THE CONGRUENCE SUBGROUP PROBLEM FOR UNITS

KEITH CONRAD

Let K be a number field. Denote the unit group of \mathcal{O}_{K} by U_{K}. For any nonzero ideal \mathfrak{c} in \mathcal{O}_{K}, let

$$
U_{K}(\mathfrak{c})=\left\{u \in U_{K}: u \equiv 1 \bmod \mathfrak{c}\right\} .
$$

This is the kernel of $U_{K} \rightarrow\left(\mathcal{O}_{K} / \mathfrak{c}\right)^{\times}$.
A subgroup of U_{K} that contains $U_{K}(\mathfrak{c})$ for some \mathfrak{c} is called a congruence subgroup. For a subgroup $\Gamma \subset U_{K}$ that contains $U_{K}(\mathfrak{c})$, any $u \in U_{K}$ that is congruent mod \mathfrak{c} to an element of Γ has to lie in Γ. Therefore Γ can be defined by congruence conditions, simply by indicating which congruence classes Γ consists of in the finite group $\left(\mathcal{O}_{K} / \mathfrak{c}\right)^{\times}$when we reduce Γ modulo \mathfrak{c}. This explains the terminology "congruence subgroup."

Being the kernel of a homomorphism from U_{K} into a finite group, $U_{K}(\mathfrak{c})$ has finite index in U_{K}. Therefore any congruence subgroup of U_{K} has finite index. Whether or not the converse holds is called the congruence subgroup problem: if $\Gamma \subset U_{K}$ is a finite index subgroup, does Γ contain $U_{K}(\mathfrak{c})$ for some nonzero ideal \mathfrak{c} ?

For example, the units in $\mathbf{Z}[\sqrt{2}]$ are $\pm(1+\sqrt{2})^{\mathbf{Z}}$. The subgroup of positive units has index 2 . Is there a nonzero $\alpha \in \mathbf{Z}[\sqrt{2}]$ such that any unit in $\mathbf{Z}[\sqrt{2}]$ satisfying $u \equiv 1 \bmod \alpha$ is positive? (Every congruence class in every $\mathbf{Z}[\sqrt{2}] / \alpha, \alpha \neq 0$, contains both positive and negative numbers; add and subtract α enough times from any number. So a congruence condition can't force a sign condition on unrestricted elements of $\mathbf{Z}[\sqrt{2}]$. However, our elements are restricted: we're looking only at units.) As another example, the squared units in $\mathbf{Z}[\sqrt{2}]$ are a subgroup of index 4 in all units. Can a congruence condition on units in $\mathbf{Z}[\sqrt{2}]$ force them to be squares?

Theorem 1 (Chevalley, 1951). For any number field K, every subgroup of finite index in U_{K} is a congruence subgroup. In other words, the congruence subgroup problem has an affirmative answer for U_{K}.

To prove Chevalley's theorem we need three preliminary results. The first two are algebraic and the third is arithmetic.

Lemma 2. Let p be a prime, K any field of characteristic not equal to p, and r a positive integer. Any element of K that is a p^{r} th power in $K\left(\zeta_{p^{r}}\right)$ is a p^{r} th power in K, with the proviso that $i=\sqrt{-1}$ is in K if $p=2$.

Proof. This is due to Chevalley. See the remark after the proof of [1, Théorème 1], and items $2,3,4$, and 5 in that proof. (Warning: the second proof of that theorem is incorrect.)

The case $p=2$ in Lemma 2 requires that extra condition about i, since $-4=(1+i)^{4}$ is a fourth power in $\mathbf{Q}(i)=\mathbf{Q}\left(\zeta_{4}\right)$ but not in \mathbf{Q}.
Lemma 3. Let K be a field with characteristic not equal to 2 and $i \notin K$. Choose $k \geq 2$ maximal such that $\zeta_{2^{k}} \in K(i)$. For any $e \geq 0$, if $x \in K$ is a 2^{k+e} th power in $K(i)$, then x is a 2^{e} th power in K.

