
THE CHARACTER GROUP OF Q

KEITH CONRAD

1. Introduction

The characters of a finite abelian group G are the homomorphisms from G to the unit
circle S1 = {z ∈ C : |z| = 1}. Two characters can be multiplied pointwise to define a new
character, and under this operation the set of characters of G forms an abelian group, with
identity element the trivial character, which sends each g ∈ G to 1. Characters of finite
abelian groups are important, for example, as a tool in estimating the number of solutions
to equations over finite fields. [3, Chapters 8, 10].

The extension of the notion of a character to nonabelian or infinite groups is essential to
many areas of mathematics, in the context of harmonic analysis or representation theory,
but here we will focus on discussing characters on one of the simplest infinite abelian groups,
the rational numbers Q. This is a special case of a situation that is well-known in algebraic
number theory, but all references I could find in the literature are based on [4], where
one can’t readily isolate the examination of the character group of Q without assuming
algebraic number theory and Fourier analysis on locally compact abelian groups. (In [2,
Chapter 3,§1], the determination of the characters of Q is made without algebraic number
theory, but the Pontryagin duality theorem from Fourier analysis is used at the end.) The
prerequisites for the discussion here are more elementary: familiarity with the complex
exponential function, the p-adic numbers Qp, and a few facts about abelian groups. In
particular, this discussion should be suitable for someone who has just learned about the
p-adic numbers and wants to see how they can arise in answering a basic type of question
about the rational numbers.

Concerning notation, r and s will denote rational numbers, p and q will denote prime
numbers, and x and y will denote real or p-adic numbers (depending on the context). The
word “homomorphism” will always mean “group homomorphism”, although sometimes we
will add the word “group” for emphasis. The sets Q, R, Qp, and the p-adic integers Zp,
will be regarded primarily as additive groups, with multiplication on these sets being used
as a tool in the study of the additive structure.

2. Definition and Examples

The definition of characters for finite abelian groups makes sense for any group.

Definition 2.1. A character of Q is a group homomorphism Q→ S1.

As in the case of characters of finite abelian groups, under pointwise multiplication the

characters of Q form an abelian group, which we denote by Q̂. Examples of nontrivial
characters of Q are the homomorphisms r 7→ eir and r 7→ e2πir. Our goal is to write down

all elements of Q̂ as explicit functions.
1
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The usefulness of Q̂ can’t be discussed here, but hopefully the reader can regard its deter-
mination as an interesting problem, especially since the end result will be more complicated
than it may seem at first glance.

The prototype for our task is the classification of continuous group homomorphisms
from R to S1. The example x 7→ eix is typical. In general, for any y ∈ R we have the
homomorphism

x 7→ e2πixy.

The use of the scaling factor 2π here is prominent in number theory, since it makes some
formulas much cleaner. For the reader who is interested in a proof that these are all the
continuous homomorphisms R → S1, see the appendix. We will not need to know that

every continuous homomorphism R → S1 has this form, but we want to analyze Q̂ with
a similar goal in mind, namely to find a relatively concrete method of writing down all
homomorphisms Q→ S1. Keep in mind that we are imposing no continuity conditions on

the elements of Q̂; as functions from Q to S1, they are merely group homomorphisms. (Or
think of Q as a discrete group, so group homomorphisms are always continuous.)

Let’s now give examples of nontrivial characters of Q. First we will think of Q as lying
in the real numbers. For nonzero y ∈ R, the map x 7→ e2πixy is continuous on R, has image
S1, and Q is dense in R, so the restriction of this function to Q, i.e., the function

r 7→ e2πiry,

is a nontrivial character of Q. When y = 0, this is the trivial character.
It is easy to believe that these may be all of the characters of Q, since the usual picture

of Q inside R makes it hard to think of any way to write down characters of Q besides
those of the form r 7→ e2πiry (y ∈ R). However, such characters of Q are only the tip of the
iceberg. We will now show how to make sense of “e2πiy” for p-adic numbers y, and the new
characters of Q built in this way will allow us to write down all characters of Q. That is,
in a loose sense, every character of Q is a mixture of functions that look like r 7→ e2πiry for
y in R or y in some Qp.

