PRIMES OF DEGREE 1 AND CONGRUENCE CONDITIONS

KEITH CONRAD

For a number field K and a finite extension E / K, set

$$
\begin{gathered}
\operatorname{Spl}(E / K)=\{\mathfrak{p} \text { in } K: \mathfrak{p} \text { splits completely in } E\} \\
\operatorname{Spl}_{1}(E / K)=\{\mathfrak{p} \text { in } K: \text { some } \mathfrak{P} \mid \mathfrak{p} \text { in } E \text { has } f(\mathfrak{P} \mid \mathfrak{p})=1\} .
\end{gathered}
$$

Theorem 1. Let E / K be a finite extension and F / K be a Galois extension. Let L / K be the Galois closure of $E / K, G=\operatorname{Gal}(L / K), H=\operatorname{Gal}(L / E)$.

Then $\operatorname{Spl}_{1}(E / K)=\operatorname{Spl}(F / K)$ up to a set of primes with density 0 if and only if $F \subset E$ and $\bigcup_{\sigma \in G} \sigma H \sigma^{-1}=N$, where $N=\operatorname{Gal}(L / F)$. In this case, $\operatorname{Spl}_{1}(E / K)=\operatorname{Spl}(F / K)$ up to only finitely many exceptions.

Of course, usually $\bigcup_{\sigma \in G} \sigma H \sigma^{-1}$ will not be a subgroup of G.
Proof. When \mathfrak{p} is unramified in E, the condition that $\mathfrak{p} \in \operatorname{Spl}_{1}(E / K)$ is equivalent to some Frobenius element over \mathfrak{p} in G fixing the field E. That is, the Frobenius conjugacy class of \mathfrak{p} in G must lie in $\bigcup_{\sigma \in G} \sigma H \sigma^{-1}$.

By the Chebotarev density theorem, the sets $\operatorname{Spl}_{1}(E / K)$ and $\operatorname{Spl}(F / K)$ have densities

$$
d\left(\operatorname{Spl}_{1}(E / K)\right)=\frac{\#\left(\bigcup_{\sigma \in G} \sigma H \sigma^{-1}\right)}{\# G}, \quad d(\operatorname{Spl}(F / K))=\frac{1}{[F: K]} .
$$

Bauer's theorem (see, for instance, Neukirch's Class Field Theory p. 135) says $\operatorname{Spl}_{1}(E / K)$ lies in $\operatorname{Spl}(F / K)$ up to a set of primes with density 0 if and only if $F \subset E$. Therefore if $\operatorname{Spl}_{1}(E / K)=\operatorname{Spl}(F / K)$ up to a set with density 0 , then $F \subset E$. In this case, set $N=\operatorname{Gal}(L / F)$, so $N \triangleleft G$. Then

$$
d(\operatorname{Spl}(F / K))=\frac{\# N}{\# G},
$$

so $F \subset E \Longrightarrow H \subset N \Longrightarrow \bigcup_{\sigma \in G} \sigma H \sigma^{-1} \subset N$. Since $\operatorname{Spl}_{1}(E / K)$ and $\operatorname{Spl}(F / K)$ are equal up to a set of density 0 , they have the same density, so we obtain

$$
\bigcup_{\sigma \in G} \sigma H \sigma^{-1}=N .
$$

This equality shows the sets $\operatorname{Spl}_{1}(E / K)$ and $\operatorname{Spl}(F / K)$ contain the same primes of K unramified in E, so the sets can differ only in ramified primes, which is a finite set.

For the converse direction, we get $\operatorname{Spl}_{1}(E / K) \subset \operatorname{Spl}(F / K)$ since $F \subset E$. The two sets of primes have equal density by hypothesis, so they are equal up to a set of density 0 .
Corollary 1. Let $f(X) \in \mathbf{Z}[X]$ be a monic irreducible. Set $E=\mathbf{Q}(\alpha)$, where $f(\alpha)=0$, and let L / \mathbf{Q} be the Galois closure of E / \mathbf{Q}. Set $G=\operatorname{Gal}(L / \mathbf{Q})$ and $H=\operatorname{Gal}(E / \mathbf{Q})$. Then the set of primes p such that $f(X) \bmod p$ has a root in $\mathbf{Z} / p \mathbf{Z}$ is determined by a finite set of congruence conditions up to finitely many exceptions if and only if $\bigcup_{\sigma \in G} \sigma H \sigma^{-1}$ is a normal subgroup of G, say N, such that G / N is abelian.