Proof. See Chevalley [1, p. 37].
Lemma 4. If $F \subset L$ and all but finitely many primes in F split completely in L, then $L=F$.

Proof. The shortest argument uses analytic properties of zeta-functions of number fields. The hypothesis implies that $\zeta_{L}(s)$ is equal to $\zeta_{F}(s)^{[L: F]}$ up to multiplication by finitely many Euler factors. Computing pole orders at $s=1$ shows $1=[L: F]$, so $L=F$.

We now turn to a proof of Chevalley's theorem (following Chevalley).
Proof. Let $\Gamma \subset U_{K}$ have finite index, say m. Since U_{K} / Γ has order $m, U_{K}^{m} \subset \Gamma$, where U_{K}^{m} is the group of m th powers of units. Because U_{K} is finitely generated, U_{K}^{m} has finite index in U_{K}. Therefore it suffices to verify U_{K}^{m} is a congruence subgroup of U_{K} for every m and every K.
Step 1: Reduction to prime power m and $\zeta_{m} \in K$
Since the intersection of two congruence subgroups is a congruence subgroup (exercise), and $U_{K}^{m} \cap U_{K}^{m^{\prime}}=U_{K}^{m m^{\prime}}$ for relatively prime m and m^{\prime}, it suffices to consider the case when m is a prime power. Prime power exponents are convenient because of Lemma 2, which will let us reduce to the case when K contains suitable roots of unity. (This is how Chevalley was led to Lemma 2.)

Let m be a prime power and K be any number field. We show there is an integer $n \geq 1$ such that

$$
\begin{equation*}
U_{K}^{m}=U_{K\left(\zeta_{n}\right)}^{n} \cap U_{K} \tag{1}
\end{equation*}
$$

If m is an odd prime power, or if m is a power of 2 and $i \in K$, then we can let $n=m$ by Lemma 2. (Powers and roots of units are again units, so Lemma 2 with K a number field remains valid when fields are replaced by unit groups.)

What if m is a power of 2 and $i \notin K$? Is (1) true with $n=m$? When $m=2, K\left(\zeta_{m}\right)=K$ and we can use $n=2$ in (1). But we can't always take $n=4$ when $m=4$ (exercise). For this we use Lemma 2.

If $m=2^{e}$ and $i \notin K$ then successive applications of Lemma 2 (with $K(i)$ as base field) and Lemma 3 show we can take $n=2^{k} m=2^{k+e}$ in (1), where k comes from Lemma 3.

If $U_{K\left(\zeta_{n}\right)}^{n}$ is a congruence subgroup of $U_{K\left(\zeta_{n}\right)}$, (1) implies U_{K}^{m} is a congruence subgroup of U_{K}. Writing $K\left(\zeta_{n}\right)$ as K, we have reduced to the following:
Step 2: Show U_{K}^{n} is congruence subgroup of U_{K} when $\zeta_{n} \in K, n$ a prime power.
Let $n=p^{e}$ be any prime power and K be a number field containing the nth roots of unity. We want to find a nonzero ideal \mathfrak{c} in \mathcal{O}_{K} such that any unit satisfying $u \equiv 1 \bmod \mathfrak{c}$ is a p^{e} th power. The argument will use Kummer theory.

The group U_{K} is finitely generated, say by u_{1}, \ldots, u_{t}. (At least one u_{j} is a root of unity, and others usually have infinite order, but we treat all generators on an equal footing.) Let $L=K\left(\sqrt[n]{u_{1}}, \ldots, \sqrt[n]{u_{t}}\right)$, so L contains the nth roots of every unit in K.

Since n is a power of p, Kummer theory implies L / K is an abelian extension of p-power degree. In a finite abelian p-group (or even a finite nonabelian p-group), every proper subgroup lies in a maximal proper subgroup, which must have index p in the whole group. By Galois theory, L contains subfields L_{1}, \ldots, L_{s} that have degree p over K and every intermediate field other than K contains an L_{j}.

