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When L/K is an extension of number fields, every residue field extension (OL/P)/(OK/p)
is Galois since the residue fields are finite and all finite extensions of finite fields are Galois
extensions. However, residue field extensions associated to prime ideals in general Dedekind
domains need not be Galois or even separable since the residue fields need not be perfect.

Example 1. Let K = Q(u) be a rational function field over Q and A = Q[u]. At each
prime in A, its residue field contains Q, so it has characteristic 0. For each finite extension
L of K, the residue field at a prime ideal in the integral closure of A is separable over
the residue field at the prime below it in A since finite extensions in characteristic 0 are
separable.

An example where residue field extensions need not be Galois extensions is L = Q( 3
√
u).

Since 3
√
u is trancendental over Q, the ring B = Q[ 3

√
u] is a PID, hence integrally closed,

so B is the integral closure of A in L. The way a prime ideal (π(u)) in A decomposes in B
matches how x3 − u mod π(u) decomposes in (Q[u]/(π(u)))[x].

For instance, if m in Z is not a cube then A/(u − m) ∼= Q and x3 − u = x3 − m in
(A/(u−m))[x] ∼= Q[x], so (u−m)B is prime in B and B/(u−m)B = Q[ 3

√
u]/(u−m) ∼=

Q( 3
√
m). The residue field extension (B/(u −m)B)/(A/(u −m)) is Q( 3

√
m)/Q, which is

separable but not Galois.

Example 2. Let F be an imperfect field of characteristic p, K = F (u), and A = F [u].
We’ll describe a Galois extension of K in which the integral closure of A has a prime ideal
whose residue field is inseparable over the residue field of the prime below it in A.

Since F is not perfect, there is an a ∈ F − F p. The polynomial f(x) = xp − up−1x − a
is irreducible over K since its reduction mod u is xp − a in (A/(u))[x] ∼= F [x], which is
irreducible due to it having no root in F . Note f(x) is separable in K[x] since f ′(x) = −up−1
is a nonzero element of K.

Let L = K(α) where f(α) = 0, so [L : K] = p. Then L/K is Galois since f(x) is
separable with roots {α+ cx : c ∈ Fp}, which are all in L. Let B be the integral closure of
A in L. We’ll show (u) is totally ramified in B and the residue field at the unique prime in
B lying over (u) is inseparable over the residue field A/(u).

Let k := A/(u) ∼= F , which is the residue field in A at (u), and let ` be the residue field
at some prime in B lying over (u). Since f(x) = xp − a in (A/(u))[x] = k[x] ∼= F [x], the
equation f(α) = 0 in ` shows [` : k] ≥ p. Since [` : k] ≤ [L : K] = p, we get [` : k] = p, so
` = k(α), which is purely inseparable over k. Since residue field extensions at primes in A
and B are possibly inseparable, the standard equality [L : K] =

∑g
i=1 eifi for an extension

of number fields K and L is replaced by an inequality

(1) [L : K] ≥
g∑

i=1

eifi
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for K and L in this example.1 Applying the inequality (1) to the primes in B lying over (u),
the left side of (1) is p and some fi on the right side is p, so g = 1, f1 = p, and e1 = 1: there
is one prime over (u) in B and its residue field degree over (u) is p while its ramification
index over (u) is 1. Thus (u) is totally ramified in B.

We’ll now show that for a finite Galois extension of fraction fields of Dedekind domains,
most of the associated residue field extensions are Galois.

Lemma 3. Let R be a Dedekind domain with fraction field M and f(x) in R[x] be monic
and separable with disc(f(x)) ∈ R×. In M(γ), where f(γ) = 0, R has integral closure R[γ].

