
DEDEKIND’S INDEX THEOREM

KEITH CONRAD

1. Introduction

Let K = Q(α) where α is an algebraic integer with minimal polynomial f(T ) ∈ Z[T ].
For a prime p, Dedekind [3, Sect. 2] showed the prime ideal decomposition of p in OK can be
read off from the irreducible factorization of f(T ) mod p in Fp[T ] provided p - [OK : Z[α]]:

(1.1) f(T ) ≡ π1(T )e1 · · ·πg(T )eg mod p =⇒ pOK = pe11 · · · p
eg
g ,

where π1(T ), . . . , πg(T ) are distinct monic irreducibles in Fp[T ], N(pi) = pdeg πi , and pi =
(p, πi(α)) where πi(T ) is an arbitrary monic lift of πi(T ) to Z[T ].

If p | [OK : Z[α]] then the factorization of pOK may or may not match that of f(T ) mod p.

Example 1.1. If K = Q( 3
√

12) and f(T ) = T 3− 12 then f(T ) ≡ T 3 mod 2 and 2OK = p3,
but the factorization of 2OK is not based on (1.1) with α = 3

√
12 since [OK : Z[ 3

√
12]] = 2:

OK = Z + Z 3
√

12 + Z 3
√

18 = Z + Z 3
√

12 + Z 3
√

12
2
/2.

We can instead rewrite K as Q( 3
√

18), set f(T ) = T 3 − 18, and now [OK : Z[ 3
√

18]] = 3,
an index not divisible by 2, so the factorization T 3 − 18 ≡ T 3 mod 2 implies 2OK = p3.

Example 1.2. If K = Q( 3
√

10) and f(T ) = T 3−10 then f(T ) ≡ (T−1)3 mod 3 but 3OK =

pq2. Here [OK : Z[ 3
√

10]] = 3. It turns out that OK = Z[α] for α = ( 3
√

10
2

+ 3
√

10 + 1)/3,
whose minimal polynomial over Q is T 3−T 2−3T−3 and T 3−T 2−3T−3 ≡ (T−1)T 2 mod 3.

Example 1.3. The number α =
√

10 + 3
√

10 is a root of f(T ) = T 4− 20T 2 + 10, which is
irreducible over Q (why?). Set K = Q(α). We have f(T ) ≡ (T − 1)2(T − 2)2 mod 3 but it
turns out that 3 splits completely in K. Here [OK : Z[α]] = 9 and the factorization of 3OK
can’t be found by (1.1) since 3 | [OK : Z[β]] for all β in OK such that K = Q(β).

We can apply (1.1) to primes not dividing disc(f) since [OK : Z[α]]2 | disc(f). To know
whether (1.1) applies to a prime dividing disc(f), we want to know which prime factors
of disc(f) in fact divide [OK : Z[α]]. For an arbitrary prime p, here is a necessary and
sufficient condition for p | [OK : Z[α]] that does not require knowing OK .

Theorem 1.4. Let K = Q(α) where α is an algebraic integer with minimal polynomial
f(T ) ∈ Z[T ]. For a prime p, let the monic irreducible factorization of f(T ) mod p be

(1.2) f(T ) ≡ π1(T )e1 · · ·πg(T )eg mod p.

Let πj(T ) be a monic lift of πj(T ) to Z[T ] and define F (T ) ∈ Z[T ] by

(1.3) f(T ) = π1(T )e1 · · ·πg(T )eg + pF (T ).

Then p | [OK : Z[α]]⇐⇒ πj(T ) | F (T ) in Fp[T ] for some j such that ej ≥ 2.

This is due to Dedekind [3, Sect. 3], so we call it Dedekind’s index theorem. (It is called
Dedekind’s criterion by Cohen [2, Theorem 6.1.4(2)] and Pohst and Zassenhaus [6, p. 295].)
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2. Examples

Before proving Dedekind’s index theorem, let’s look at some examples of it at work. Since
[OK : Z[α]]2 | disc(f), the only primes that might divide [OK : Z[α]] are primes dividing
disc(f) with multiplicity at least 2.

Example 2.1. Let K = Q( 3
√

12) and f(T ) = T 3−12. Since disc(f(T )) = −3888 = −24 ·35,
the only possible prime factors of [OK : Z[ 3

√
12]] are 2 or 3.

Case 1: p = 2.
Since f(T ) ≡ T 3 mod 2, take π1(T ) = T . Write

f(T ) = T 3 + 2F (T ) for F (T ) = −6,

so F (T ) ≡ 0 mod 2. Therefore π1(T ) | F (T ) in F2[T ], so 2 | [OK : Z[
3
√

12]] .

Case 2: p = 3.
Since f(T ) ≡ T 3 mod 3, take π1(T ) = T . Then

f(T ) = T 3 + 3F (T ) for F (T ) = −4,

so π1(T ) - F (T ) in F3[T ]. Thus 3 - [OK : Z[ 3
√

12]].

Example 2.2. Let K = Q( 3
√

10) and f(T ) = T 3 − 10. Since disc(f(T )) = −2700 =
−22 · 33 · 52, the only possible prime factors of [OK : Z[ 3

√
10]] are 2, 3, and 5.

Case 1: p = 2.
Since f(T ) ≡ T 3 mod 2, take π1(T ) = T . Then

f(T ) = T 3 + 2F (T ) for F (T ) = −5,

so π1(T ) - F (T ) in F2[T ]. Thus 2 - [OK : Z[ 3
√

10]].
Case 2: p = 3.
Since f(T ) ≡ (T − 1)3 mod 3, take π1(T ) = T − 1. Then

f(T ) = (T − 1)3 + 3F (T ) for F (T ) = T 2 − T − 3,

so F (T ) ≡ T (T − 1) mod 3. Thus π1(T ) | F (T ) in F3[T ], so 3 | [OK : Z[
3
√

10]] .

Case 3: p = 5.
Since f(T ) ≡ T 3 mod 5, take π1(T ) = T . Then

f(T ) = T 3 + 5F (T ) for F (T ) = −2,

so π1(T ) - F (T ) in F5[T ]. Thus 5 - [OK : Z[ 3
√

10]].

Example 2.3. Let K = Q( 3
√

2) and f(T ) = T 3 − 2, so disc(f(T )) = −108 = −22 · 33. The
only primes that might divide [OK : Z[ 3

√
2]] are 2 and 3.

Case 1: p = 2.
Since f(T ) ≡ T 3 mod 2, take π1(T ) = T . Then

f(T ) = T 3 + 2F (T ) for F (T ) = −1,

so π1(T ) - F (T ) in F2[T ]. Thus 2 - [OK : Z[ 3
√

2]].
Case 2: p = 3.
Since f(T ) ≡ (T + 1)3 mod 3, take π1(T ) = T + 1. Then

f(T ) = (T + 1)3 + 3F (T ) for F (T ) = −T 2 − T − 1,

so F (T ) ≡ −(T + 2)2 mod 3. Thus π1(T ) - F (T ) in F3[T ], so 3 - [OK : Z[ 3
√

2]].
By Cases 1 and 2, [OK : Z[ 3

√
2]] = 1, so OK = Z[ 3

√
2].
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Example 2.4. Let K = Q( 3
√

44) and f(T ) = T 3 − 44. Since disc(f(T )) = −52272 =
−24 · 33 · 112, the only possible prime factors of [OK : Z[ 3

√
44]] are 2, 3, and 11.