Strictly speaking, the expression e2πiry is meaningless when y is a general p-adic number
because the product 2πiry usually makes no sense: π is a transcendental real number and it
doesn’t make sense to form its product with most p-adic numbers1, let alone to plug a p-adic
number y into the function e2πirz whose values are meant to be in C. We will introduce a
formalism that should be thought of as allowing us to make sense of this expression anyway.

For x ∈ Qp, define the p-adic fractional part of x, denoted {x}p, to be the sum of the
negative-power-of-p terms in the usual p-adic expansion of x.

Let’s compute the p-adic fractional part of 21/50 for several p. In Q2,Q3, and Q5,

21

50
=

1

2
+ 2 + 22 + 23 + . . . ,

21

50
= 2 · 3 + 32 + 36 + . . . ,

21

50
=

3

25
+

4

5
+ 2 + 2 · 5 + . . . .

Therefore {
21

50

}
2

=
1

2
,

{
21

50

}
3

= 0,

{
21

50

}
5

=
3

25
+

4

5
=

23

25
.

For any p 6= 2, 5, {2150}p = 0. More generally, any r ∈ Q is in Zp for all but finitely many p,
so {r}p = 0 for all but finitely many p.

Note that for 0 ≤ m ≤ pn − 1, {mpn }p = m
pn .

1It makes sense for rational y, but most p-adic numbers are not rational, or even algebraic over Q.
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In thinking of p-adic expansions as analogous to Laurent series in complex analysis, the
p-adic fractional part of a p-adic number is analogous to the polar part of a meromorphic
function at a point. Compare

3

25
+

4

5
+ 2 + 2 · 5 + · · · and

11

z2
− 9

z
+ 1 + 7z + · · · ,

where the 5-adic fractional part 3/25 + 4/5 is like 11/z2 − 9/z. (One difference: the polar
part of a sum of two meromorphic functions at a point is the sum of the polar parts, but
the p-adic fractional part of a sum of two p-adic numbers is not usually the sum of their
individual p-adic fractional parts. Carrying in p-adic addition can allow the sum of p-adic
fractional parts to “leak” into a p-adic integral part; consider 3/5 + 4/5 = 2/5 + 1.) There
is an analogue in Q of the partial fraction decomposition of rational functions:

(2.1) r =
∑
p

{r}p + integer.

This sum over all p makes sense, since most terms are 0. It expresses r as a sum of rational
numbers with prime power denominator, up to addition by an integer. For example,∑

p

{
21

50

}
p

=

{
21

50

}
2

+

{
21

50

}
5

=
1

2
+

23

25

=
71

50

=
21

50
+ 1.

To prove (2.1), we show the difference r−
∑

p{r}p, which is rational, has no prime in its

denominator. For p 6= q, {r}p ∈ Zq, while r − {r}q ∈ Zq by the definition of {r}q. Thus
r −

∑
p{r}p = r − {r}q −

∑
p6=q{r}p is in Zq. Applying this to all q, r −

∑
p{r}p is in Z.

Remark 2.2. If we view Equation 2.1 not in Q but in Q/Z, it expresses an element of Q/Z
as a sum of elements of p-power order for different primes. This is the explicit realization
of the torsion abelian group Q/Z as the direct sum of its p-power torsion subgroups.

The p-adic fractional part should be thought of as a p-adic analogue of the usual fractional
part function {·} on R, where {x} ∈ [0, 1) and x − {x} ∈ Z. In particular, for real x we
have {x} = 0 precisely when x ∈ Z. The p-adic fractional part has similar features. For
x ∈ Qp,

{x}p =
m

pn
∈ [0, 1) (0 ≤ m ≤ pn − 1), x− {x}p ∈ Zp, {x}p = 0⇔ x ∈ Zp.

