
THE CONGRUENCE SUBGROUP PROBLEM FOR UNITS

KEITH CONRAD

Let K be a number field. Denote the unit group of OK by UK . For any nonzero ideal c
in OK , let

UK(c) = {u ∈ UK : u ≡ 1 mod c}.
This is the kernel of UK → (OK/c)

×.
A subgroup of UK that contains UK(c) for some c is called a congruence subgroup. For

a subgroup Γ ⊂ UK that contains UK(c), any u ∈ UK that is congruent mod c to an
element of Γ has to lie in Γ. Therefore Γ can be defined by congruence conditions, simply
by indicating which congruence classes Γ consists of in the finite group (OK/c)

× when we
reduce Γ modulo c. This explains the terminology “congruence subgroup.”

Being the kernel of a homomorphism from UK into a finite group, UK(c) has finite index
in UK . Therefore any congruence subgroup of UK has finite index. Whether or not the
converse holds is called the congruence subgroup problem: if Γ ⊂ UK is a finite index
subgroup, does Γ contain UK(c) for some nonzero ideal c?

For example, the units in Z[
√

2] are ±(1 +
√

2)Z. The subgroup of positive units has
index 2. Is there a nonzero α ∈ Z[

√
2] such that any unit in Z[

√
2] satisfying u ≡ 1 mod α

is positive? (Every congruence class in every Z[
√

2]/α, α 6= 0, contains both positive and
negative numbers; add and subtract α enough times from any number. So a congruence
condition can’t force a sign condition on unrestricted elements of Z[

√
2]. However, our

elements are restricted: we’re looking only at units.) As another example, the squared
units in Z[

√
2] are a subgroup of index 4 in all units. Can a congruence condition on units

in Z[
√

2] force them to be squares?

Theorem 1 (Chevalley, 1951). For any number field K, every subgroup of finite index in
UK is a congruence subgroup. In other words, the congruence subgroup problem has an
affirmative answer for UK .

To prove Chevalley’s theorem we need three preliminary results. The first two are alge-
braic and the third is arithmetic.

Lemma 2. Let p be a prime, K any field of characteristic not equal to p, and r a positive
integer. Any element of K that is a prth power in K(ζpr) is a prth power in K, with the
proviso that i =

√
−1 is in K if p = 2.

Proof. This is due to Chevalley. See the remark after the proof of [1, Théorème 1], and items
2, 3, 4, and 5 in that proof. (Warning: the second proof of that theorem is incorrect.) �

The case p = 2 in Lemma 2 requires that extra condition about i, since −4 = (1 + i)4 is
a fourth power in Q(i) = Q(ζ4) but not in Q.

Lemma 3. Let K be a field with characteristic not equal to 2 and i 6∈ K. Choose k ≥ 2
maximal such that ζ2k ∈ K(i). For any e ≥ 0, if x ∈ K is a 2k+eth power in K(i), then x
is a 2eth power in K.
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Proof. See Chevalley [1, p. 37]. �

Lemma 4. If F ⊂ L and all but finitely many primes in F split completely in L, then
L = F .

Proof. The shortest argument uses analytic properties of zeta-functions of number fields.
The hypothesis implies that ζL(s) is equal to ζF (s)[L:F ] up to multiplication by finitely many
Euler factors. Computing pole orders at s = 1 shows 1 = [L : F ], so L = F . �

We now turn to a proof of Chevalley’s theorem (following Chevalley).

Proof. Let Γ ⊂ UK have finite index, say m. Since UK/Γ has order m, UmK ⊂ Γ, where UmK
is the group of mth powers of units. Because UK is finitely generated, UmK has finite index
in UK . Therefore it suffices to verify UmK is a congruence subgroup of UK for every m and
every K.
Step 1: Reduction to prime power m and ζm ∈ K

Since the intersection of two congruence subgroups is a congruence subgroup (exercise),

and UmK ∩ Um
′

K = Umm
′

K for relatively prime m and m′, it suffices to consider the case when
m is a prime power. Prime power exponents are convenient because of Lemma 2, which will
let us reduce to the case when K contains suitable roots of unity. (This is how Chevalley
was led to Lemma 2.)

Let m be a prime power and K be any number field. We show there is an integer n ≥ 1
such that

(1) UmK = UnK(ζn)
∩ UK .

If m is an odd prime power, or if m is a power of 2 and i ∈ K, then we can let n = m by
Lemma 2. (Powers and roots of units are again units, so Lemma 2 with K a number field
remains valid when fields are replaced by unit groups.)

What if m is a power of 2 and i 6∈ K? Is (1) true with n = m? When m = 2, K(ζm) = K
and we can use n = 2 in (1). But we can’t always take n = 4 when m = 4 (exercise). For
this we use Lemma 2.

If m = 2e and i 6∈ K then successive applications of Lemma 2 (with K(i) as base field)
and Lemma 3 show we can take n = 2km = 2k+e in (1), where k comes from Lemma 3.

If UnK(ζn)
is a congruence subgroup of UK(ζn), (1) implies UmK is a congruence subgroup

of UK . Writing K(ζn) as K, we have reduced to the following:
Step 2: Show UnK is congruence subgroup of UK when ζn ∈ K, n a prime power.

Let n = pe be any prime power and K be a number field containing the nth roots of
unity. We want to find a nonzero ideal c in OK such that any unit satisfying u ≡ 1 mod c
is a peth power. The argument will use Kummer theory.