Case 1: p = 2.
From f(T ) ≡ T 3 mod 2, take π1(T ) = T . Then

f(T ) = T 3 + 2F (T ) for F (T ) = −22,

so F (T ) ≡ 0 mod 2. Therefore π1(T ) | F (T ) in F2[T ], so 2 | [OK : Z[
3
√

44]] .

Case 2: p = 3.
From f(T ) ≡ (T + 1)3 mod 3, take π1(T ) = T + 1. Then

f(T ) = (T + 1)3 + 3F (T ) for F (T ) = −T 2 − T − 15,

so F (T ) ≡ −T (T + 1) mod 3, which shows π1(T ) | F (T ) in F3[T ]. Thus 3 | [OK : Z[
3
√

44]] .

Case 3: p = 11.
From f(T ) ≡ T 3 mod 11, take π1(T ) = T . Then

f(T ) = T 3 + 11F (T ) for F (T ) = −4,

so π1(T ) - F (T ) in F11[T ]. Thus 11 - [OK : Z[ 3
√

44]].

Example 2.5. Let K = Q(α) where α is a root of f(T ) = T 3 − T 2 − 2T − 8. Since
disc(f(T )) = −2012 = −22 · 503, the only prime that might divide [OK : Z[α]] is 2.

From f(T ) ≡ T 2(T + 1) mod 2, take π1(T ) = T , and π2(T ) = T + 1. Then

f(T ) = T 2(T + 1) + 2F (T ) for F (T ) = −T 2 − T − 4,

so F (T ) ≡ T (T + 1) mod 2. Since π1(T ) | F (T ) in F2[T ], 2 | [OK : Z[α]] .

Example 2.6. Let K = Q(α) where α is a root of f(T ) = T 3 +2T +4, which is irreducible
over Q since it is irreducible mod 3. Since disc(f(T )) = −464 = −24 · 29, the only possible
prime factor of [OK : Z[α]] is 2.

From f(T ) ≡ T 3 mod 2, take π1(T ) = T . Then

f(T ) = T 3 + 2F (T ) for F (T ) = T + 2,

so F (T ) ≡ T mod 2. Therefore π1(T ) | F (T ) in F2[T ], so 2 | [OK : Z[α]] .

Example 2.7. Let K = Q(α) where α is a root of f(T ) = T 3+2T +22. Since disc(f(T )) =
−13100 = −22 · 52 · 131, the only primes that might divide [OK : Z[α]] are 2 and 5.

Case 1: p = 2.
From f(T ) ≡ T 3 mod 2, take π1(T ) = T . Then

f(T ) = T 3 + 2F (T ) for F (T ) = T + 11,

so F (T ) ≡ T + 1 mod 2. Therefore π1(T ) - F (T ) in F2[T ], so 2 - [OK : Z[α]].
Case 2: p = 5.
From f(T ) ≡ (T + 2)(T − 1)2 mod 5, take π1(T ) = T + 2 and π2(T ) = T − 1. Then

f(T ) = (T + 2)(T − 1)2 + 5F (T ) for F (T ) = T + 4,

so F (T ) ≡ T − 1 mod 5. Therefore π2(T ) | F (T ) in F5[T ], so 5 | [OK : Z[α]] .
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Example 2.8. Let K = Q(α) where α =
√

10 + 3
√

10 is a root of f(T ) = T 4− 20T 2 + 10.
Since disc(f(T )) = 20736000 = 211 · 34 · 53, primes dividing [OK : Z[α]] can only be 2, 3, or
5.

Case 1: p = 2.
From f(T ) ≡ T 4 mod 2, take π1(T ) = T . Then

f(T ) = T 4 + 2F (T ) for F (T ) = −10T 2 + 5,

so F (T ) ≡ 1 mod 2. Therefore π1(T ) - F (T ) in F2[T ], so 2 - [OK : Z[α]].
Case 2: p = 3.
From f(T ) ≡ (T − 1)2(T − 2)2 mod 3, take π1(T ) = T − 1 and π2(T ) = T − 2. Then

f(T ) = (T − 1)2(T − 2)2 + 3F (T ) for F (T ) = 2T 3 − 11T 2 + 4T + 2,

so F (T ) ≡ 2(T − 1)2(T − 2) mod 3. Since F (T ) in F3[T ] is divisible by π1(T ) (or π2(T )),

3 | [OK : Z[α]] .

Case 3: p = 5.
From f(T ) ≡ T 4 mod 5, take π1(T ) = T . Then

f(T ) = T 4 + 5F (T ) for F (T ) = −4T 2 + 2,

so F (T ) ≡ T 2 + 2 mod 5. Therefore π1(T ) - F (T ) in F5[T ], so 5 - [OK : Z[α]].

Example 2.9. Let K = Q(α) where α is a root of f(T ) = T 4 + 2T 2 + 3T + 1. Since
disc(f(T )) = 117 = 32 · 13, the only prime that might divide [OK : Z[α]] is 3.

Since f(T ) ≡ (T 2 + 1)2 mod 3, take π1(T ) = T 2 + 1. Then

f(T ) = (T 2 + 1)2 + 3F (T ) for F (T ) = T,

so π1(T ) - F (T ) in F3[T ]. Therefore 3 - [OK : Z[α]], so OK = Z[α].

Example 2.10. Let K = Q(α) and f(T ) = T 4 + T 2 + 4. Since disc(f(T )) = 14400 =
26 · 32 · 52, the only possible prime factors of [OK : Z[ 4

√
5]] are 2, 3, and 5.

Case 1: p = 2.
From f(T ) ≡ T 2(T + 1)2 mod 2, take π1(T ) = T and π2(T ) = T + 1. Then

f(T ) = T 2(T + 1)2 + 2F (T ) for F (T ) = −T 3 + 2,

so F (T ) ≡ T 3 mod 2. Therefore π1(T ) | F (T ) in F2[T ], so 2 | [OK : Z[α]] .

Case 2: p = 3.
From f(T ) ≡ (T + 1)2(T + 2)2 mod 3, take π1(T ) = T + 1 and π2(T ) = T + 2. Then

f(T ) = (T + 1)2(T + 2)2 + 3F (T ) for F (T ) = −2T 3 − 4T 2 − 4T,

so F (T ) ≡ T (T 2 + 2T + 2) mod 3. In F3[T ], F (T ) is not divisible by π1(T ) or π2(T ), so
3 - [OK : Z[α]].

Case 3: p = 5.
From f(T ) ≡ (T 2 − 2)2 mod 5, take π1(T ) = T 2 − 2. Then

f(T ) = (T 2 − 2)2 + 5F (T ) for F (T ) = T 2,

so F (T ) in F5[T ] is not divisible by π1(T ) or π2(T ). Therefore 5 - [OK : Z[ 4
√

5]].

