
IDEAL CLASSES AND THE KRONECKER BOUND

KEITH CONRAD

1. Introduction

Let A be a domain with fraction field F . A fractional A-ideal is a nonzero A-submodule
a ⊂ F such that da ⊂ A for some nonzero d ∈ A. These are the nonzero ideals in A divided
by elements of F×. Principal fractional A-ideals are (x) := xA for x ∈ F×. We call a
fractional A-ideal a invertible if there a fractional A-ideal b such that ab = A.

Call two fractional A-ideals a and a′ equivalent when they are related by scaling: a = xa′

for some x ∈ F×. Write this as a ∼ a′. The equivalence class of a (the set of all xa for
x ∈ F×) is called the ideal class of a and we write it as [a], so [a] = [a′] is the same thing as
a ∼ a′. The principal fractional A-ideals form a single ideal class, namely [(1)] = [A]. Every
ideal class is represented by a nonzero ideal in A since we can write each fractional A-ideal
as 1

dI for some nonzero ideal I in A, and 1
dI ∼ I. An ideal in A is equivalent to (1) if and

only if it is a principal ideal: if a ⊂ A and a = xA for some x ∈ F× then x ∈ xA = a ⊂ A.
Since xAyA = xyA, it is well-defined to multiply ideal classes by multiplying representa-

tives: [a][a′] = [aa′]. Multiplication of ideal classes is obviously commutative and associative,
with identity [(1)] = [A], which will usually be written just as 1. We call an ideal class [a]
invertible if it can be multiplied by an ideal class to have product 1. Then [a] is an invertible
ideal class if and only if a is an invertible fractional A-ideal. In one direction, if ab = A then
[a][b] = 1. In the other direction, if [a][b] = 1 for some ideal class [b] then ab is a principal
fractional A-ideal, say ab = xA for some x ∈ F×, and then a · 1xb = A.

Theorem 1.1. The ideal classes of fractional ideals in a number field form a group.

Proof. All fractional ideals in a number field are invertible. �

For some integral domains not all fractional ideals are invertible, so not all ideal classes
are invertible.

Example 1.2. In Z[
√

5], let p = (2, 1 +
√

5). This is a prime ideal (index 2 in Z[
√

5]) and
p2 = 2p, so p2 ∼ p. Thus [p]2 = [p]. If [p] had an inverse, then p would have an inverse as a
fractional Z[

√
5]-ideal, so the equation p2 = 2p would imply p = (2) by cancellation. But p

has index 2 in Z[
√

5] while (2) has index 4, so p 6= (2).

The ideal classes of Z[
√

5] are not a group and can’t be embedded in a group, since
Example 1.2 shows there would be a contradiction if [p] becomes invertible somehow.

We call the ideal classes of fractional ideals in a number field K the ideal class group of
K or just the class group of K, and write it as Cl(K). The elements of this group are the
ideal classes [a] = {xa : x ∈ K}, with the group law being multiplication of representatives.
The group Cl(K) is abelian, and this group is trivial if and only if all fractional ideals in K
are principal, which is equivalent to OK being a PID. Ideal class groups of number fields are
fundamental objects in number theory. We will prove the ideal class group of every number
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field is finite, describe how to calculate some examples of ideal class groups, and mention
some open questions about the size of ideal class groups of number fields.

2. Finiteness

Theorem 2.1. Every number field K has a finite ideal class group. That is, there are a
finite number of fractional ideals a1, . . . , ar in K such that every fractional ideal is xai for
some x ∈ K×.

Proof. The argument has two steps.
Step 1. There is a constant C > 0 such that in every nonzero ideal a ⊂ OK there is a

nonzero α such that
∣∣NK/Q(α)

∣∣ 6 C[OK : a].

(For nonzero α ∈ a we have (α) ⊂ a ⊂ OK , so
∣∣NK/Q(α)

∣∣ = [OK : (α)] > [OK : a]. Thus
we are saying this inequality can be reversed for some α in a at the cost of introducing a
constant C that is independent of the choice of a.)

The constant C will depend on a choice of Z-basis of OK . Write n = [K : Q] and
OK = Ze1 ⊕ · · · ⊕Zen. We will use embeddings of K into the complex numbers, and make
estimates with these embeddings. There are n field embeddings

σ1, . . . , σn : K → C,

and the norm map NK/Q can be expressed in terms of them: for each x ∈ K,

(2.1) NK/Q(x) = σ1(x)σ2(x) · · ·σn(x).

Writing x = c1e1 + · · ·+ cnen with ci ∈ Q, we get∣∣NK/Q(x)
∣∣ =

n∏
j=1

|σj(x)|

=
n∏
j=1

∣∣∣∣∣
n∑
i=1

ciσj(ei)

∣∣∣∣∣
6

n∏
j=1

( n∑
i=1

|ci| |σj(ei)|
)

6
(
max |ci|

)n n∏
j=1

( n∑
i=1

|σj(ei)|
)

︸ ︷︷ ︸
Call this C

.(2.2)

For each nonzero ideal a in OK , its index in OK lies between nth powers of consecutive
integers, say kn 6 [OK : a] < (k + 1)n. The set{ n∑

i=1

aiei : ai ∈ Z, 0 6 ai 6 k
}

has size (k + 1)n, so by the pigeonhole principle we have

n∑
i=1

aiei ≡
n∑
i=1

a′iei mod a,
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where 0 6 ai, a′i 6 k and ai 6= a′i for some i. Taking the difference ci = ai − a′i,
n∑
i=1

ciei ∈ a,

and |ci| 6 k with ci 6= 0 for some i. Call this sum α, so α ∈ a− {0} and by (2.2),∣∣NK/Q(α)
∣∣ 6 (max |ci|

)n
C 6 knC 6 C[OK : a].

