
CARLITZ EXTENSIONS

KEITH CONRAD

1. Introduction

The ring Z has many analogies with the ring Fp[T ], where Fp is a field of prime size
p. For example, for nonzero m ∈ Z and nonzero M ∈ Fp[T ], the residue rings Z/(m) and
Fp[T ]/M are both finite. The unit groups Z× = {±1} and Fp[T ]× = F×p are both finite.
Every nonzero integer can be made positive after multiplication by a suitable unit, and every
nonzero polynomial in Fp[T ] can be made monic (leading coefficient 1) after multiplication
by a suitable unit. We will examine a deeper analogy: the group (Fp[T ]/M)× can be
interpreted as the Galois group of an extension of the field Fp(T ) in a manner similar to
the group (Z/(m))× being the Galois group of the mth cyclotomic extension Q(µm) of Q,
where µm is the group of mth roots of unity.

For each m ≥ 1, the mth roots of unity are the roots of Xm−1 ∈ Z[X], and they form an
abelian group under multiplication. We will construct an analogous family of polynomials
[M ](X) ∈ Fp[T ][X], parametrized by elements M of Fp[T ] rather than by positive integers,
and the roots of each [M ](X) will form an Fp[T ]-module rather than an abelian group (Z-
module). In particular, adjoining the roots of [M ](X) to Fp(T ) will yield a Galois extension
of Fp(T ) whose Galois group is isomorphic to (Fp[T ]/M)×.

The polynomials [M ](X) and their roots were first introduced by Carlitz [2, 3] in the
1930s. Since Carlitz gave his papers unassuming names (look at the title of [3]), their
relevance was not widely recognized until being rediscovered several decades later (e.g., in
work of Lubin–Tate in the 1960s and Drinfeld in the 1970s).

I thank Darij Grinberg for his extensive comments and corrections on the text below.

2. Carlitz polynomials

For each M ∈ Fp[T ] we will define the Carlitz polynomial [M ](X) with coefficients in
Fp[T ]. Our definition will proceed by recursion and linearity. Define [1](X) := X and

[T ](X) := Xp + TX.

For n ≥ 2, define

[Tn](X) := [T ]([Tn−1](X)) = [Tn−1](X)p + T [Tn−1](X).

Example 2.1. For n = 2 and n = 3,

[T 2](X) = [T ](X)p + T [T ](X) = (Xp + TX)p + T (Xp + TX) = Xp2
+ (T p + T )Xp + T 2X

and

[T 3](X) = [T 2](X)p +T [T 2](X) = Xp3
+ (T p

2
+T p +T )Xp2

+ (T 2p +T p+1 +T 2)Xp +T 3X.

For a general polynomial M = cnT
n + · · ·+ c1T + c0 in Fp[T ], define [M ](X) by forcing

Fp-linearity in M :

[M ](X) := cn[Tn](X) + · · ·+ c1[T ](X) + c0X ∈ Fp[T ][X].
1
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Example 2.2. For c ∈ Fp, [c](X) = cX, and

[T 2 − T ](X) = [T 2](X)− [T ](X) = Xp2
+ (T p + T − 1)Xp + (T 2 − T )X.

Remark 2.3. The Carlitz polynomials [M ](X) have many notations in the literature:
ρM (X), φM (X), CM (X), ωM (X) (Carlitz’s original notation1), and XM . The notation
[M ](X) used here is taken from Lubin–Tate formal groups (see Remark 2.7).

Our examples suggest general properties of [M ](X). For instance, in [T 2](X), [T 3](X),
and [T 2 − T ](X) we only see X appearing with p-power exponents and the lowest degree
X-terms are, respectively, T 2X, T 3X, and (T 2 − T )X.

Definition 2.4. Let A be an integral domain of prime characteristic p. A p-polynomial

over A is a polynomial in A[X] that is an A-linear combination of X, Xp, Xp2
, and so on:

f(X) = a0X + a1X
p + a2X

p2
+ · · ·+ adX

pd for some aj ∈ A.

Theorem 2.5. For nonzero M ∈ Fp[T ], [M ](X) has X-degree pdegM . Moreover, [M ](X)
is a p-polynomial in X:

[M ](X) =

degM∑
j=0

aj(T )Xpj = (leadM)XpdegM
+ · · ·+MX,

where aj(T ) ∈ Fp[T ] with a0(T ) = M and adegM (T ) = leadM ∈ Fp being the leading
coefficient of M .

Proof. This can be proved for M = Tn by induction on n and then for all M by Fp-
linearity. �

The coefficients aj(T ) will be examined closely in Section 8. They are analogues of
binomial coefficients.

Corollary 2.6. For M ∈ Fp[T ], indeterminates X and Y , and c ∈ Fp,

[M ](X + Y ) = [M ](X) + [M ](Y ) and [M ](cX) = c[M ](X).

For M1 and M2 in Fp[T ],

[M1 +M2](X) = [M1](X) + [M2](X) and [M1M2](X) = [M1]([M2](X)).

In particular, if D |M in Fp[T ] then [D](X) | [M ](X) in Fp[T ][X].

Proof. The basic polynomial [T ](X) = Xp + TX is a p-polynomial in X, and since other
[M ](X) are defined by composition and Fp-linearity from [T ](X), every [M ](X) is a p-
polynomial in X. For a p-polynomial f(X) we have f(X+Y ) = f(X) +f(Y ) and f(cX) =
cf(X) for c ∈ Fp.

That M 7→ [M ](X) is additive in M and sends products to composites can be proved by
induction on the degree of M .

The last part is the analogue of d | m implying (Xd − 1) | (Xm − 1) in Z[X] and is left
to the reader. (Hint: [M ](X) is divisible by X.) �

The polynomials [M ](X) commute with each other under composition by Corollary 2.6:
[M1]([M2](X)) = [M1M2](X) = [M2M1](X) = [M2]([M1](X)). This will be crucial later,
since it will imply the roots of [M ](X) generate abelian Galois extensions of Fp(T ).

1Writing [M ](X) as [M ](X,T ) to make its dependence on T more visible, Carlitz’s ωM (X) is actually
[M ](X,−T ), e.g., ωT (X) = Xp − TX rather than Xp + TX.
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Remark 2.7. This is for readers who know Lubin–Tate theory. Over the power series ring
Fp[[T ]], [T ](X) = Xp +TX is a Frobenius polynomial for the uniformizer T . Since [M ](X)
has lowest degree term MX and commutes with [T ](X), [M ](X) is the endomorphism
attached to M of the Lubin–Tate formal group that has Frobenius polynomial [T ](X).

Corollary 2.8. For M(T ) ∈ Fp[T ], the X-derivative of [M ](X) is M .

For example, [T ](X) = Xp + TX has X-derivative T .

Proof. The derivative of a p-polynomial a0X + a1X
p + a2X

p2
+ · · · + adX

pd is a0 since

(Xpj )′ = 0 in characteristic p when j ≥ 1, and [M ](X) has X-coefficient M . �

Each Xm − 1 is separable over Q since it has no root in common with its derivative
mXm−1, so there are m different mth roots of unity in characteristic 0. The polynomial
[T ](X) = Xp + TX is separable over Fp(T ), since its X-derivative is T , which is a nonzero
constant as a polynomial in X, so ([T ](X), [T ]′(X)) = 1 in Fp(T )[X]. A similar calculation
shows

Theorem 2.9. For nonzero M in Fp[T ], [M ](X) is separable in Fp(T )[X].

Proof. The X-derivative of [M ](X) is M ∈ Fp[T ] (Corollary 2.8), and M is a nonzero
“constant” in Fp(T )[X]. Therefore [M ](X) is relatively prime to its X-derivative, so [M ](X)
is separable as a polynomial in X. �

Corollary 2.10. For nonzero M and N in Fp[T ], [M ](X) and [N ](X) have the same roots
if and only if M = cN for some c ∈ F×p .

Proof. If M = cN then [M ](X) = c[N ](X), so [M ](X) and [N ](X) have the same roots.
Conversely, assume [M ](X) and [N ](X) have the same roots. We will show M | N and
N |M , so M and N are equal up to a scaling factor in F×p .

Write N = MQ + R where R = 0 or degR < degM . If R 6= 0 then for every root λ of
[M ](X) we have [M ](λ) = 0 and [N ](λ) = 0, so

0 = [MQ+R](λ) = [Q]([M ](λ)) + [R](λ) = [Q](0) + [R](λ) = [R](λ).

Therefore the number of roots of [R](X) is at least the number of roots of [M ](X). By Theo-
rem 2.9, the number of roots of [M ](X) is deg([M ](X)) = pdegM , so pdegM ≤ deg([R](X)) =
pdegR, so degM ≤ degR. This contradicts the inequality degR < degM , so R = 0 and
M | N . The argument that N |M is similar, so we’re done. �

The rest of this section concerns analogies between the pth power map for prime p and
the polynomial [π](X) for (monic) irreducible π in Fp[T ].

Since (Xm−1)′ = mXm−1, in (Z/(p))[X] the polynomial Xm−1 is separable if (m, p) = 1
while Xp − 1 ≡ (X − 1)p mod p. Analogously, what can be said about the reduction
[M ](X) mod π in (Fp[T ]/π)[X]?

Theorem 2.11. Let π be monic irreducible in Fp[T ] and set Fπ = Fp[T ]/π. For M in

Fp[T ], let [M ](X) ∈ Fπ[X] be the result of reducing the coefficients of [M ](X) modulo π.

If (M,π) = 1 then [M ](X) is separable in Fπ[X], while [π](X) = Xpdeg π
.

Proof. By Corollary 2.8, [M ]′(X) = M and [π]′(X) = π. If (M,π) = 1, [M ]
′
(X) = M mod π

is a nonzero constant as a polynomial in X, so [M ](X) is separable over Fπ. On the other

hand, [π]
′
(X) = π mod π, and this is 0, so [π](X) is inseparable in Fπ[X]. Since [π](X)
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has degree pdeg π and is monic (because π is), its reduction [π](X) in Fπ[X] is monic with

degree pdeg π. Therefore we can show [π](X) = Xpdeg π
by showing the only root of [π](X)

in the algebraic closure Fπ is 0.
Suppose there is a root γ of [π](X) in Fπ with γ 6= 0. We will get a contradiction. For

all M ∈ Fp[T ], [M ](γ) is a root of [π](X) because [π]([M ](γ)) = [πM ](γ) = [M ]([π](γ)) =

[M ](0) = 0. Therefore the number of roots of [π](X) in Fπ is at least the number of
different values of [M ](γ) as M varies. To count this, consider the map Fp[T ]→ Fπ given
by M 7→ [M ](γ). By Corollary 2.6, this is additive with kernel

{M ∈ Fp[T ] : [M ](γ) = 0}.

This kernel is not only a subgroup of Fp[T ] but an ideal: if [M ](γ) = 0 and N ∈ Fp[T ]
then [NM ](γ) = [N ]([M ](γ)) = [N ](0) = 0. This ideal is proper (since [1](γ) = γ 6= 0) and
contains π. Since (π) is a maximal ideal, the kernel is (π), so the number of [M ](γ) as M

varies is |Fp[T ]/π| = pdeg π = deg [π](X). Therefore [π](X) has as many roots in Fπ as its

degree, but it is inseparable: contradiction! So the only root of [π](X) in Fπ is 0. �

Corollary 2.12. For every irreducible π ∈ Fp[T ], the coefficients of [π](X) besides its
leading term are multiples of π. In particular, [π](X)/X is an Eisenstein polynomial with
respect to π with constant term π.

Proof. For c ∈ F×p , [cπ](X) = c[π](X), so we may assume π is monic. Then the leading term

of [π](X) in Fp[T ][X] is Xpdeg π
and by Theorem 2.11, [π](X) = Xpdeg π

in (Fp[T ]/π)[X].
Lifting this equation to Fp[T ][X] shows all lower-degree coefficients of [π](X) are multiples
of π. Since the lowest degree term of [π](X) is πX, [π](X)/X has constant term π and
therefore is Eisenstein with respect to π. �

Remark 2.13. In many respects, [M ](X) is analogous not toXm−1 but to (1+X)m−1. For
example, (1+X)m−1 = Xm+ · · ·+mX has lowest degree term mX and [M ](X) has lowest
degree term MX. If we write [m](X) = (1 + X)m − 1 then [m1m2](X) = [m1]([m2](X)),
which resembles part of Corollary 2.6 (but [m](X) is not additive in m) and Corollary 2.12
resembles [p](X)/X = ((1 +X)p − 1)/X being Eisenstein for prime p.

Corollary 2.14. For every irreducible π ∈ Fp[T ] and integer k ≥ 0, the coefficients of

[πk](X) besides its leading term are multiples of π.

Proof. It’s true for k = 0 and 1. For higher k use the identity [πk](X) = [π]([πk−1](X)). �

Theorem 2.15. For every monic irreducible π in Fp[T ], [π](A) ≡ A mod π for all A ∈
Fp[T ].