For each L_{j}, Lemma 4 implies there are infinitely many primes in K that don't split completely in L_{j}. Since L_{j} / K is Galois of prime degree p, the only options for primes in K
that don't split completely in L_{j} are to ramify or to remain prime. There are only finitely many of the former, and thus infinitely many of the latter. For $j=1, \ldots, s$, let \mathfrak{q}_{j} be a prime in K that remains prime in L_{j} and does not divide n.

We claim any unit $u \in U_{K}$ that satisfies $u \equiv 1 \bmod \mathfrak{q}_{1} \cdots \mathfrak{q}_{s}$ is an nth power in K, and thus also in U_{K}. (If any \mathfrak{q}_{j} fits more than one L_{j}, we only need to include it in the modulus once.) The congruence condition on u implies $X^{n}-u$ splits into distinct linear factors modulo each \mathfrak{q}_{j} (because K contains the nth roots of unity). Therefore \mathfrak{q}_{j} splits completely in $K(\sqrt[n]{u}) \subset L$. Since \mathfrak{q}_{j} remains prime in each $L_{j}, K(\sqrt[n]{u})$ can't contain any L_{j}. That forces $K(\sqrt[n]{u})=K$ by the definition of the L_{j} 's, so u is an nth power in K.

The most essential property of U_{K} for Theorem 1 is that it's a finitely generated subgroup of K^{\times}. Chevalley [1] established Theorem 1 for all such subgroups of K^{\times}: every finite-index subgroup of a finitely generated subgroup of K^{\times}can be defined by appropriate congruence conditions.

The congruence subgroup problem can be posed for groups defined over number fields other than unit groups. For a discussion of the congruence subgroup problem in these settings, see [3], [4], and [5].
Example 5. Taking $K=\mathbf{Q}(\sqrt{2})$, let U_{K}^{+}be the positive units of $\mathbf{Z}[\sqrt{2}]$. This has index 2 in U_{K}, since $U_{K}= \pm U_{K}^{+}$, and $U_{K}^{2} \subset U_{K}^{+} \subset U_{K}$. To find an explicit ideal \mathfrak{c} in $\mathbf{Z}[\sqrt{2}]$ such that $u \equiv 1 \bmod \mathfrak{c}$ for units u implies $u>0$, we can work through the proof of Chevalley's theorem, which amounts to proving U_{K}^{2} is a congruence subgroup. Since $U_{K}= \pm(1+\sqrt{2})^{\mathbf{Z}}$ we consider $L=K(\sqrt{-1}, \sqrt{1+\sqrt{2}})$, which is an abelian extension of degree 4. The diagram below shows the intermediate fields between L and K.

For each of the three intermediate quadratic extensions of K we need to find a prime in $\mathbf{Z}[\sqrt{2}]$ that stays prime when extended to the quadratic extension. The prime $\mathfrak{q}=(3+\sqrt{2})$ in $\mathbf{Z}[\sqrt{2}]$ has residue field of order $|\mathrm{N}(3+\sqrt{2})|=7$ and in $\mathbf{Z}[\sqrt{2}] / \mathfrak{q} \cong \mathbf{Z} /(7)$ the number -1 is not a square and $1+\sqrt{2} \equiv-2 \equiv 5 \bmod \mathfrak{q}$, which is not a square in $\mathbf{Z} /(7)$. Thus \mathfrak{q} stays prime when extended to $K(\sqrt{-1})$ and to $K(\sqrt{1+\sqrt{2}})$, but it splits when extended to $K(\sqrt{-1-\sqrt{2}})$ since $-1-\sqrt{2} \equiv 2 \equiv 9 \bmod \mathfrak{q} .{ }^{1}$ For the prime $\mathfrak{q}^{\prime}=(3-\sqrt{2})$, also of norm 7 , we have in the residue field at \mathfrak{q}^{\prime} that $-1-\sqrt{2}=-4=3$, which is not a square in $\mathbf{Z} /(7)$. Thus, from the proof of Chevalley's theorem, we can use $\mathfrak{c}=\mathfrak{q q}{ }^{\prime}=(7)$. That is, if $\pm(1+\sqrt{2})^{k} \equiv 1 \bmod 7$ then the sign is + and the exponent k is even.

