $d \geq 1$, let $g_{p, K}(d)$ be the number of prime ideal factors of $p \mathcal{O}_{K}$ with residue field degree d and $N_{p}(d)$ be the number of monic irreducible polynomials of degree d in $\mathbf{F}_{p}[T]$. Then Theorem 5.2 says

$$
\begin{equation*}
p \nmid i(K) \Longleftrightarrow g_{p, K}(d) \leq N_{p}(d) \text { for all } d \leq[K: \mathbf{Q}] . \tag{5.4}
\end{equation*}
$$

The right side of (5.4) is formulated in terms of the number of prime ideal factors of $p \mathcal{O}_{K}$ with each residue field degree, and it might seem hard to count how often each residue field degree occurs in the factorization of $p \mathcal{O}_{K}$ if we don't know that (1.1) can be applied to p. Nevertheless, by negating both sides of (5.4) we get

$$
\begin{equation*}
p \mid i(K) \Longleftrightarrow N_{p}(d)<g_{p, K}(d) \text { for some } d \leq[K: \mathbf{Q}] . \tag{5.5}
\end{equation*}
$$

Theorem 5.3. A prime that is less than $[K: \mathbf{Q}]$ and splits completely in K divides $i(K)$.
Proof. We use $d=1$ in (5.5). Since $N_{p}(1)=p$ and $g_{p, K}(1)=[K: \mathbf{Q}]$ if p splits completely in K, if $p<[K: \mathbf{Q}]$ and p splits completely in K then (5.5) tells us $p \mid i(K)$.

The next result, due to von Zylinski [8], shows all p dividing $i(K)$ are bounded by $[K: \mathbf{Q}]$.
Theorem 5.4. If $p \mid i(K)$ then $p<[K: \mathbf{Q}]$.
Proof. If $p \mid i(K)$ then $g_{p, K}(d)>N_{p}(d)$ for some $d \leq[K: \mathbf{Q}]$. By the formula $\sum_{i=1}^{g} e_{i} f_{i}=$ [$K: \mathbf{Q}]$ for the prime $p, d g_{p, K}(d) \leq[K: \mathbf{Q}]$ by summing on the left side only over i where $f\left(\mathfrak{p}_{i} \mid p\right)=d$. Therefore $d N_{p}(d)<m g_{p, K}(d) \leq[K: \mathbf{Q}]$. The number $N_{p}(d)$ is divisible by p since if $\pi(T)$ is irreducible in $\mathbf{F}_{p}[T]$ then so is $\pi(T+c)$ for all $c \in \mathbf{F}_{p}$. Positivity of $N_{p}(d)$ therefore implies $d N_{p}(d) \geq p$, so $p \leq d N_{p}(d)<[K: \mathbf{Q}]$.

Conversely, Bauer [1] showed that if $p<n$ for an integer n then there are number fields K of degree n over \mathbf{Q} such that $p \mid i(K)$ by showing for each prime p and $n \in \mathbf{Z}^{+}$that there are number fields K of degree n such that p splits completely in K. Such p divide $i(K)$ if $p<n$, by Theorem 5.3.
Example 5.5. If $[K: \mathbf{Q}]=2$ then there is no prime less than $[K: \mathbf{Q}]$, so $i(K)=1$. This is well-known since the ring of integers of a quadratic field has the form $\mathbf{Z}[\alpha]$ for some $\alpha .^{3}$

[^2]Example 5.6. If $[K: \mathbf{Q}]=3$ then the only possible prime factor of $i(K)$ is 2 , and $2 \mid i(K)$ if and only if $g_{2, K}(1)>N_{2}(1)=2, g_{2, K}(2)>N_{2}(2)=1$, or $g_{2, K}(3)>N_{2}(3)=2$. The first inequality says 2 splits completely in K (since 2 has at most 3 prime ideal factors in a cubic field), and the second and third inequalities are impossible in a cubic field, e.g., if there were at least two prime ideal factors with residue field degree 2 then $[K: \mathbf{Q}] \geq 4$. Engstrom [4, p. 234] showed $i(K)$ is 1 or 2 for all cubic fields.
Example 5.7. If $[K: \mathbf{Q}]=4$ then the only possible prime factors of $i(K)$ are 2 and 3 . We have $2 \mid i(K)$ if and only if either 2 splits completely, $(2)=\mathfrak{p}_{2}^{2} \mathfrak{p}_{2}^{\prime} \mathfrak{p}_{2}^{\prime \prime}$, or $(2)=\mathfrak{p}_{4} \mathfrak{p}_{4}^{\prime}$, and $3 \mid i(K)$ if and only if 3 splits completely in K. For example, 3 splits completely in $\mathbf{Q}(\sqrt{-5}, \sqrt{7})$ (first check it splits completely in $\mathbf{Q}(\sqrt{-5})$ and $\mathbf{Q}(\sqrt{7}))$, so $3 \mid i(K)$. Engstrom [4, p. 234] showed $i(K)$ is $1,2,3,4,6$, or 12 for quartic fields.

