THE CONGRUENCE SUBGROUP PROBLEM FOR UNITS

KEITH CONRAD

Let K be a number field. Denote the unit group of Ox by Uk. For any nonzero ideal ¢

in O, let
Uk(c) ={u € Ux : v = 1 mod c}.
This is the kernel of Ux — (Og/c)*.

A subgroup of Uk that contains Uk (c) for some ¢ is called a congruence subgroup. For
a subgroup I' C Ugk that contains Uk (c), any v € Uk that is congruent mod ¢ to an
element of I" has to lie in I'. Therefore I' can be defined by congruence conditions, simply
by indicating which congruence classes I' consists of in the finite group (Og /c)* when we
reduce I' modulo ¢. This explains the terminology “congruence subgroup.”

Being the kernel of a homomorphism from Uy into a finite group, Uk (¢) has finite index
in Ug. Therefore any congruence subgroup of Ug has finite index. Whether or not the
converse holds is called the congruence subgroup problem: if I' C Ug is a finite index
subgroup, does I' contain Uk (¢) for some nonzero ideal ¢?

For example, the units in Z[v/2] are +(1 + v/2)%. The subgroup of positive units has
index 2. Is there a nonzero o € Z[v/2] such that any unit in Z[v/2] satisfying v = 1 mod «
is positive? (Every congruence class in every Z[v/2]/a, o # 0, contains both positive and
negative numbers; add and subtract « enough times from any number. So a congruence
condition can’t force a sign condition on unrestricted elements of Z[v/2]. However, our
elements are restricted: we’re looking only at wunits.) As another example, the squared
units in Z[v/2] are a subgroup of index 4 in all units. Can a congruence condition on units
in Z[v/2] force them to be squares?

Theorem 1 (Chevalley, 1951). For any number field K, every subgroup of finite index in
Uk is a congruence subgroup. In other words, the congruence subgroup problem has an
affirmative answer for Uy .

To prove Chevalley’s theorem we need three preliminary results. The first two are alge-
braic and the third is arithmetic.

Lemma 2. Let p be a prime, K any field of characteristic not equal to p, and r a positive
integer. Any element of K that is a p"th power in K ((pr) is a p"th power in K, with the
proviso that i = +/—1 is in K if p = 2.

Proof. This is due to Chevalley. See the remark after the proof of [1, Théoréme 1], and items
2, 3, 4, and 5 in that proof. (Warning: the second proof of that theorem is incorrect.) O

The case p = 2 in Lemma 2 requires that extra condition about 4, since —4 = (1 414)* is
a fourth power in Q(i) = Q({4) but not in Q.

Lemma 3. Let K be a field with characteristic not equal to 2 and i € K. Choose k > 2
mazimal such that (o € K(i). For any e >0, if v € K is a 2" °th power in K(i), then x
1s a 2°th power in K.
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Proof. See Chevalley [1, p. 37]. O

Lemma 4. If FF C L and aoll but finitely many primes in F split completely in L, then
L=F.

Proof. The shortest argument uses analytic properties of zeta-functions of number fields.
The hypothesis implies that (7,(s) is equal to ¢ F(s)[L:F I'up to multiplication by finitely many
Euler factors. Computing pole orders at s = 1 shows 1 = [L: F|,so L = F. O

We now turn to a proof of Chevalley’s theorem (following Chevalley).

Proof. Let I' C Uk have finite index, say m. Since Uk /T" has order m, U} C I, where U}
is the group of mth powers of units. Because U is finitely generated, U7 has finite index
in Ug. Therefore it suffices to verify Uy is a congruence subgroup of Uk for every m and
every K.
Step 1: Reduction to prime power m and (,, € K

Since the intersection of two congruence subgroups is a congruence subgroup (exercise),
and Ug' N U}?l = U}?m/ for relatively prime m and m/, it suffices to consider the case when
m is a prime power. Prime power exponents are convenient because of Lemma 2, which will
let us reduce to the case when K contains suitable roots of unity. (This is how Chevalley
was led to Lemma 2.)

Let m be a prime power and K be any number field. We show there is an integer n > 1
such that

If m is an odd prime power, or if m is a power of 2 and i € K, then we can let n = m by
Lemma 2. (Powers and roots of units are again units, so Lemma 2 with K a number field
remains valid when fields are replaced by unit groups.)

What if m is a power of 2 and ¢ ¢ K7 Is (1) true with n = m? When m =2, K((,) = K
and we can use n = 2 in (1). But we can’t always take n = 4 when m = 4 (exercise). For
this we use Lemma 2.

If m = 2¢ and i ¢ K then successive applications of Lemma 2 (with K (i) as base field)
and Lemma 3 show we can take n = 2¥m = 2¥+¢ in (1), where k comes from Lemma 3.

It U;é(cn) is a congruence subgroup of Ug¢,), (1) implies U} is a congruence subgroup
of Ug. Writing K ((,) as K, we have reduced to the following:

Step 2: Show Uy is congruence subgroup of Ux when ¢, € K, n a prime power.

Let n = p® be any prime power and K be a number field containing the nth roots of
unity. We want to find a nonzero ideal ¢ in Ok such that any wnit satisfying « = 1 mod ¢
is a p®th power. The argument will use Kummer theory.