Example 2.11. Let’s generalize Example 2.6. Say f(T ) = Tn +an−1T
n−1 + · · ·+a1T +a0

in Z[T ] for n ≥ 2 and p | aj for all j. Then f(T ) ≡ Tn mod p, so

f(T ) = Tn + pF (T ) for F (T ) =
an−1
p

Tn−1 + · · ·+ a1
p
T +

a0
p
.
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By Dedekind’s index theorem with π1(T ) = T , p | [OK : Z[α]] if and only if F (T ) is divisible
by T in Fp[T ], which is equivalent to p2 | a0 in Z. Thus p - [OK : Z[α]] if and only if p2 - a0,
which is equivalent to f(T ) being Eisenstein at p. (This is false for n = 1, e.g., f(T ) = T .)

Example 2.12. Suppose f(T ) mod p is separable. Then every ej is 1 in Theorem 1.4,
so p - [OK : Z[α]]. That also follows from the fact that [OK : Z[α]] divides disc(f) and
disc(f) 6≡ 0 mod p by separability of f(T ) mod p.

Example 2.13. Let fn(T ) = Tn − T − 1. For each n ≥ 2, fn(T ) is irreducible over Q.1

There is a general discriminant formula

disc(Tn + aT + b) = (−1)n(n−1)/2((−1)n−1(n− 1)n−1an + nnbn−1),

and for a = −1 and b = −1 this becomes

disc(fn(T )) = (−1)n(n−1)/2+1((n− 1)n−1 + (−n)n).

Let Kn = Q(αn), where αn is a root of fn(T ), so [Kn : Q] = n. Numerical data suggest
disc(fn(T )) is nearly always squarefree. When it is squarefree, OKn = Z[αn]. The first n
where disc(fn(T )) is not squarefree is n = 130, with disc(f130(T )) divisible by 832 (and not
by the square of another prime). It turns out that

(2.1) T 130 − T − 1 ≡ (T − 8)2(T − 20)π22(T )π42(T )π63(T ) mod 83

where πd(T ) is monic irreducible of degree d in F83[T ]. We’ll use Dedekind’s index theorem
to show 83 | [OK130 : Z[α130]].

Let πd(T ) be a monic lift of πd(T ) to Z[T ], so

T 130 − T − 1 = (T − 8)2(T − 20)π22(T )π42(T )π63(T ) + 83F (T )

for some F (T ) ∈ Z[T ]. The only repeated factor of T 130 − T − 1 mod 83 is (T − 8)2, and it
turns out that F (8) ≡ 0 mod 83, so (T − 8) | F (T ) in F83[T ]. Therefore [OK130 : Z[α130]] is
divisible by 83.

3. Proof of Dedekind’s index theorem

Now we’ll prove Dedekind’s index theorem using Dedekind’s argument in [3, Sect. 3].

Proof. (⇐=) We prove the contrapositive: if p - [OK : Z[α]] then πj(T ) - F (T ) in Fp[T ]
whenever ej ≥ 2, where ej is taken from (1.2).

If πj(T ) | F (T ) in Fp[T ] for some j then F (T ) = πj(T )A(T ) + pB(T ) for some A(T ) and
B(T ) in Z[T ], which upon setting T = α shows F (α) ∈ (p, πj(α)). Thanks to (1.1), which
can be used since p - [OK : Z[α]], we have pj = (p, πj(α)), so pj | (F (α)). We will show for

ej ≥ 2 that pj - (F (α)), so πj(T ) - F (T ) in Fp[T ].
In (1.3), set T = α to get

π1(α)e1 · · ·πg(α)eg = −pF (α),

so we have an equation of principal ideals

(3.1) (π1(α))e1 · · · (πg(α))eg = (p)(F (α)).

To get pj - (F (α)) from this, we’ll compute the highest power of pj on both sides.
Since pj = (p, πj(α)) = gcd((p), (πj(α))) and ej ≥ 2, p2j | (p) by the factorization of (p)

in (1.1). Thus p2j - (πj(α)), so pj divides (πj(α)) just once. For i 6= j, pi and pj are distinct

1See https://kconrad.math.uconn.edu/blurbs/ringtheory/irredselmerpoly.pdf.

https://kconrad.math.uconn.edu/blurbs/ringtheory/irredselmerpoly.pdf
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prime ideals, so pj - (πi(α)), (otherwise pj divides gcd((p), (πi(α))) = pi, which it doesn’t).
On the left side of (3.1), the highest power of pj in its factorization is therefore ej . Since

p
ej
j | (p), (3.1) tells us pj - (F (α)).

(=⇒) Assuming p | [OK : Z[α]], we will show F (T ) is divisible by some πj(T ) in Fp[T ]

such that πj(T )2 | f(T ) (i.e., ej ≥ 2 in (1.2)).
That OK/Z[α] has order divisible by p implies some β ∈ OK is in (1/p)Z[α] − Z[α].

Therefore

pβ = c0 + c1α+ · · ·+ cn−1α
n−1

where n = [K : Q] = deg f and the coefficients cj are integers where at least one of them is
not divisible by p. In Fp[T ], set

A(T ) = gcd(c0 + c1T + · · ·+ cn−1T
n−1, f(T )).

This is a proper factor of f(T ) since the first term in the gcd is nonzero of degree less than
n, and for simplicity take A(T ) to be a monic gcd. Write

(3.2) f(T ) = A(T )B(T ) in Fp[T ],

so B(T ) is monic and nonconstant.
By unique factorization in Fp[T ], A(T ) and B(T ) are complementary factors in the

irreducible factorization
∏g
j=1 πj(T )ej of f(T ). Let A(T ) and B(T ) be the monic lifts of

A(T ) and B(T ) to Z[T ] that are built from the monic lifts πj(T ) of πj(T ), so

A(T )B(T ) =

g∏
j=1

πj(T )ej = f(T )− pF (T ).

Setting T = α,

(3.3) A(α)B(α) = −pF (α).

In Fp[T ], we can write A(T ) as an Fp[T ]-linear combination using its definition as a gcd:

A(T ) = (c0 + c1T + · · ·+ cn−1T
n−1)u(T ) + f(T )v(T ).

We can set T = α on both sides as long as we view the values on both sides in OK/pOK :

A(α) ≡ (c0 + c1α+ · · ·+ cn−1α
n−1)u(α) ≡ (pβ)u(α) ≡ 0 mod pOK

since β ∈ OK . Thus p | A(α) in OK .

Since A(α)/p is an algebraic integer in K, it satisfies a monic relation of integral depen-
dence over Z, say(

A(α)

p

)d
+ ad−1

(
A(α)

p

)d−1
+ · · ·+ a1

(
A(α)

p

)
+ a0 = 0

for some d ≥ 1 and integers a0, . . . , ad−1. Multiply through by pd:

(3.4) A(α)d + pad−1A(α)d−1 + · · ·+ pd−1a1A(α) + pda0 = 0.

