PRIMES OF DEGREE 1 AND CONGRUENCE CONDITIONS

KEITH CONRAD

For a number field K and a finite extension E/K, set
Spl(E/K) = {p in K : p splits completely in E},
Spli(E/K) = {p in K :some P|p in E has f(Plp) = 1}.

Theorem 1. Let E/K be a finite extension and F/K be a Galois extension. Let L/K be
the Galois closure of E/K, G = Gal(L/K), H = Gal(L/E).
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Then Spl,(E/K) = Spl(F/K) up to a set of primes with density 0 if and only if F C E
and J,eqoHo ' = N, where N = Gal(L/F). In this case, Spl,(E/K) = Spl(F/K) up to
only finitely many exceptions.

Of course, usually (J, g oHo~! will not be a subgroup of G.

Proof. When p is unramified in F, the condition that p € Spl; (E/K) is equivalent to some
Frobenius element over p in G fixing the field F. That is, the Frobenius conjugacy class of
p in G must lie in J, o oHo ™.

By the Chebotarev density theorem, the sets Spl;(E/K) and Spl(F/K) have densities
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Bauer’s theorem (see, for instance, Neukirch’s Class Field Theory p. 135) says Spl; (E/K)
lies in Spl(F/K) up to a set of primes with density 0 if and only if ¥ C E. Therefore
if Splj(F/K) = Spl(F/K) up to a set with density 0, then ' C E. In this case, set
N = Gal(L/F), so N <G. Then

d(Spli (E/K)) =

d(SpI(F/K)) = fg,

so FCE= HCN = J,eqoHo ! C N. Since Spl;(E/K) and Spl(F/K) are equal
up to a set of density 0, they have the same density, so we obtain
U cHo ' =N.
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This equality shows the sets Spl;(E/K) and Spl(F/K) contain the same primes of K
unramified in £, so the sets can differ only in ramified primes, which is a finite set.

For the converse direction, we get Spl, (E/K) C Spl(¥/K) since F' C E. The two sets of
primes have equal density by hypothesis, so they are equal up to a set of density 0. O

Corollary 1. Let f(X) € Z[X]| be a monic irreducible. Set E = Q(«), where f(a) = 0,
and let L/Q be the Galois closure of E/Q. Set G = Gal(L/Q) and H = Gal(E/Q). Then
the set of primes p such that f(X) mod p has a root in Z/pZ is determined by a finite set
of congruence conditions up to finitely many exceptions if and only if |, cq ocHo™ ! is a
normal subgroup of G, say N, such that G/N is abelian.

Proof. For primes p not dividing the discriminant of f (which excludes only finitely many
primes), f(X) mod p has aroot in Z/pZ if and only if p lies in Spl; (£/Q). The number fields
in which p splitting completely is determined by congruence conditions are the subfields of
cyclotomic fields, which are the finite abelian extensions of Q by the Kronecker-Weber
theorem. g

To find examples of this phenomenon, we look for a finite group G with a (non-normal)
subgroup H such that | J, .0 H o1 is a (necessarily normal) subgroup of G’ whose quotient
is abelian. Then we try to realize G as a Galois group over Q. To make sure H corresponds
to a subfield whose Galois closure is the top field, we need (), 0 H o1 to be trivial.

An example is G = A4 with H any subgroup of size 2. Then (J, oHo~!is the (normal)
subgroup N of size 4, so the quotient G/N has size 3 and thus is abelian. We want to realize
Ay as the Galois group of a polynomial of degree [G : H|] = 6. A search with PARI yields
the choice X%—3X?—1. Let a be a root. Then the subfield of Q(«) corresponding to N will
be a cubic subfield, and it is Q(«?). The minimal polynomial of a2 over Q is X3 —3X — 1.
The roots of this cubic polynomial are ¢ 4+ ¢~! as ¢ runs over the primitive 9th roots of
unity, so Q(ca?) is the maximal real subfield of the 9-th cyclotomic field.
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The polynomial X% —3X? — 1 is non-normal and its Galois closure over Q is nonabelian,
but for primes p,

X6—3X2—1modphasarootinZ/pZ(z)pEilmonorpzS.

Such primes up to 100 are 3, 17, 19, 37, 53, 71, 73, and 89.

Bob Griess noted there is an infinite family of finite G with non-normal subgroup H such
that the union of the subgroups of G conjugate to H is a subgroup of G. Take G = AGL,(F),
which is the group of affine linear transformations fqn: v — Av +b on F", where F is



a finite field. (Here A € GL,(F) and b € F".) Inside G we have the subgroup 7' of all
translations t: v — v + b. Check by a computation that

—1
facotbo fy.=1tab,

so T is a normal subgroup of G. In fact, G is the semidirect product 7' x GL,(F), where
GL,,(F) acts on T by standard matrix-vector multiplication.

Let n > 2 and choose a nonzero proper subspace W of F". (To fix ideas, you could take
W to be a one-dimensional subspace, but it doesn’t really matter.) Let Hy = {tp : b € W}.
This is a nonzero proper subgroup of T'. For any one nonzero b in F*, {Ab : A € GL,,(F)} =
F" — {0}. Therefore the conjugation formula above shows Hyy is not a normal subgroup of
G and the union of the subgroups of G which are conjugate to Hy is T', a normal subgroup.
The quotient group G/T is GL,(F), which is non-abelian.