This inequality is the only way C will be used in the next step.
Step 2. (Finiteness)
Every fractional ideal class is represented by a nonzero ideal a ⊂ OK . Pick nonzero α in

a such that

(2.3)
∣∣NK/Q(α)

∣∣ 6 C[OK : a]

by Step 1. Since
∣∣NK/Q(α)

∣∣ = [OK : αOK ] and αOK ⊂ a ⊂ OK , the inequality (2.3) is

equivalent to [a : αOK ] 6 C. So [ 1αa : OK ] 6 C. Thus every fractional ideal class is repre-

sented by a fractional ideal 1
αa that contains OK with index bounded above independently

of the ideal class.
To prove there are finitely many ideal classes, it suffices to show for each r ∈ Z+ that

there are finitely many fractional ideals a in K containing OK with index r. If OK ⊂ a and
[a : OK ] = r, then ra ⊂ OK , so OK ⊂ a ⊂ 1

rOK . Since [1rOK : OK ] = rn, 1
rOK/OK is finite,

so there are finitely many such a. We’re done. �

The proof of Theorem 2.1 tells us the ideal classes in Cl(K) are represented by fractional
ideals a such that OK ⊂ a and [a : OK ] 6 C, where

(2.4) C =
∏

σ : K→C

n∑
i=1

|σ(ei)|

for a Z-basis {e1, . . . , en} of OK . That doesn’t mean C is a bound on the number of ideal
classes; it is a bound on the index with which some fractional ideal in each ideal class
contains OK . There could be several fractional ideals containing OK with the same index,
but there are only a finite number of them.

Remark 2.2. The proof of Theorem 2.1 does not need OK to be the full ring of integers
of K. It still works if we replace OK with a subring O of K that as a Z-module is free of
rank n, where n = [K : Q]. Examples of such rings are subrings of OK with finite index,
like Z[6i] in Z[i] (which has index 6).1 Why does the proof work for such rings O?

• When O =
⊕n

i=1 Zei, the Q-span of e1, . . . , en is K since Z-linear independence of
e1, . . . , en implies Q-linear independence and the only n-dimensional Q-subspace of
K is K.
• Every element of K =

⊕n
i=1Qei is an element of O divided by a nonzero integer

(use a common denominator for the coefficients), so K is the fraction field of O.
• for each nonzero α ∈ O, [O : αO] = |NK/Q(α)|: the norm is the determinant of

multiplication by α with respect to any Q-basis of K, and using a Z-basis of O as
the chosen Q-basis of K shows [O : αO] is |NO/Z(α)| = |NK/Q(α)|.

These properties common to O and OK are enough to make the proof of Theorem 2.1 be
applicable to equivalence classes of fractional O-ideals.

1In fact the rings in K that are free of rank n over Z are precisely the subrings of OK of finite index.
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We will call C in (2.4) the Kronecker bound since it essentially occurs in Kronecker’s
thesis [15, p. 15] in the special case of Q(ζp) and Kronecker pointed out in another paper
later [14, pp. 64–65] that the argument using this bound applies to all number fields.

Counting fractional ideals that contain OK with a given index might feel a bit strange
compared to counting ideals inside OK with a given index. Using inversion, we will pass to
the second point of view.

Theorem 2.3. The ideal classes of OK are

• represented by ideals in OK with norm at most C,
• generated as a group by prime ideals p with N(p) 6 C.

Proof. We already know the ideal classes are represented by fractional ideals a where OK ⊂ a
and [a : OK ] 6 C. Write the condition OK ⊂ a as a−1 ⊂ OK . We will show [OK : a−1] =
[a : OK ], so inversion exchanges the fractional ideals containing OK with index at most C
and the ideals contained in OK with index (norm) at most C.

Write a−1 = b, which is an ideal in OK , and write a = 1
ac for a ∈ OK and c ⊂ OK . Then

(a) = bc, so N((a)) = N(b) N(c) and [a : OK ] = [ 1ac : OK ] = [c : aOK ] = N((a))/N(c) =

N(b) = [OK : b] = [OK : a−1].
Ideals in OK with norm at most C are products of prime ideals with norm at most C, so

the ideal classes of such primes generate Cl(K). �

Just like OK , the ideal classes of a Dedekind domain A form a group since all fractional
A-ideals are invertible. The group of ideal classes of fractional A-ideals is called the ideal
class group of A and is written as Cl(A), so what we wrote before as Cl(K) for number
fields K is Cl(OK) in this notation. While the ring of integers of a number field has a
finite ideal class group, other Dedekind domains can have an infinite ideal class group.2

For example, the ideal class group of C[X,
√
X3 −X] (which is integrally closed) turns out

to be isomorphic to the torus C/(Z + Zi). In a sense, the “reason” ideal class groups of
number fields are finite is that Z/mZ is finite for m 6= 0; we did use that finiteness in the
proof of Theorem 2.1. To justify this idea, when F is a finite field the integral closure of
F[x] in a finite extension of F(x) has a finite ideal class group and the proof of that uses
finiteness of F[x]/(f(x)) for nonzero f(x).

For a Dedekind domain A, the group Cl(A) is trivial if and only if A is a PID, which is
equivalent to A being a UFD, so Cl(A) is a measure of how far A is from having unique
factorization of elements. The ideal class group is abelian, and a theorem of Claborn [5,
pp. 219–222] says every abelian group is the ideal class group of some Dedekind domain.
(See [6] for a refinement on the type of Dedekind domain that is needed.) It is believed that
every finite abelian group is the class group of some number field, but this is still unsolved.

Since xa = xA · a and the principal fractional A-ideals form a group under multiplication
(xA · yA = xyA and (xA)−1 = 1

xA), we can think about ideal classes as cosets for the
subgroup of principal fractional A-ideals. Therefore when A is Dedekind, Cl(A) can be
regarded as a quotient group

(2.5) Cl(A) = {fractional A-ideals} / {principal fractional A-ideals} .
In every Dedekind domain all fractional ideals are invertible. It turns out that the

converse is true as well. This will be a consequence of the next two lemmas.

2A proper subring O of OK has finitely many ideal classes by Remark 2.2, but they are not a group
because some ideal classes are not invertible: O has a finite “ideal class monoid”.
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Let A be a domain with fraction field F . For two A-modules M and N in F (these
modules are not assumed to be finitely generated), we define their product to be the A-
module

MN :=
{ r∑
i=1

xiyi : r > 1, xi ∈M, yi ∈ N
}
.

The identity for this multiplication is A. Invertibility for this multiplication has a built-in
finiteness:

Lemma 2.4. If MN = A then M and N are finitely generated.

Proof. Some finite sum of products is equal to 1: x1x
′
1 + · · ·+ xkx

′
k = 1 where xi ∈M and

x′i ∈ N . For x ∈M ,

x = 1 · x = x1(x
′
1x) + · · ·+ xk(x

′
kx),

and x′ix ∈ NM = A, so M ⊂
∑k

i=1Axi ⊂ M . Thus M =
∑k

i=1Axi. Similarly, N =∑k
i=1Ax

′
i. �

A finitely generated A-module in F certainly has a common denominator, so Lemma 2.4
tells us that invertible A-modules in F are automatically fractional A-ideals.