While the ordinary fractional part on R is not additive, the deviation from additivity is
given by an integer:

{x+ y} = {x}+ {y}+ integer.

This deviation from additivity gets wiped out when we take the complex exponential of
both sides: e2πi{x+y} = e2πi{x}e2πi{y}. Of course e2πi{x} = e2πix for x ∈ R, so there is no
need to use the fractional part. But in the p-adic case, the fractional-part viewpoint gives
us the following basic definition:
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For x ∈ Qp, set

ψp(x) = e2πi{x}p .

This is not the complex exponential function of a general p-adic number: {x}p is a rational

number with p-power denominator, so e2πi{x}p makes sense and is a p-th power root of unity.

Example 2.3.

ψ2(21/50) = e2πi(1/2) = −1, ψ3(21/50) = 1, ψ5(21/50) = e2πi(23/25).

Example 2.4. Let a be the 7-adic square root of 2 with a ≡ 3 mod 7Z7. What is ψ7(a/7
3)?

From a ≡ 3 + 7 + 2 · 72 ≡ 108 mod 73Z7, {a/73}7 = 108/343, so ψ7(a/7
3) = e2πi·108/343.

The function ψp : Qp → S1 is a group homomorphism: e2πi{x+y}p = e2πi{x}pe2πi{y}p . To
see this, we have to understand the extent to which the p-adic fractional part fails to be
additive. For x, y ∈ Qp,

x− {x}p, y − {y}p, x+ y − {x+ y}p ∈ Zp.

Adding the first two terms and subtracting the third, we see that the rational number
{x}p + {y}p − {x + y}p is a p-adic integer. As a sum/difference of p-adic fractional parts,
it has a power of p as denominator. Since it is also a p-adic integer, there is no power of p
in the denominator, so the denominator must be 1. Therefore

{x}p + {y}p − {x+ y}p ∈ Z,

so e2πi({x}p+{y}p−{x+y}p) = 1 and hence e2πi{x+y}p = e2πi{x}pe2πi{y}p .
The technical way to make sense of the generally meaningless e2πix for x ∈ Qp is as

e2πi{x}p . (Warning: when x is rational, e2πix makes sense directly, but this is generally not

the same as e2πi{x}p , e.g., when x = 1/(p+1) we have e2πi{1/(p+1)}p = 1 and e2πi/(p+1) 6= 1.)

Remark 2.5. The group Qp/Zp is isomorphic to the p-power torsion subgroup of Q/Z:
Q/Z ∼=

⊕
p Qp/Zp. The character ψp fits into the following commutative diagram.

Qp/Zp
ψp

&&
inclusion

��

S1

Q/Z
r 7→e2πir

77

Unlike the function x 7→ e2πix for real x, the function ψp : x 7→ e2πi{x}p for p-adic x does
not have image all of S1. Its image is exactly the pth power roots of unity. It is also locally
constant (so continuous in an elementary way), since ψp(x+ y) = ψp(x) for y ∈ Zp and Zp
is a neighborhood of 0 in Qp.

By the same type of “interior scaling” argument we used for the basic character x 7→ e2πix

when x ∈ R, we can use x 7→ e2πi{x}p when x ∈ Qp to construct many continuous characters
of Qp. Choosing any y ∈ Qp, we have a group homomorphism Qp → S1 by

x 7→ ψp(xy) = e2πi{xy}p .

By varying y in Qp, we get lots of examples of nontrivial continuous homomorphisms
Qp → S1. It is a fact that all continuous homomorphisms Qp → S1 are of the above type,
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but we will not need this fact in our study of the character group Q̂ of Q. However, our

analysis of Q̂ contains the essential ingredients for a proof, so we will discuss this again in
the appendix.

By restricting a character of Qp to the subset Q, we get new characters of Q. For fixed
y ∈ Qp, let

r 7→ e2πi{ry}p .