This is an analogue of ap ≡ a mod p for (positive) prime p and all a ∈ Z.

Proof. By Theorem 2.11, [π](X) = Xpdeg π
in (Fp[T ]/π)[X]. Thus [π](A) ≡ Ap

deg π
mod π

for all A ∈ Fp[T ]. Since Fp[T ]/π is a field of size pdeg π, raising to this power on the field is
the identity map, so [π](A) ≡ A mod π. �

Subtracting A = [1](A) from both sides of the congruence in Theorem 2.15, we get

Corollary 2.16. For every monic irreducible π in Fp[T ], [π − 1](A) ≡ 0 mod π for all
A ∈ Fp[T ].



CARLITZ EXTENSIONS 5

This is an analogue of Fermat’s little theorem: ap−1 ≡ 1 mod p for (positive) prime p
and a in (Z/(p))×. However, Corollary 2.16 is true for all A, not just A that are relatively
prime to π. That Fermat’s little theorem is about a in the multiplicative group (Z/(p))×

while Corollary 2.16 is about A in Fp[T ]/π illustrates how analogues of Xm − 1 for Carlitz
polynomials are additive rather than multiplicative.

Here is an analogue of f(Xp) ≡ f(X)p mod p for f(X) ∈ Z[X].

Theorem 2.17. For monic irreducible π in Fp[T ] and f(X) ∈ Fp[T ][X], f([π](X)) ≡
f(X)p

deg π
mod π, where the congruence means coefficients of like powers of X on both sides

are equal in Fp[T ]/π.

Proof. In (Fp[T ]/π)[X], [π](X) = Xpdeg π
(all the lower degree coefficients vanish modulo

π), so f([π](X)) ≡ f(Xpdeg π
) mod π. In Fp[T ]/π every element is its own pdeg πth power,

so f(X)p
deg π ≡ f(Xpdeg π

) mod π. �

If π is not monic then the above results have a more awkward form. Letting c be
the leading coefficient of π, [π](A) ≡ cA mod π, [π − c](A) ≡ 0 mod π, and f([π](X)) ≡
f(cX)p

deg π
mod π. Just remember that monic π have nicer formulas.

Notationally, it is convenient to regard pdegM as the analogue of the absolute value of an
integer. Indeed, for nonzero m ∈ Z we have |m| = |Z/(m)| and for nonzero M ∈ Fp[T ] we

have pdegM = |Fp[T ]/M |. Set

N(M) = pdegM = |Fp[T ]/M |.

With this notation, we set some formulas in Z[X] and Fp[T ][X] side by side:

(1 +X)m − 1 = Xm + · · ·+mX, [M ](X) = XN(M) + · · ·+MX,

(1 +X)p − 1 ≡ Xp mod p, [π](X) ≡ XN(π) mod π,

f(Xp) ≡ f(X)p mod p, f([π](X)) ≡ f(X)N(π) mod π.

Here m and p are positive while M and π are monic.
The following theorem is an analogue of Xm − 1 having no roots in Z other than 1 if m

is odd and other than ±1 if m is even, except it’s more tedious to prove.

Theorem 2.18. For nonzero M and A in Fp[T ], [M ](A) 6= 0 unless perhaps p = 2 and
degA ≤ 1 because in other cases we can compute the degree of [M ](A):

deg([M ](A)) =


pdegM degA, if p 6= 2,degA ≥ 1,

pdegM degA, if p = 2,degA ≥ 2,

pdegM−1, if p 6= 2,degA = 0,degM ≥ 2,

degM, if p 6= 2,degA = 0,degM = 0 or 1.

If p = 2 and degA ≤ 1 then [M ](A) is sometimes 0, e.g. [T ](T ) = 0 and [T 2 +T ](1) = 0,
so [M ](T ) = 0 if T |M and [M ](1) = 0 if (T 2 + T ) |M .

Proof. Writing M =
∑degM

j=0 cjT
j , we have [M ](A) =

∑degM
j=0 cj [T

j ](A), so to prove that

deg([M ](A)) = pdegM degA in the first and second cases it suffices to show deg([T j ](A)) =
pj degA for all j ≥ 0.

When j = 0, [T 0](A) = [1](A) = A, which has degree degA.
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When j = 1, [T ](A) = Ap + TA, which has degree pdegA if deg(Ap) > deg(TA). That
inequality is the same as (p − 1) degA > 1, and this holds when p 6= 2 and degA ≥ 1, or
when p = 2 and degA ≥ 2.

Now assume by induction that deg([T j ](A)) = pj degA for some j ≥ 1. To show
deg([T j+1](A)) = pj+1 degA, write [T j+1](A) = [T ]([T j ](A)) = [T j ](A)p + T [T j ](A). The
first term has degree pj+1 degA and the second term has degree 1+pj degA. The inequality
pj+1 degA > 1+pj degA is equivalent to pj(p−1) degA > 1, and that’s true for nonconstant
A if p 6= 2, and for degA ≥ 2 (or even degA ≥ 1) if p = 2.

To show deg([M ](a)) = pdegM−1 when p 6= 2, a ∈ F×p , and degM ≥ 2, first we compute

[T ](a) = ap+Ta and [T 2](a) = ap
2
+(T p+T )ap+T 2a, so deg([M ](a)) = p when degM = 2.

Assuming deg([T i](a)) = pi−1 for some i ≥ 2, write [T i+1](a) = [T ]([T i](a)) = [T i](a)p +
T [T i](a) and we see by induction that the first term has larger degree than the second, so
deg([T i+1](a)) = pi.

Lastly, if p 6= 2, a ∈ F×p , and M(T ) = cT + d with c, d ∈ Fp (not both 0) then [M ](a) =
caT + (cap + da), which has the same degree as M .

�

3. The Carlitz module and Carlitz torsion

Let K be a field extension of Fp(T ). We can view K as an Fp(T )-vector space in the
usual way, so it is also an Fp[T ]-module by multiplication. Using the Carlitz polynomials
we can define a different Fp[T ]-module structure on K, as follows.

Definition 3.1. Let K be a field extension of Fp(T ). We make the additive group of K into
an Fp[T ]-module by letting Fp[T ] act on K using the Carlitz polynomials: for M ∈ Fp[T ]
and α ∈ K, define

M · α := [M ](α).

This is called the Carlitz action of Fp[T ] on K.

Example 3.2. In the Carlitz action, T ·α = [T ](α) = αp +Tα, which is not Tα (if α 6= 0).

Example 3.3. In the Carlitz action, c · α = [c](α) = cα for c ∈ Fp. For nonconstant M in
Fp[T ], M · α is essentially never the same as Mα when α 6= 0.

That the Carlitz action is an Fp[T ]-module structure on K amounts to several identities:

M · (α+ β) = M · α+M · β
for M ∈ Fp[T ] and α and β in K, and

(M1 +M2) · α = M1 · α+M2 · α, M1 · (M2 · α) = (M1M2) · α, 1 · α = α

for Mi in Fp[T ] and α ∈ K. These identities follow from Corollary 2.6 by specializing X and
Y to elements of K. For example, since [M ](X + Y ) = [M ](X) + [M ](Y ) in Fp[T ][X,Y ],
upon specialization of X and Y to α and β in K we get [M ](α + β) = [M ](α) + [M ](β),
which says M · (α+ β) = M · α+M · β.

There are two ways to make the additive group of K into an Fp[T ]-module, namely
ordinary multiplication of Fp[T ] on K and the action of Fp[T ] on K through Carlitz poly-
nomials, so to avoid ambiguity we want to denote K differently when it is an Fp[T ]-module
in each way. A plain K will mean K as an Fp[T ]-module by multiplication of Fp[T ], while
C(K) will mean K as an Fp[T ]-module by the Carlitz action. The second way, as C(K), is
more interesting.
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The Carlitz action on the field Fp(T ), an algebraic closure of Fp(T ), will be of particular

importance, and the Fp[T ]-module C(Fp(T )) is called the Carlitz module; it’s Fp(T ) with

a subtle Fp[T ]-module structure, and is analogous to the multiplicative group Q
×

as a

Z-module: m ∈ Z acts on α ∈ Q
×

by α 7→ αm and M ∈ Fp[T ] acts on α ∈ Fp(T ) by

α 7→ [M ](α). The torsion elements in the Z-module Q
×

are the α ∈ Q
×

satisfying αm = 1
for some m > 0; these are the roots of unity and they generate abelian extensions of Q. The
torsion elements of C(Fp(T )) are the α ∈ Fp(T ) satisfying [M ](α) = 0 for some M 6= 0,
and we will see in Section 5 that such α generate abelian extensions of Fp(T ).

Definition 3.4. Let ΛM = {λ ∈ Fp(T ) : [M ](λ) = 0}. This is called the M -torsion of the
Carlitz module. The Carlitz torsion is the union of ΛM over all nonzero M ∈ Fp[T ].

Example 3.5. Since [T ](X) = Xp + TX = X(Xp−1 + T ),

ΛT = {λ ∈ Fp(T ) : λp + Tλ = 0} = {0} ∪ {λ : λp−1 = −T},

which is analogous to µp = {z ∈ Q : zp = 1} = {1} ∪ {z ∈ Q : Φp(z) = 0}.
The polynomial Xp−1 + T is irreducible since it is Eisenstein with respect to T . If α is

one root of Xp−1 + T , then all the roots are {cα : c ∈ F×p }, so Fp(T,ΛT ) = Fp(T, α), which
is a Kummer extension of Fp(T ) with degree p − 1. It is analogous to the pth cyclotomic
extension Q(ζp)/Q, also of degree p− 1 (and both have cyclic Galois group).

Example 3.6. Since [T 2](X) = [T ]([T ](X)) = (Xp + TX)p + T (Xp + TX),

ΛT 2 = {λ ∈ Fp(T ) : λp + Tλ ∈ ΛT } = ΛT ∪ {λ ∈ Fp(T ) : (λp + Tλ)p−1 = −T}.

This is analogous to µp2 = {z ∈ Q : zp ∈ µp} = µp ∪ {z ∈ Q : Φp(z
p) = 0}.

If β ∈ ΛT 2−ΛT (the elements of ΛT 2 not in ΛT ) then β is a root of (Xp+TX)p−1+T , which
is irreducible over Fp(T ) since it is Eisenstein with respect to T , so [Fp(T, β) : Fp(T )] =
p(p−1). Moreover, α := βp+Tβ is a nonzero element of ΛT and ΛT 2 = {aα+bβ : a, b ∈ Fp},
so Fp(T,ΛT ) = Fp(T, α), Fp(T,ΛT 2) = Fp(T, β), and Fp(T, β)/Fp(T ) is a Galois extension.
What does the Galois group look like?

All elements of ΛT 2−ΛT have the same minimal polynomial (namely (Xp+TX)p−1 +T ),
and aα+bβ 6∈ ΛT when b 6= 0, so the Fp(T )-conjugates of β are all aα+bβ with a ∈ Fp and
b ∈ F×p . This is analogous to saying if ζp2 ∈ µp2 − µp then ζp := ζp

p2 is a nontrivial element

of µp and µp2 = {ζap ζbp2 : 0 ≤ a, b ≤ p− 1} = {ζap+b
p2 }, with ζap+b

p2 6∈ µp when b 6= 0.

The Fp(T )-conjugates of β can be written as

aα+ bβ = a(βp + Tβ) + bβ = [aT + b](β),

where a ∈ Fp and b ∈ F×p . Then Gal(Fp(T,ΛT 2)/Fp(T )) ∼= (Fp[T ]/(T 2))× by σ 7→ aT +

b mod T 2, where σ(β) = [aT + b](β). This is analogous to Gal(Q(ζp2)/Q) ∼= (Z/(p2))×.

By Theorem 2.9, [M ](X) has pdegM different roots in Fp(T ), so |ΛM | = pdegM . Since
[M ](X) has constant term 0, 0 ∈ ΛM for all M . This is analogous to 1 being in µm for all
m. Since [M ](X) is a p-polynomial in X, its roots ΛM form a finite Fp-vector space. But
ΛM is more than a vector space:

Theorem 3.7. The set ΛM is a submodule of C(Fp(T )): if λ ∈ ΛM and A ∈ Fp[T ] then
[A](λ) ∈ ΛM .
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Proof. For A ∈ Fp[T ] and λ ∈ ΛM , [A](λ) ∈ ΛM since, using the last identity in Corollary
2.6,

[M ]([A](λ)) = [MA](λ) = [A]([M ](λ)) = [A](0) = 0.

Thus ΛM is a submodule of C(Fp(T )). �

Example 3.8. In Example 3.5 we saw ΛT = Fpα when α is one root of Xp−1 + T , so ΛT
is a 1-dimensional Fp-vector space. The Carlitz action of A ∈ Fp[T ] on λ ∈ ΛT is through
multiplication by the constant term of A: writing A = TQ+A(0),

[A](λ) = [TQ+A(0)](λ) = [Q]([T ](λ)) + [A(0)]λ = A(0)λ.

