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1. Introduction

The Minkowski bound says, for a number field K, that each ideal class contains an
integral ideal with norm bounded above by

n!

nn

(
4

π

)r2√
|disc(K)|.

In particular, the ideal class group is generated by the prime ideals with norm not exceeding
this bound.

We will use the Minkowski bound to compute class groups of some quadratic and cubic
number fields. (The computation of class numbers, rather than class groups, can be obtained
by analytic methods. If the class number is prime, then of course the class group is cyclic,
but we don’t know the class group right away from knowing the class number is, say, 4.)
The Minkowski bound specializes in the case of quadratic fields to the following formulas:
(1/2)

√
|disc(K)| in the real quadratic case (n = 2, r2 = 0) and (2/π)

√
|disc(K)| in the

imaginary quadratic case (n = 2, r2 = 1).
For a nonzero ideal a in OK , its ideal class will be denoted [a] and we write ∼ for the

equivalence relation on ideals that leads to the class group: a ∼ b means b = γa for some
γ ∈ K×. We’ll usually write a ∼ (1) as a ∼ 1. Keep in mind the distinction between
equality of ideals and equality of ideal classes. For example, if a2 ∼ 1 and ab ∼ 1, this
implies a ∼ b (so a = γb for some γ), not a = b.

2. Quadratic fields

Example 2.1. When the Minkowski bound is less than 2, the class group is trivial. For
the real quadratic case, the bound is less than 2 when |disc(K)| < 16. For the imaginary
quadratic case, the bound is less than 2 when |disc(K)| < π2.

This tells us the following quadratic fields have class number 1: Q(
√

2), Q(
√

3), Q(
√

5),
Q(
√

13), Q(i), Q(
√
−2), Q(

√
−3), and Q(

√
−7). There are other real and imaginary

quadratic fields with class number 1, but the Minkowski bound in the other cases is not less
than 2, so we need extra work to show the class number is 1.

Example 2.2. Let K = Q(
√

82). We will show the class group is cyclic of order 4.
Here n = 2, r2 = 0, disc(K) = 4 · 82, so the Minkowski bound is ≈ 9.055. We look at the

primes lying over 2, 3, 5, and 7.
The following table describes how (p) factors from the way T 2 − 82 factors modulo p.

p T 2 − 82 mod p (p)

2 T 2 p22
3 (T − 1)(T + 1) p3p

′
3

5 irred. prime
7 irred. prime

1



2 KEITH CONRAD

Thus, the class group of Q(
√

82) is generated by [p2] and [p3], with p22 = (2) ∼ (1) and

p′3 ∼ p−13 .

Since NK/Q(10 +
√

82) = 18 = 2 · 32, and 10 +
√

82 is not divisible by 3, (10 +
√

82)

is divisible by just one of p3 and p′3. Let p3 be that prime, so (10 +
√

82) = p2p
2
3. Thus

p2 ∼ p−23 , so the class group of K is generated by [p3] and we have the formulas

[p2]
2 = 1, [p3]

2 = [p2].

Therefore [p3] has order dividing 4.
We will show p2 is nonprincipal, so [p3] has order 4, and thus K has a class group

〈[p3]〉 ∼= Z/4Z.
If p2 = (a + b

√
82), then a2 − 82b2 = ±2, so 2 or −2 is ≡ � mod 41. This is no

contradiction, since 2 ≡ 172 mod 41. We need a different idea.
The idea is to use the known fact that p22 is principal. If p2 = (a + b

√
82), then (2) =

p22 = ((a+ b
√

82)2), so

2 = (a+ b
√

82)2u,

where u is a unit.
Taking norms here N(u) must be positive, so N(u) = 1. The unit group of Z[

√
82] is

±(9 +
√

82)Z, with 9 +
√

82 having norm −1. Therefore the positive units of norm 1 are the
integral powers of (9 +

√
82)2, which are all squares. A unit square can be absorbed into

the (a + b
√

82)2 term, so we have to be able to solve 2 = (a + b
√

82)2 in integers a and b.
This is absurd: it implies

√
2 lies in Z[

√
82], which is false. Thus, p2 is not principal.

Example 2.3. Let K = Q(
√
−14). We will show the class group is cyclic of order 4.