This character of Q takes as values only the pth power roots of unity, so it is quite different
(for y 6= 0) from the functions r 7→ e2πiry for real y.

Example 2.6. For a 5-adic number y, let χ : Q → S1 be defined by χ(r) = e2πi{ry}5 . We
want to calculate χ(21/50). Since

21

50
=

3

25
+

4

5
+ . . . ,

we need to know the 5-adic expansion of y out to the multiple of 5. If, for instance,
y = 4 + 1 · 5 + . . . , then (21/50)y = 2/25 + 1/5 + . . . , so χ(21/50) = e14πi/25. To compute
χ(r) for a specific rational number r, we only need to know the 5-adic expansion of y to an
appropriate finite number of places, depending on the 5-adic expansion of r.

3. Q̂ and the Adeles

We shall now use the above homomorphisms from R and the various Qp’s to S1 to

construct all homomorphisms from Q to S1, i.e., all elements of Q̂. This is a simple example
of the “local-global” philosophy in number theory, which says that one should try to analyze
a problem over Q (the “global” field) by first analyzing it over each of the completions
R,Q2,Q3, . . . of Q (the “local” fields), and then use this information over the completions
to solve the problem over Q. The problem we are concerned with is the construction of
homomorphisms to S1, and we have already taken care of the “local” problem, at least for
our purposes.

Define ψ∞ : R→ S1 by x 7→ e−2πix (the reason for the minus sign will be apparent later).

Define, as before, ψp : Qp → S1 by x 7→ e2πi{x}p . Now choose any elements a∞ ∈ R and
ap ∈ Qp for all primes p, with the proviso that ap ∈ Zp for all but finitely many p. We
define a function Q→ S1 by

r 7→ ψ∞(ra∞) ·
∏
p

ψp(rap)

= e−2πira∞ ·
∏
p

e2πi{rap}p .

To show this map makes sense and is a character, note that for any rational r, r ∈ Zp for
all but finitely many primes p, so by our convention on the ap’s, rap ∈ Zp for all but finitely
many primes p. (The finitely many p such that rap 6∈ Zp will of course vary with r. It is not
the case that factors where ap ∈ Zp play no role, since we may have rap 6∈ Zp when ap ∈ Zp,
if the denominator of r has a large power of p.) Thus ψp(rap) = 1 for all but finitely many
p, so for each r ∈ Q the infinite product defining the above function at r is really a finite
product.

Each “local function” ψ∞, ψ2, ψ3, . . . is a homomorphism, so our map above is a homo-

morphism, hence is an element of Q̂. The homomorphisms ψ∞, ψ2, ψ3, . . . are our basic
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maps, and the numbers a∞, a2, a3, . . . should be thought of as interior scaling factors that
allow us to define many characters of Q in terms of the one basic character

r 7→ e−2πir ·
∏
p

e2πir.

To understand this construction better, we want to look at the sequences of elements
(a∞, a2, a3, . . . ) that have just been used to define characters of Q. This leads us to introduce
a ring which plays a prominent role in number theory.

Definition 3.1. The adeles, AQ, are the elements (a∞, a2, a3, . . . ) in the product set R×∏
p Qp such that ap lies in Zp for all but finitely many p.

A “random” adele will not have any rational coordinates. As an example of something
which is not an adele, consider any element of the product set R ×

∏
p Qp whose p-adic

coordinate is 1/p for infinitely many primes p. The adele ring of Q lies between the direct
sum

⊕
v Qv and the direct product

∏
v Qv. It is called the restricted direct product of the

Qv’s, and the restricted direct product notation is
∏∐

v Qv

If a is a typical adele, its real coordinate will be written as a∞ and its p-adic coordinate
will be written as ap. While ψ∞ includes an awkward-looking minus sign (whose rationale
will be explained below), a∞ does not. It is the real coordinate of a, not its negative.