That the modulus $\mathfrak{c}=(7)$ in $\mathbf{Z}[\sqrt{2}]$ has $U_{K}(\mathfrak{c}) \subset U_{K}^{2}$ can be checked directly: the order of $1+\sqrt{2} \bmod 7$ is 6 , so if $(1+\sqrt{2})^{k} \equiv 1 \bmod 7$ then $6 \mid k$ so k is even, and $-(1+\sqrt{2})^{k} \not \equiv 1 \bmod 7$ for all k (check explicitly $k=0,1, \ldots, 5$, or check fewer k if you see how to be more efficient).

[^0]Corollary 6. For any positive integer m, the group of m-th powers U_{K}^{m} contains a subgroup $U_{K}(n)$ for some positive integer n :

$$
\left\{u \in U_{K}: u \equiv 1 \bmod n\right\} \subset U_{K}^{m}
$$

Proof. By Chevalley's theorem, there is an ideal \mathfrak{c} such that $U_{K}(\mathfrak{c}) \subset U_{K}^{m}$. Let n be a positive integer in $\mathfrak{c}(e . g .$, a generator of $\mathfrak{c} \cap \mathbf{Z})$. Then $n \mathcal{O}_{K} \subset \mathfrak{c}$, so $U_{K}(n) \subset U_{K}(\mathfrak{c}) \subset U_{K}^{m}$.

The modulus n in the corollary depends on m. It is conjectured that when m is a power of a prime p that we can take for n a power of p : given any p^{a}, there is a p^{b} such that

$$
\begin{equation*}
u \in U_{K}, \quad u \equiv 1 \bmod p^{b} \Longrightarrow u \in U_{K}^{p^{a}} \tag{2}
\end{equation*}
$$

For example, when $h\left(\mathbf{Q}\left(\zeta_{p}\right)\right)$ is not divisible by p, Kummer's lemma says that if $K=\mathbf{Q}\left(\zeta_{p}\right)$ and $a=1$ then we can choose $b=1$: any unit in $\mathbf{Q}\left(\zeta_{p}\right)$ that is congruent to $1 \bmod p \mathbf{Z}\left[\zeta_{p}\right]$ is a p th power of a unit. When K is totally real, the conjecture (2) is equivalent to Leopoldt's conjecture about the nonvanishing of the p-adic regulator of K. So we can consider (2) to be a version of Leopoldt's conjecture for all number fields. See [2] for more in this direction.

References

[1] C. Chevalley, "Deux Théorèmes d'Arithmétique," J. Math. Soc. Japan, 3 (1951), 36-44.
[2] K. Iwasawa, "A simple remark on Leopoldt's conjecture," pp. 862-870 in Collected Papers, Vol. II, Springer-Verlag, 2001.
[3] M. S. Raghunathan, "The congruence subgroup problem," pp. 465-494 in Proceedings of the Hyderabad Conference on Algebraic Groups, Manoj Prakashan, Madras, 1991.
[4] A. S. Rapinchuk, "The congruence subgroup problem," pp. 175-188 in Algebra, K-theory, groups, and education, Amer. Math. Soc., Providence, 1999.
[5] J-P. Serre, "Groupes de congruence (d'après H. Bass, H. Matsumoto, J. Mennicke, J. Milnor, C. Moore)," Séminaire Bourbaki 1966/1967, 14 (1968), W. A. Benjamin, New York, 1968. (Oeuvres II, 460-469).

[^0]: ${ }^{1}$ We can read off how the prime \mathfrak{q} in K decomposes in $K(\sqrt{u})$ for any unit u from the way $X^{2}-u \bmod \mathfrak{q}$ decomposes because \mathfrak{q} has odd norm, whether or not the integers of $K(\sqrt{u})$ really equals $\mathcal{O}_{K}[\sqrt{u}]$.