The group UK is finitely generated, say by u1, . . . , ut. (At least one uj is a root of unity,
and others usually have infinite order, but we treat all generators on an equal footing.) Let
L = K( n

√
u1, . . . , n

√
ut), so L contains the nth roots of every unit in K.

Since n is a power of p, Kummer theory implies L/K is an abelian extension of p-power
degree. In a finite abelian p-group (or even a finite nonabelian p-group), every proper
subgroup lies in a maximal proper subgroup, which must have index p in the whole group.
By Galois theory, L contains subfields L1, . . . , Ls that have degree p over K and every
intermediate field other than K contains an Lj .

For each Lj , Lemma 4 implies there are infinitely many primes in K that don’t split
completely in Lj . Since Lj/K is Galois of prime degree p, the only options for primes in K
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that don’t split completely in Lj are to ramify or to remain prime. There are only finitely
many of the former, and thus infinitely many of the latter. For j = 1, . . . , s, let qj be a
prime in K that remains prime in Lj and does not divide n.

We claim any unit u ∈ UK that satisfies u ≡ 1 mod q1 · · · qs is an nth power in K, and
thus also in UK . (If any qj fits more than one Lj , we only need to include it in the modulus
once.) The congruence condition on u implies Xn − u splits into distinct linear factors
modulo each qj (because K contains the nth roots of unity). Therefore qj splits completely
in K( n

√
u) ⊂ L. Since qj remains prime in each Lj , K( n

√
u) can’t contain any Lj . That

forces K( n
√
u) = K by the definition of the Lj ’s, so u is an nth power in K. �

The most essential property of UK for Theorem 1 is that it’s a finitely generated subgroup
of K×. Chevalley [1] established Theorem 1 for all such subgroups of K×: every finite-index
subgroup of a finitely generated subgroup of K× can be defined by appropriate congruence
conditions.

The congruence subgroup problem can be posed for groups defined over number fields
other than unit groups. For a discussion of the congruence subgroup problem in these
settings, see [3], [4], and [5].

Example 5. Taking K = Q(
√

2), let U+
K be the positive units of Z[

√
2]. This has index 2

in UK , since UK = ±U+
K , and U2

K ⊂ U+
K ⊂ UK . To find an explicit ideal c in Z[

√
2] such

that u ≡ 1 mod c for units u implies u > 0, we can work through the proof of Chevalley’s
theorem, which amounts to proving U2

K is a congruence subgroup. Since UK = ±(1 +
√

2)Z

we consider L = K(
√
−1,

√
1 +
√

2), which is an abelian extension of degree 4. The diagram
below shows the intermediate fields between L and K.

L

K(
√
−1) K(

√
1 +
√

2) K(
√
−1−

√
2)

K

For each of the three intermediate quadratic extensions of K we need to find a prime in
Z[
√

2] that stays prime when extended to the quadratic extension. The prime q = (3+
√

2)in
Z[
√

2] has residue field of order |N(3 +
√

2)| = 7 and in Z[
√

2]/q ∼= Z/(7) the number −1
is not a square and 1 +

√
2 ≡ −2 ≡ 5 mod q, which is not a square in Z/(7). Thus q

stays prime when extended to K(
√
−1) and to K(

√
1 +
√

2), but it splits when extended

to K(
√
−1−

√
2) since −1 −

√
2 ≡ 2 ≡ 9 mod q.1 For the prime q′ = (3 −

√
2), also of

norm 7, we have in the residue field at q′ that −1−
√

2 = −4 = 3, which is not a square in
Z/(7). Thus, from the proof of Chevalley’s theorem, we can use c = qq′ = (7). That is, if
±(1 +

√
2)k ≡ 1 mod 7 then the sign is + and the exponent k is even.

That the modulus c = (7) in Z[
√

2] has UK(c) ⊂ U2
K can be checked directly: the order of

1+
√

2 mod 7 is 6, so if (1+
√

2)k ≡ 1 mod 7 then 6 | k so k is even, and −(1+
√

2)k 6≡ 1 mod 7
for all k (check explicitly k = 0, 1, . . . , 5, or check fewer k if you see how to be more efficient).

1We can read off how the prime q in K decomposes in K(
√
u) for any unit u from the way X2−u mod q

decomposes because q has odd norm, whether or not the integers of K(
√
u) really equals OK [

√
u].
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Corollary 6. For any positive integer m, the group of m-th powers UmK contains a subgroup
UK(n) for some positive integer n :

{u ∈ UK : u ≡ 1 mod n} ⊂ UmK .

Proof. By Chevalley’s theorem, there is an ideal c such that UK(c) ⊂ UmK . Let n be a positive
integer in c (e.g., a generator of c ∩ Z). Then nOK ⊂ c, so UK(n) ⊂ UK(c) ⊂ UmK . �

The modulus n in the corollary depends on m. It is conjectured that when m is a power
of a prime p that we can take for n a power of p: given any pa, there is a pb such that

(2) u ∈ UK , u ≡ 1 mod pb =⇒ u ∈ Up
a

K .

For example, when h(Q(ζp)) is not divisible by p, Kummer’s lemma says that if K = Q(ζp)
and a = 1 then we can choose b = 1: any unit in Q(ζp) that is congruent to 1 mod pZ[ζp] is
a pth power of a unit. When K is totally real, the conjecture (2) is equivalent to Leopoldt’s
conjecture about the nonvanishing of the p-adic regulator of K. So we can consider (2) to
be a version of Leopoldt’s conjecture for all number fields. See [2] for more in this direction.
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Séminaire Bourbaki 1966/1967, 14 (1968), W. A. Benjamin, New York, 1968. (Oeuvres II, 460–469).


	References