Under componentwise addition and multiplication, AQ is a commutative ring (but not
an integral domain). For our purposes, the additive group structure of AQ is its most
important algebraic feature. Since any rational number r is in Zp for all but finitely many
primes p, we see that Q naturally fits into AQ by the diagonal map

r 7→ (r, r, r, . . . ),

making Q a subring of AQ. We shall call an adele rational if all of its coordinates are
the same rational number, so the rational adeles are naturally identified with the rational
numbers. We will write the rational adele (r, r, r, . . . ) just as r.

Let’s see how the adeles are a useful notation to describe Q̂. From what has been done
so far, for any adele a = (a∞, a2, a3, . . . ) we have defined a character Ψa of Q by

Ψa(r) = ψ∞(ra∞) ·
∏
p

ψp(rap) = e−2πira∞ ·
∏
p

e2πi{rap}p .

Since addition in AQ is componentwise, a computation shows that for adeles a and b

Ψa+b(r) = Ψa(r)Ψb(r)

for all rational numbers r, so in Q̂ we have Ψa+b = ΨaΨb. Clearly Ψ0 is the trivial character.
For a rational adele s and any r ∈ Q,

Ψs(r) = e2πi(−rs+
∑
p{rs}p) = 1

by (2.1). Thus Ψs is the trivial character for all rational adeles s. This is why the minus
sign was used in the definition of ψ∞. If a and b are two adeles whose difference is a rational
adele, Ψa = Ψb.

The following theorem, which will be shown in the next section, tells us that we have
found all of the characters of Q, and can decide when we have described a character in two
different ways.



THE CHARACTER GROUP OF Q 7

Theorem 3.2. Every character of Q has the form Ψa for some a ∈ AQ, and Ψa = Ψb if

and only if a− b is a rational adele. In other words, the map Ψ: AQ → Q̂ given by a 7→ Ψa

is a surjective homomorphism with kernel equal to the rational adeles Q, so Q̂ ∼= AQ/Q.

4. The Image and Kernel of Ψ

Let χ : Q→ S1 be a character. We want to write χ = Ψa for some adele a.
We begin by considering χ(1), which is some number on the unit circle, so χ(1) = e−2πiθ

for a (unique) real θ ∈ [0, 1). Define χ∞ : Q→ S1 by χ∞(r) = ψ∞(rθ) = e−2πirθ. Then χ∞
is a character of Q and χ∞(1) = χ(1). Let χ′(r) = χ(r)/χ∞(r), so χ′ is a character with
χ′(1) = 1 and χ(r) = χ∞(r)χ′(r).

For any rational r = m/n,

χ′(r)n = χ′(m) = χ′(1)m = 1.

The image of χ′ is inside the roots of unity, so dividing χ by χ∞ to give us χ′ puts us in an
algebraic setting.

Every root of unity, say e2πis for s ∈ Q, is a unique product of prime power roots of
unity. Indeed, by (2.1)

e2πis =
∏
p

e2πi{s}p ,

where e2πi{s}p is a pth power root of unity, equal to 1 for all but finitely many p.
Let χp(r) denote the p-th power root of unity that contributes to the root of unity χ′(r).

For example, if χ′(r) = e3πi/7, then χ2(r) = −1, χ7(r) = e10πi/7, and χp(r) = 1 for all
p 6= 2, 7. The function χp : Q → S1 is a character of Q. Since χ′(1) = 1, χp(1) = 1 for all
primes p.

Since χ′(r) =
∏
p χp(r), we have

χ(r) = χ∞(r) ·
∏
p

χp(r).

This decomposition of χ can be viewed as the main step in describing Q̂ in terms of adeles.
We have broken up our character χ into “local” characters χ∞, χ2, χ3, . . . , and now proceed
to analyze each one individually.

By construction, χ∞(r) = e−2πirθ for some real θ ∈ [0, 1). We now want to show that

χp(r) = e2πi{rc}p for some c ∈ Zp. This will involve giving an explicit method for construct-
ing c.