Here n = 2, r2 = 1, and disc(K) = −56. The Minkowski bound is ≈ 4.764, so the class
group is generated by primes dividing (2) and (3). The following table shows how (2) and
(3) factor in OK based on how T 2 + 14 factors modulo 2 and modulo 3.

p T 2 + 14 mod p (p)

2 T 2 p22
3 (T − 1)(T + 1) p3p

′
3

Since p22 ∼ 1, p2 ∼ p−12 . Since p3p
′
3 ∼ 1, p′3 ∼ p−13 . Therefore the class group of K is

generated by [p2] and [p3].
Both p2 and p3 are nonprincipal, since they have norm 2 and 3 but the equations a2 +

14b2 = 2 and a2 + 14b2 = 3 have no integral solutions.
To find relations between p2 and p3, we use NK/Q(2 +

√
−14) = 18 = 2 · 32. The ideal

(2 +
√
−14) is divisible by only one of p3 and p′3, since 2 +

√
−14 is not a multiple of 3.

Without loss of generality, we may let p3 be the prime of norm 3 dividing (2+
√
−14). Then

p2p
2
3 ∼ 1, so

p23 ∼ p−12 ∼ p2,

so the class group of K is generated by [p3]. Since p2 is nonprincipal and p22 ∼ 1, [p3] has
order 4. Thus, the class group of K is cyclic of order 4.

Example 2.4. Let K = Q(
√
−30). We will show the class group is a product of two cyclic

groups of order 2.
Here n = 2, r2 = 1, and disc(K) = −120. The Minkowski bound is ≈ 6.97, so the class

group is generated by primes dividing 2, 3, and 5.
The following table shows how these primes factor into prime ideals.
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p T 2 + 30 mod p (p)

2 T 2 p22
3 T 2 p23
5 T 2 p25

For a, b ∈ Z, NK/Q(a + b
√
−30) = a2 + 30b2 is never 2, 3, or 5. Therefore p2, p3, and

p5 are nonprincipal, so their ideal classes have order 2 in the class group of K. Moreover,
since NK/Q(

√
−30) = 30 = 2 · 3 · 5, (

√
−30) = p2p3p5. Thus p2p3p5 ∼ 1, in the class group,

so [p2] and [p3] generate the class group.
The relation p2p3p5 ∼ 1 in the class group can be rewritten as

[p2][p3] = [p5]
−1 = [p5].

Since p5 is nonprincipal and [p2] and [p3] have order 2 in the class group, [p2] 6= [p3].
Therefore the class group of K is 〈[p2], [p3]〉 ∼= 〈[p2]〉 × 〈[p3]〉 ∼= Z/2Z× Z/2Z.

Example 2.5. Let K = Q(
√

79). We will show the class group is cyclic of order 3. (This

is the first real quadratic field Q(
√
d), ordered by squarefree d, with a class number greater

than 2.)
Here n = 2, r2 = 0, and disc(K) = 4 · 79. The Minkowski bound is ≈ 8.88, so the class

group is generated by primes dividing 2, 3, 5, and 7. The following table shows how these
primes factor in OK .

p T 2 − 79 mod p (p)

2 (T − 1)2 p22
3 (T + 1)(T − 1) p3p

′
3

5 (T + 2)(T − 2) p5p
′
5

7 (T + 3)(T − 3) p7p
′
7

Therefore the class group is generated by [p2], [p3], [p5], and [p7].
Here is a table that factors |NK/Q(a+

√
79)| for a running from 1 to 10.

a |NK/Q(a+
√

79)|
1 2 · 3 · 13
2 3 · 52
3 2 · 5 · 7
4 32 · 7
5 2 · 33
6 43
7 2 · 3 · 5
8 3 · 5
9 2
10 3 · 7

From a = 9, we see p2 = (9 +
√

79) ∼ 1. From a = 8 and a = 10, [p5] and [p7] are equal
to [p3] or [p′3] = [p3]

−1. Therefore the class group of K is generated by [p3].

Consider now a = 5. Since 5 +
√

79 has absolute norm 2 · 27 and is not divisible by 3,
(5 +

√
79) is only divisible by one of p3 or p′3. Without loss of generality, let p3 be that

prime, so (5 +
√

79) = p2p
3
3 ∼ p33. Thus, the class group is either trivial or cyclic of order 3.

We will show p3 is not principal, so the class group is cyclic of order 3. Our method will
be similar to work in Example 2.2. In particular, we need knowledge of the unit group O×K .
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Assuming p3 is principal, say p3 = (α) for some α ∈ Z[
√

79], we have

(α3) = p33

= (5 +
√

79)p−12

= (5 +
√

79)(9 +
√

79)−1

= (−17 + 2
√

79).