Every polynomial in Z[T ] vanishing at α is divisible by f(T ) in Z[T ], so

A(T )d + pad−1A(T )d−1 + · · ·+ pd−1a1A(T ) + pda0 = f(T )h(T )

for some h(T ) ∈ Z[T ]. Reducing both sides modulo p,

A(T )d = f(T )h(T ) = A(T )B(T )h(T )
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in Fp[T ]. Therefore each irreducible factor of B(T ) in Fp[T ] divides A(T ).

We explained earlier why B(T ) is nonconstant, so B(T ) has a monic irreducible factor,
say π(T ). Then π(T ) | A(T ) too, so π(T )2 | f(T ) by (3.2). That shows π(T ) is some πj(T )

where ej ≥ 2. Next we will show π(T ) | F (T ).

Multiply both sides of (3.4) by B(α)d and use (3.3):

pd(−F (α))d + pdad−1B(α)(−F (α))d−1 + · · ·+ pda1B(α)d−1(−F (α)) + pda0B(α)d = 0.

Each term on the left has a factor pd, so divide through by pd:

(−F (α))d + ad−1B(α)(−F (α))d−1 + · · ·+ a1B(α)d−1(−F (α)) + a0B(α)d = 0.

Therefore

(−F (T ))d + ad−1B(T )(−F (T ))d−1 + · · ·+ a1B(T )d−1(−F (T )) + a0B(T )d = f(T )k(T )

for some k(T ) ∈ Z[T ]. Reduce both sides modulo p. Since f(T ) and B(T ) are divisible by
π(T ) in Fp[T ], we get π(T ) | F (T ) in Fp[T ]. �

4. An algebraic integer not in Z[α] when p | [OK : Z[α]]

If p | [OK : Z[α]] then OK/Z[α] has order divisible by p: there’s some h(α) ∈ Z[α] such
that h(α)/p ∈ OK−Z[α]. In principle, we can find h(α) by searching for an algebraic integer
among representatives of the pn − 1 nonzero cosets of (1/p)Z[α]/Z[α]; there is at least one.
Such a brute force search is not necessary: Dedekind gave a method of constructing h(α)
from a choice of πj(T ) dividing F (T ) with ej ≥ 2 in (1.2). Such πj(T ) exists by Dedekind’s
index theorem because p | [OK : Z[α]].

Theorem 4.1. With the notation of Theorem 1.4, suppose π(T ) | F (T ) in Fp[T ] where

π(T )2 | f(T ). Here are two ways to build h(T ) ∈ Z[T ] such that h(α)/p ∈ OK − Z[α].

• If h(T ) ∈ Z[T ] is a monic lift of f(T )/π(T ) to Z[T ], then h(α)/p ∈ OK − Z[α].
• If f(T ) = π(T )q(T ) + r(T ) in Z[T ] where deg r < deg π, then q(α)/p ∈ .OK −Z[α],

so use h(T ) = q(T ).2

In the second method, r(T ) = 0 in Fp[T ] since π(T ) | f(T ) and π(T ) is monic, but
r(T ) 6= 0 in Z[T ]: otherwise π(T ) | f(T ), which would contradict the irreducibility of f(T )
in Z[T ], since deg π ≤ (deg f)/2 from π(T )2 | f(T ).

The table below shows how Theorem 4.1 works in previous examples, leading to algebraic
integers in OK − Z[α] in the last column.

Example f(T ) p π(T ) h(T ) h(α)/p ∈ OK − Z[α]

2.1 T 3 − 12 2 T T 2 3
√

12
2
/2

2.2 T 3 − 10 3 T − 1 T 2 + T + 1 ( 3
√

10
2

+ 3
√

10 + 1)/3

2.4 T 3 − 44 2 T T 2 3
√

44
2
/2

2.4 T 3 − 44 3 T + 1 T 2 − T + 1 ( 3
√

44
2 − 3
√

44 + 1)/3
2.5 T 3 − T 2 − 2T − 8 2 T T 2 + T (α2 + α)/2
2.6 T 3 + 2T + 4 2 T T 2 α2/2
2.7 T 3 + 2T + 22 5 T − 1 T 2 + T + 3 (α2 + α+ 3)/5
2.8 T 4 − 20T 2 + 10 3 T − 1 (T − 1)(T + 1)2 (α− 1)(α+ 1)2/3
2.8 T 4 − 20T 2 + 10 3 T + 1 (T + 1)(T − 1)2 (α+ 1)(α− 1)2/3
2.10 T 4 + T 2 + 4 2 T T 3 + T (α3 + α)/2

2This is from Theorem 8.2 of https://www.math.leidenuniv.nl/∼psh/ANTproc/08psh.pdf.

https://www.math.leidenuniv.nl/~psh/ANTproc/08psh.pdf
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Remark 4.2. In the first and third rows, 3
√

12
2
/2 = 3

√
18 and 3

√
44

2
/2 = 3

√
242.

Here are two general examples using h(T ) = Tn−1, which includes T 3− 12, T 3− 44, and
T 3 + 2T + 4 for p = 2.

• If f(T ) = Tn − p2m for n ≥ 2 and m ∈ Z, then αn−1/p 6∈ Z[α] and αn−1/p ∈ OK
since αn−1/p is integral over Z[α]:(

αn−1

p

)2

=
α2(n−1)

p2
= αn−2

αn

p2
= αn−2m ∈ Z[α].

This fits Theorem 4.1 with π(T ) = T , F (T ) = −pm, and h(T ) = Tn−1.
• If f(T ) = Tn + an−1T

n−1 + · · · + a0 for n ≥ 2, p | aj for all j < n, and p2 | a0,
then αn−1/p 6∈ Z[α] and αn−1/p ∈ OK since αn−1/p is integral over Z[α]: from

αn = −
∑n−1

j=0 ajα
j ,(

αn−1

p

)2

=
αn

p2
αn−2 = −

n−1∑
j=0

aj
p2
αn−2+j = −

n−1∑
j=1

aj
p
αj−1

 αn−1

p
− a0
p2
αn−2.

This fits Theorem 4.1 with π(T ) = T , F (T ) = −
∑n−1

j=0 (aj/p)T
j , and h(T ) = Tn−1.

The general f(T ) is more complicated than these (h(T ) need not be a power of T ), but
these special cases give some intuition for “why” the theorem might be true.

Now let’s prove Theorem 4.1, following Dedekind [3, Sect. 3].

Proof. Of the two ways to build h(T ), the second way is a consequence of the first way since
q(T ) must be monic and f(T ) = q(T )π(T ), so we can use q(T ) as h(T ).

If h1(T ) and h2(T ) are both monic lifts of f(T )/π(T ) to Z[T ], then h1(T ) = h2(T )+pm(T )
for some m(T ) ∈ Z[T ], so h1(α)/p = h2(α)/p+m(α) and m(α) ∈ Z[α]. Therefore it suffices
to prove the first method works for just one monic lift of of f(T )/π(T ) to Z[T ]: then it
automatically works for all other monic lifts.