Since χp(1) = 1, χp(1/p
n)p

n
= 1, so χp(1/p

n) = e2πicn/p
n

for some (unique) integer
cn with 0 ≤ cn ≤ pn − 1. Since χp(1/p

n+1)p = χp(1/p
n), we get cn+1 ≡ cn mod pnZ.

Thus {c1, c2, c3, . . . } is a p-adic Cauchy sequence in Z, so it has a limit c ∈ Zp, and c ≡
cn mod pnZp for all n. Since 0 ≤ cn ≤ pn − 1,{

c

pn

}
p

=
cn
pn
.

We now show χp(r) = e2πi{rc}p = ψp(rc) for all r ∈ Q. Write r = s/t where s, t ∈ Z with
t 6= 0. Let t = pmt′ for (p, t′) = 1. Then

χp(r)
t′ = χp(t

′r) = χp

(
s

pm

)
= ϕ

(
1

pm

)s
= e2πicms/p

m
.
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In Q/Z,

cms

pm
=

{
c

pm

}
p

· s ≡
{
cs

pm

}
p

≡ {crt′}p ≡ {cr}pt′,

so χp(r)
t′ = e2πi{cr}pt

′
. Thus the p-th power roots of unity χp(r) and e2πi{cr}p have a ratio

that is a t′-th root of unity. Since t′ is prime to p, this ratio must be 1, so

χp

(s
t

)
= e2πi{cr}p = ψp(rc).

Write c ∈ Zp as ap, so χp(r) = ψp(rap) for all r ∈ Q. Therefore χ = χ∞ ·
∏
p χp = Ψa for

the adele a = (θ, a2, a3, . . . ) ∈ [0, 1)×
∏
p Zp.

We now know every character of Q has the form Ψa for an adele in the special set
[0, 1) ×

∏
p Zp. When the adele a is in this set, we can determine it from the character.

Indeed, in this case all ap are in Zp, so Ψa(1) = e−2πia∞ . Since a∞ ∈ [0, 1), it is completely
determined from knowing Ψa(1). We can then multiply Ψa by the character e2πira∞ to
assume a∞ = 0. Then Ψa has only roots of unity as its values. The pth power component
of Ψa(r) is e2πi{apr}p , which upon taking r = 1/p, 1/p2, etc. allows us to successively
determine each digit of ap, so we can determine ap. Every character of Q has the form Ψa

for a unique adele a in [0, 1)×
∏
p Zp. It turns out that every adele can be put into this set

upon addition by a suitable rational adele:

(4.1) AQ = Q + [0, 1)×
∏
p

Zp,

where we view Q inside AQ diagonally: r ∈ Q is the adele (r, r, r, . . .).
To prove (4.1), fix an adele a. We know ap ∈ Zp as long as p is outside of a finite set

(say) F . Let r =
∑

p∈F {ap}p, the sum of the various pole parts of a. So a− r has no pole

parts, hence a− r ∈ R×
∏
p Zp. Let N be the integer such that N ≤ a∞− r < N +1. Since

N ∈ Zp for all primes p, we see that a− (r +N) ∈ [0, 1)×
∏
p Zp, so (4.1) is established.

The decomposition (4.1) is “direct,” since Q ∩ ([0, 1) ×
∏
p Zp) = {0} (analogous to the

relation Z∩ [0, 1) = {0}). We put direct in quotes since [0, 1) is not a group, so (4.1) is not
quite a direct sum of subgroups.