Here is a Carlitz analogue of the group isomorphism µmn ∼= µm × µn when (m,n) = 1.

Theorem 3.9. If M and N are relatively prime in Fp[T ] then ΛMN
∼= ΛM ⊕ΛN as Fp[T ]-

modules.

Proof. Let ΛM ⊕ΛN → ΛMN by ordinary addition: (λ, λ′) 7→ λ+λ′. This map makes sense
since ΛM and ΛN are submodules of ΛMN . The map is Fp[T ]-linear and both ΛM ⊕ΛN and
ΛMN have the same finite size. Therefore to be an isomorphism it suffices to be injective.
If λ + λ′ = 0 then λ = −λ′, so λ and λ′ belong to ΛM ∩ ΛN , which is {0} since M and N
are relatively prime. Therefore (λ, λ′) = (0, 0). �

The group structure on µm makes it not only a Z-module but a Z/(m)-module since,
for ζ ∈ µm, ζa = ζb when a ≡ b mod m. (Conversely, if ζa = ζb for all ζ ∈ µm then
a ≡ b mod m.) The group µm is cyclic, and if ζ generates µm then ζa is a generator of µm
if and only if (a,m) = 1. Exactly the same properties apply to ΛM :

Theorem 3.10. For A and B in Fp[T ] and λ ∈ ΛM , if A ≡ B mod M then [A](λ) = [B](λ),
so the Carlitz action on ΛM makes it an Fp[T ]/M -module. Conversely, if [A](λ) = [B](λ)
for all λ ∈ ΛM then A ≡ B mod M . There exists a λ0 ∈ ΛM that is a Carlitz generator:

ΛM = {[A](λ0) : A ∈ Fp[T ]/M},

and the generators of ΛM are precisely the [A](λ0) where (A,M) = 1.

Proof. Writing A = B +MN ,

[A](λ) = [B +MN ](λ) = [B](λ) + [N ]([M ](λ)) = [B](λ) + [N ](0) = [B](λ).

To show that if [A](λ) = [B](λ) for all λ ∈ ΛM then A ≡ B mod M , we can subtract to
reduce ourselves to showing that if [A](λ) = 0 for all λ ∈ ΛM then A ≡ 0 mod M . Write
A = MQ+R where R = 0 or degR < degM . Then for all λ ∈ ΛM ,

0 = [A](λ) = [Q]([M ](λ)) + [R](λ) = [Q](0) + [R](λ) = [R](λ).

If R 6= 0, the Carlitz polynomial [R](X) has degree pdegR < pdegM = |ΛM |, so [R] has more
roots than its degree. This is impossible, so R = 0 and M | A.

To prove ΛM has a generator as an Fp[T ]-module, we will adapt a proof that µm is a
cyclic group. Here is a proof that the group µm is cyclic. In a finite abelian group, if there
is an element of order n1 and an element of order n2 then there is an element whose order
is the least common multiple [n1, n2]. Writing n for the largest order of the elements of
µm, and n′ for the order of some element of µm, there is an element in µm of order [n, n′].
Since [n, n′] ≥ n and n is the maximal order, we must have [n, n′] = n, so n′ | n: all orders
divide the largest order. Therefore every element x of µm satisfies xn = 1, so the polynomial
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Xn−1 has at least m roots, which implies m ≤ n. Also n | m, since the order of an element
divides the size of the group, so n = m: there is an element of µm with order m.

Consider now ΛM instead of µm. While µm is a finite abelian group, ΛM is a finitely
generated (even finite) torsion Fp[T ]-module. In every finitely generated torsion Fp[T ]-
module Λ, we can associate to each element λ ∈ Λ its Fp[T ]-order, which is the unique
monic generator of the annihilator ideal

AnnΛ(λ) = {A ∈ Fp[T ] : A · λ = 0}.
As with finite abelian groups, if N1 and N2 are Fp[T ]-orders of elements of Λ then there
is an element of Λ whose Fp[T ]-order is the least common multiple [N1, N2]. It follows
that the Fp[T ]-order with largest degree is divisible by the Fp[T ]-order of every element
of Λ. What this means in the case of ΛM is that if N denotes the Fp[T ]-order of largest

degree in ΛM then every λ ∈ ΛM satisfies [N ](λ) = 0, so |ΛM | ≤ deg([N ](X)) = pdegN , or
equivalently pdegM ≤ pdegN . Also N | M (analogue of all orders in a group dividing the
size of the group), so N is the monic scalar multiple of M . Letting λ0 ∈ ΛM have maximal
Fp[T ]-order N , AnnΛM (λ0) = (N) = (M), so the Fp[T ]-submodule that λ0 generates in ΛM
has size

|{[A](λ0) : A ∈ Fp[T ]}| = |Fp[T ]/M | = pdegM = |ΛM |,
which shows λ0 is a generator of ΛM and there is an Fp[T ]-module isomorphism Fp[T ]/M ∼=
ΛM given by A mod M 7→ [A](λ0). In particular, [A](λ0) generates ΛM using the Carlitz
action if and only if A mod M generates Fp[T ]/M as an Fp[T ]-module in the usual way,
and that occurs if and only if (A,M) = 1. �

To stress the similarities again, choosing a generator ζ of µm gives a noncanonical group
isomorphism Z/(m) ∼= µm by a mod m 7→ ζa, and in the same way choosing a generator λ0

of ΛM leads to a noncanonical Fp[T ]-module isomorphism Fp[T ]/M ∼= ΛM by A mod M 7→
[A](λ0), where Fp[T ]/M is an Fp[T ]-module by standard multiplication.

Corollary 3.11. The Fp[T ]-submodules of ΛM are all ΛD where D divides M .

Proof. Fix a generator λ0 of ΛM . Then Fp[T ]/M ∼= ΛM as Fp[T ]-modules by A mod M 7→
[A](λ0), so the result is a consequence of the submodules of Fp[T ]/M being DFp[T ]/M for
D |M , with the submodule DFp[T ]/M corresponding to ΛM/D. �

4. Structure of Fp[T ]/M with Carlitz Action

The Carlitz analogue of the cyclic group Z/(m) is the Fp[T ]-module ΛM , which is (non-
canonically) isomorphic to Fp[T ]/M . A Carlitz analogue of (Z/(m))× is the additive group
Fp[T ]/M with a new Fp[T ]-module structure: N · (A mod M) = [N ](A) mod M for N ∈
Fp[T ]. We denote Fp[T ]/M with this Carlitz action by Fp[T ] as C(Fp[T ]/M).

Example 4.1. The F3[T ]-module C(F3[T ]/(T 2 + 1)) is generated by 1. See Table 1.

A 0 1 2 T T + 1 T + 2 2T 2T + 1 2T + 2

[A](1) mod T 2 + 1 0 1 2 T + 1 T + 2 T 2T + 2 2T 2T + 1

Table 1. Carlitz action on 1 in C(F3[T ]/(T 2 + 1)).

More generally, if π(T ) is a monic quadratic irreducible in Fp[T ], then 1 is a generator of
C(Fp[T ]/(π(T ))): [a1T + a2](1) = a1T + (a1 + a2) ≡ 0 mod π(T ) only if a1 = 0 and a2 = 0.
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Example 4.2. The F2[T ]-module C(F2[T ]/(T 3 + T + 1)) is not generated by 1: show
[T 2 + T ](1) ≡ 0 mod T 3 + T + 1 and T 2 is a generator.

The passage from K to C(K), where K is a field extension of Fp(T ), and from Fp[T ]/M
to C(Fp[T ]/M), are special cases of a more general construction: for each Fp[T ]-algebra
A (such as a field extension of Fp(T ) or the ring Fp[T ]/M), it makes sense to evaluate
polynomials in Fp[T ][X] at elements of A, and setting M · a = [M ](a) makes the additive
group A into an Fp[T ]-module in a new way. When A is considered with this Fp[T ]-module
structure we denote it as C(A). That is, C(A) is A as an additive group but it has a new
Fp[T ]-module action through the use of Carlitz polynomial values acting on A. (One might
call C(A) the “Carlitzification” of A.) The proof of Theorem 2.11, for instance, was treating
Fπ as C(Fπ) without explicitly saying so (with Fπ being an Fp[T ]-algebra by virtue of it
being an extension of the field Fπ = Fp[T ]/π).

Passing from Fp[T ]-algebras A to Fp[T ]-modules C(A) respects maps: if f : A → B is
an Fp[T ]-algebra homomorphism, then f([M ](a)) = [M ](f(a)) so f : C(A) → C(B) is an
Fp[T ]-module homomorphism. Thus the Carlitz construction is really a functor, from Fp[T ]-
algebras to Fp[T ]-modules, and is analogous to the “unit” functor taking each commutative
ring A (a Z-algebra) to its unit group A× (a Z-module). In particular, if A and B are isomor-
phic Fp[T ]-algebras then C(A) and C(B) are isomorphic Fp[T ]-modules. For instance, the
Chinese remainder theorem shows Fp[T ]/M1M2

∼= Fp[T ]/M1×Fp[T ]/M2 as Fp[T ]-algebras
if M1 and M2 are relatively prime, so C(Fp[T ]/M1M2) ∼= C(Fp[T ]/M1) × C(Fp[T ]/M2)
as Fp[T ]-modules. Thus C(Fp[T ]/M) decomposes into a direct product of Fp[T ]-modules

C(Fp[T ]/πk) for monic irreducible π, so understanding the structure of C(Fp[T ]/M) as an

Fp[T ]-module boils down to the case when M = πk. Think of C(Fp[T ]/πk) as analogous to

(Z/(pk))× when p is prime, since it makes the results below on C(Fp[T ]/πk) reasonable.
Let’s first treat k = 1.

Theorem 4.3. For monic irreducible π in Fp[T ], the Fp[T ]-module C(Fp[T ]/π) is cyclic.
It is isomorphic to Fp[T ]/(π − 1).

This is analogous to (Z/(p))× being a cyclic group of order p − 1 when p is prime:
(Z/(p))× ∼= Z/(p− 1) as groups.

Proof. Let’s recall a proof that (Z/(p))× is cyclic and then adapt it to the Carlitz setting.
Writing p− 1 = qe11 · · · q

ek
k with distinct primes qi and ei ≥ 1, we will find an ai ∈ (Z/(p))×

with order qeii . Then the product a1 · · · ak will be an element of order p− 1.
The polynomial Xp−1 − 1 splits completely in Fp[X] with distinct roots, so its factor

Xq
ei
i − 1 also splits completely over Fp with distinct roots. Therefore Xq

ei
i − 1 has a root

that is not a root of Xq
ei−1
i − 1, and such a root ai will have order qeii .

In the Carlitz setting, C(Fp[T ]/π) is an Fp[T ]/(π−1)-module since [π−1](A) ≡ 0 mod π
for all A ∈ Fp[T ] (Corollary 2.16).2 We seek A0 mod π ∈ C(Fp[T ]/π) with annihilator ideal
(π−1), so Fp[T ]/(π−1) ∼= C(Fp[T ]/π) as Fp[T ]-modules byM mod π−1 7→ [M ](A0) mod π.

Factor π − 1 in Fp[T ] as πe11 · · ·π
ek
k with πi being distinct monic irreducibles and ei ≥ 1.

For i = 1, . . . , k we will find an Ai mod π ∈ C(Fp[T ]/π) with annihilator ideal (πeii ). Then
the sum A1 +A2 + · · ·+Ak mod π will have annihilator ideal (π − 1).

2 While π acts by ordinary multiplication on Fp[T ]/π as 0, since πA ≡ 0 mod π, π acts by the Carlitz
action on C(Fp[T ]/π) as the identity, since [π](A) ≡ A mod π (Theorem 2.15).
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Since πeii | (π−1), [πeii ](X) | [π−1](X) (Corollary 2.6). The polynomial [π−1](X) has X-

degree pdeg(π−1) = pdeg π = |Fp[T ]/π| and vanishes at each element of Fp[T ]/π, so [π−1](X)
splits completely with distinct roots over Fp[T ]/π. Therefore [πeii ](X) also splits completely
over Fp[T ]/π with distinct roots. By comparing degrees, [πeii ](X) has a root in Fp[T ]/π

that is not a root of its factor [πei−1
i ](X), and every such root in Fp[T ]/π has annihilator

ideal (πeii ). Summing one such root for each i gives us a generator of C(Fp[T ]/π). �

To describe the structure of C(Fp[T ]/πk) as an Fp[T ]-module for k ≥ 2, let’s recall the

structure of (Z/(pk))× for k ≥ 2, since it will motivate what to prove and how to prove it.

Lemma 4.4. Let k ≥ 2.