Let π(T ) = πj(T ). We will show h(α)/p ∈ OK − Z[α] for the specific monic lift h(T ) :=∏
i 6=j πi(T )eiπj(T )ej−1. The degree of h(T ) is less than n (the rank of Z[α] as a Z-module),

so h(α)/p 6∈ Z[α] since the coefficient of its highest power of α is 1/p. It remains to show
that h(α)/p ∈ OK . We will prove this ratio is an algebraic integer by showing for each
prime ideal p dividing (p) that the multiplicity of p in (h(α)) is at least as large as the
multiplicity of p in (p). Since p | [OK : Z[α]], we can not assume (p) factors in the same
way as f(T ) factors: (1.1) is unavailable to us.

Setting T = α in (1.3), π1(α)e1 · · ·πg(α)eg = −pF (α), so π(α)h(α) = −pF (α) by the way
we defined h(T ). Therefore we have the equation of principal ideals

(4.1) (π1(α))e1 · · · (πg(α))eg = (πj(α))(h(α)) = (p)(F (α)).

Let p be a prime ideal dividing (p), so p divides some (πi(α)) by (4.1).
Case 1: πi(T ) 6= πj(T ). In Fp[T ], πi(T ) and πj(T ) are distinct monic irreducibles, so they

are relatively prime: πi(T )u(T ) + πj(T )v(T ) = 1, so πi(T )U(T ) + πj(T )V (T ) = 1 + pM(T )
where U(T ), V (T ),M(T ) ∈ Z[T ]. Setting T = α, πi(α)U(α) + πj(α)V (α) = 1 + pM(α).
Since p divides (p) and (πi(α)), πj(α)V (α) ≡ 1 mod p, so p - (πj(α)).

Therefore the second equation in (4.1) implies the multiplicity of p in (h(α)) is at least
as large as the multiplicity of p in (p).

Case 2: πi(T ) = πj(T ).
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Now p divides (p) and (πj(α)). Let p divide (p) with multiplicity a, divide (πj(α)) with
multiplicity b, and divide (F (α)) with multiplicity c:

(p) = paa, (πj(α)) = pbb, (F (α)) = pcc,

where p does not divide a, b, or c. We have a ≥ 1, b ≥ 1, and c ≥ 0.
The argument in Case 1 shows a prime ideal dividing (p) divides only one of the ideals

(π1(α)), . . . , (πg(α))), so the multiplicity of p in the first product of (4.1) is ejb, while its
multiplicity in the third product of (4.1) is a+ c. Therefore

ejb = a+ c.

Since (h(α)) =
∏
k 6=j(πk(α))ek(πj(α))ej−1, the multiplicity of p in (h(α)) is (ej − 1)b. We

want to show this is at least as large as the multiplicity of p in (p): ejb− b ≥ a. That is the
same as a+ c− b ≥ a, or in other words c ≥ b. Why is c ≥ b? We’ll break this up into two
cases depending on which of a or b is larger.

Case (i) b ≥ a. Since ej ≥ 2, a+ c = ejb ≥ 2b, so c− b ≥ b− a ≥ 0, and thus c ≥ b.
Case (ii): b ≤ a. Since πj(T ) | F (T ) in Fp[T ], F (T ) = πj(T )H(T )+pJ(T ) for some H(T )

and J(T ) in Z[T ]. Therefore F (α) = πj(α)H(α) + pJ(α) in Z[α] ⊂ OK . The multiplicity

of p in (πj(α)) is b and the multiplicity of p in (p) is a. Since b ≤ a, pb divides (πj(α)) and

(p), so πj(α)H(α) + pJ(α) ≡ 0 mod pb. Thus pb | (F (α)), which implies b ≤ c.
This completes the proof. �

Remark 4.3. In the proof of Theorem 4.1, we did not need Dedekind’s index theorem.
The proof starts with some πj(T ) dividing F (T ) with ej ≥ 2 in (1.2) and constructs an
algebraic integer not in Z[α] of the form h(α)/p where h(T ) ∈ Z[T ]. In OK/Z[α], h(α)/p
has order p, so p | [OK : Z[α]]. Hence the proof of Theorem 4.1 is actually a second proof
of (⇐=) in Dedekind’s index theorem. Dedekind gave both of the proofs of the direction
(⇐=) in his index theorem that are shown here.

If p | [OK : Z[α]] and we use Theorem 4.1 to find a number β ∈ OK − Z[α], it is not
necessarily the case that Z[α] ⊂ Z[β]. Here is an example of this.

Example 4.4. Let α = 3
√

12, β = 3
√

18, and K = Q( 3
√

12) = Q( 3
√

18). Since α = β2/3 and
β = α2/2, α and β are in OK but β 6∈ Z[α] and α 6∈ Z[β].

It can be shown that [OK : Z[α]] = 2 and [OK : Z[β]] = 3, so A := Z[α] + Z[β] is an
additive group such that Z[α] ⊂ A ⊂ OK and Z[β] ⊂ A ⊂ OK , so [OK : A] divides 2 and 3.
Therefore [OK : A] = 1, which tells us

OK = A = Z + Zα+ Zα2 + Z + Zβ + Zβ2 = Z + Zα+ Zβ

since α2 = 2β and β2 = 3α.

In a number field K, OK might have the form Z[γ] for some γ or it might not.

Example 4.5. If K = Q( 3
√

12) then OK = Z[γ] where γ = 3
√

12+ 3
√

18, but if K = Q( 3
√

52)
then OK 6= Z[γ] for all γ in OK .

This illustrates why Theorems 1.4 and 4.1 can’t always be iterated to enlarge a subring
Z[α] in stages to reach all of OK , but Theorem 1.4 is a preliminary step in the following
algorithm that computes OK and is called the “round 2” algorithm.

Step 1: Write a number field K as Q(α) for α ∈ OK with minimal polynomial f(T ).

Step 2: Since [OK : Z[α]]2 | disc(f), factor disc(f) to assemble a list of primes p such

that p2 | disc(f). These are the possible prime factors of [OK : Z[α]].
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Step 3: Use Dedekind’s index theorem on the primes at the end of Step 2 to determine the
finite set of primes that divide [OK : Z[α]]. If there are no such primes then [OK : Z[α]] = 1,
so OK = Z[α] and we are done. If [OK : Z[α]] > 1, then let S be the set of prime factors of
[OK : Z[α]].

Step 4: For p ∈ S, and an order O in K, such as Z[α], we want to build an order Op
containing O with p - [OK : Op].

Set Ip = {x ∈ O : xm ≡ 0 mod pO for some m ≥ 1}. This is a nonzero ideal in O (the
radical of the ideal pO), e.g., p ∈ Ip. Let O′ be the multiplier ring of Ip in K:

O′ = {x ∈ K : xIp ⊂ Ip},
so O ⊂ O′ ⊂ OK . Methods of computing Ip and O′ starting from a Z-basis of O, are in [2,
Sect. 6.1.1].

Step 5: For O′ as in Step 4, [O′ : O] is a power of p: since p ∈ Ip, pO′ ⊂ Ip ⊂ O, so

O ⊂ O′ ⊂ (1/p)O. Thus [O′ : O] | pn, where n = [K : Q].