Equation (4.1) is analogous to the decomposition R = Z + [0, 1). This analogy between
the pair (AQ,Q) and the pair (R,Z) can be carried further. For example, if we define

Ẑ to be the character group of Z, then Ẑ ∼= S1 (associate to z ∈ S1 the element of Ẑ

given by n 7→ zn). The isomorphism Q̂ ∼= AQ/Q should be thought of as analogous to the

isomorphism Ẑ ∼= R/Z.
Since Ψa+s = Ψa if s is a rational adele, and for a ∈ [0, 1) ×

∏
p Zp the character Ψa is

trivial precisely when a = 0, we have proven that the group homomorphism Ψ: AQ → Q̂

is surjective with kernel Q, so every element of Q̂ has the form Ψa for some a ∈ AQ, and
two characters Ψa and Ψb are equal if and only if a − b is a rational adele. This is our

desired “concrete” desription of Q̂. Using the completions of Q to define various explicit
homomorphisms ψ∞, ψ2, ψ3, . . . , we have shown how to “glue” them together using the
adeles to get all the characters of Q. To appreciate the choice of e−2πix over e2πix to play
the role of the basic real character, we can work through the above argument with e2πix.
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This leads to the homomorphism Φ: AQ → Q̂ given by

Φa(r) = e2πia∞r ·
∏
p

e2πi{apr}p .

It is surjective, like Ψ, but the kernel of Φ is the set of adeles of the form (−r, r, r, . . . ) for
rational r, which is not as elegant.

It is left as an exercise for anyone who is familiar with the adeles Ak of any finite extension

field k of Q to extend our arguments and give an elementary proof that k̂ ∼= Ak/k.

Appendix A. Characters of R and Qp

Here we shall prove that all continuous homomorphisms R→ S1 have the form

x 7→ e2πixy

for a unique real number y, and all continuous homomorphisms Qp → S1 have the form

x 7→ e2πi{xy}p

for a unique p-adic number y. The similarity in these descriptions suggests the possibility
of having a common proof for these results. Using some general theorems about locally
compact abelian groups, it is possible to prove these results in a unified (and rather brief)
manner where the only property one uses about R and Qp is that they are locally compact
fields with respect to nontrivial absolute values (see [4, Lemma 2.2.1]). However, we take
a more elementary path. While we handle the real and p-adic cases separately, there are
some basic similarities in the two proofs.

First let’s make some general remarks. The above maps certainly are examples of con-
tinuous homomorphisms. If y 6= 0 in the real case, then evaluating the map at x = 1/2y
shows the homomorphism is not trivial, while an evaluation at x = 1/py for nonzero y in
the p-adic case shows the homomorphism is not trivial. It follows easily from this that such
homomorphisms are uniquely determined by the scaling factor y, so we only need to show
every continuous homomorphism has the indicated form. A common step in both cases
will be to show that any homomorphism has nontrivial kernel, and then reduce to the case
where 1 lies in the kernel. The proof that the kernel is nontrivial will operate on different
principles in the two cases (real vs. p-adic), taking into account special features of the
topology of R and Qp.

Since the p-adic case is easier to handle and may be less familiar to the reader, we
present it first. If χ : Qp → S1 is a continuous homomorphism, then for all small x in
Qp, |χ(x) − 1| < 1. In particular, χ sends pNZp into {z ∈ C× : |z − 1| < 1} for large
enough N . Since pNZp is a group, χ(pNZp) is a subgroup of C×. Clearly there are no
nontrivial subgroups of C× entirely within the open ball of radius 1 around 1 in C×. Thus
χ(pNZp) = {1}, so χ is locally constant and χ(pN ) = 1. Let ψ(x) = χ(pNx) for all x ∈ Qp,
so ψ is a continuous homomorphism Qp → S1 which is trivial on Zp, in particular ψ(1) = 1.

Thus ψ(1/pn) is a pn-th root of unity, so ψ(1/pn) = e2πicn/p
n

for some integer cn with
0 ≤ cn ≤ pn − 1. Proceeding exactly as in §4, we find that the integers cn form a Cauchy
sequence in Zp, and their limit c satisfies ψ(r) = e2πi{rc}p for all r ∈ Q, so by continuity

ψ(x) = e2πi{xc}p for all x ∈ Qp. Thus χ(x) = ψ(x/pN ) = e2πi{xy}p for y = c/pN . For a
slightly different argument, see [5].