1) (Z/(2k))× = 〈−1 mod 2k〉 × 〈5 mod 2k〉 ∼= Z/(2)× Z/(2k−2).
2) For odd prime p, (Z/(pk))× = Cp−1×〈1 +p mod pk〉 ∼= Z/(p−1)×Z/(pk−1), where

Cp−1 is cyclic of order p− 1.3

Proof. 1) By induction, 52r ≡ 1+2r+2 mod 2r+3 for all r ≥ 0. Therefore 5 mod 2k has order
2k−2 for k ≥ 2. The powers of 5 mod 2k are all ≡ 1 mod 4, so they don’t include −1 mod 2k.
Therefore by counting we get (Z/(2k))× = 〈−1, 5 mod 2k〉 ∼= 〈−1〉 × 〈5 mod 2k〉.

2) To write down an element with order p − 1 in (Z/(pk))×, we will use the fact that
raising to the pth power is a well-defined function Z/(pr)→ Z/(pr+1) for r ≥ 1:

(4.1) a ≡ b mod pr ⇒ ap ≡ bp mod pr+1.

This follows from the intermediate binomial coefficients in (X + Y )p all being divisible by
p. We are interested in this function on units: define fp,r : (Z/(pr))× → (Z/(pr+1))× by
fp,r(a mod pr) = ap mod pr+1, which is a homomorphism. For p 6= 2 fp,r is injective. See
Table 2 for data when p = 3. To show fp,r is injective, let u mod pr be in the kernel, so
up ≡ 1 mod pr+1. Then up ≡ 1 mod p, so u ≡ 1 mod p. Suppose for some positive integer
i ≤ r − 1 that u ≡ 1 mod pi. Write u ≡ 1 + cpi mod pi+1. For p 6= 2,

(4.2) u ≡ 1 + cpi mod pi+1 for i ≥ 1 =⇒ up ≡ 1 + cpi+1 mod pi+2.

Since i + 2 ≤ r + 1, we get 1 + cpi+1 ≡ 1 mod pi+2, so p | c, and thus u ≡ 1 mod pi+1.
Repeating this for i = 1, 2, . . . , r − 1 gives us u ≡ 1 mod pr.

a mod 9 1 2 4 5 7 8

a3 mod 27 1 8 10 17 19 26

Table 2. Values of f3,2 on (Z/(9))×.

The implication (4.2) breaks down for i = 1 if p = 2, and of course squaring (Z/(2r))× →
(Z/(2r+1))× is not injective when r ≥ 2.

Each fp,r preserves orders of elements by injectivity, so for a mod p in (Z/(p))× with order

p − 1, ap
k−1

mod pk has order p − 1 in (Z/(pk))× since ap
k−1

mod pk equals fp,k−1 ◦ · · · ◦
fp,2 ◦ fp,1(a mod p). From 1 + p ≡ 1 mod p we get (1 + p)p

k−1 ≡ 1 mod pk, and from 1 + p 6≡
1 mod p2 and injectivity of fp,r for p 6= 2 we get (1 + p)p

k−2 6≡ 1 mod pk, so 1 + p mod pk

has order pk−1. Counting orders, (Z/(pk))× = 〈apk−1
, 1 + p〉 ∼= 〈apk−1〉 × 〈1 + p〉. �

3For p 6= 2, there is no explicit formula for a generator of Cp−1, although such a number for k > 1 can
be expressed in terms of a choice of a generator of (Z/(p))×.
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Theorem 4.5. Let π be monic irreducible in Fp[T ] and k ≥ 2.

1) For π = T or T + 1 in F2[T ], C(F2[T ]/πk) = C1 × C2 where C1
∼= F2[T ]/(T 2 + T )

is generated by 1 and C2
∼= F2[T ]/(πk−2) is generated by π2.

2) If (p,deg π) 6= (2, 1) then C(Fp[T ]/πk) = C1 × C2, where C1
∼= Fp[T ]/(π − 1) and

C2
∼= Fp[T ]/πk−1, with C2 generated by π mod πk.

Since π−1 and πk−1 are relatively prime, part 2 says C(Fp[T ]/πk) ∼= Fp[T ]/((π−1)πk−1),

which is analogous to (Z/pk)× ∼= Z/((p− 1)pk−1) for p 6= 2.

Proof. 1) It suffices to give the proof for π = T ; the proof for π = T + 1 is the same by
using T + 1 in place of T everywhere4 since F2[T ] = F2[T + 1], T 2 +T = (T + 1)2 + (T + 1),
and [T + 1](X) = X2 + (T + 1)X.

By induction, in F2[T ] we have [T r](T 2) ≡ T r+2 mod T r+3 for all r ≥ 0. Therefore in
C(F2[T ]/(T k)) the annihilator ideal of T 2 is (T k−2) for k ≥ 2, so the submodule C2 gener-
ated by T 2 has size |F2[T ]/(T k−2)| = 2k−2. This submodule is contained in T 2F2[T ]/(T k),
whose cardinality is 2k−2, so C2 = T 2F2[T ]/(T k).

The submodule C1 of C(F2[T ]/(T k)) generated by 1 is {0, 1, T, T + 1 mod T k} since
[1](1) = 1 and [T r](1) = T+1 for r ≥ 1. Since |C1| = 4 and C1∩C2 = {0}, C(F2[T ]/(T k)) =
C1 + C2

∼= C1 × C2.5

2) Because [π](X) = Xpdeg π
+ · · ·+ πX has all non-leading coefficients divisible by π, we

have an analogue of (4.1): for all A and B in Fp[T ], and r ≥ 1,

(4.3) A ≡ B mod πr ⇒ [π](A) ≡ [π](B) mod πr+1.

Let Lπ,r : C(Fp[T ]/πr) → C(Fp[T ]/πr+1) for r ≥ 1 by Lπ,r(A mod πr) = [π](A) mod πr+1.
This makes sense by (4.3) and it is Fp[T ]-linear. Except when p = 2 and deg π = 1
(⇒ π = T or T + 1) we will show Lπ,r is injective by checking its kernel is 0. It is not
injective if p = 2, deg π = 1, and r ≥ 2 since [π](π) = 0 for π = T or T + 1 in F2[T ], and
thus [π](A+ π) = [π](A). See examples in Table 3.

A mod T 2 0 1 T T + 1 A mod (T + 1)2 0 1 T T + 1

[T ](A) mod T 3 0 T + 1 0 T + 1 [T + 1](A) mod (T + 1)3 0 T T 0
Table 3. Noninjectivity of LT,2 and LT+1,2 when p = 2.

Suppose A mod πr is in the kernel of Lπ,r, so [π](A) ≡ 0 mod πr+1. Reducing both sides

mod π, we get Ap
deg π ≡ 0 mod π, so π | A. If r = 1 then A ≡ 0 mod πr, so we’re done.

Take r ≥ 2. To show A ≡ 0 mod πr, assume otherwise, and write the highest power of π
that divides A as πd, so 1 ≤ d ≤ r − 1. We will compute the highest power of π dividing
the polynomial [π](A) and compare the result with πr+1, which we know divides [π](A).

In [π](A) = Ap
deg π

+ · · ·+ πA, the first term is divisible by πdp
deg π

and all intermediate
terms are divisible at least by π1+pd since [π](X) is a p-polynomial whose intermediate
coefficients are divisible by π. The last term πA is divisible by π1+d but not by a higher
power of π. Since 1 + pd > 1 + d and dpdeg π > 1 + d unless p = 2, deg π = 1, and d = 1,

4The Carlitz modules C(F2[T ]/T k) and C(F2[T ]/(T+1)k) are not isomorphic for k ≥ 4, since one module
has annihilator ideal T k−2(T + 1) and the other has annihilator ideal (T + 1)k−2T .

5The “universal” subgroup ±1 mod 2k in each (Z/(2k))× is replaced by the “universal” submodule
{0, 1, T, T + 1 mod T k} in C(F2[T ]/T k) that is generated by 1.
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the highest power of π dividing [π](A) is π1+d unless p = 2, deg π = 1, and d = 1. We
have πr+1 | [π](A) by hypothesis, so πr+1 | π1+d unless p = 2, deg π = 1, and d = 1.
Since d ≤ r − 1 we get a contradiction unless p = 2, deg π = 1, and d = 1. In Table 3,
Lπ,2(π mod π2) ≡ [π](π) ≡ 0 mod π3.

An injective Fp[T ]-linear map preserves annihilator ideals, so if we let A0 mod π generate

C(Fp[T ]/π) then applying Lπ,r to it for r = 1, 2, . . . , k − 1 tells us [πk−1](A0) mod πk

as an element of C(Fp[T ]/πk) has annihilator ideal (π − 1). From π ≡ 0 mod π we get

[πk−1](π) ≡ 0 mod πk, and by injectivity of Lπ,r’s we get π 6≡ 0 mod π2 ⇒ [πk−2](π) 6≡
0 mod πk, so π mod πk as an element of C(Fp[T ]/πk) has annihilator ideal (πk−1). Let C1

and C2 be the submodules of C(Fp[T ]/πk) generated by [πk−1](A0) and π, respectively.

Since C1 ∩ C2 = {0}, by counting we have C(Fp[T ]/πk) = C1 + C2
∼= C1 × C2. �

The last analogy we will develop between the structure of (Z/m)× and C(Fp[T ]/M) is a
Carlitz analogue of ϕ(m) = |(Z/m)×| that was shown to me by Darij Grinberg.

The ϕ-function admits two formulas (product over primes, sum over positive divisors):

ϕ(m) = m
∏
p|m

(
1− 1

p

)
=
∑
d|m

m
µ(d)

d
,

where µ is the Möbius function. For monic M in Fp[T ], define ϕC(M) ∈ Fp[T ] to be the
polynomial (product over irreducible monic factors, sum over all monic factors)

ϕC(M) = M
∏
π|M

(
1− 1

π

)
=
∑
D|M

M
µ(D)

D
,

where µ(D) ∈ {0, 1,−1} is defined in the same way as in the integers: µ(D) is (−1)r if D
is squarefree with r monic irreducible factors, and µ(D) is 0 otherwise. For example, if π is
monic irreducible then

ϕC(πk) = πk
(

1− 1

π

)
= πk − πk−1.

Theorem 4.6. The function ϕC has the following properties:

(1) For relatively prime monic A and B, ϕC(AB) = ϕC(A)ϕC(B).
(2) For monic M ,

∑
D|M ϕC(D) = M , where D runs over monic factors of M .

(3) For monic M and all A in Fp[T ], [ϕC(M)](A) ≡ 0 mod M .
(4) For monic M and monic A in Fp[T ], [M ](A) is monic and M | ϕC([M ](A)) when

p 6= 2, and also when p = 2 and degA ≥ 2.

These four properties of ϕC(M) are analogues of properties of ϕ(m), namely

• for relatively prime positive integers a and b, ϕ(ab) = ϕ(a)ϕ(b),
• for m ≥ 1,

∑
d|m ϕ(d) = m, where d runs over positive factors of m,

• for a mod m ∈ (Z/m)×, aϕ(m) ≡ 1 mod m,
• for k ≥ 1 and a > 1, k | ϕ(ak − 1). (The order of a mod ak − 1 is k.)

In the fourth part of the theorem, the constraints put on A are meant to avoid A being
Carlitz torsion in F2[T ] (e.g., ΛT (T+1) = {0, 1, T, T + 1} when p = 2).6 This is analogous
to supposing a > 1 in the fourth property of ϕ(m). As an example of what can go wrong
in the fourth part of the theorem when p = 2 and degA = 1, let M = T 2 + 1 and A = T .
Then [M ](A) = T , so ϕC([M ](A)) = ϕC(T ) = T + 1, which is not divisible by M .

6The Carlitz torsion in Fp[T ] when p 6= 2 is 0 by Theorem 2.18.
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Proof. (1) This is clear from the first formula defining ϕC .
(2) This follows from Möbius inversion for monic polynomials in Fp[T ], using the second

formula for ϕC(M).
(3) If M1 and M2 are relatively prime and monic, then in Fp[T ][X]

[ϕC(M1M2)](X) = [ϕC(M1)ϕC(M2)](X) = [ϕC(M1)]([ϕC(M2)](X)),

so to prove the third property it suffices to check the case M = πk for monic irreducible π.

In that case the congruence is [πk − πk−1](A)
?≡ 0 mod πk. We know by Theorem 2.15 that

[π](A) ≡ A mod π, and then (4.3) turns this congruence into [πk](A) ≡ [πk−1](A) mod πk

by induction on k, so πk divides [πk − πk−1](A) = [ϕC(πk)](A).