Lemma 2.5. If a domain has cancellation of ideals, i.e., always ac = bc implies a = b
when c 6= (0), then the domain is integrally closed.

Proof. Let A be a domain with cancellation of ideals. Suppose an element x in the fraction
field of A is integral over A. We want to show x is in A. Write x = a/b where a and b are
in A with b 6= 0. Since x is integral over A,

xn + cn−1x
n−1 + · · ·+ c1x+ c0 = 0

with n > 1 and ci ∈ A. Let R = A[x] = A+Ax+ · · ·+Axn−1. This is a ring and a nonzero
A-module in the fraction field of A. Since x has denominator b, by the definition of R we
have bn−1R ⊂ A, so R has common denominator bn−1. Therefore

a := bn−1R = Abn−1 +Abn−2a+ · · ·+Aan−1

is a nonzero A-module in A, i.e., a is a nonzero ideal in A. Since R is a ring, R2 = R, so
a2 = b2(n−1)R2 = bn−1bn−1R = (b)n−1a. Therefore by cancellation of nonzero ideals in A,
a = (b)n−1 = bn−1A, so bn−1R = bn−1A. This implies R = A, so x ∈ R = A. �

Theorem 2.6. If all ideal classes for a domain are invertible, then the domain is a Dedekind
domain.

Proof. Let A be the domain. The hypothesis is equivalent to saying all nonzero ideals in A
are invertible as fractional A-ideals. By Lemma 2.4, all ideals in A are finitely generated,
so A is Noetherian. Invertible ideals can be cancelled, so Lemma 2.5 tells us that A is
integrally closed. It remains to show that every nonzero prime ideal p is maximal.

Suppose p ⊂ a ⊂ A. Then pa−1 ⊂ A, so pa−1 is an ideal and p = pa−1 · a. Since p is a
prime ideal, it follows that p ⊃ pa−1 or p ⊃ a. The first condition implies pa = p and the
second condition implies p = a. Therefore by cancellation a is A or p, so p is maximal. �

For domains like Z[
√

5] that are not Dedekind domains, the set of all their ideal classes
under multiplication is just a monoid (“group without inverses”). We can get a group by
focusing on the invertible ideal classes. For a domain A, its ideal class group Cl(A) is, by
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definition, the group of its invertible ideal classes where the group law is multiplication of
ideal classes and [(1)] is the identity. Equivalently,

Cl(A) = {invertible fractional A-ideals} / {principal fractional A-ideals} .
Compare this with the definition (2.5) where A is Dedekind.

3. Ideal Classes for Q(
√
−5)

As an example of a class group computation, we will show Q(
√
−5) has two ideal classes.

When K is a quadratic field and OK has Z-basis {e1, e2}, the Kronecker bound C for this
basis is (|e1|+ |e2|)(|e1|+ |e2|), where we view the embeddings of K into C as the identity
and conjugation on K. Note C is not |e1 + e2||e1 + e2|.

Theorem 3.1. The ideal class group of Q(
√
−5) has order two.

Proof. Use {e1, e2} =
{

1,
√
−5
}

. Then

C = (|e1|+ |e2|)(|e1|+ |e2|) = (1 +
√

5)2 ≈ 10.4,

Theorem 2.3 says the group Cl(Q(
√
−5)) is

• represented by a ⊂ Z[
√
−5] such that N(a) 6 10,

• generated by primes p with N(p) 6 10.

For a prime ideal p where N(p) 6 10, p divides (2), (3), (5), or (7). These primes
decompose as

(2) = p22, (3) = p3p
′
3, (5) = (

√
−5)2, (7) = p7p

′
7.

In Cl(Q(
√
−5)) principal ideals become trivial, so

[p2]
2 = 1, [p3][p

′
3] = 1, [p7][p

′
7] = 1.

Thus Cl(Q(
√
−5)) is generated by p2, either prime ideal of norm 3, and either prime ideal

of norm 7. Since (1 +
√
−5) = p2p3 and (3 +

√
−5) = p2p7, [p3] and [p7] both equal [p2]

−1.
Thus Cl(Q(

√
−5)) = 〈[p2]〉. Since p2 is not principal (this ideal has index 2 and no principal

ideal has index 2) and its square is principal, [p2] has order 2 and thus

Cl(Q(
√
−5)) = {[(1)], [p2]} ∼= Z/2Z. �

Two consequences of this are that for all nonzero ideals a in Z[
√
−5],

• a2 is principal since [a]2 = 1.
• either a is principal or [a] = [p2], in which case [ap2] = [a][p2] = [p2]

2 = 1, so ap2 is
principal.

Example 3.2. In Z[
√
−5], p2 = (2, 1 +

√
−5) since (2) = p22 and

(2, 1 +
√
−5)2 = (4, 2 + 2

√
−5, 2 + 2

√
−5, (1 +

√
−5)2)

= (4, 2 + 2
√
−5,−4 + 2

√
−5)

= (2)(2, 1 +
√
−5,−2 +

√
−5)

= (2)(2, 1 +
√
−5, 3)

= (2)(1)

= (2).

The ideal p3 = (3, 1 +
√
−5) is not principal (it has index 3 and no principal ideal has index

3). Therefore [p3] = [p2], so p3 = xp2 for some x ∈ Q(
√
−5)×. What is a value for x?
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Multiply both sides of p3 = xp2 by p2 since p22 = (2) and we get

p3p2 = xp22 = x(2) = (2x).

Working out p3p2 in a second way by direct multiplication,

p3p2 = (3, 1 +
√
−5)(2, 1 +

√
−5)

= (6, 3 + 3
√
−5, 2 + 2

√
−5,−4 + 2

√
−5)

= (6, 3 + 3
√
−5, 2 + 2

√
−5) since − 4 + 2

√
−5 = 2 + 2

√
−5− 6

= (1 +
√
−5)(1−

√
−5, 3, 2)

= (1 +
√
−5),

so x satisfies (2x) = (1 +
√
−5). We can use x = (1 +

√
−5)/2.