• If O′ is bigger than O then the highest power of p dividing [OK : O′] is less than
the highest ower of p dividing [OK : O]. Rename O′ as O and repeat Step 4.
• If O′ = O then p - [OK : O]. This result, due to Pohst and Zassenhaus, is not

obvious! A proof is in [2, Sect. 6.1.3]. (The converse is true too: if p - [OK : O] then
[O′ : O] is a p-power dividing [OK : O], so [O′ : O] = 1 and thus O′ = O.) Set
Op = O.

Step 6: Run through Steps 4 and 5 for each p ∈ S, starting with the initial order O being
Z[α], to get an order Op containing Z[α] such that p - [OK : Op].

Set A :=
∑

p∈S Op. This additive subgroup of OK contains Op for each p in S, so

p - [OK : A] for p ∈ S. Since Z[α] ⊂ A ⊂ OK , [OK : A] is 1 (as in Example 4.4), so
OK = A =

∑
p∈S Op. That “computes” OK in terms of the rings Op for p ∈ S.

5. Existence of element with index not divisible by p

Here are the key items we have discussed about primes p and indices [OK : Z[α]].

(1) If there is an α ∈ OK such that K = Q(α) and p - [OK : Z[α]], then we can read off
how pOK decomposes into prime ideals from the way f(T ) mod p decomposes into
irreducibles in Fp[T ], where f(T ) is the minimal polynomial of α over Q.

(2) If there is an α ∈ OK such that K = Q(α), then a necessary and sufficient condition
for p | [OK : Z[α]] is a divisibility criterion in Fp[T ] (Dedekind’s index theorem).

(3) When p | [OK : Z[α]], there is a systematic way to find an element of order p in
OK/Z[α] (Theorem 4.1).

A natural issue to address that would round out this list of properties is how to determine
if there is an α in OK such that K = Q(α) and p - [OK : Z[α]]. Here we don’t pick α and
look for p such that p - [OK : Z[α]], but pick p and look for α such that p - [OK : Z[α]]. The
index of K is

i(K) := gcd([OK : Z[α]]),

where the gcd runs over all α in OK such that K = Q(α). We have p - i(K) if and only
there is an α such that p - [OK : Z[α]]. If i(K) > 1 then OK 6= Z[α] for all α in OK .

From (1.1), which is a consequence of p - [OK : Z[α]] for some α but makes no direct
reference to α, we get a necessary condition for p - i(K) in terms of the prime ideal fac-
torization pOK = pe11 · · · p

eg
g : writing N(pi) = pfi , there must be distinct monic irreducibles

π1(T ), . . . , πg(T ) in Fp[T ] such that deg(πi(T )) = fi for i = 1, . . . , g.
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Example 5.1. Since F2[T ] has two irreducibles of degree 1 and one irreducible of degree 2,
if 2OK has at least three prime ideal factors with residue field degree 1 (making [K : Q] ≥ 3)
or at least two prime ideal factors with residue field degree 2 (making [K : Q] ≥ 4) then it’s
impossible to have 2 - i(K): for all α in OK that generate K/Q, [OK : Z[α]] is even. An
example of the first case is K = Q(β) where β is a root of T 3 − T 2 − 2T − 8 (a cubic field
in which 2 splits completely) and an example of the second case is K = Q(γ) where γ is a
root of T 4 − 3T 2 − 4T + 5 (a quartic field in which (2) = pp′ with f(p|2) = f(p′|2) = 2).

Dedekind [3, Sect. 4] showed the necessary condition above for p - i(K) is sufficient too,
so we have the following equivalence.

Theorem 5.2. Let [K : Q] = n and p be a prime. When pOK has prime ideal factoriza-
tion pe11 · · · p

eg
g and N(pi) = pfi, we have p - i(K) if and only if there are distinct monic

irreducibles π1(T ), . . . , πg(T ) in Fp[T ] such that deg(πi(T )) = fi for i = 1, . . . , g.

Proof. We already indicated from (1.1) that if p - i(K), meaning p - [OK : Z[α]] for a
primitive integral α in K, then there are distinct monic irreducible πi(T ) in Fp[T ] with
degree fi for i = 1, . . . , g.

Now assume there are distinct monic irreducible πi(T ) ∈ Fp[T ] such that deg πi(T ) = fi
for i = 1, . . . , g. Let πi(T ) ∈ Z[T ] be a monic liftting of πi(T ), so deg(πi(T )) = deg(πi(T )) =
fi. We will use these polynomials and the Chinese remainder theorem (among other tools)
to show K/Q has a primitive integral element α such that p - [OK : Z[α]], so p - i(K).

We break up the rest of the proof into four steps. If you find it too long, you can skip it.

Step 1: There is an α ∈ OK such that pi = (p, πi(α)) for i = 1, . . . , g.

The field OK/pi has order pfi . A standard property of finite fields is that each irreducible
of degree fi in Fp[T ] has a root (in fact a full set of roots) in each field of size pfi . Therefore
πi(ri) ≡ 0 mod pi for some ri ∈ OK , so pi | (πi(ri)). Also pi | (p), so pi | (p, πi(ri)). It can
happen that pi 6= (p, πi(ri)), and one reason would be that p2i | (p) and p2i | (πi(ri)). To fix
that, if p2i | (πi(ri)) then we can adjust ri modulo pi so that p2i - (πi(ri)), as follows.

Pick βi ∈ pi− p2i , so pi divides (βi) just once. Then πi(ri + βi) ≡ πi(ri) ≡ 0 mod pi while

πi(ri + βi) = πi(ri) + π′i(ri)βi ≡ π′i(ri)βi mod p2i

from the assumption that πi(ri) ≡ 0 mod p2i . Since πi(T ) is separable in Fp[T ], πi(ri) ≡
0 mod pi implies π′i(ri) 6≡ 0 mod p2i , so the ideal (π′i(ri)βi) = (π′i(ri))(βi) is divisible by pi
just once: pi - (π′i(ri)), pi | (βi), and p2i - (βi). Replacing ri by ri+βi puts us in the situation
that πi(ri) ≡ 0 mod pi as before and now πi(ri) 6≡ 0 mod p2i , so pi divides (p, πi(ri)) just
once.

Now let’s use the Chinese remainder theorem: there is an α ∈ OK such that α ≡ ri mod p2i
for i = 1, . . . , g, so πi(α) ≡ πi(ri) ≡ 0 mod pi and πi(α) ≡ πi(ri) 6≡ 0 mod p2i . We are
going to show pi = (p, πi(α)). Since pi divides (p) and divides (πi(α)) just once, pi divides
(p, πi(α)) just once. What other prime ideal divides (p, πi(α))? If q is a prime ideal dividing
(p, πi(α)) then q | (p), so q is some pj . Then πi(α) ≡ 0 mod pj . Also πj(α) ≡ 0 mod pj , so
α mod pj is a common root in OK/pj of πi(T ) and πj(T ). Distinct monic irreducibles in
Fp[T ] don’t have common roots in an extension field of Fp, so πj(T ) = πi(T ). That means
j = i, so q = pi: the only prime ideal dividing (p, πi(α)) is pi. Since pi divides (p, πi(α))
just once, (p, πi(α)) = pi for i = 1, . . . , g.