(4) In Fp[T ][X], the leading X-term in [T j ](X) is Xpj , so we may expect for monic
A ∈ Fp[T ] that the leading T - term of [T j ](A) ∈ Fp[T ] is the same as the leading T -term

of Ap
j
. However, there is a subtlety: [T j ](X) is a polynomial in T and X, which don’t

interact, so when we substitute A ∈ Fp[T ] for X in [T j ](X) to get a polynomial entirely in

T we need to check that the terms in [T j ](A) other than Ap
j

all have smaller degree than

Ap
j
. Using the basic equations

[T 0](A) = A, [T ](A) = Ap + TA, [T j+1](A) = [T j ](A)p + T ([T j ](A))

check by induction that [T j ](A) has the same leading T -term as Ap
j

if p 6= 2 and degA ≥ 1,

or if p = 2 and degA ≥ 2. Therefore if M = Tm +
∑m−1

i=0 ciT
i is monic, so

[M ](A) = [Tm](A) +
m−1∑
i=0

ci[T
i](A),

the leading term of [M ](A) is the same as the leading term of Ap
m

if p 6= 2 and degA ≥ 1,
or if p = 2 and degA ≥ 2. That implies [M ](A) is monic when M and A are monic under
the conditions claimed in part (4) except for the case p 6= 2 and degA = 0, i.e., A = 1,

which we now check separately. By induction on i, [T i](1) has leading term T p
i−1

if p 6= 2
and i ≥ 1, so [M ](1) is monic if p 6= 2 and M is monic with degM ≥ 1. If degM = 0 then
M = 1 and [M ](1) = 1 is also monic.

To show M | ϕC([M ](A)), set N = [M ](A), which is monic. Using N in place of M in
(3), [ϕC(N)](A) ≡ 0 mod N . Therefore in C(Fp[T ]/N), the annihilator ideal of A mod N
contains ϕC(N). Also [M ](A) ≡ 0 mod N by the definition of N , so M is in the annihilator
ideal too. To show M | ϕC(N), we will show M generates that annihilator ideal by showing
no monic D dividing M with degD < degM can satisfy [D](A) ≡ 0 mod N . We know
[D](A) 6= 0 by Theorem 2.18 (since we are avoiding the case p = 2 and degA ≤ 1). From
degD < degM we have deg([D](A)) < deg([M ](A)) by the degree formulas in Theorem
2.18 (this is simple to check unless p 6= 2 and degA = 0, when the inequality is true but a
little tedious to confirm), so [D](A) 6≡ 0 mod N . �

One further analogy between ϕ(m) and ϕC(M) has to do with counting. For a finite
abelian group, decomposed into a product of cyclic subgroups as Z/(n1) × · · · × Z/(nr),
its cardinality is |n1 · · ·nr|. For a finitely generated torsion Fp[T ]-module M, decomposed
into a product of cyclic modules Fp[T ]/(f1)×· · ·×Fp[T ]/(fr), the Fp[T ]-cardinality of M is
defined to be the ideal (f1 · · · fr) and this ideal is independent of the cyclic decomposition.
For monic irreducible π and k ≥ 1, the Fp[T ]-cardinality of C(Fp[T ]/πk) can be read off

from the cyclic decomposition in Theorem 4.5, and it is (πk−1(π−1)), whose monic generator
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is πk−1(π − 1) = πk − πk−1 = ϕC(πk). From this and the Chinese remainder theorem it
follows that the Fp[T ]-cardinality of C(Fp[T ]/M) is (ϕC(M)) when M is monic, and this is
a Carlitz analogue of the definition of ϕ(m) as the cardinality of (Z/m)×.

The groups (Fp[T ]/π)× and the Fp[T ]-modules C(Fp[T ]/π) present us with two ways to
extend results about (Z/(p))× to the polynomial setting. For example, Artin’s primitive
root conjecture about integers generating infinitely many (Z/(p))× can be formulated for
polynomials generating infinitely many groups (Fp[T ]/π)× or generating infinitely many
Fp[T ]-modules C(Fp[T ]/π), with good answers in both cases; see [8] and [10, Chap. 10].

5. Carlitz extensions of Fp(T )

We now adjoin ΛM to Fp(T ) to produce abelian extensions, just as Q(µm) is an abelian
extension of Q. Throughout this section, we write Fp(T ) as F , so Fp(T,ΛM ) = F (ΛM ). In
the literature the fields F (ΛM ) are called “cyclotomic function fields” (see [10, Chap. 12])
because they share many similar properties with the usual cyclotomic fields Q(µm).

Since [M ](X) is separable in F [X], adjoining its roots ΛM to F gives a Galois extension
of F . We only need to adjoin a generator of ΛM to F , since the other elements of ΛM
are polynomials in the generator (with Fp[T ]-coefficients). Each element of Gal(F (ΛM )/F )
permutes the roots ΛM of [M ](X) and is determined as a field automorphism by its effect
on these roots. Keeping in mind that each element of Gal(Q(µm)/Q) is determined by the
unique exponent in (Z/(m))× by which they act on all the mth roots of unity, we anticipate
that each element of Gal(F (ΛM )/F ) acts on ΛM by a Carlitz polynomial. To make this
explicit, we use a generator of ΛM .

Choose σ ∈ Gal(F (ΛM )/F ). Letting λ0 be a generator of ΛM ,

ΛM = σ(ΛM ) = σ({[N ](λ0) : N ∈ Fp[T ]}) = {[N ](σ(λ0)) : N ∈ Fp[T ]},
so σ(λ0) is also a generator of ΛM : we can write σ(λ0) = [A](λ0) for some A in Fp[T ], well-
defined modulo M , with (A,M) = 1 (Theorem 3.10). That σ acts like A on λ0 propagates
to all of ΛM : every λ ∈ ΛM has the form [N ](λ0) for some N ∈ Fp[T ], so

σ(λ) = σ([N ](λ0)) = [N ](σ(λ0)) = [N ]([A](λ0)) = [A]([N ](λ0)) = [A](λ).

Thus σ has the same effect by the Carlitz action on all the elements of ΛM . Write A as Aσ to
indicate its dependence on σ: to each σ ∈ Gal(F (ΛM )/F ) we get a unit Aσ ∈ (Fp[T ]/M)×

that describes through its Carlitz polynomial how σ permutes the elements of ΛM .

Theorem 5.1. The map σ 7→ Aσ is an injective group homomorphism Gal(F (ΛM )/F ) ↪→
(Fp[T ]/M)×.

Proof. For σ and τ in Gal(F (ΛM )/F ) and λ ∈ ΛM , (στ)(λ) equals

σ(τ(λ)) = σ([Aτ ](λ)) = [Aτ ](σ(λ)) = [Aτ ]([Aσ](λ)) = [AτAσ](λ).

Also (στ)(λ) = [Aστ ](λ), so Aστ and AτAσ = AσAτ have the same Carlitz action on ΛM .
Therefore Aστ ≡ AσAτ mod M (Theorem 3.10), which shows we have a homomorphism
from Gal(F (ΛM )/F ) to (Fp[T ]/M)×.

When σ is in the kernel, Aσ ≡ 1 mod M , so for all λ ∈ ΛM we have σ(λ) = [Aσ](λ) =
[1](λ) = λ. Therefore σ is the identity on ΛM , so σ is the identity in Gal(F (ΛM )/F ). �

Since (Fp[T ]/M)× is abelian, Gal(F (ΛM )/F ) is abelian, so Carlitz extensions of F =
Fp(T ) are abelian extensions.

Theorem 5.2. The embedding Gal(F (ΛM )/F ) ↪→ (Fp[T ]/M)× is an isomorphism.



16 KEITH CONRAD

Proof. We will adapt the proof of the analogous result that Gal(Q(µm)/Q) is isomorphic
to (Z/(m))×, taken from [9, p. 278].

Both ΛM and (Fp[T ]/M)× are unchanged if we scale M by an element of F×p , so without
loss of generality M is monic.

Pick a generator λ0 of ΛM . The image of Gal(F (ΛM )/F )→ (Fp[T ]/M)× is all A mod M
such that [A](λ0) is F -conjugate to λ0, so the map Gal(F (ΛM )/F ) → (Fp[T ]/M)× is
surjective when [A](λ0) is F -conjugate to λ0 for all A that are relatively prime to M . Let
λ0 have minimal polynomial f(X) ∈ F [X]. The F -conjugates of λ0 are the roots of f(X),
so we want to show

(A,M) = 1 =⇒ f([A](λ0)) = 0.

Since [A](λ0) only depends on A mod M , we can choose A to be monic and then A is a
product of monic irreducibles, each not dividing M . Since A 7→ [A](X) converts multiplica-
tion to composition, it suffices to show f([π](λ0)) = 0 for every monic irreducible π ∈ Fp[T ]
not dividing M .

Pick a monic irreducible π in Fp[T ] that does not divide M , and let g(X) be the minimal
polynomial of [π](λ0) in F [X]. We want to show g(X) = f(X). Since λ0 and [π](λ0) are
in ΛM , both f(X) and g(X) divide [M ](X) in F [X] = Fp(T )[X]. Since M is monic in
Fp[T ], [M ](X) is monic in X, and every monic factor of [M ](X) in F [X] is in Fp[T ][X].
(This is analogous to every monic factor in Q[X] of a monic in Z[X] having to be in Z[X]).
Therefore f(X) and g(X) are in Fp[T ][X].

Since g([π](λ0)) = 0, g([π](X)) has λ0 as a root, so f(X) | g([π](X)) in F [X]. Both
f(X) and g([π](X)) are monic X-polynomials in Fp[T ][X] (because π is monic!), so the
divisibility in F [X] in fact takes place in Fp[T ][X]. That is, g([π](X)) = f(X)h(X) for
some h(X) in Fp[T ][X]. (The proof of this is the same as the proof that if u(X) and v(X)
are monic in Z[X] and u(X) | v(X) in Q[X] then u(X) | v(X) in Z[X]: there is unique
division with remainder by monic polynomials in both Z[X] and Q[X], and likewise in both
Fp[T ][X] and F [X].) Hence g([π](X)) = f(X)h(X) for some h(X) in Fp[T ][X]. Reduce
modulo π and use Theorem 2.17 to get

g(X)p
deg π

= f(X)h(X).

Thus f(X) and g(X) have a common factor in (Fp[T ]/π)[X], namely any irreducible factor

of f(X).
To show g(X) = f(X), assume not. They are then distinct monic irreducible factors of

[M ](X), so [M ](X) = f(X)g(X)k(X) for some k(X) ∈ Fp[T ][X]. Reducing this modulo π,

[M ](X) = f(X)g(X)k(X)

in (Fp[T ]/π)[X]. This is impossible: the right side has a multiple irreducible factor (each

common irreducible factor of f(X) and g(X)) but [M ](X) is separable in (Fp[T ]/π)[X]
(Theorem 2.11). So g(X) = f(X), which shows f([π](λ0)) = 0. �

Example 5.3. Let M = T . The isomorphism Gal(F (ΛT )/F ) ∼= (Fp[T ]/T )× associates
to each σ the unique A mod T ∈ (Fp[T ]/T )× where σ(λ) = [A](λ) for all λ ∈ ΛT . Since
[A](λ) = A(0)λ (Example 3.8) and (Fp[T ]/T )× ∼= F×p by identifying each nonzero congru-
ence class mod T with the constant in that congruence class, the isomorphism in Theorem
5.2 identifies Gal(F (ΛT )/F ) with F×p through scaling: σc(λ) = cλ for all λ ∈ ΛT as c runs

through F×p .
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Since c = σc(λ)/λ for all λ ∈ ΛT − {0}, and F (ΛT )/F is a Kummer extension (Example
3.5), notice that the identification of the Galois group with F×p is exactly how Kummer
theory would apply in this situation too.

The Carlitz construction leads to abelian extensions not only of Fp(T ) but of every
characteristic p field K that is not algebraic over Fp: denote an element of K transcendental
over Fp as T , so K ⊃ Fp(T ). Using this T we obtain the polynomials [M ](X) ∈ Fp(T )[X] ⊂
K[X]. Then [M ](X) is separable in K[X] and K(ΛM )/K is a Galois extension with the
effect of the Galois group on ΛM leading to an embedding Gal(K(ΛM )/K) ↪→ (Fp[T ]/M)×,
so the Galois group is abelian. This embedding need not be onto (depends on K and the
choice of T in K).

6. More cyclotomic and Carlitz analogies

The roots of the polynomials Xm − 1 and [M ](X) have similar features (e.g., the first
is a cyclic group of size m and the second is a cyclic Fp[T ]-module of size N(M)), but it
is the isomorphisms of Galois groups, Gal(Q(µm)/Q) ∼= (Z/(m))× and Gal(F (ΛM )/F ) ∼=
(Fp[T ]/M)×, that are are more profound. We explore analogies between these Galois ex-
tensions in this section.

By Theorem 5.2, [F (ΛM ) : F ] = |(Fp[T ]/M)×| for every M 6= 0, just as [Q(µm) : Q] =
|(Z/(m))×| for m ∈ Z+. The size of (Z/(m))× is denoted ϕ(m) and similarly the size of
(Fp[T ]/M)× is denoted ϕ(M).7 Their values are given by similar formulas:

ϕ(m) = m
∏
p|m

(
1− 1

p

)
, ϕ(M) = N(M)

∏
π|M

(
1− 1

N(π)

)
,

with the product running over (positive) prime factors of m and (monic) irreducible factors
of M . In particular, from these formulas one can check that

(6.1) ϕ(ab) =
ϕ(a)ϕ(b)(a, b)

ϕ((a, b))
, ϕ(AB) =

ϕ(A)ϕ(B) N((A,B))

ϕ((A,B))
.