Fermat proved for prime p that −1 ≡ � mod p⇐⇒ p = x2 + y2 for some integers x and
y. It is not true that −5 ≡ � mod p ⇐⇒ p = x2 + 5y2 for some integers x and y, since
for instance −5 ≡ 1 mod 3 and −5 ≡ 9 mod 7, but 3 and 7 do not have the form x2 + 5y2.
Here is the correct result in this direction, which Fermat had discovered experimentally.

Theorem 3.3. For a prime number p, −5 ≡ � mod p ⇐⇒ p or 2p has the form x2 + 5y2

for some integers x and y, and we can’t have both p and 2p of that form.

In terms of the examples preceding this theorem, 2 · 3 = 12 + 5 · 12 and 2 · 7 = 32 + 5 · 12.

Proof. First we will show

(3.1) − 5 ≡ � mod p⇐⇒ (p) = pp′,

where p and p′ are (possibly equal) prime ideals in Z[
√
−5].

Having −5 ≡ � mod p is the same thing as T 2 + 5 mod p having a nontrivial factoriza-
tion, and by Kummer’s factorization theorem that is the same as (p) having a nontrivial
factorization in Z[

√
−5], which must be pp′ since N((p)) = p2. That settles (3.1).

(Here is an alternate proof of (⇒) in (3.1) in the standard way one shows −1 ≡ � mod p
if and only if p = x2 + y2 using arithmetic in Z[i]. If −5 ≡ c2 mod p, then p | (c2 + 5), so
p | (c+

√
−5)(c−

√
−5). As ideals in Z[

√
−5], we get (p) | (c+

√
−5)(c−

√
−5). If (p) were

a prime ideal then (p) | (c +
√
−5) or (p) | (c −

√
−5), so (p) | (c ±

√
−5) for some choice

of sign. Therefore p | (c ±
√
−5) as numbers, so p | ±1 in Z, a contradiction. This shows

the ideal (p) is not prime. Since N((p)) = p2, the nontrivial factorization of (p) must be pp′

where p and p′ have norm p.
An alternate proof of (⇐) in (3.1) runs as follows. From (p) = pp′, p must have norm p,

which makes Z[
√
−5]/p a field of size N(p) = p, and that makes the natural map Z/pZ →

Z[
√
−5]/p an isomorphism of fields. Since −5 is a square in Z[

√
−5]/p, it is also a square

in Z/pZ, so −5 ≡ � mod p.)
Next we show

(3.2) p = x2 + 5y2 for some x, y ∈ Z⇐⇒ (p) = pp′ with principal p, p′.

The key point is that the prime ideals p and p′ in (3.2) are principal.
(⇒) If p = x2 + 5y2 for some x and y in Z, then (p) = (x + y

√
−5)(x − y

√
−5). The

principal ideals on the right both have norm x2 + 5y2 = p, so they are prime ideals.
(⇐) Suppose (p) = (α)(β) where (α) and (β) are principal prime ideals. Taking norms

of both sides shows (α) and (β) have norm p. Writing α = x+ y
√
−5, we get p = N((α)) =

|x2 + 5y2| = x2 + 5y2.
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Finally, we show

(3.3) 2p = x2 + 5y2 for some x, y ∈ Z⇐⇒ (p) = pp′ with nonprincipal p, p′.

(⇒) If 2p = x2 + 5y2 for some integers x and y, then (x + y
√
−5) = p2p, where p

has norm p. The ideal p can’t be principal, because if it were then p2 would be a principal
fractional ideal and thus a principal ideal, but we know p2 is not a principal ideal. Similarly,
(x − y

√
−5) has ideal norm 2p so (x − y

√
−5) = p2p

′, where p′ has norm p and p′ is not
principal. Multiplying these factorizations of (x+ y

√
−5) and (x− y

√
−5), we get

(2p) = (x+ y
√
−5)(x− y

√
−5) = p2pp2p

′ = p22pp
′ = (2)pp′,

so (p) = pp′ with nonprincipal p and p′.
(⇐) If (p) = pp′ with nonprincipal prime factors, then p and p′ have norm p. Because

there are only two ideal classes, the product of two nonprincipal ideals is principal, so p2p =
(x+y

√
−5) for some x and y in Z. Taking the norm of both sides, 2p = |x2+5y2| = x2+5y2.

Since the right sides of (3.2) and (3.3) are not compatible, by unique factorization of
ideals, (3.1) tells us that −5 ≡ � mod p is equivalent to p or 2p being a value of x2 + 5y2

but both can’t happen. �

The condition 2p = x2 + 5y2 can be recast in terms of a representation theorem for p
itself: p = 2m2 + 2mn+ 3n2 for some m,n ∈ Z. If 2p = x2 + 5y2 then reducing mod 2 gives
0 ≡ x2 + y2 ≡ x+ y mod 2, so x ≡ y mod 2. Write x = y + 2m, so

2p = (y + 2m)2 + 5y2 = 4m2 + 4my + 6y2 =⇒ p = 2m2 + 2my + 3y2.

Conversely, if p = 2m2 + 2mn + 3n2, then 2p = 4m2 + 4mn + 6n2 = (2m + n)2 + 5n2.
Therefore Theorem 3.3 can be recast as saying

(3.4) − 5 ≡ � mod p⇐⇒ p is x2 + 5y2 or 2x2 + 2xy + 3y2 for some x, y ∈ Z,

and only one of the possibilities for p can occur.
The equivalence in (3.4) is how Gauss and Lagrange would have said Q(

√
−5) has 2 ideal

classes.
Here is another application of knowledge of the ideal class group of Q(

√
−5).

Theorem 3.4. The equation y2 = x3 − 5 has no integral solutions.

This theorem can be proved by elementary methods with congruences, making no use of
algebraic number theory, so the proof of this theorem below should be regarded just as an
illustration of techniques.

Proof. Assuming y2 = x3− 5 for integers x and y, we start with a parity check. If x is even
then y2 ≡ −5 ≡ 3 mod 8, but 3 mod 8 is not a square. Therefore x is odd, so y is even.

Write the equation as

(3.5) x3 = y2 + 5 = (y +
√
−5)(y −

√
−5).