Thus

(2.1) α3 = (−17 + 2
√

79)u,

where u is a unit in Z[
√

79]. We want to show (2.1) is impossible for all u ∈ Z[
√

79]×.
In (2.1), changing u by a unit cube doesn’t affect solvability of the equation since we can

absorb that unit into a change in α. Therefore we can focus on (2.1) where u runs through
representatives of the units modulo cubes. A fundamental unit of Z[

√
79] is

ε = 80 + 9
√

79.

and modulo cubes of units (note ±1 are both cubes) we have the representatives u = 1, ε,
and ε−1. (It may seem more natural to use ε2 instead of ε−1, which are equal modulo unit
cubes. The inverse ε−1 leads to smaller coefficients in the calculations below.) By a direct
calculation,

(−17 + 2
√

79)ε = 62 + 7
√

79, (−17 + 2
√

79)ε−1 = −2782 + 313
√

79.

Therefore if (2.1) is possible in Z[
√

79] for some α and unit u, one of the three numbers

(2.2) − 17 + 2
√

79, 62 + 7
√

79, −2782 + 313
√

79

is α3 for some α in Z[
√

79]. Here are two methods of showing none of these numbers is a
cube.

Method 1. Writing α = a+ b
√

79 for unknown integers a and b,

α3 = a(a2 + 3 · 79b2) + b(3a2 + 79b2)
√

79.

Taking ideal norms in the hypothetical equation (a+ b
√

79) = p3, |a2 − 79b2| = 3, so both
a and b are nonzero. Therefore the coefficient b(3a2 + 79b2) of

√
79 in α3 is, in absolute

value, at least 3 + 79 = 82. So α3 can’t equal −17 + 2
√

79 or 62 + 7
√

79 in (2.2).
The remaining option is α3 = −2782 + 313

√
79, so

b(3a2 + 79b2) = 313,

which is a prime number. Thus b, which must be positive by this equation and is less than
3a2 + 79b2, has to be 1, so a2 = (313− 79)/3 = 78, which is impossible.

Method 2. To prove the three numbers in (2.2) are not cubes in Z[
√

79], we will show
they are not cubes in Z[

√
79]/p for some prime ideals p. We need this residue field not to

consist entirely of cubes, so we want 3 | (N(p)− 1): N(p) ≡ 1 mod 3. We’ll use prime ideals
of norm 7 and 43, which both split in Z[

√
79] and are 1 mod 3.1

Since T 2 − 79 ≡ (T + 3)(T − 3) mod 7 and T 2 − 79 ≡ (T + 6)(T − 6) mod 43, we have
(7) = p7p

′
7 and (13) = p43p

′
43, where

(2.3)
√

79 ≡ 3 mod p7,
√

79 ≡ −3 mod p′7,
√

79 ≡ 6 mod p43,
√

79 ≡ −6 mod p′43.

1The prime 13 is also split in Z[
√
79] and 1 mod 3, but it turns out not to be useful for us.
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Using these values, in the table below we compute the numbers in (2.2) modulo p7 or p43,
for which the residue fields are uniquely isomorphic to Z/7Z and Z/43Z.

p −17 + 2
√

79 mod p 62 + 7
√

79 mod p −2782 + 313
√

79 mod p
p7 3 5
p43 18

In Z/7Z, 3 and 5 are not cubes, so −17 + 2
√

79 mod p7 and −2782 + 313
√

79 mod p7 are
not cubes. In Z/43Z, 18 is not a cube, so 62 + 7

√
79 mod p43 is not a cube. Thus none of

the numbers in (2.2) is a cube in Z[
√

79].

Example 2.6. Let K = Q(
√
−65). We will show its class group is isomorphic to Z/2Z×

Z/4Z.
The Minkowski bound is (4/π)

√
65 ≈ 10.26, so we should factor 2, 3, 5, and 7 in OK =

Z[
√
−65]. From the following table, the class group is generated by [p2], [p3], and [p5].

p T 2 + 65 mod p (p)

2 (T + 1)2 p22
3 (T + 1)(T + 2) p3p

′
3

5 T 2 p25
7 T 2 + 65 (7)

If we factor N(a +
√
−65) = a2 + 65 for small a, looking for only factors of 2, 3, and 5,

then we get examples at a = 4 and a = 5.

a a2 + 65
1 3 · 11
2 3 · 23
3 2 · 37
4 34

5 2 · 32 · 5
Since (4 +

√
−65) is not divisible by (3), the ideal (4 +

√
−65) is divisible by only one of

the prime factors of (3). Choose p3 as that prime, so

(4 +
√
−65) = p43.