Example 5.8. Number fields of arbitrary 2-power degree in which 2 splits completely can be built as composites of quadratic fields. For squarefree $m \neq 1,2$ splits completely in $\mathbf{Q}(\sqrt{m})$ if and only if $m \equiv 1 \bmod 8$. So when m_{1}, \ldots, m_{r} are pairwise relatively prime integers that are each $1 \bmod 8$ and don't equal 1 , such as r different primes that are each $1 \bmod 8$, the field $K=\mathbf{Q}\left(\sqrt{m_{1}}, \ldots, \sqrt{m_{r}}\right)$ has degree 2^{r} over \mathbf{Q} and 2 splits completely in K. In a similar way, for each $r \geq 1$ there is a composite of quadratic fields of degree 2^{r} in which any chosen prime number splits completely.

The next two examples are a family of cubic fields in which 2 splits completely and a family of quartic fields in which 2 and 3 both split completely.
Example 5.9. Let $f_{n}(T)=T(T-1)(T+1)+2^{n}=T^{3}-T+2^{n}$ for $n \geq 1$. This is irreducible for all n : it is cubic with the only possible roots in \mathbf{Q} being $\pm 2^{j}$ for $0 \leq j \leq n$, and $f\left(\pm 2^{j}\right) \neq 0$ by looking at 2-divisibility of the three terms (treat $j=0$ and $j=n$ separately from $0<j<n)$. Set $K_{n}=\mathbf{Q}\left(r_{n}\right)$ where r_{n} is a root of $f_{n}(T)$, so $\left[K_{n}: \mathbf{Q}\right]=3$. For $n \geq 3,2$ splits completely in K_{n} because $f_{n}(T)$ splits completely over the 2-adic numbers \mathbf{Q}_{2} by Hensel's lemma with approximate roots 0,1 , and -1 . Thus $i\left(K_{n}\right)$ is divisible by 2 for $n \geq 3$. ${ }^{4}$

Example 5.10. Let $f_{n}(T)=T(T-1)(T-2)(T-3)+6^{n}=T^{4}-6 T^{3}+11 T^{2}-6 T+6^{n}$ for $n \geq 1$. This is irreducible for $1 \leq n \leq 10$ and probably is irreducible for all n, but I haven't bothered to check this ${ }^{5}$. Assume $f_{n}(T)$ is irreducible over \mathbf{Q} and set $L_{n}=\mathbf{Q}\left(r_{n}\right)$ where r_{n} is a root of $f_{n}(T)$, so $\left[L_{n}: \mathbf{Q}\right]=4$. By Hensel's lemma over the 2-adic and 3-adic numbers with approximate roots $0,1,2$, and $3, f_{n}(T)$ splits completely over \mathbf{Q}_{2} and \mathbf{Q}_{3} for $n \geq 3$, so 2 and 3 split completely in L_{n}. Therefore $i\left(L_{n}\right)$ is divisible by 2 and 3 for $n \geq 3$.

Prime factors of $i(K)$ divide all indices $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$, so they have been called common index divisors of K, as in the title of [4], as well as inessential discriminant divisors [7], which is a translation of the original German term ausserwesentliche Discriminantenteiler (see the title of [1]), where ausserwesentliche literally means "outside of the essence" (ausser $=$ outer and Wesen $=$ being) and is no longer in common use. These primes have also been called essential discriminant divisors [2, p. 197], which is surprising: why label them as both inessential and essential?

[^3]The story goes back to Kronecker's work [5] on algebraic functions. For $F(x, y) \in \mathbf{C}[x, y]$ that is irreducible and monic in y (like $y^{3}+\left(x^{2}-x\right) y+x-1$), let $F(x, r)=0$. The field $\mathbf{C}(x, r)$ is a finite extension of $\mathbf{C}(x)$ and r is integral over $\mathbf{C}[x]$. Let A be the integral closure of $\mathbf{C}[x]$ in $\mathbf{C}(x, r)$. Both A and its subring $\mathbf{C}[x, r]$ are finite free $\mathbf{C}[x]$-modules of equal rank, and are analogous to \mathcal{O}_{K} and $\mathbf{Z}[\alpha]$ in the number field $K=\mathbf{Q}(\alpha)$. The analogue for A and $\mathbf{C}[x, r]$ of the number-theoretic formula $\operatorname{disc}(\mathbf{Z}[\alpha])=\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]^{2} \operatorname{disc}(K)$ is