Step 2: For α as in Step 1, peii = (p, πi(α)ei) for i = 1, . . . , g, where pOK = pe11 · · · p
eg
g .
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The ideal (p, πi(α)ei) is the greatest common divisor of (p) and (πi(α))ei . Let q be a
prime ideal dividing (p, πi(α)ei). Then q | (p) and q | (πi(α))ei , so q divides (p) and (πi(α)).
Since (p, πi(α)) = pi, q must be pi, so (p, πi(α)ei) is a power of pi. The highest power of pi
dividing (p) is peii , and peii | (πi(α)ei) since pi | (πi(α)), so (p, πi(α)ei) = peii .

Step 3: Evaluation at α mod peii is a ring isomorphism Fp[T ]/(πi(T )ei) → OK/peii for
i = 1, . . . , g.

The ring OK/peii has characteristic p since p ≡ 0 mod peii . Thus evaluation at α mod peii
is a ring homomorphism Fp[T ] → OK/peii . We have πi(α)ei ≡ 0 mod peii since pi | (πi(α)),
so πi(T )ei is in the kernel: we get a ring homomorphism Fp[T ]/(πi(T )ei) → OK/peii by
g(T ) 7→ g(α) mod peii . We will show this is injective, and therefore it is an isomorphism

since |Fp[T ]/(πi(T )ei)| = peifi = |OK/peii |.
Each element of Fp[T ]/(πi(T )ei) can be written uniquely in base πi(T ) as

(5.1) c0(T ) + c1(T )πi(T ) + · · ·+ cei−1(T )πi(T )ei−1 mod πi(T )ei

where the coefficients ck(T ) in Fp[T ] are 0 or have degree less than deg(πi(T )) = fi. Suppose
(5.1) is mapped to 0 in OK/peii after we substitute α mod peii for T :

c0(α) + c1(α)πi(α) + · · ·+ cei−1(α)πi(α)ei−1 mod peii .

We want the kernel of Fp[T ]/(πi(T )ei)→ OK/peii to be 0, so all ck(T ) should be 0 in Fp[T ].
If any are not, let k ≤ ei − 1 be minimal with ck(T ) 6= 0 in Fp[T ]. Then

ck(α)πi(α)k + · · ·+ cei−1(α)πi(α)ei−1 ≡ 0 mod peii .

Since k ≤ ei − 1, we can reduce the congruence to modulus pk+1
i :

ck(α)πi(α)k ≡ 0 mod pk+1
i ,

so pk+1
i | (ck(α))(πi(α))k. The ideal (πi(α)) is divisible by pi just once by the method used

to construct α in Step 1 (that is, α ≡ ri mod p2i and πi(ri) 6≡ 0 mod p2i ), so pi | (ck(α)).
Write that as ck(α) = 0 in the field OK/pi. Since deg(ck(T )) < fi and α mod pi is the root
of an irreducible πi(T ) of degree fi in Fp[T ], α mod pi is not the root of a polynomial in
Fp[T ] of degree less than fi. Therefore ck(T ) = 0 in Fp[T ], which is a contradiction.

Step 4: For α as in Step 1, K = Q(α) and p - [OK : Z[α]].
By the Chinese remainder theorem, we can combine the isomorphisms Fp[T ]/(πi(T )ei)→

OK/peii for i = 1, . . . , g from Step 3 that use evaluation at α mod peii to get an isomorphism

(5.2) Fp[T ]/(π1(T )e1 · · ·πg(T )eg)→ OK/pOK
using evaluation at α mod pOK .

Let f(T ) be the minimal polynomial of α over Q, so f(T ) is monic in Z[T ] and deg f ≤
[K : Q]. Also

f(α) = 0 =⇒ f(α) ≡ 0 mod pOK =⇒ π1(T )e1 · · ·πg(T )eg | f(T ) in Fp[T ] by (5.2).

Since f is monic,

deg f = deg f ≥
g∑
i=1

ei deg(πi) =

g∑
i=1

eifi = [K : Q].

Therefore deg f = [K : Q], so K = Q(α) and

f(T ) = π1(T )e1 · · ·πg(T )eg
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in Fp[T ] since both sides are monic and the right side is a factor of the left side. We can
rewrite (5.2) as an isomorphism

(5.3) Fp[T ]/(f(T ))→ OK/pOK
using evaluation at α mod pOK .

To prove p - [OK : Z[α]], we argue by contradiction. Suppose p | [OK : Z[α]], so OK/Z[α]
has order divisible by p and thus it has an element β of order p: β ∈ OK − Z[α] and
pβ ∈ Z[α]. Write pβ = h(α), where h(T ) ∈ Z[T ]. Then h(α) ≡ 0 mod pOK , so the
isomorphism (5.3) vanishes on h(T ), which means f(T ) | h(T ) in Fp[T ], so h(T ) ∈ (p, f(T ))
in Z[T ]. Evaluating that at α, h(α) ∈ pZ[α] since f(α) = 0, so β = h(α)/p ∈ Z[α], which
is a contradiction. Thus p - [OK : Z[α]]. �

The condition in Theorem 5.2 that is equivalent to p - i(K) can be described using
inequalities. For d ≥ 1, let gp,K(d) be the number of prime ideal factors of pOK with
residue field degree d and Np(d) be the number of monic irreducible polynomials of degree
d in Fp[T ]. Then Theorem 5.2 says

(5.4) p - i(K)⇐⇒ gp,K(d) ≤ Np(d) for all d ≤ [K : Q].

The right side of (5.4) is formulated in terms of the number of prime ideal factors of pOK
with each residue field degree, and it might seem hard to count how often each residue field
degree occurs in the factorization of pOK if we don’t know that (1.1) can be applied to p.
Nevertheless, by negating both sides of (5.4) we get

(5.5) p | i(K)⇐⇒ Np(d) < gp,K(d) for some d ≤ [K : Q].

Theorem 5.3. A prime that is less than [K : Q] and splits completely in K divides i(K).

Proof. We use d = 1 in (5.5). Since Np(1) = p and gp,K(1) = [K : Q] if p splits completely
in K, if p < [K : Q] and p splits completely in K then (5.5) tells us p | i(K). �

The next result, due to von Zylinski [8], shows all p dividing i(K) are bounded by [K : Q].

Theorem 5.4. If p | i(K) then p < [K : Q].

Proof. If p | i(K) then gp,K(d) > Np(d) for some d ≤ [K : Q]. By the formula
∑g

i=1 eifi =
[K : Q] for the prime p, dgp,K(d) ≤ [K : Q] by summing on the left side only over i where
f(pi|p) = d. Therefore dNp(d) < mgp,K(d) ≤ [K : Q]. The number Np(d) is divisible by p
since if π(T ) is irreducible in Fp[T ] then so is π(T + c) for all c ∈ Fp. Positivity of Np(d)
therefore implies dNp(d) ≥ p, so p ≤ dNp(d) < [K : Q]. �

Conversely, Bauer [1] showed that if p < n for an integer n then there are number fields
K of degree n over Q such that p | i(K) by showing for each prime p and n ∈ Z+ that there
are number fields K of degree n such that p splits completely in K. Such p divide i(K) if
p < n, by Theorem 5.3.