Then

(5 +
√
−65) = p2p

′2
3 p5,

so the class group is generated by [p2] and [p3].
Since p22 = (2) and p43 = (4 +

√
−65), [p2]

2 = [1] and [p3]
4 = [1]. The ideal p2 is

nonprincipal, since there is no integral solution to the equation 2 = x2 + 65y2. The only
integral solution to 9 = x2 + 65y2 is x = ±3 and y = 0, so if p23 were principal then
p23 = (3) = p3p

′
3, and that is false (p3 6= p′3). Therefore [p2] has order 2 and [p3] has order 4.

Can [p3]
2 = [p2]? If so, then [p2p

2
3] = [p2]

2 = [1], so p2p
2
3 is principal. But 18 = x2 + 65y2

has no integral solution. Therefore 〈[p2]〉 and 〈[p3]〉 intersect trivially, so the class group is

〈[p2], [p3]〉 ∼= 〈[p2]〉 × 〈[p3]〉 ∼= Z/2Z× Z/4Z.

3. Cubic fields

Example 3.1. Let K = Q( 3
√

2). We will show its class group trivial.
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Since OK = Z[ 3
√

2] and r2 = 1, the Minkowski bound is (6/27)(4/π)
√

108 ≈ 2.94, so we
should factor (2) into prime ideals in OK . We have (2) = ( 3

√
2)3, so ( 3

√
2) is a prime ideal

of norm 2, so the only prime ideal of norm less than 2.94 is principal and thus h(K) = 1.

Example 3.2. Let K = Q( 3
√

3). We will show its class group trivial.
Since OK = Z[ 3

√
3] and r2 = 1, the Minkowski bound is (6/27)(4/π)

√
243 ≈ 4.41, so we

should factor (2) and (3) into prime ideals in OK .

p T 3 − 3 mod p (p)

2 (T + 1)(T 2 + T + 1)2 p2p4
3 T 3 p33

By the table, there is one prime ideal of norm 2 and one of norm 3. These are (−1 + 3
√

3)
and ( 3

√
3) since−1+ 3

√
3 has minimal polynomial (T+1)3−3 = T 2+3T 2+3T−2 with constant

term −2 and 3
√

3 has minimal polynomial T 3 − 3 with constant term −3. Since (2) = p2p4
with p2 being principal, p4 is principal too. (Explicitly, p4 = (2/(−1+ 3

√
3)) = (1+ 3

√
3+ 3
√

9).)
Thus all prime ideals of norm less than 4.41 are principal, so h(K) = 1.

Remark 3.3. The first pure cubic fields Q( 3
√
d) with nontrivial class group are Q( 3

√
7) and

Q( 3
√

11), which have class numbers 3 and 2, respectively.

Example 3.4. Let K = Q(α), where α is a root of T 3−T−9. This polynomial is irreducible
mod 2, so it’s irreducible over Q: K is a cubic field. We will show the class group of K has
order 2.

The discriminant of T 3 − T − 9 is −4(−1)3 − 27(−9)2 = −2183 = −37 · 59, which is
squarefree, so OK = Z[α] and disc(K) = −2183. The polynomial T 3 − T − 9 has one real
root, so r2 = 1 and the Minkowski bound is (6/27)(4/π)

√
2183 ≈ 13.21. The table below

gives us factorizations of (p) for all primes p ≤ 13.

p T 3 − T − 9 mod p (p)
2 irred. prime
3 T (T − 1)(T − 2) p3p

′
3p
′′
3

5 (T − 3)(T 2 + 3T + 3) p5p25
7 irred. prime
11 (T − 8)(T 2 + 8T + 8) p11p121
13 irred. prime

From this table the class group of K is generated by [p3], [p′3], [p′′3], [p5], and [p11]. To
get relations among these ideal classes we will factor (a+α) for some small integers a. The
ideal norm is (a+α) is |NK/Q(a+α)|, which up to sign is the constant term of the minimal

polynomial of a + α. That minimal polynomial is (T − a)3 − (T − a) − 9, whose constant
term is −a3 + a− 9 = −(a3 − a+ 9), so |NK/Q(a+ α)| = |a3 − a+ 9|.

a |a3 − a+ 9||
0 32

1 32

−1 32

2 3 · 5
−2 3
3 3 · 11

From the first three rows in the table above, the ideals (α), (α+ 1), and (α− 1) all have
norm 9. They are pairwise relatively prime, since the generators differ by ±1 and 2, so we
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can set

(3.1) (α) = p23, (α+ 1) = p′23 , (α− 1) = p′′23 .

Since (α− 2) has norm 3 and α− 2 ≡ α+ 1 ≡ 0 mod p′3, p
′
3 = (α− 2), so [p′3] = [1].