Proof. For primes p not dividing the discriminant of f (which excludes only finitely many primes), $f(X) \bmod p$ has a root in $\mathbf{Z} / p \mathbf{Z}$ if and only if p lies in $\operatorname{Spl}_{1}(E / \mathbf{Q})$. The number fields in which p splitting completely is determined by congruence conditions are the subfields of cyclotomic fields, which are the finite abelian extensions of \mathbf{Q} by the Kronecker-Weber theorem.

To find examples of this phenomenon, we look for a finite group G with a (non-normal) subgroup H such that $\bigcup_{\sigma \in G} \sigma H \sigma^{-1}$ is a (necessarily normal) subgroup of G whose quotient is abelian. Then we try to realize G as a Galois group over \mathbf{Q}. To make sure H corresponds to a subfield whose Galois closure is the top field, we need $\bigcap_{\sigma \in G} \sigma H \sigma^{-1}$ to be trivial.

An example is $G=A_{4}$ with H any subgroup of size 2 . Then $\bigcup_{\sigma \in G} \sigma H \sigma^{-1}$ is the (normal) subgroup N of size 4 , so the quotient G / N has size 3 and thus is abelian. We want to realize A_{4} as the Galois group of a polynomial of degree $[G: H]=6$. A search with PARI yields the choice $X^{6}-3 X^{2}-1$. Let α be a root. Then the subfield of $\mathbf{Q}(\alpha)$ corresponding to N will be a cubic subfield, and it is $\mathbf{Q}\left(\alpha^{2}\right)$. The minimal polynomial of α^{2} over \mathbf{Q} is $X^{3}-3 X-1$. The roots of this cubic polynomial are $\zeta+\zeta^{-1}$ as ζ runs over the primitive 9 th roots of unity, so $\mathbf{Q}\left(\alpha^{2}\right)$ is the maximal real subfield of the 9-th cyclotomic field.

The polynomial $X^{6}-3 X^{2}-1$ is non-normal and its Galois closure over \mathbf{Q} is nonabelian, but for primes p,

$$
X^{6}-3 X^{2}-1 \bmod p \text { has a root in } \mathbf{Z} / p \mathbf{Z} \Longleftrightarrow p \equiv \pm 1 \bmod 9 \text { or } p=3
$$

Such primes up to 100 are $3,17,19,37,53,71,73$, and 89 .
Bob Griess noted there is an infinite family of finite G with non-normal subgroup H such that the union of the subgroups of G conjugate to H is a subgroup of G. Take $G=\mathrm{AGL}_{n}(\mathbf{F})$, which is the group of affine linear transformations $f_{A, \mathbf{b}}: \mathbf{v} \mapsto A \mathbf{v}+\mathbf{b}$ on \mathbf{F}^{n}, where \mathbf{F} is
a finite field. (Here $A \in \mathrm{GL}_{n}(\mathbf{F})$ and $\mathbf{b} \in \mathbf{F}^{n}$.) Inside G we have the subgroup T of all translations $t_{\mathbf{b}}: \mathbf{v} \mapsto \mathbf{v}+\mathbf{b}$. Check by a computation that

$$
f_{A, \mathbf{c}} \circ t_{\mathbf{b}} \circ f_{A, \mathbf{c}}^{-1}=t_{A \mathbf{b}}
$$

so T is a normal subgroup of G. In fact, G is the semidirect product $T \rtimes \mathrm{GL}_{n}(\mathbf{F})$, where $\mathrm{GL}_{n}(\mathbf{F})$ acts on T by standard matrix-vector multiplication.

Let $n \geq 2$ and choose a nonzero proper subspace W of \mathbf{F}^{n}. (To fix ideas, you could take W to be a one-dimensional subspace, but it doesn't really matter.) Let $H_{W}=\left\{t_{\mathbf{b}}: \mathbf{b} \in W\right\}$. This is a nonzero proper subgroup of T. For any one nonzero \mathbf{b} in $\mathbf{F}^{n},\left\{A \mathbf{b}: A \in \mathrm{GL}_{n}(\mathbf{F})\right\}=$ $\mathbf{F}^{n}-\{\mathbf{0}\}$. Therefore the conjugation formula above shows H_{W} is not a normal subgroup of G and the union of the subgroups of G which are conjugate to H_{W} is T, a normal subgroup. The quotient group G / T is $\mathrm{GL}_{n}(\mathbf{F})$, which is non-abelian.