Let’s put the two formulas in (6.1) to work toward analogous goals. Classically, two
cyclotomic fields Q(µm) and Q(µn) with m ≤ n are equal if and only if m = n or m is
odd and n = 2m (e.g., Q(µ3) = Q(µ6), or even more simply Q(µ1) = Q(µ2)). We can ask
similarly when F (ΛM ) = F (ΛN ). First we will recall the proof of the result for cyclotomic
extensions of Q and then just translate the argument over to Carlitz extensions of F .

Theorem 6.1. Let m and n be positive integers.

(1) The number of roots of unity in Q(µm) is [2,m].
(2) We have Q(µm) = Q(µn) if and only if [2,m] = [2, n], which for m 6= n is the same

as saying min(m,n) = k and max(m,n) = 2k for some odd k.

Proof. (1) Our argument is adapted from [1, p. 158]. The root of unity −ζm is in Q(µm)
and it has order 2m is m is odd, and m if m is even, hence [2,m] in general. Therefore
µ[2,m] ⊂ Q(µm).

If Q(µm) contains an rth root of unity then Q(µr) ⊂ Q(µm), and taking degrees over
Q shows ϕ(r) ≤ ϕ(m). As r → ∞, ϕ(r) → ∞ (albeit erratically)8 so there is a largest r

7Don’t confuse ϕ(M), a positive integer, with ϕC(M) from Section 4, which is a polynomial.
8A bound ϕ(r) ≤ B implies an upper bound on r. For each prime power pe dividing r, ϕ(pe) ≤ B, so

pe−1(p − 1) ≤ B. Then 2e−1 ≤ B and p − 1 ≤ B, so we get upper bounds on p and on e, which gives an
upper bound on r by unique factorization.
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satisfying µr ⊂ Q(µm). Since µmµr = µ[m,r] is in Q(µm) we have [m, r] ≤ r, so [m, r] = r.
Write r = ms. Then by (6.1),

ϕ(r) = ϕ(ms) = ϕ(m)ϕ(s)
(m, s)

ϕ((m, s))
≥ ϕ(m)ϕ(s).

Since Q(µm) = Q(µr) for the maximal r, computing degrees over Q shows ϕ(m) = ϕ(r) ≥
ϕ(m)ϕ(s), so 1 ≥ ϕ(s). Thus ϕ(s) = 1, so s = 1 or 2, so r = m or r = 2m. This shows the
number of roots of unity in Q(µm) is either m or 2m. If m is even then ϕ(2m) = 2ϕ(m) >
ϕ(m), so r 6= 2m. Thus when m is even the number of roots of unity in Q(µm) is m. If m
is odd then −ζm has order 2m, so the number of roots of unity in Q(µm) is 2m. In general
the number of roots of unity in Q(µm) is [2,m].

(2) If Q(µm) = Q(µn) then counting roots of unity in this field implies [2,m] = [2, n].
Conversely, since µ[2,m] is µm for even m and it is ±µm for odd m, Q(µm) = Q(µ[2,m])
for all m. Therefore if [2,m] = [2, n] then Q(µm) = Q(µn). For m 6= n, the condition
[2,m] = [2, n] becomes m = [2, n] for even m (so n is odd and m = 2n), and 2m = [2, n] for
odd m (so n is even and n = 2m). �

Theorem 6.2. Let M and N be nonzero in Fp[T ].

(1) The full Carlitz torsion in F (ΛM ) is ΛM if p 6= 2 and Λ[T (T+1),M ] if p = 2.

(2) (a) When p 6= 2, F (ΛM ) = F (ΛN ) if and only if N = cM where c ∈ F×p .

(b) When p = 2, F (ΛM ) = F (ΛN ) if and only if 9 [M,T (T + 1)] = [N,T (T + 1)].

Proof. (1) For every monic R in Fp[T ], if ΛR ⊂ F (ΛM ) then F (ΛR) ⊂ F (ΛM ), so taking
degrees over F shows ϕ(R) ≤ ϕ(M). As N(R) → ∞, ϕ(R) → ∞, so there is a monic R
with ΛR ⊂ F (ΛM ) and N(R) as large as possible. Also ΛM + ΛR = Λ[M,R] is in F (ΛM ),
which implies Λ[M,R] = ΛR, so [M,R] = R. Write R = MS. Then by (6.1),

(6.2) ϕ(R) = ϕ(MS) = ϕ(M)ϕ(S)
N((M,S))

ϕ((M,S))
≥ ϕ(M)ϕ(S).

Since F (ΛM ) = F (ΛR) for the maximal R, computing degrees over F shows ϕ(M) = ϕ(R) ≥
ϕ(M)ϕ(S), so 1 ≥ ϕ(S). Thus R = SM with ϕ(S) = 1. If (S,M) 6= 1 then the calculation
of ϕ(MS) in (6.2) shows ϕ(R) > ϕ(M) since N((M,S)) > ϕ((M,S)). This contradicts the
necessity of ϕ(M) = ϕ(R), so (S,M) = 1.

In Fp[T ], ϕ(π) > 1 for all irreducible π except when p = 2 and π = T or T +1. Therefore
when p 6= 2 the condition ϕ(S) = 1 for S ∈ Fp[T ] implies S ∈ F×p , so ΛR = ΛSM = ΛM .
When p = 2, ϕ(π) > 1 if deg π ≥ 2 but ϕ(T ) = ϕ(T + 1) = 1. It is left to the reader
to check ϕ(S) = 1 for S ∈ F2[T ] only when S is 1, T, T + 1, or T (T + 1) and conclude
ΛR = Λ[T (T+1),M ].

(2) Verifying the description when F (ΛM ) = F (ΛN ) is left to the reader. �

Remark 6.3. This theorem lets us find the M such that ΛM ⊂ Fp(T ), by solving F (ΛM ) =
F (Λ1). Except when p = 2 and M | T (T + 1), necessarily M ∈ F×p , so ΛM = {0}. If p = 2
and M | T (T + 1) then ΛM ⊂ ΛT (T+1) = {0, 1, T, T + 1}. This explains when ΛM ⊂ Fp(T )
in a more conceptual way than Theorem 2.18.

9Least common multiples in Fq[T ] are defined to be monic.
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For m ∈ Z+, the roots of unity in C of exact order m share the same minimal polyomial
over Q, the mth cyclotomic polynomial:

Φm(X) =
∏

1≤a≤m
(a,m)=1

(X − ζa) =
∏
ζm=1

order m

(X − ζ),

where ζ is a root of unity of orderm in the first product and in the second product ζ runs over
all roots of unity of orderm. For example, if p is prime then Φp(X) = (Xp−1)/(X−1): every
pth root of unity has order p except for 1. The polynomial Φp(X + 1) = ((X + 1)p − 1)/X
is Eisenstein with respect to p. By comparing degrees, roots, and leading coefficients,

Φpk(X) = Φp(X
pk−1

). Each Φpk(X + 1) is Eisenstein with respect to p.
For monic M in Fp[T ], all generators of ΛM have the same minimal polynomial over

F = Fp(T ), which is an analogue of the cyclotomic polynomials:

ΦM (X) =
∏

degA<degM

(A,M)=1

(X − [A](λ0)) =
∏

[M ](λ)=0
Fp[T ]−order M

(X − λ),

where λ0 is a chosen generator of ΛM and the second product is taken over roots λ of
[M ](X) which have Fp[T ]-order M : [D](λ) 6= 0 for every monic proper divisor D of M .
(Such λ are the generators of ΛM , just as roots of unity of order m are the generators of
µm.)

Example 6.4. If π is irreducible in Fp[T ] then Φπ(X) = [π](X)/X since [π](X)/X is Eisen-
stein with respect to π (Corollary 2.12) and thus is irreducible over Fp(T ) = F . Comparing

degrees, roots, and leading coefficients, for all k ≥ 1 we have Φπk(X) = Φπ([πk−1](X)), so
the constant term of Φπk(X) is Φπ([πk−1](0)) = Φπ(0) = π. Since Φπ(X) has all non-leading
X-coefficients divisible by π, and [πk−1](X) also has all non-leading X-coefficients divisible
by π (Corollary 2.14), Φπk(X) has all non-leading X-coefficients divisible by π. Therefore
Φπk(X) is Eisenstein with respect to π for all k.

Remark 6.5. It was noted in Remark 2.13 that [M ](X) more closely resembles (1+X)m−1
than Xm − 1. Since [M ](X) =

∏
D|M ΦD(X), where the product is taken over the monic

divisors D of M , we might anticipate that ΦM (X) more closely resembles Φm(X + 1) than
Φm(X), and this does appear to be true. For instance, Φπk(X) is Eisenstein with respect
to π while Φpk(X + 1) – not Φpk(X) – is Eisenstein with respect to p. If m is not a power
of a prime then Φm(1) = 1. If M is monic and not a power of an irreducible, the analogous
equation is ΦM (0) = 1.

The Kronecker-Weber theorem says every finite abelian extension of Q lies in a cyclotomic
extension Q(µm). There is an analogue of the Kronecker-Weber theorem for Fp(T ), due to
Hayes [7]. It says every finite abelian extension of Fp(T ) lies in some Fpd(T,ΛM ,Λ1/Tn) for
some d ≥ 1, n ≥ 1, and M ∈ Fp[T ], where Λ1/Tn is the set of roots of the Carlitz polynomial

[1/Tn](X) built with 1/T in place of T : [1/T ](X) = Xp + (1/T )X and [1/T k](X) =
[1/T ]([1/T k−1](X)).10

Example 6.6. Using 1/T as the generator over Fp for Fp(T ) = Fp(1/T ), the polynomial
[1/T ](X) = Xp + (1/T )X = X(Xp−1 + 1/T ) has roots that generate the same extension of

10The family of polynomials [1/Tn](X) does not interact well with [M ](X) for M ∈ Fp[T ], e.g.,
[1/T ]([T ](X)) 6= X and [T ]([1/T ](X)) 6= X.
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Fp(T ) as [T ](X). But for [1/T 2](X) we get something new:

[1/T 2](X) = [1/T ]([1/T ](X)) = Xp2
+ ((1/T )p + (1/T ))Xp + (1/T 2)X,

and the extension Fp(T,Λ1/T 2)/Fp(T ) turns out to have a property (wild ramification at
∞) that is not satisfied by subfields of Fpd(T,ΛM ), so it is not inside such a field.

Table 4 summarizes some of the analogous features we have seen with µm and ΛM .

Cyclotomic Carlitz
|µm| = m |ΛM | = N(M)

subgroups: µd, d | m submodules: ΛD, D |M
d | m⇔ µd ⊂ µm D|M ⇔ ΛD ⊂ ΛM

ζ ∈ µm, a ∈ Z⇒ ζa ∈ µm λ ∈ ΛM , A ∈ Fp[T ]⇒ [A](λ) ∈ ΛM
a ≡ b mod m⇒ ζa = ζb A ≡ B mod M ⇒ [A](λ) = [B](λ)

ζa = ζb(all ζ ∈ µm)⇒ a ≡ b mod m [A](λ) = [B](λ)(all λ ∈ ΛM )⇒ A ≡ B mod M
Gal(Q(µm)/Q) ∼= (Z/(m))× Gal(Fp(T,ΛM )/Fp(T )) ∼= (Fp[T ]/M)×

Xm − 1 =
∏
d|m Φd(X) [M ](X) =

∏
D|M ΦD(X)

Kronecker-Weber theorem Carlitz-Hayes theorem
Table 4. Analogies between µm and ΛM

7. Quadratic Reciprocity in Fp[T ], p 6= 2

In this section, let p be odd. For every monic irreducible π(T ) in Fp[T ] and every A in

Fp[T ], define the Legendre symbol (Aπ ) to be 0 or ±1 in Fp according to

(
A

π

)
=


1, if A ≡ � mod π,A 6≡ 0 mod π,

−1, if A 6≡ � mod π,

0, if A ≡ 0 mod π.

Our goal is to prove a reciprocity law for this symbol by adapting a proof of quadratic
reciprocity in Z, using Fp(T,Λπ)/Fp(T ) in place of Q(ζp)/Q. We assume the reader knows

quadratic reciprocity in Z, as otherwise the entire point of studying (Aπ ) will be lost.
Here are three basic properties of the Legendre symbol on Fp[T ]:

• If A ≡ B mod π then (Aπ ) = (Bπ ) since (Aπ ) only depends on A mod π.
• (Euler’s congruence): for all A ∈ Fp[T ],

(7.1)

(
A

π

)
≡ A(N(π)−1)/2 mod π.