From the table above and the congruences α + 2 ≡ α − 1 ≡ 0 mod p′′3 and α + 3 ≡ α ≡
0 mod p3, we have prime ideal factorizations

(α+ 2) = p′′3p5, (α+ 3) = p3p11,

so in the class group of K, [p5] = [p′′3]−1 and [p11] = [p3]
−1. Therefore the class group of

K is generated by [p3] and [p′′3]. Since the factorization (3) = p3p
′
3p
′′
3 = p3(α− 2)p′′3 implies

[p3][p
′′
3] = [1], the class group of K is generated by [p3]. We have [p3]

2 = [1] by (3.1), so
h(K) is 1 or 2. To show the class number of K is 2, we’ll show p3 is nonprincipal.

Assume p3 is principal, say p3 = (β) for some β ∈ Z[α]. Then (β2) = p23 = (α), so

(3.2) β2 = αu

for a unit u ∈ Z[α]×. We want to show (3.2) is impossible, and we will do this by following
the second method of proving the impossibility of (2.1): we will show αu mod p is not a
square for some prime ideal p and all units u.

As in Example 2.5, we need information about the unit group of Z[α]. First let’s find a
nontrivial unit. Because p′3 = (α− 2) and p′23 = (α + 1), we have the equation of principal
ideals

(α+ 1) = ((α− 2)2).

Therefore v := (α− 2)2/(α+ 1) is a unit and v 6= ±1 since the numerator of v is quadratic
in α and the denominator of v is linear in α and 1, α, α2 are linearly independent over Q.

Fact: Z[α]×/{±1} is infinite cyclic: for a unit ε of infinite order, Z[α]× = ±εZ.

This fact is a special case of Dirichlet’s unit theorem. The easier part of the proof of
that theorem shows Z[α]×/{±1} is either trivial or infinite cyclic, so the fact that we found
a unit v besides ±1 in the cubic field K forces Z[α]×/{±1} to be infinite cyclic without
needing to rely on the full proof of Dirichlet’s unit theorem. It also turns out that in the
above fact we can use v for ε, but we will not need this.

If (3.2) has a solution β and u, then u only matters modulo unit squares (changing u by
a unit square changes β by a unit), so to prove (3.2) is impossible we can focus on (3.2)
where u runs over representatives for the units modulo unit squares. From the structure of
Z[α]×, the unit squares are ε2Z, so a set of representatives for the units modulo unit squares
is ±1 and ±εk where k is odd.

In the fact above, we can replace ε by −ε, so without loss of generality ε > 0 under the
real embedding of K, which makes the positive units of Z[α] equal to εZ. The unique real
root of T 3 − T − 9 is positive (it’s around 2.24), so the real embedding of K maps α to a
positive number (around 2.24) and thus also v = (α− 2)2/(α+ 1) to a positive number, so
v ∈ εZ by the fact above. We will show v is an odd power of ε by showing v is not a square.

In Z[α]/p′′3, α ≡ 1 mod p′3, so v = (α − 2)2/(α + 1) ≡ 1/2 ≡ 2 mod p′′3. This is not a
square since Z[α]/p′′3

∼= Z/3Z and 2 is not a square mod 3. Thus v is not a square in Z[α],
so v = εk where k is odd, and that makes ±1,±v a set of representatives for the units of
Z[α] modulo unit squares. The impossibility of solving (3.2) is therefore equivalent to none
of the four numbers ±α and ±αv being squares in Z[α], and we’ll prove this by showing
they are not squares in Z[α]/p5.
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Recall p5 is a prime ideal of norm 5, with α ≡ 3 mod p5. That makes v = (α−2)2/(α+1) ≡
1/4 ≡ −1 mod p5, so ±α ≡ ±3 mod p5 and ±αv ≡ ∓3 mod p5. In the field Z[α]/p5 ∼= Z/5Z,
3 and −3 are not squares. Hence ±α and ±αv are not squares in Z[α]/p5 and thus also in
Z[α]. This completes the proof that (3.2) is impossible, so p3 is not principal.

The examples we looked at here with nontrivial class groups are Q(
√
−14), Q(

√
−30),

Q(
√
−65), Q(

√
79), Q(

√
82), and Q(α), where α3 − α − 9 = 0. In each of these cases we

had to show certain ideals are not principal, and this was much simpler for the imaginary
quadratic fields than for the other examples. That is because the only units in the imaginary
quadratic fields are ±1, while there are infinitely many units in Z[

√
79], Z[

√
82], and Z[α].

An important lesson is that to compute the ideal class group when it is nontrivial, you need
to understand the unit group, and this gets delicate when the unit group is infinite.
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