We never used the hypothesis that the image of χ is a subset of S1, only that it is a
subset of C×; we proved its image has to lie in S1. The essential point is that subgroups of
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Qp and C× are quite different. In Qp, the identity 0 has a neighborhood basis of subgroups
(pnZp for n ≥ 0), while in C×, the identity 1 has a neighborhood containing no nontrivial
group.

It is possible to establish the real case rather quickly, using integrals (see [1, Theorem
9.11]). However, the basic structure of the p-adic case can be carried over to the real case,
and we now present this alternate (but longer) argument.

Let χ : R → S1 be a continuous homomorphism. We want to show χ(x) = e2πixy for
some y ∈ R. We may assume χ is nontrivial. If the kernel of χ contains nonzero numbers
arbitrarily close to 0, then by translations the kernel of χ is dense in R, so by continuity χ
is trivial. Thus, for nontrivial χ and all small x > 0, χ(x) has constant sign on its imaginary
part. Replacing χ with χ−1 if necessary, we may assume that χ has positive imaginary part
on small positive numbers.

Since χ(t) 6= 1 for some t > 0, by connectedness χ((0, t)) is an arc in S1, so contains a
root of unity, say χ(u) for 0 < u < t. If χ(u) has order N , then Nu > 0 is in the kernel
of χ. Replacing χ by the continuous homomorphism x 7→ χ(Nux), we may assume that
χ(1) = 1. To summarize, we may assume χ is a continuous homomorphism from R to
S1 which contains 1 in its kernel and which has positive imaginary part for small positive
numbers. According to what we are trying to prove, we now expect that χ(x) = e2πixy for
some (positive) integer y, and this is what we shall show.

Since the reciprocals of the prime powers generate the dense subgroup Q of R, by con-
tinuity it suffices to find an integer y such that χ(1/pn) = e2πiy/p

n
for all primes p and

integers n ≥ 1. Actually, we’ll show for any integer m > 1 that there is an integer
ym such that χ(1/mn) = e2πiym/m

n
for all n ≥ 1. Since χ(1/(pq)n)p

n
= χ(1/qn) and

χ(1/(pq)n)q
n

= χ(1/pn), it follows that ypq − yq ∈ ∩nqnZ = {0}, so ypq = yq, and similarly
that ypq = yp, so yp = yq. Thus for all primes p, the integers yp are the same, and this
common integer y solves our problem.

Since χ(1/mn)m
n

= χ(1) = 1,

χ(1/mn) = e2πicn/m
n

for some integer cn such that 0 ≤ cn < mn. Note cn depends on m (well, a priori at least).
Since

χ(1/mn+1)m = χ(1/mn),

cn+1/m
n − cn/m

n ∈ Z. For large n, contintuity of χ implies cos(2πcn/m
n) > 0 and

sin(2πcn/m
n) is positive and arbitrarily small. Since 0 ≤ cn < mn, the cosine condition

implies cn/m
n ∈ (0, 1/4) ∪ (3/4, 1) for large n. We can’t have cn/m

n in (3/4, 1) for large
n, since then sin(2πcn/m

n) is negative (here is where we use the assumption that χ(x)
is in the first quadrant for small positive x). Thus for all large n, cn/m

n ∈ (0, 1/4).
Since sin(2πcn/m

n) is arbitrarily small for all large n, it follows by the nature of the sine
function and the location of cn/m

n that cn/m
n is arbitrarily small for n large. To fix

ideas, 0 < cn/m
n < 1/(m + 1) for all large n. Then 0 < cn+1/m

n < m/(m + 1) for all
large n, so |cn/mn − cn+1/m

n| < 1 for all large n. Since the left hand side of this last
inequality is an integer, it must be zero, so all cn’s are equal for n sufficiently large. Call
this common value ym. Thus χ(1/mn) = e2πiym/m

n
for all large n, hence for all n ≥ 1; for

example, if χ(1/m100) = e2πiym/m
100

, then raising both sides to the m98-th power we see

that χ(1/m2) = e2πiym/m
2
.
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