Suppose δ is a common factor of y+
√
−5 and y−

√
−5 in Z[

√
−5]. First of all, N(δ) divides

y2 + 5, which is odd. Second of all, since δ divides (y +
√
−5)− (y −

√
−5) = 2

√
−5, N(δ)

divides N(2
√
−5) = 20. Therefore N(δ) is 1 or 5. If N(δ) = 5 then 5|(y2 + 5), so 5|y. Then

x3 = y2 +5 ≡ 0 mod 5, so x ≡ 0 mod 5. Now x and y are both multiples of 5, so 5 = x3−y2
is a multiple of 25, a contradiction. Hence N(δ) = 1, so δ is a unit. This shows y +

√
−5

and y −
√
−5 have no common factor in Z[

√
−5] except for units.

Since y +
√
−5 and y −

√
−5 are relatively prime elements and their product is a cube,

if Z[
√
−5] were a UFD then they would both be cubes (the units in Z[

√
−5] are ±1, which
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are both cubes). Since Z[
√
−5] is not a UFD that reasoning is incorrect, but the conclusion

is nevertheless correct: if x and y are integers satisfying (3.5) then y ±
√
−5 are cubes. To

see why, pass from (3.5) as an equation of elements to an equation of principal ideals:

(x)3 = (y +
√
−5)(y −

√
−5).

We will show the ideals (y +
√
−5) and (y −

√
−5) are relatively prime and then appeal

to unique factorization of ideals. (The relative primality of the ideals is not an automatic
consequence of the relative primality of the generators as elements of Z[

√
−5]. For example,

1+
√
−5 and 1−

√
−5 have no common factors in Z[

√
−5] besides±1, but the ideals (1+

√
−5)

and (1−
√
−5) have common factor (1 +

√
−5, 1−

√
−5) = (2, 1 +

√
−5), a (nonprincipal)

prime ideal.)
If (y +

√
−5) and (y −

√
−5) are not relatively prime ideals then they are both divisible

by some prime ideal p. Then

y +
√
−5 ≡ 0 mod p, y −

√
−5 ≡ 0 mod p,

so subtracting gives 2
√
−5 ≡ 0 mod p. Thus (2

√
−5) ⊂ p, so p | (2

√
−5). Taking norms,

N(p) divides N((2
√
−5)) = 20. Also N(p) divides N((y +

√
−5)) = y2 + 5, which is odd, so

N(p) = 5. Thus 5 divides y2 + 5, so 5 | y. Then x3 = y2 + 5 ≡ 5 mod 25, which has no
solution. So the ideals (y +

√
−5) and (y −

√
−5) are relatively prime.

Since the ideals (y +
√
−5) and (y −

√
−5) multiply to the cube of an ideal and are

relatively prime, they are each cubes of ideals:

(y +
√
−5) = a3, (y −

√
−5) = b3.

Passing to the ideal class group, [a]3 is trivial, so [a] has order dividing 3. Since the class
group of Z[

√
−5] has order 2, [a] has order 1, which means a is principal, say a = (α).

Therefore (y+
√
−5) = (α)3 = (α3), so y+

√
−5 = uα3, where u ∈ Z[

√
−5]× = {±1}. Since

±1 are both cubes, we can absorb them into α and thus write

(3.6) y +
√
−5 = (m+ n

√
−5)3

for some integers m and n. Expanding the cube and equating real and imaginary parts on
both sides,

y = m3 − 15mn2 = m(m2 − 15n2), 1 = 3m2n− 5n3 = n(3m2 − 5n2).

From the second equation, n = ±1. If n = 1 then 1 = 3m2 − 5, so 3m2 = 6, which has no
integral solution. If n = −1 then 1 = −(3m2 − 5), so 3m2 = 4, which also has no integral
solution. Thus y2 = x3 − 5 has no integral solutions. �

The key point in this approach to y2 = x3−5 is not so much that the ideal class group of
Q(
√
−5) has order 2 but rather that its order is relatively prime to 3, so a3 being principal

makes a principal. More generally, finding the integral solutions to y2 = x3 + k when the
order of the ideal class group of Q(

√
k) is relatively prime to 3 proceeds “as if” the ideal

class group were trivial.
Ideal class groups are used to study integral solutions of y2 = x3 + k not only quantita-

tively for specific k but also qualitatively for general k. For all integers k 6= 0, the equation
y2 = x3+k has only finitely many integral solutions (x, y) and this is proved using finiteness
of ideal class groups, although in a different way than we used them for k = −5. See [20,
Chap. IX] for the proof, which also involves techniques from Diophantine approximations
and algebraic geometry.
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4. More Examples

For a number field K, here is a procedure for finding Cl(K):

• Pick a Z-basis for OK , say {e1, . . . , en}.
• Set the Kronecker bound to be

C =
∏

σ : K→C

( n∑
i=1

|σ(ei)|
)
.

The group Cl(K) is generated by primes p where N(p) 6 C.
• Find all primes p such that N(p) 6 C.
• Figure out relations among [p] where N(p) 6 C.

Writing N(p) = pf , if N(p) 6 C then p 6 C, so we factor all (p) where p 6 C and look
at its prime ideal factors with norm at most C to get generators for Cl(K). The last step
above is the hardest. You may happen to find enough elements in OK to show all the prime
ideals in your list are principal (e.g., if α ∈ p and

∣∣NK/Q(α)
∣∣ = N(p), then p = (α)), in

which case h = 1, but if you are left with some ideals that you suspect are not principal
and want to prove they aren’t (so h > 1), how do you do that? One way to show a is not
principal is to compute N(a) and, after crossing your fingers, hope you can show there is no
element α such that

∣∣NK/Q(α)
∣∣ = N(a).

Example 4.1. Let K = Q(
√

13) and OK = Z[1+
√
13

2 ]. Using {1, 1+
√
13

2 } as a Z-basis for
OK ,

C =

(
1 +

∣∣∣∣∣1 +
√

13

2

∣∣∣∣∣
)(

1 +

∣∣∣∣∣
√

13− 1

2

∣∣∣∣∣
)

= 4 +
√

13 ≈ 7.6.

We need to factor all (p) where p 6 7. That means we will factor T 2 − T − 3 mod p for
p = 2, 3, 5, and 7. See Table 1 below. The prime ideals with norm at most 7 are (2), p3,

p T 2 − T − 3 mod p (p)
2 irreducible (2)
3 T (T − 1) p3p

′
3

5 irreducible (5)
7 irreducible (7)

Table 1. Factoring prime numbers in Z[1+
√
13

2 ].

and p′3. (The ideal (5) has norm 25 and the ideal (7) has norm 49.) Since N(4±
√

13) = 3,

and 4 +
√

13 and 4−
√

13 are not unit multiples in OK , the ideals p3 and p′3 are (4±
√

13),
so they are principal. Therefore every prime ideal with norm at most 7 is principal, which

implies Cl(OK) is trivial. Thus Z[1+
√
13

2 ] is a PID, and we did not show this by checking if
the ring is Euclidean. (It is Euclidean, but we don’t discuss how to show that.)