• (Multiplicativity): for all A and B in Fp[T ],(
AB

π

)
=

(
A

π

)(
B

π

)
.

To prove (7.1), look at a proof of Euler’s congruence in Z, (ap ) ≡ a(p−1)/2 mod p and it

should carry over to Fp[T ]. That (ABπ ) = (Aπ )(Bπ ) for all A and B follows from (7.1) in the

same way that Euler’s congruence in Z implies (abp ) = (ap )( bp) for all integers a and b.
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By multiplicativity, a calculation of (Aπ ) for general A is reduced to two cases: ( cπ ) for

c ∈ F×p and ( π̃π ) for monic irreducible π̃ not equal to π. The first case is analogous to the

supplementary law for (−1
p ), and we deal with it first.

Theorem 7.1. For c ∈ F×p and π a monic irreducible in Fp[T ], ( cπ ) = c(N(π)−1)/2 = ( cp)deg π.

Proof. By (7.1), ( cπ ) ≡ c(N(π)−1)/2 mod π. Both sides are in F×p , and different elements of

Fp can’t be congruent mod π, so ( cπ ) = c(N(π)−1)/2.

Let d = deg π, so N(π)−1
2 = p−1

2 (1 + p+ · · ·+ pd−1) and

c(N(π)−1)/2 = c
p−1

2
(1+p+···+pd−1).

Since this equation is in Fp, we can replace c(p−1)/2 by ( cp), so the exponent 1+p+ · · ·+pd−1

only matters mod 2. This sum is d mod 2, so c(N(π)−1)/2 = ( cp)d. �

We turn now to the Fp[T ]-analogue of the main law of quadratic reciprocity.

Theorem 7.2. For distinct monic irreducible π and π̃ in Fp[T ],

(7.2)

(
π̃

π

)
= (−1)(Nπ−1)/2·(Nπ̃−1)/2

(π
π̃

)
.

The exponent N(π)−1
2 · N(π̃)−1

2 only matters mod 2, and by calculations from the proof of

Theorem 7.1 this product is congruent to p−1
2 deg π · p−1

2 deg π̃ ≡ p−1
2 deg π deg π̃ mod 2, so

another way of writing (7.2) is(
π̃

π

)
= (−1)

p−1
2

deg π deg π̃
(π
π̃

)
.

Therefore if π or π̃ has even degree then

(
π̃

π

)
=
(π
π̃

)
.

Example 7.3. In F3[T ], is T 3 − T − 1 ≡ � mod T 4 + T + 2? The polynomials T 3 − T − 1
and T 4 + T + 2 are both irreducible, so (7.2) says(

T 3 − T − 1

T 4 + T + 2

)
=

(
T 4 + T + 2

T 3 − T − 1

)
.

Since T 4 + T + 2 ≡ T 2 + 2T + 2 mod T 3 − T − 1, and T 2 + 2T + 2 is irreducible in F3[T ],(
T 4 + T + 2

T 3 − T − 1

)
=

(
T 2 + 2T + 2

T 3 − T − 1

)
(7.2)
=

(
T 3 − T − 1

T 2 + 2T + 2

)
.

We have T 3 − T − 1 ≡ T mod T 2 + 2T + 2, so(
T 3 − T − 1

T 2 + 2T + 2

)
=

(
T

T 2 + 2T + 2

)
(7.2)
=

(
T 2 + 2T + 2

T

)
=

(
2

T

)
.

By Theorem 7.1, ( 2
T ) = (2

3)deg T = −1,11 so (T
3−T−1

T 4+T+2
) = −1 in F3[T ].

11Concretely, the value of ( 2
T

) is related to whether or not 2 is a square in F3[T ]/(T ) ∼= F3. Since 2 is

not a square in F3, ( 2
T

) = −1.
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There are proofs of Theorem 7.2 that take advantage of features of Fp[T ] that are unavail-
able in Z. See, for instance, [5]. We will instead prove Theorem 7.2 by using the analogy
between cyclotomic extensions of Q and Carlitz extensions of Fp(T ).

The extension Q(ζp)/Q has cyclic Galois group (Z/(p))×, of even order, so there is a

unique quadratic extension of Q in Q(ζp). It is Q(
√
p∗), where p∗ = (−1)(p−1)/2p (that is,

p∗ = ±p, with sign chosen so that p∗ ≡ 1 mod 4). Here are a few ways to show
√
p∗ ∈ Q(ζp):

(1) Gauss sums. Define Gp =
∑

a mod p(
a
p )ζap . By construction this lies in Q(ζp), and

many textbook treatments of Gauss sums will provide a proof that G2
p = p∗.

(2) Ramification. The extension Q(ζp)/Q is ramified only at the prime p (among finite
primes), so a quadratic field in Q(ζp) can ramify only at p. The unique quadratic
field ramified only at the odd prime p (among finite primes) is Q(

√
p∗).

(3) Rewriting terms in a product. In Xp−1 + · · ·+X + 1 =
∏p−1
k=1(X − ζkp ) set X = 1 to

get12 p =
∏p−1
k=1(1−ζkp ). The product of the terms at k and p−k is (1−ζkp )(1−ζ−kp ) =

−(ζkp − 2 + ζ−kp ) = −(ζ
k/2
p − ζ−k/2p )2, where ±k/2 are interpreted in Z/(p) (or write

ζ
k/2
p as ζ

k(p+1)/2
p ). This is −1 times a square, so (−1)(p−1)/2p is a square in Q(ζp).

Let F = Fp(T ). The extension F (Λπ)/F has a Galois group (Fp[T ]/π)× that is cyclic of
even order N(π)− 1, so there is a unique quadratic extension of F inside F (Λπ).

Lemma 7.4. The quadratic extension of F in F (Λπ) is F (
√
π∗), where π∗=(−1)(Nπ−1)/2π.

Proof. The first two methods of showing
√
p∗ ∈ Q(ζp) don’t carry over to the Carlitz setting:

• The sum
∑

A mod π(Aπ )[A](λ) for a fixed nonzero λ in Λπ resembles a Gauss sum,
but it is useless because it is 0 (surprise!) if N(π) > 3 (not if N(π) = 3).
• A quadratic extension of F is not uniquely determined if it has one ramified prime
π, as illustrated by F (

√
π) and F (

√
cπ) for nonsquare c in F×p .

The third method does adapt. For λ in Λπ−{0}, in [π](X)/X =
∏
A 6≡0 mod π(X− [A](λ))

set X = 0 and get π =
∏
A 6≡0 mod π[A](λ).13 The product of the terms at A and −A is

[A](λ)[−A](λ) = −[A](λ)2 because [−A](X) = [−1]([A](X)) = −[A](X). Therefore up to a

square factor in F (Λπ)×, π equals (−1)(Nπ−1)/2, so (−1)(Nπ−1)/2π is a square in F (Λπ). �

The proof of quadratic reciprocity in Z that we will model our proof on in Fp[T ] is the one
using Gauss sums. Let’s review it. For an odd prime p, the Gauss sum Gp =

∑
a mod p(

a
p )ζap

satisfies G2
p = p∗ and Gp ∈ Z[ζp]. For an odd prime q 6= p the quotient ring14 Z[ζp]/(q) has

prime characteristic q. We will compute Gqp mod qZ[ζp] in two ways.

(1) Since the q-th power map is additive in characteristic q and εq = ε for ε = ±1,
we have Gqp ≡

∑
a mod p(

a
p )ζaqp mod qZ[ζp]. Changing variables by a 7→ a/q on the

summation indices in Z/(p), Gqp ≡
∑

a mod p(
aq−1

p )ζap ≡ ( qp)Gp mod qZ[ζp].

(2) From G2
p = p∗, Gqp = (G2

p)
(q−1)/2Gp = (p∗)(q−1)/2Gp ≡ (p

∗

q )Gp mod qZ[ζp].

From the two calculations of Gqp in Z[ζp]/(q),

(
q

p

)
Gp ≡

(
p∗

q

)
Gp mod qZ[ζp]. Multiply-

ing both sides by Gp,

(
q

p

)
p∗ ≡

(
p∗

q

)
p∗ mod qZ[ζp]. Since p∗ = ±p is invertible in Z/(q),

12 In terms of the field norm, this says p = NQ(ζp)/Q(1− ζp).
13This says π = NF (Λπ)/F (λ).
14This quotient ring is usually not a field.
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and thus in Z[ζp]/(q),

(
q

p

)
≡
(
p∗

q

)
mod qZ[ζp]. Both sides of this congruence are ±1, and

1 6≡ −1 mod qZ[ζp] (otherwise 2/q would be an algebraic integer, which is false), so in Z(
q

p

)
=

(
p∗

q

)
=

(
(−1)(p−1)/2p

q

)
=

(
−1

q

)(p−1)/2(p
q

)
= (−1)(p−1)/2·(q−1)/2

(
p

q

)
.

In the Carlitz setting, it’s attractive to adapt this proof by working with the sum Gπ :=∑
A mod π(Aπ )[A](λ), where λ is a fixed nonzero element of Λπ, but this has a fatal flaw that

we already indicated in the proof of Lemma 7.4: Gπ = 0 (unless N(π) = 3). Let’s stop for
a moment and see where this vanishing comes from. The argument we will use was shown
to me by Darij Grinberg.

By the property [M+N ](X) = [M ](X)+[N ](X), we can writeGπ as
[∑

A mod π(Aπ )A
]

(λ).

Since [π](λ) = 0, each [M ](λ) only depends on M mod π. We will show
∑

A mod π(Aπ )A ≡
0 mod π, so Gπ = [0](λ) = 0. For B 6≡ 0 mod π,∑

A mod π

(
A

π

)
A ≡

∑
A mod π

(
AB

π

)
AB ≡

(
B

π

)
B

∑
A mod π

(
A

π

)
A mod π.

When N(π) > 3, there is a B 6≡ 0 mod π such that B 6≡ ±1 mod π, so (Bπ )B 6≡ 1 mod π.

Using that B above, we conclude that
∑

A mod π(Aπ )A ≡ 0 mod π.
We’ve met a peculiar non-analogy between Z and Fp[T ]: the classical Gauss sum Gp

squares to p∗ but the sum Gπ vanishes (except in one case). To prove quadratic reciprocity
in Fp[T ] by the Gauss sum method without using a Gauss sum, we will examine a product
(not a sum) that squares to π∗.

Let H be a set of representatives of (Fp[T ]/(π))×/{±1} (a “half-system” mod π). By

the proof of Lemma 7.4, π =
∏
A∈H [A](λ)[−A](λ) = (−1)(N(π)−1)/2

∏
A∈H [A](λ)2, where λ

is a fixed nonzero element of Λπ. The product Γπ =
∏
A∈H [A](λ) over the half-system H is

going to be our replacement for the Gauss sum:

Γπ ∈ Fp[T, λ] and Γ2
π = (−1)(N(π)−1)/2π = π∗.

For monic irreducible π̃ distinct from π, we will compute Γ
N(π̃)
π in Fp[T, λ]/(π̃) in two ways.

(This is the analogue of computing Gqp in Z[ζp]/(q) in two ways.)

(1) From the definition of Γπ, Γ
N(π̃)
π =

∏
A∈H [A](λ)N(π̃). By Theorem 2.17, f(X)N(π̃) ≡

f([π̃](X)) mod π̃Fp[T,X] for all f(X) ∈ Fp[T ][X]. Using [A](X) as f(X) and set-
ting X = λ, ∏

A∈H
[A](λ)N(π̃) ≡

∏
A∈H

[A]([π̃](λ)) mod π̃Fp[T, λ]

≡
∏
A∈H

[Aπ̃](λ) mod π̃Fp[T, λ].

The value of [Aπ̃](λ) only depends on Aπ̃ modulo π. (This is an analogue of ζaqp
only depending on aq mod p.) As A runs over the half-system H, the products Aπ̃
are also a half-system. It may not be H itself, but we can match terms with H up to
sign: Aπ̃ ≡ εABA mod π for εA = ±1 and BA ∈ H. Since [εABA](X) = εA[BA](X),∏

A∈H
[Aπ̃](λ) =

∏
A∈H

[εABA](λ) =
∏
A∈H

εA ·
∏
A∈H

[BA](λ) =
∏
A∈H

εA ·
∏
B∈H

[B](λ) =

(∏
A∈H

εA

)
Γπ.
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The product
∏
A∈H εA equals ( π̃π ); this is an analogue of the classical Gauss lemma

that expresses a Legendre symbol as a product of signs coming from scaling all the
terms in a half-system for (Z/(p))×/{±1} (the proof is the same, and left to the
reader). Therefore

(7.3) ΓN(π̃)
π =

∏
A∈H

[A](λ)N(π̃) ≡
(
π̃

π

)
Γπ mod π̃Fp[T, λ].

(2) Since Γ2
π = π∗,

(7.4) ΓN(π̃)
π = (Γ2

π)(N(π̃)−1)/2Γπ = (π∗)(N(π̃)−1)/2Γπ ≡
(
π∗

π̃

)
Γπ mod π̃Fp[T, λ].