Proof. Let γ have minimal polynomial π(x) over M . Then π(x) | f(x) in M [x]. Since π(x)
is monic, π(x) ∈ R[x] and f(x) = π(x)g(x) for some g(x) ∈ R[x]. Then in R,

disc(f(x)) = disc(π(x)g(x)) = disc(π(x)) disc(g(x))Res(π(x), g(x))2,

where Res(π(x), g(x)) is a resultant. Since disc(f(x)) ∈ R×, also disc(π(x)) ∈ R×.
Let δ = disc(π(x)) and let S be the integral closure of R in M(γ). Then

R[γ] ⊂ S ⊂ 1

δ
R[γ].

Since δ ∈ R×, S = R[γ]. �

Theorem 4. Let A be a Dedekind domain, K be its fraction field, and L/K be a finite
Galois extension that is the splitting field of the monic separable polynomial f(x) ∈ A[x]
with discriminant d.

Let B be the integral closure of A in L, and write f(x) =
∏n

i=1(x − αi) in B[x]. For
each nonzero prime ideal p in A such that p - (d) and each prime ideal P lying over p in B,
B/P = (A/p)(α1, . . . , αn) and (B/P)/(A/p) is Galois.

Proof. The theorem is obvious if n = 1, so let n ≥ 2.
The condition p - (d) implies f(x) mod p is separable: in A/p,

disc(f(x)) = disc(f(x)) = d mod p 6= 0.

Since f(x) =
∏n

i=1(x− αi) in B[x], f(x) =
∏n

i=1(x− αi) in (B/P)[x], so the reductions αi

are distinct in B/P. If we show

(2) B/P = (A/p)(α1, . . . , αn),

then (B/P)/(A/p) is separable and normal, and thus it is Galois.
The residue fields A/p and B/P are unaffected by localizing at p: Bp is the integral

closure of Ap in M(γ) and the natural maps A/p → Ap/pAp and B/P → Bp/PBp are
field isomorphisms. So to show B/P = (A/p)(α1, . . . , αn) we can replace A with Ap and B
with Bp. Then A is a DVR with maximal ideal p and d = disc(f(x)) is a unit in A since
d 6≡ 0 mod p.

Apply Lemma 3 to R = A, M = K, f(x) as in the theorem, and γ = α1. Since d ∈ A×,
the integral closure of A in K(α1) is A[α1].

For 1 ≤ i ≤ n−1, assume by induction on i that the integral closure of A in K(α1, . . . , αi)
is A[α1, . . . , αi]. Apply Lemma 3 to R = A[α1, . . . , αi], M = K(α1, . . . , αi), f(x) as in the

1The inequality (1) can be turned into an equality by including an additional factor di in each term of the
sum called the defect of the ith prime. The defect di is 1 when the ith residue field extension is separable.
See https://www.mathi.uni-heidelberg.de/∼roquette/hist val.pdf.

https://www.mathi.uni-heidelberg.de/~roquette/hist_val.pdf
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theorem, and γ = αi+1 to see that the integral closure of R in M(αi+1) is R[αi+1] =
A[α1, . . . , αi+1]. Therefore the integral closure of A in K(α1, . . . , αi+1) is A[α1, . . . , αi+1].

Taking i = n, we have B = A[α1, . . . , αn], which implies (2), so we’re done. �

Example 5. We return to the Galois extension L/K in Example 2, where the residue field
extension at the prime over (u) is inseparable. We’ll show all other residue field extensions
are Galois.

A formula for the discriminant of a trinomial xn + bx+ c over a general field is

disc(xn + bx+ c) = (−1)n(n−1)/2((−1)n−1(n− 1)n−1bn + nncn−1).

Therefore over a field of characteristic p,

disc(xp + bx+ c) = (−1)p(p−1)/2((−1)p−1(p− 1)p−1bp) = ±bp.
So in K[x] from Example 2,

disc(xp − up−1x− a) = ±up(p−1) ∈ F [u] = A.

The only (monic) prime factor of this discriminant is u, so Theorem 4 tells us that in
Example 2, for each nonzero prime ideal p in A other than (u), the residue field at each
prime ideal in B lying over p is Galois over A/p.