Example 4.2. Let K = Q(
√
−23) and as a Z-basis of OK choose {1, 1+

√
−23
2 }, which

implies

C =

(
1 +

∣∣∣∣1 +
√
−23

2

∣∣∣∣)(1 +

∣∣∣∣1−√−23

2

∣∣∣∣) ≈ 11.8.

Table 2 lists the factorization of T 2 − T + 6 mod p for p 6 C.
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p T 2 − T + 6 mod p (p)
2 T (T − 1) p2p

′
2

3 T (T − 1) p3p
′
3

5 irreducible (5)
7 irreducible (7)
11 irreducible (11)

Table 2. Factoring prime numbers in Z[1+
√
−23
2 ].

The primes ideals with norm at most 11 in Q(
√
−23) are p2, p

′
2, p3, and p′3. Since p2p

′
2 =

(2) and p3p
′
3 = (3), in Cl(K) we have the relations [p′2] = [p2]

−1 and [p′3] = [p3]
−1. Since

N((1+
√
−23
2 )) = 6, we can set (1+

√
−23
2 ) = p2p3. (This equation distinguishes p2 from p′2 and

p3 from p′3, which up to this point have appeared in symmetric roles.) So [p3] = [p2]
−1.

Thus Cl(K) = 〈[p2]〉. Is p2 principal? This ideal has norm 2, and for m,n ∈ Z,

N
(
m+ n

1 +
√
−23

2

)
=
(
m+

n

2

)2
+ 23

(n
2

)2
,

which is never 2. (For nonzero n the norm is at least 23/4 > 2 and for n = 0 the norm is a
perfect square.) Since no α ∈ OK has norm 2, [p2] 6= 1. Also

N

(
1 +

1 +
√
−23

2

)
= N

(
3

2
+

1

2

√
−23

)
= 8.

Since
1 +
√
−23

2
≡ 0 mod p2 =⇒ 1 +

1 +
√
−23

2
≡ 1 6≡ 0 mod p2,

we must have (1 + 1+
√
−23
2 ) = p′32 , so [p′2]

3 = 1 and therefore [p2]
3 = 1. This shows [p2] has

order 3, so Cl(K) =
{

[(1)], [p2], [p
2
2]
}

. For each nonzero ideal a in Z[1+
√
−23
2 ],

• a3 is principal since [a]3 = 1,
• either a is principal or ap2 is principal (if [a] = [p22]) or ap22 is principal (if [a] = [p2])

and only one of these can happen.

The next two examples show the Kronecker bound C can get big for fields of small degree.

Example 4.3. Let K = Q(α) where α3 − α − 1 = 0, so OK = Z[α] (the discriminant is
squarefree). Using the Z-basis

{
1, α, α2

}
, C ≈ 28.08.

Example 4.4. Let K = Q(β) where β5 − β − 1 = 0, so OK = Z[β] (the discriminant is
squarefree). Using the Z-basis

{
1, β, β2, β3, β4

}
, C ≈ 3454.4.

By changing the Z-basis we can get some savings in C.

Example 4.5. In Z[
√

103] with Z-basis {1,
√

103}, C ≈ 124.29. Replacing
√

103 ≈ 10.14
with the smaller number

√
103− 10 gives us a Z-basis {1,

√
103− 10} for which C ≈ 24.29.

In Table 3 we list the first squarefree positive and negative d for which the quadratic
field Q(

√
d) has each possible class group structure from sizes 2 to 9. For example, the

first imaginary quadratic field Q(
√
d), ordered by |d|, whose class group is a product of two

groups of order 2 occurs when d = −21.
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Group Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z Z/6Z
d > 0 10 79 82 130 401 235
d < 0 −5 −23 −14 −21 −47 −26

Group Z/7Z Z/8Z Z/4Z× Z/2Z (Z/2Z)3 Z/9Z (Z/3Z)2

d > 0 577 226 399 1155 1129 32009
d < 0 −71 −41 −65 −105 −199 −4027

Table 3. Quadratic fields Q(
√
d) with particular class groups.

Example 4.6. Let’s determine the class group of one cubic field: K = Q( 3
√

2), for which
OK = Z[ 3

√
2] = Z + Z 3

√
2 + Z 3

√
4,3 with 3

√
2 ≈ 1.25 and 3

√
4 ≈ 1.58. Here is the Kronecker

bound for a few Z-bases of OK :

(1) if e1 = 1, e2 = 3
√

2, e3 = 3
√

4, then C = (1 + 3
√

2 + 3
√

4)2 ≈ 56.94,
(2) if e1 = 1, e2 = 3

√
2− 1, e3 = 3

√
4− 2, then C ≈ 61.72.

(3) if e1 = 1, e2 = 3
√

2− 1, e3 = 3
√

4− 1, then C ≈ 50.3.

Using the last Z-basis, Cl(Q( 3
√

2)) is generated by ideal classes of primes p where N(p) 6 50.
We can find all such p by factoring primes p 6 50. To show a prime ideal is principal, we
will use the ideal norm formula

(4.1) N((x+ y
3
√

2 + z
3
√

4)) = |x3 + 2y3 + 4z3 − 6xyz|

for x, y, z ∈ Z that are not all 0. This comes from the field norm formula

NQ( 3√2)/Q(x+ y
3
√

2 + z
3
√

4) = x3 + 2y3 + 4z3 − 6xyz.

p T 3 − 2 mod p (p) p

2 T 3 p32 p2 = ( 3
√

2)

3 (T − 2)3 p33 p3 = ( 3
√

2 + 1)

5 (T − 3)(T 2 + 3T + 4) p5p25 p5 = (1 + 3
√

4)
7 irreducible (7)

11 (T − 7)(T 2 + 7T + 5) p11p121 p11 = (3− 2 3
√

2)
13 irreducible (13)

17 (T − 8)(T 2 + 8T + 13) p17p289 p17 = (1 + 2 3
√

2)
19 irreducible (19)

23 (T − 16)(T 2 + 16T + 3) p23p232 p23 = (3− 3
√

4)

29 (T − 26)(T 2 + 26T + 9) p29p292 p29 = (3 + 3
√

2)

31 (T − 4)(T − 7)(T − 20) p31p
′
31p
′′
31 p′′31 = (3 + 3

√
4)

37 irreducible (37)

41 (T − 5)(T 2 + 5T + 25) p41p412 p41 = (1 + 3 3
√

2 + 3
√

4)

43 (T − 20)(T − 32)(T − 34) p43p
′
43p
′′
43 p43 = (3 + 2 3

√
2)

47 (T − 21)(T 2 + 21T + 18) p47p472 p47 = (1− 4 3
√

2 + 2 3
√

4)

Table 4. Factoring prime numbers in Z[ 3
√

2].

