
PRIMES OF DEGREE 1 AND CONGRUENCE CONDITIONS

KEITH CONRAD

For a number field K and a finite extension E/K, set

Spl(E/K) = {p in K : p splits completely in E},
Spl1(E/K) = {p in K : some P|p in E has f(P|p) = 1}.

Theorem 1. Let E/K be a finite extension and F/K be a Galois extension. Let L/K be
the Galois closure of E/K, G = Gal(L/K), H = Gal(L/E).
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Then Spl1(E/K) = Spl(F/K) up to a set of primes with density 0 if and only if F ⊂ E
and

⋃
σ∈G σHσ

−1 = N , where N = Gal(L/F ). In this case, Spl1(E/K) = Spl(F/K) up to
only finitely many exceptions.

Of course, usually
⋃
σ∈G σHσ

−1 will not be a subgroup of G.

Proof. When p is unramified in E, the condition that p ∈ Spl1(E/K) is equivalent to some
Frobenius element over p in G fixing the field E. That is, the Frobenius conjugacy class of
p in G must lie in

⋃
σ∈G σHσ

−1.
By the Chebotarev density theorem, the sets Spl1(E/K) and Spl(F/K) have densities

d(Spl1(E/K)) =
#(

⋃
σ∈G σHσ

−1)
#G

, d(Spl(F/K)) =
1

[F : K]
.

Bauer’s theorem (see, for instance, Neukirch’s Class Field Theory p. 135) says Spl1(E/K)
lies in Spl(F/K) up to a set of primes with density 0 if and only if F ⊂ E. Therefore
if Spl1(E/K) = Spl(F/K) up to a set with density 0, then F ⊂ E. In this case, set
N = Gal(L/F ), so N CG. Then

d(Spl(F/K)) =
#N
#G

,

so F ⊂ E =⇒ H ⊂ N =⇒
⋃
σ∈G σHσ

−1 ⊂ N . Since Spl1(E/K) and Spl(F/K) are equal
up to a set of density 0, they have the same density, so we obtain⋃

σ∈G
σHσ−1 = N.
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This equality shows the sets Spl1(E/K) and Spl(F/K) contain the same primes of K
unramified in E, so the sets can differ only in ramified primes, which is a finite set.

For the converse direction, we get Spl1(E/K) ⊂ Spl(F/K) since F ⊂ E. The two sets of
primes have equal density by hypothesis, so they are equal up to a set of density 0. �

Corollary 1. Let f(X) ∈ Z[X] be a monic irreducible. Set E = Q(α), where f(α) = 0,
and let L/Q be the Galois closure of E/Q. Set G = Gal(L/Q) and H = Gal(E/Q). Then
the set of primes p such that f(X) mod p has a root in Z/pZ is determined by a finite set
of congruence conditions up to finitely many exceptions if and only if

⋃
σ∈G σHσ

−1 is a
normal subgroup of G, say N , such that G/N is abelian.

Proof. For primes p not dividing the discriminant of f (which excludes only finitely many
primes), f(X) mod p has a root in Z/pZ if and only if p lies in Spl1(E/Q). The number fields
in which p splitting completely is determined by congruence conditions are the subfields of
cyclotomic fields, which are the finite abelian extensions of Q by the Kronecker-Weber
theorem. �

To find examples of this phenomenon, we look for a finite group G with a (non-normal)
subgroup H such that

⋃
σ∈G σHσ

−1 is a (necessarily normal) subgroup of G whose quotient
is abelian. Then we try to realize G as a Galois group over Q. To make sure H corresponds
to a subfield whose Galois closure is the top field, we need

⋂
σ∈G σHσ

−1 to be trivial.
An example is G = A4 with H any subgroup of size 2. Then

⋃
σ∈G σHσ

−1 is the (normal)
subgroup N of size 4, so the quotient G/N has size 3 and thus is abelian. We want to realize
A4 as the Galois group of a polynomial of degree [G : H] = 6. A search with PARI yields
the choice X6−3X2−1. Let α be a root. Then the subfield of Q(α) corresponding to N will
be a cubic subfield, and it is Q(α2). The minimal polynomial of α2 over Q is X3− 3X − 1.
The roots of this cubic polynomial are ζ + ζ−1 as ζ runs over the primitive 9th roots of
unity, so Q(α2) is the maximal real subfield of the 9-th cyclotomic field.
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The polynomial X6− 3X2− 1 is non-normal and its Galois closure over Q is nonabelian,
but for primes p,

X6 − 3X2 − 1 mod p has a root in Z/pZ⇐⇒ p ≡ ±1 mod 9 or p = 3.

Such primes up to 100 are 3, 17, 19, 37, 53, 71, 73, and 89.
Bob Griess noted there is an infinite family of finite G with non-normal subgroup H such

that the union of the subgroups ofG conjugate toH is a subgroup ofG. TakeG = AGLn(F),
which is the group of affine linear transformations fA,b : v 7→ Av + b on Fn, where F is



a finite field. (Here A ∈ GLn(F) and b ∈ Fn.) Inside G we have the subgroup T of all
translations tb : v 7→ v + b. Check by a computation that

fA,c ◦ tb ◦ f−1
A,c = tAb,

so T is a normal subgroup of G. In fact, G is the semidirect product T o GLn(F), where
GLn(F) acts on T by standard matrix-vector multiplication.

Let n ≥ 2 and choose a nonzero proper subspace W of Fn. (To fix ideas, you could take
W to be a one-dimensional subspace, but it doesn’t really matter.) Let HW = {tb : b ∈W}.
This is a nonzero proper subgroup of T . For any one nonzero b in Fn, {Ab : A ∈ GLn(F)} =
Fn−{0}. Therefore the conjugation formula above shows HW is not a normal subgroup of
G and the union of the subgroups of G which are conjugate to HW is T , a normal subgroup.
The quotient group G/T is GLn(F), which is non-abelian.