The group Uk is finitely generated, say by ui,...,u;. (At least one u; is a root of unity,
and others usually have infinite order, but we treat all generators on an equal footing.) Let
L = K({/uy,..., {/us), so L contains the nth roots of every unit in K.

Since n is a power of p, Kummer theory implies L/K is an abelian extension of p-power
degree. In a finite abelian p-group (or even a finite nonabelian p-group), every proper
subgroup lies in a maximal proper subgroup, which must have index p in the whole group.
By Galois theory, L contains subfields Lq,..., Ls that have degree p over K and every
intermediate field other than K contains an L;.

For each L;, Lemma 4 implies there are infinitely many primes in K that don’t split
completely in L;. Since L;/K is Galois of prime degree p, the only options for primes in K
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that don’t split completely in L; are to ramify or to remain prime. There are only finitely
many of the former, and thus infinitely many of the latter. For j = 1,...,s, let q; be a
prime in K that remains prime in L; and does not divide n.

We claim any unit u € Uk that satisfies v = 1 mod q; - - - q5 is an nth power in K, and
thus also in Ug. (If any q; fits more than one L;, we only need to include it in the modulus
once.) The congruence condition on u implies X™ — u splits into distinct linear factors
modulo each q; (because K contains the nth roots of unity). Therefore q; splits completely
in K({/u) C L. Since g; remains prime in each L;, K({/u) can’t contain any L;. That
forces K({/u) = K by the definition of the L;’s, so u is an nth power in K. O

The most essential property of Ug for Theorem 1 is that it’s a finitely generated subgroup
of K*. Chevalley [1] established Theorem 1 for all such subgroups of K*: every finite-index
subgroup of a finitely generated subgroup of K* can be defined by appropriate congruence
conditions.

The congruence subgroup problem can be posed for groups defined over number fields
other than unit groups. For a discussion of the congruence subgroup problem in these
settings, see [3], [4], and [5].

Example 5. Taking K = Q(v/2), let U;t be the positive units of Z[v/2]. This has index 2
in Uk, since Ug = j:U;, and U% C U} C Ug. To find an explicit ideal ¢ in Z[v/2] such
that v = 1 mod ¢ for units u implies u > 0, we can work through the proof of Chevalley’s
theorem, which amounts to proving U# is a congruence subgroup. Since U = £(1 + /2)%

we consider L = K (v/—1,v/1 + v/2), which is an abelian extension of degree 4. The diagram
below shows the intermediate fields between L and K.

/\

K(/—1 —-1-+/2)

\ /

For each of the three intermediate quadratlc extensions of K we need to find a prime in
Z[\/2] that stays prime when extended to the quadratic extension. The prime q = (34+/2)in
Z[v/2] has residue field of order |N(3 + v/2)| = 7 and in Z[v/2]/q = Z/(7) the number —1
is not a square and 1 ++/2 = —2 = 5 mod g, which is not a square in Z/(7). Thus g
stays prime when extended to K(v/—1) and to K (/1 + v/2), but it splits when extended
to K(v/—1—+/2) since =1 —v/2 = 2 = 9mod q.! For the prime q' = (3 — v/2), also of
norm 7, we have in the residue field at q’ that —1 — /2 = —4 = 3, which is not a square in
Z/(7). Thus, from the proof of Chevalley’s theorem, we can use ¢ = qq’ = (7). That is, if
+(1 4 +v/2)* = 1 mod 7 then the sign is + and the exponent k is even.

That the modulus ¢ = (7) in Z[v/2] has U (c) C U can be checked directly: the order of
1+v/2 mod 7is 6, so if (144/2)F = 1 mod 7 then 6 | k so k is even, and —(1++/2)* # 1 mod 7
for all k& (check explicitly £ = 0,1, ..., 5, or check fewer k if you see how to be more efficient).

LWe can read off how the prime q in K decomposes in K (y/u) for any unit u from the way X? —umod q
decomposes because q has odd norm, whether or not the integers of K (y/u) really equals O g [/u].
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Corollary 6. For any positive integer m, the group of m-th powers U contains a subgroup
Uk (n) for some positive integer n :

{u €Uk :u=1modn} C UZ.

Proof. By Chevalley’s theorem, there is an ideal ¢ such that Ux (¢) C Uj?. Let n be a positive
integer in ¢ (e.g., a generator of ¢ N Z). Then nOx C ¢, so Ux(n) C Uk (c) C UL O

The modulus n in the corollary depends on m. It is conjectured that when m is a power
of a prime p that we can take for n a power of p: given any p?, there is a p® such that

(2) u e Uk, uzlmodpb:>u€Uf:.

For example, when h(Q((p)) is not divisible by p, Kummer’s lemma says that if K = Q((p)
and a = 1 then we can choose b = 1: any unit in Q((p) that is congruent to 1 mod pZ[(,] is
a pth power of a unit. When K is totally real, the conjecture (2) is equivalent to Leopoldt’s
conjecture about the nonvanishing of the p-adic regulator of K. So we can consider (2) to
be a version of Leopoldt’s conjecture for all number fields. See [2] for more in this direction.
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