3See Example 2.4 in https://kconrad.math.uconn.edu/blurbs/gradnumthy/totram.pdf.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/totram.pdf
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How do we know p′′31 = (3 + 3
√

4)? Since N((3 + 3
√

4)) = 31, (3 + 3
√

4) is one of the prime

ideals of norm 31. In each prime ideal p of norm 31, 3
√

2 is congruent to 4, 7, or 20 modulo

p from the factorization of T 3 − 2 mod 31. Therefore 3
√

4 = 3
√

2
2

is congruent to 16, 18, or
28 modulo p, respectively (since 42 = 16, 72 ≡ 18 mod 31, and 202 ≡ 28 mod 31). Since
p′′31 = (31, 3

√
2 − 20), 3

√
4 ≡ 28 ≡ −3 mod p′′31, so (3 + 3

√
4) ⊂ p′′31. This containment is

equality since nonzero prime ideals are maximal. We get p43 = (3 + 2 3
√

2) similarly, since
the solution to 3 + 2x ≡ 0 mod 43 is 20 mod 43 and p43 = (43, 3

√
2− 20).

In the last column of Table 4, all prime ideals are principal. The prime ideals of norm
up to 50 that are not explicitly listed in the table as principal are p25 and two of the three
prime ideals of norm 31 and 43. Since (5) = p5p25 = (1 + 3

√
4)p25, p25 is principal. It

remains to find generators for a second prime ideal of norm 31 and a second prime ideal of
norm 43 to know that all the prime ideals with norm up to 50 are principal. After playing
around with (4.1), we get

N((1− 2
3
√

2− 3
√

4)) = 31, N((3 + 2
3
√

2 + 3
3
√

4)) = 43.

It remains to show (1− 2 3
√

2− 3
√

4) 6= (3 + 3
√

4) and (3 + 2 3
√

2 + 3 3
√

4) 6= (3 + 2 3
√

2):

• In Z[ 3
√

2]/(3+ 3
√

4) ∼= Z/(31), we have 3
√

4 ≡ −3, so 1−2 3
√

2− 3
√

4 = 1− 3
√

4
2− 3
√

4 ≡
1− 9 + 3 = −5 6≡ 0. Thus (1− 2 3

√
2− 3
√

4) is a different prime ideal from (3 + 3
√

4).
• In Z[ 3

√
2]/(3 + 2 3

√
2) ∼= Z/(43), we have 3 + 2 3

√
2 ≡ 0, so 3 + 2 3

√
2 + 3 3

√
4 ≡ 3 3

√
4 6≡ 0.

Thus (3 + 2 3
√

2 + 3 3
√

4) is a different prime ideal from (3 + 2 3
√

2).

Thus all ideal classes in Z[ 3
√

2] are trivial, so Z[ 3
√

2] is a PID.
We did not have to know which specific prime ideals of norm 31 and 43 equal (3 + 3

√
4)

and (3 + 2 3
√

2): it was enough to know those are prime ideals dividing (31) and (43), by
their ideal norms, and that the second ideals found with the same ideal norms are different.

5. The Class Number

The number of ideal classes in a number field K (really, the number of ideal classes in
OK) is called the class number of K and is written h(K).4 Saying h(K) = 1 is another
way of saying OK is a PID. We know that h(Q) = 1, h(Q(i)) = 1, h(Q(

√
−5)) = 2, and

h(Q(
√
−23)) = 3.

The importance of class numbers in Diophantine equations is illustrated by Fermat’s Last
Theorem, which was Fermat’s claim that he could show, by a marvelous proof that didn’t
fit in the margin, that the equation xn + yn = zn has no solution in positive integers x, y,
and z when n > 3. If this is true for an exponent n then it is true for every multiple of
n. Every integer n > 3 is divisible by an odd prime or by 4, so it suffices to focus on these
exponents. Fermat himself had settled the case n = 4, so suppose xp + yp = zp where p is
an odd prime and x, y, and z are positive integers. A common factor of x or y is a factor
of z and the p-th power of this factor can be cancelled from all the terms, so if there is a
solution (x, y, z) then we may assume x and y are relatively prime. The sum xp + yp can

be factored using pth roots of unity as
∏p−1
i=0 (x + ζipy), where ζp is a nontrivial pth root of

unity, and Kummer studied the Fermat equation xp + yp = zp as

(5.1)

p−1∏
i=0

(x+ ζipy) = zp.

4The use of h as the notation for the number of ideal classes goes back to Dirichlet [9, p. 263], [10, p. 358].
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This equation is in Z[ζp], which is the ring of integers of Q(ζp), although Kummer did not
know this; for him Z[ζp] was just the natural ring to work in.

If Z[ζp] has unique factorization and the factors on the left side of (5.1) are pairwise
relatively prime, then each factor is a pth power up to unit multiple: x + ζipy = uiw

p
i . For

x+ζipy to be nearly a pth power for all i from 0 to p−1 seems like a very strong condition to
impose on two integers x and y, so one can anticipate that there should be a contradiction
from this. Kummer devised a method to make this intuition precise, but he knew that it
was not automatic for the factors x+ ζipy to be relatively prime and he also discovered that
the assumption of unique factorization is wrong when p = 23. He found a class number
hypothesis that, if true, allowed him to get around these problems.

Theorem 5.1 (Kummer, 1847). If p is an odd prime and p - h(Q(ζp)) then xp + yp = zp

has no solution in positive integers x, y, z.