Example 5.5. If [K : Q] = 2 then there is no prime less than [K : Q], so i(K) = 1. This
is well-known since the ring of integers of a quadratic field has the form Z[α] for some α.3

3The condition i(K) = 1 does not require OK = Z[α]. If two indices [OK : Z[β]] and [OK : Z[γ]] are

greater than 1 and are relatively prime, then i(K) = 1. For example, if K = Q( 3
√

175) then OK 6= Z[α] for

all α in K, but [OK : Z[ 3
√

175]] = 5 and [OK : Z[ 3
√

245]] = 7, so i(K) = 1. Those calculations are explained
in Example 4.16 in https://kconrad.math.uconn.edu/blurbs/gradnumthy/different.pdf.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/different.pdf
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Example 5.6. If [K : Q] = 3 then the only possible prime factor of i(K) is 2, and 2 | i(K)
if and only if g2,K(1) > N2(1) = 2, g2,K(2) > N2(2) = 1, or g2,K(3) > N2(3) = 2. The
first inequality says 2 splits completely in K (since 2 has at most 3 prime ideal factors in
a cubic field), and the second and third inequalities are impossible in a cubic field, e.g., if
there were at least two prime ideal factors with residue field degree 2 then [K : Q] ≥ 4.
Engstrom [4, p. 234] showed i(K) is 1 or 2 for all cubic fields.

Example 5.7. If [K : Q] = 4 then the only possible prime factors of i(K) are 2 and 3.
We have 2 | i(K) if and only if either 2 splits completely, (2) = p22p

′
2p
′′
2, or (2) = p4p

′
4,

and 3 | i(K) if and only if 3 splits completely in K. For example, 3 splits completely in
Q(
√
−5,
√

7) (first check it splits completely in Q(
√
−5) and Q(

√
7)), so 3 | i(K). Engstrom

[4, p. 234] showed i(K) is 1, 2, 3, 4, 6, or 12 for quartic fields.

Example 5.8. Number fields of arbitrary 2-power degree in which 2 splits completely can
be built as composites of quadratic fields. For squarefree m 6= 1, 2 splits completely in
Q(
√
m) if and only if m ≡ 1 mod 8. So when m1, . . . ,mr are pairwise relatively prime

integers that are each 1 mod 8 and don’t equal 1, such as r different primes that are each
1 mod 8, the field K = Q(

√
m1, . . . ,

√
mr) has degree 2r over Q and 2 splits completely in

K. In a similar way, for each r ≥ 1 there is a composite of quadratic fields of degree 2r in
which any chosen prime number splits completely.

The next two examples are a family of cubic fields in which 2 splits completely and a
family of quartic fields in which 2 and 3 both split completely.

Example 5.9. Let fn(T ) = T (T − 1)(T + 1) + 2n = T 3 − T + 2n for n ≥ 1. This is
irreducible for all n: it is cubic with the only possible roots in Q being ±2j for 0 ≤ j ≤ n,
and f(±2j) 6= 0 by looking at 2-divisibility of the three terms (treat j = 0 and j = n
separately from 0 < j < n). Set Kn = Q(rn) where rn is a root of fn(T ), so [Kn : Q] = 3.
For n ≥ 3, 2 splits completely in Kn because fn(T ) splits completely over the 2-adic numbers
Q2 by Hensel’s lemma with approximate roots 0, 1, and −1. Thus i(Kn) is divisible by 2
for n ≥ 3.4

Example 5.10. Let fn(T ) = T (T − 1)(T − 2)(T − 3) + 6n = T 4− 6T 3 + 11T 2− 6T + 6n for
n ≥ 1. This is irreducible for 1 ≤ n ≤ 10 and probably is irreducible for all n, but I haven’t
bothered to check this5. Assume fn(T ) is irreducible over Q and set Ln = Q(rn) where rn
is a root of fn(T ), so [Ln : Q] = 4. By Hensel’s lemma over the 2-adic and 3-adic numbers
with approximate roots 0, 1, 2, and 3, fn(T ) splits completely over Q2 and Q3 for n ≥ 3,
so 2 and 3 split completely in Ln. Therefore i(Ln) is divisible by 2 and 3 for n ≥ 3.

Prime factors of i(K) divide all indices [OK : Z[α]], so they have been called common
index divisors of K, as in the title of [4], as well as inessential discriminant divisors [7],
which is a translation of the original German term ausserwesentliche Discriminantenteiler
(see the title of [1]), where ausserwesentliche literally means “outside of the essence” (ausser
= outer and Wesen = being) and is no longer in common use. These primes have also been
called essential discriminant divisors [2, p. 197], which is surprising: why label them as both
inessential and essential?

4The intuition that led to the construction of the fields Kn is 2-adic: fn(T ) is 2-adically close to the split
polynomial T (T − 1)(T + 1), so it should split completely over Q2 for large enough n by p-adic continuity
of roots when p = 2, and Hensel’s lemma confirms this for n ≥ 3.

5Note fn(T−1) = T 4−10T 4+35T 2−50T +24+6n is Eisenstein at 5 when 5 - n, so fn(T ) is irrreducibkle
over Q when 5 - n.
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The story goes back to Kronecker’s work [5] on algebraic functions. For F (x, y) ∈ C[x, y]
that is irreducible and monic in y (like y3 + (x2 − x)y + x − 1), let F (x, r) = 0. The field
C(x, r) is a finite extension of C(x) and r is integral over C[x]. Let A be the integral closure
of C[x] in C(x, r). Both A and its subring C[x, r] are finite free C[x]-modules of equal rank,
and are analogous to OK and Z[α] in the number field K = Q(α). The analogue for A and
C[x, r] of the number-theoretic formula disc(Z[α]) = [OK : Z[α]]2disc(K) is

D(x) = R(x)2∆(x),

where D(x) is discC[x](A), R(x) is the C[x]-index of C[x, r] in A, and ∆(x) is discC[x](A).
(The polynomials D(x), R(x) and ∆(x) are defined only up to multiplication by a nonzero
complex number in order to account for different choices of C[x]-bases to compute them.)
Because A is more fundamental than C[x, r], Kronecker [5, p. 313] called ∆(x) = discC[x](A)

the essential divisor (wesentlichen Theiler) of D(x) and R(x)2 the inessential divisor (ausser-
wesentlichen Theiler) of D(x). Thus “essential” and “inessential” for Kronecker described
the relative importance of two complementary divisors of D(x).6

In number fields, the analogue of the inessential divisor R(x)2 is [OK : Z[α]]2. We could
(but don’t) call this number the inessential divisor of the discriminant of α, so a prime
dividing all indices [OK : Z[α]] could be called “a common prime factor of the inessential
divisors of all discriminants.” When that is shortened to “inessential discriminant divisor”
as a label for certain primes, the original intent behind “inessential” (that [OK : Z[α]]2 is less
important than disc(K)) becomes lost and common prime factors of all indices [OK : Z[α]]
seem essential, not inessential. The name “common index divisor” for such primes is better.
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