$$
D(x)=R(x)^{2} \Delta(x)
$$

where $D(x)$ is $\operatorname{disc}_{\mathbf{C}[x]}(A), R(x)$ is the $\mathbf{C}[x]$-index of $\mathbf{C}[x, r]$ in A, and $\Delta(x)$ is $\operatorname{disc}_{\mathbf{C}[x]}(A)$. (The polynomials $D(x), R(x)$ and $\Delta(x)$ are defined only up to multiplication by a nonzero complex number in order to account for different choices of $\mathbf{C}[x]$-bases to compute them.) Because A is more fundamental than $\mathbf{C}[x, r]$, Kronecker [5, p. 313] called $\Delta(x)=\operatorname{disc}_{\mathbf{C}[x]}(A)$ the essential divisor (wesentlichen Theiler) of $D(x)$ and $R(x)^{2}$ the inessential divisor (ausserwesentlichen Theiler) of $D(x)$. Thus "essential" and "inessential" for Kronecker described the relative importance of two complementary divisors of $D(x) .{ }^{6}$

In number fields, the analogue of the inessential divisor $R(x)^{2}$ is $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]^{2}$. We could (but don't) call this number the inessential divisor of the discriminant of α, so a prime dividing all indices $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ could be called "a common prime factor of the inessential divisors of all discriminants." When that is shortened to "inessential discriminant divisor" as a label for certain primes, the original intent behind "inessential" (that $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]^{2}$ is less important than $\operatorname{disc}(K)$) becomes lost and common prime factors of all indices $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right]$ seem essential, not inessential. The name "common index divisor" for such primes is better.

References

[1] M. Bauer, "Über die ausserwesentlichen Diskriminantenteiler einer Gattung," Math. Ann. 64 (1907), 573-576. URL https://eudml. org/doc/158337.
[2] H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, NY, 1993.
[3] R. Dedekind, "Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen," Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen $\mathbf{2 3}$ (1878), 3-38. URL https://eudml.org/doc/135827. English translation: https://arxiv.org/abs/ 2107.08905.
[4] H. T. Engstrom, "On the common index divisors of an algebraic field," Trans. Amer. Math. Soc. 32 (1930), 223-237. URL https://www.ams.org/journals/tran/1930-032-02/S0002-9947-1930-1501535 -0/home.html.
[5] L. Kronecker, "Ueber die Discriminante algebraischer Functionen einer Variabeln," J. Reine Angew. Mathematik 91 (1881), 301-334. URL https://eudml.org/doc/148482.
[6] M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, Cambridge, 1989.
[7] L. Tornheim, "Minimal basis and inessential discriminant divisors for a cubic field," Pac. J. Math. 5 (1955), 623-631.
[8] E. von Zylinski, "Zur Theorie der ausserwesentlichen Diskriminantenteiler algebraischer Körper," Math. Ann. 73 (1913), 273-274. URL https://eudml.org/doc/158603.
${ }^{6}$ I thank Darij Grinberg for linguistic assistance with Kronecker's paper.

[^0]: ${ }^{1}$ See https://kconrad.math.uconn.edu/blurbs/ringtheory/irredselmerpoly.pdf.

[^1]: ${ }^{2}$ This is from Theorem 8.2 of https://www.math.leidenuniv.nl/~psh/ANTproc/08psh.pdf.

[^2]: ${ }^{3}$ The condition $i(K)=1$ does not require $\mathcal{O}_{K}=\mathbf{Z}[\alpha]$. If two indices $\left[\mathcal{O}_{K}: \mathbf{Z}[\beta]\right]$ and $\left[\mathcal{O}_{K}: \mathbf{Z}[\gamma]\right]$ are greater than 1 and are relatively prime, then $i(K)=1$. For example, if $K=\mathbf{Q}(\sqrt[3]{175})$ then $\mathcal{O}_{K} \neq \mathbf{Z}[\alpha]$ for all α in K, but $\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{175}]\right]=5$ and $\left[\mathcal{O}_{K}: \mathbf{Z}[\sqrt[3]{245}]\right]=7$, so $i(K)=1$. Those calculations are explained in Example 4.16 in https://kconrad.math.uconn.edu/blurbs/gradnumthy/different.pdf.

[^3]: ${ }^{4}$ The intuition that led to the construction of the fields K_{n} is 2-adic: $f_{n}(T)$ is 2-adically close to the split polynomial $T(T-1)(T+1)$, so it should split completely over \mathbf{Q}_{2} for large enough n by p-adic continuity of roots when $p=2$, and Hensel's lemma confirms this for $n \geq 3$.
 ${ }^{5}$ Note $f_{n}(T-1)=T^{4}-10 T^{4}+35 T^{2}-50 T+24+6^{n}$ is Eisenstein at 5 when $5 \nmid n$, so $f_{n}(T)$ is irrreducibkle over \mathbf{Q} when $5 \nmid n$.