The importance of p not dividing h(Q(ζp)) for Kummer was similar to the importance
of 3 not dividing h(Q(

√
−5)) in the proof of Theorem 3.4: if p - h(Q(ζp)) then an ideal in

Z[ζp] whose pth power is principal has to be principal: if ap = (α) then [a]p = 1, so [a] = 1
when [a] doesn’t have order p. This is useful if we want to convert (5.1) into an equation
with ideals and later come back to recover information about numbers. A proof of Theorem
5.1 is in [3, pp. 223–224, 378–381]. It is not easy and requires subtle properties of units in
Z[ζp].

5 For comparison, Z[
√
−5] has units ±1 so there are no unit problems in Theorem

3.4.
For prime p it turns out that h(Q(ζp)) = 1 for p 6 19, and Table 5 lists h(Q(ζp)) for all

the remaining primes p below 50. We see 37 is the only prime in this range that does not
fit the hypothesis in Kummer’s theorem, so Kummer had proved Fermat’s Last Theorem
for every prime exponent below 50 other than p = 37, which was a striking achievement
compared to other work on Fermat’s Last Theorem at the time. Before Kummer, the only
settled cases of Fermat’s Last Theorem for prime exponent p were p = 3, 5, and 7. (Kummer
did not actually compute all the class numbers in Table 5. He found a method to decide if
p - h(Q(ζp)) that is simpler to carry out by hand than computing h(Q(ζp)).)

p 23 29 31 37 41 43 47

h(Q(ζp)) 3 23 32 37 112 211 5 · 139
Table 5. Class number of Q(ζp).

The class numbers in Table 5 are growing, and Kummer conjectured that h(Q(ζp)) = 1
only for p 6 19. This was proved independently by Montgomery and Uchida in 1971.
Ultimately Fermat’s Last Theorem was settled completely by Wiles and Taylor [22], [23]
using techniques that make no use whatsoever of factorizations like (5.1).

There are many open questions about ideal class groups of number fields. Here are a few
of them, which are all believed to have the answer “yes.”

(1) Are there infinitely many number fields with class number 1? It has been suggested
that the number fields Q(ζ2n + ζ−12n ) = Q(cos(2π/2n)) all have class number 1.
Weber showed 2 is not a factor of the class number of such a field. Fukuda and

5See https://kconrad.math.uconn.edu/blurbs/gradnumthy/fltreg.pdf for an account of Kummer’s
proof except for his hard theorem on units in Z[ζp], called Kummer’s lemma.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/fltreg.pdf
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Komatsu [11] showed a prime factor of the class number of such a field is greater
than 109.

(2) Are there infinitely many real quadratic fields with class number 1? This goes back
to Gauss. The data suggest that for about 76% of prime numbers p, the field Q(

√
p)

has class number 1. In contrast to real quadratic fields, it is known by work of Baker
[1], Heegner [13], and Stark [21] that there are only 9 imaginary quadratic fields with

class number 1: Q(
√
d) for d = −1,−2,−3,−7,−11,−19,−43,−67,−163. The

strikingly different behavior of class numbers of real and imaginary quadratic fields
is related to the unit group being infinite in the real quadratic case and finite in
the imaginary quadratic case. It’s usually hard to separate the study of ideal class
groups and unit groups (e.g., to prove an ideal is nonprincipal we usually need to
know about the units), but in the imaginary quadratic case the unit group is finite
and explicitly known.

(3) Are there infinitely many quadratic fields where the subgroup of ideal classes of odd
order in the class group, called the odd part of the class group, is cyclic? (The
2-Sylow subgroup of the class group of a quadratic field is generally not cyclic.) In
examples, the odd part of the class group shows a definite bias for being cyclic.
Notice, for instance, how much larger |d| is in Table 3 when Q(

√
d) first has a

noncyclic class group of size 9 compared to the first cyclic class group of size 9. The
Cohen–Lenstra heuristics [7] give precise conjectures about the frequency with which
the odd part of the class group of a quadratic field has specific structural properties
(e.g., being cyclic, having order divisible by a particular prime, having a particular
p-Sylow subgroup). Their heuristics were extended to class groups of higher-degree
number fields by Cohen and Martinet [8]. Numerical data once cast some doubt
on the higher-degree heuristics, but a special case of the Cohen–Martinet heuristics
was proved by Bhargava [2].

(4) Does each finite abelian group arise (up to isomorphism) as the class group of some
number field? Table 3 might suggest that every finite abelian group could be the
class group of a real and imaginary quadratic field, but this is not true: Chowla [17,
p. 447] showed (Z/2Z)n is not the class group of an imaginary quadratic field for
all large n (probably n > 5 is enough; all n < 5 occur) and Shanks [19] showed no
imaginary quadratic field has class group (Z/5Z)2, (Z/7Z)2, or (Z/11Z)2. The real
quadratic case is different, e.g., the Cohen–Lenstra heuristics predict that each finite
abelian group of odd order should be the odd part of the class group of infinitely
many real quadratic fields.

(5) Are there infinitely many regular primes? A prime number p is called regular if
p - h(Q(ζp)). These are the primes to which Kummer’s work on Fermat’s Last
Theorem can be applied. Below 100 all primes are regular except for 37, 59, and
67. (The fields Q(ζ37), Q(ζ59), and Q(ζ67) have class numbers 37, 3 · 59 · 233, and
67 · 12739, respectively.) It is known that there are infinitely many irregular primes
[3, pp. 381–382], and all the numerical data suggest regular primes appear more
often than irregular primes, but there is no proof that there actually are infinitely
many regular primes.

(6) For each prime p, is the class number of the maximal real subfield Q(ζp + ζ−1p ) of
Q(ζp) not divisible by p? This is Vandiver’s conjecture. It has been checked into
the millions, although probabilistic heuristics suggest counterexamples would occur
only rarely, so the lack of counterexamples so far is not yet compelling.
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The behavior of class numbers in towers of number fields is not straightforward. For
cyclotomic fields, there is divisibility in towers: if Q(ζm) ⊂ Q(ζn) then h(Q(ζm)) | h(Q(ζn)).
But in general if K ⊂ L it need not be true that h(K) | h(L), or even that h(K) 6 h(L).
For instance, h(Q(

√
−5)) = 2 but h(Q(i,

√
−5)) = 1.

It was believed for many years that every number field is a subfield of a number field
with class number 1, but in 1964 Golod and Shafarevich [12] gave explicit counterexamples
among imaginary quadratic fields. Brumer [4], Kuzmin [16], and Roquette and Zassenhaus
[18] extended this work and it turns out that there are infinitely many counterexamples in
each degree greater than 1.
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