Comparing (7.3) and (7.4),

(
π̃

π

)
Γπ ≡

(
π∗

π̃

)
Γπ mod π̃Fp[T, λ]. Multiply both sides of

this congruence by Γπ and cancel the resulting factor π∗ on both sides (since π∗ = ±π is

invertible in Fp[T ]/(π̃)) to obtain

(
π̃

π

)
≡
(
π∗

π̃

)
mod π̃Fp[T, λ]. (This is the analogue of(

q

p

)
≡
(
p∗

q

)
mod qZ[ζp].) We have 1 6≡ −1 mod π̃Fp[T, λ] (otherwise, since λ is integral

over Fp[T ], 2/π̃ would be integral over Fp[T ], which is false), so in F×p(
π̃

π

)
=

(
π∗

π̃

)
.

Theorem 7.2 follows from this by computing the right side using the definition of π∗ and
the supplementary law Theorem 7.1 when c = −1.

Remark 7.5. Our first method of calculating Γ
N(π̃)
π in Fp[T, λ]/(π̃), leading to (7.3), can

bypass the need for Gauss’s lemma by using Galois theory. For A ∈ (Fp[T ]/(π))×, let
σA ∈ Gal(F (Λπ)/F ) be the automorphism such that σA(λ) = [A](λ) for all λ ∈ Λπ. Since
Γ2
π ∈ Fp[T ], σA(Γπ) = ±Γπ. Write σA(Γπ) = δAΓπ, where δA = ±1. Then δAB = δAδB, so

A mod π 7→ δA

is a homomorphism (Fp[T ]/(π))× → {±1}, and it is surjective since −Γπ is an Fp(T )-
conjugate of Γπ (that is, −Γπ = σ(Γπ) for some σ ∈ Gal(F (Λπ)/F ) ∼= (Fp[T ]/(π))×).
Since (Fp[T ]/(π))× is cyclic, it has only one nontrivial homomorphism onto {±1}, and the

homomorphism A mod π 7→ (Aπ ) is an example, so δA = (Aπ ) for all A. That is, σA(Γπ) =

(Aπ )Γπ for all A 6≡ 0 mod π.
What does this tell us when A = π̃? Since

σπ̃(λ) = [π̃](λ) ≡ λN(π̃) mod π̃Fp[T, λ]

by Theorem 2.17, and the maps σπ̃ and raising to the N(π̃)-th power are Fp[T ]-algebra en-

domorphisms on Fp[T, λ]/(π̃), σπ̃(f(λ)) ≡ f(λ)N(π̃) mod π̃Fp[T, λ] for all f(X) ∈ Fp[T,X].

Thus σπ̃(Γπ) ≡ Γ
N(π̃)
π mod π̃Fp[T, λ], so (7.3) follows from the general formula σA(Γπ) =

(Aπ )Γπ at A = π̃.
This point of view can be extended to prove quadratic reciprocity in Fp[T ] by using the

method of Frobenius elements, similar to one of the other proofs of quadratic reciprocity in
Z [11, Sect. 6.5].
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8. The Carlitz Exponential

In this section, we describe how the Carlitz polynomials were first discovered by Carlitz,
using an exponential function in characteristic p. The idea is to find a characteristic p
analogue of the complex-analytic description of roots of unity as e2πia/b.

The exponential series eX =
∑

n≥0X
n/n!, as a function on C, is a homomorphism

C→ C× with (discrete) kernel 2πiZ. There is an infinite product decomposition for ez − 1
over its roots 2πiZ:

ez − 1 = ez/2z
∏
n≥1

(
1 +

z2

4π2n2

)
= ez/2z

∏
n6=0

(
1− z

2πin

)
.

The extra ez/2 in the formula reflects the fact that knowing the zeros (and their multiplici-

ties) of a complex entire function only determines it up to multiplication by eh(z) for some
entire function h(z).

Let’s create an analogous infinite product in characteristic p using Fp[T ] in place of Z.
Since the characteristic p analogue of π (better, 2πi) is not obvious, we will work heuristically
at first. Once we find what we are looking for, a precise theorem will be stated.

In a field extension of Fp(T ), pick a nonzero element ξ and think of ξFp[T ] as an analogue
of 2πiZ. A power series having simple roots at ξFp[T ] is

(8.1) f(X) := X
∏

A∈Fp[T ]
A 6=0

(
1− X

ξA

)
,

and our field extension of Fp(T ) will need some kind of completeness in order for this
product to make sense, since the coefficients of the product when it is multiplied out are
infinite series.

By viewing f(X) in (8.1) as a limit of the finite products fd(X) = X
∏

degA≤d(1−X/ξA)

as d → ∞, we have f(X + Y ) = f(X) + f(Y ) and f(cX) = cf(X) for all c ∈ Fp.
15 The

roots of f(TX) are

1

T
ξFp[T ] =

⋃
c∈Fp

( c
T
ξ + ξFp[T ]

)
and all roots are simple. Because f(X) is additive and vanishes on ξFp[T ], on each coset
cξ/T + ξFp[T ] the common value of f(X) is f(cξ/T ), so another function besides f(TX)
with the roots (1/T )ξFp[T ], all of multiplicity 1, is∏

c∈Fp

(f(X)− f(cξ/T )) =
∏
c∈Fp

(f(X)− cf(ξ/T )) = f(X)p − f(ξ/T )p−1f(X).

It is natural to compare this with f(TX), and it would be a very special situation (that is,
require a special choice of ξ) for the two functions to match:

f(TX) = f(X)p − f(ξ/T )p−1f(X).

15The coefficient of Xj in f(X) is the limit of the jth coefficient of fd(X) = X
∏

degA≤d(1 −X/ξA) as
d → ∞. This product is a polynomial whose roots are simple and form an Fp-vector space. Every such
polynomial is a p-polynomial by Appendix A, so fd(X + Y ) = fd(X) + fd(Y ) and fd(cX) = cfd(X) for
c ∈ Fp. Now let d→∞.
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Let’s assume this happens. Then comparing the coefficient of X in the series expansion of
both sides forces T = −f(ξ/T )p−1, so

(8.2) f(TX) = f(X)p + Tf(X).

The condition T = −f(ξ/T )p−1 nearly determines ξ. By the product defining f(X) in
(8.1), we get

−T =

 ξ

T

∏
A 6=0

(
1− 1

TA

)p−1

,

where A runs over nonzero polynomials in Fp[T ]. (The infinite product converges in

Fp((1/T )) using the (1/T )-adic absolute value, where for a nonzero Laurent series cd/T
d +

cd+1/T
d+1 + · · · with cd ∈ F×p we set∣∣∣ cd

T d
+
cd+1

T d+1
+ · · ·

∣∣∣ =

(
1

p

)d
.

For example, |1/Tn| = 1/pn and |A| = pdegA for all nonzero A ∈ Fp[T ]. We have |1/(TA)| =
(1/p)1+degA for every nonzero polynomial A, and there are only finitely many A with a
given degree. An infinite product

∏
n≥1(1+αn) in a complete non-archimedean valued field

converges when |αn| → 0.) Therefore

(8.3) ξp−1 =
−T p∏

A 6=0(1− 1/TA)p−1
.

This product converges in Fp((1/T )) and ξ is algebraic over Fp((1/T )). We can use this
equation to define ξ (at last). Since ξ appears in (8.3) through ξp−1, the equation only
determines ξ up to scaling by a (p − 1)-th root of unity, namely an element of F×p . This
ambiguity doesn’t affect the meaning of ξFp[T ], which is what shows up in the definition
of f(X).

Since f(X) is an additive series, f(X) =
∑

j≥0 ajX
pj (Appendix A) with aj to be deter-

mined now that we have pinned down a choice of ξ (so that (8.2) is satisfied). The product
defining f(X) has first term X, so we need a0 = 1. Substituting the series for f(X) into

(8.2) gives the recursion ajT
pj = ajT +apj−1 for j ≥ 1, so aj(T

pj −T ) = apj−1. Since a0 = 1,
we get

a1 =
1

T p − T
, a2 =

1

(T p2 − T )(T p − T )p
,

and in general aj is the reciprocal of a polynomial. Let Dj = 1/aj , so D0 = 1 and

Dj = (T p
j − T )Dp

j−1 for j ≥ 1. By induction on j, deg(Dj) = jpj for all j ≥ 0.

Definition 8.1. The Carlitz exponential is the power series

eC(X) :=
∑
j≥0

Xpj

Dj
∈ Fp(T )[[X]],

where D0 = 1 and Dj = (T p
j − T )Dp

j−1 for j ≥ 1.

Remark 8.2. It can be shown for all j ≥ 0 that

Dj =
∏

h∈Fp[T ] monic
deg h=j

h.
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Theorem 8.3 (Carlitz). There is an infinite product decomposition

eC(X) = X
∏
A 6=0

(
1− X

Aξp

)
,

with the product running over nonzero A in Fp[T ] and with

ξp :=
(−T )1/(p−1)T∏
A 6=0(1− 1/TA)

.

Proof. See [6, Cor. 3.2.9]. �

Remark 8.4. Carlitz gave another expression for ξp:

ξp = (T − T p)1/(p−1)
∏
j≥1

(
1− T p

j − T
T pj+1 − T

)
.

The Carlitz exponential satisfies eC(X+Y ) = eC(X)+eC(Y ) rather than eX+Y = eXeY .
Instead of (eX)′ = eX we have e′C(X) = 1. Actually, the equation for eC(X) that is as
important for it as the differential equation is for eX is not e′C(X) = 1 but rather (8.2):
eC(TX) = eC(X)p + TeC(X).

The parameter ξp doesn’t appear in the coefficients of the Carlitz exponential series in
Definition 8.1, just like π doesn’t appear in the definition of the usual exponential series.
The value ξp is a characteristic p analogue of 2πi. Wade [12] proved ξp is transcendental
over Fp(T ), which is analogous to 2πi being transcendental over Q.

As a function on Fp((1/T )), the formal power series for eC(X) is an “entire function”:
it converges everywhere. Indeed, for all x ∈ Fp((1/T )), the 1/T -adic absolute value of

the general term in the series eC(x) is |x|pj/|Dj | = |x|pj/(1/p)−jpj = (|x|/pj)pj because
degDj = jpj . This tends to 0 as j →∞ for each choice of |x|, so the series eC(x) converges
for all x. Taking x = 1, for instance, we get the 1/T -adic power series

eC(1) = 1 +
1

T p − T
+

1

(T p2 − T )(T p − T )p
+ · · · = 1 +

1

T p
+

1

T 2p−1
+ · · · .

We need to enlarge the domain of eC(X) beyond Fp((1/T )) to find its full kernel ξpFp[T ]
unless p = 2 (because ξp 6∈ Fp((1/T )) unless p = 2). When p 6= 2, the homomorphism
eC : Fp((1/T ))→ Fp((1/T )) is injective, just like the homomorphism exp: R→ R>0.

We now explore the relation between the Carlitz exponential and Carlitz polynomials.
The property eC(TX) = eC(X)p+TeC(X) says, in terms of the Carlitz polynomial [T ](X),
that eC(TX) = [T ](eC(X)). The Carlitz exponential series converts plain multiplication by
T into the Carlitz action by T . Since eC(X) is a p-power series in X, for all M ∈ Fp[T ] it
follows that

(8.4) eC(MX) = [M ](eC(X)).

In other words, eC(MX) is a polynomial in eC(X), and that polynomial is precisely the
Carlitz polynomial [M ](X). If we had not known about the Carlitz polynomials, they
would be forced upon us when we express eC(MX) in terms of eC(X). The analogue of
(8.4) for eX is the much simpler emX = (eX)m, or equivalently emX − 1 = [m](eX − 1) with
[m](X) = (1 +X)m − 1. What gives (8.4) analytic content is the next result, which is the
analogue for Carlitz torsion of the complex-analytic parametrization of mth roots of unity:
µm = {e2πia/m : a ∈ Z}.
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Theorem 8.5. For nonzero M in Fp[T ], ΛM = {eC((A/M)ξp) : A ∈ Fp[T ]}.

Proof. For all A in Fp[T ],

[M ](eC((A/M)ξp)) = eC(M(A/M)ξp) = eC(Aξp) = 0,

so eC((A/M)ξp) ∈ ΛM . To show these Carlitz exponential values fill up ΛM , we count the
values. If eC((A/M)ξp) = eC((B/M)ξp) then subtracting shows eC(((A − B)/M)ξp) = 0,
so (A− B)/M ∈ Fp[T ] by Theorem 8.3. Thus A ≡ B mod M , so the number of values for
eC((A/M)ξp) as A varies is |Fp[T ]/M | = |ΛM |. �

Remark 8.6. The proof that eC(x) =
∑

j≥0 x
pj/Dj converges for all x ∈ Fp((1/T )) carries

over to convergence of eC(x) for all x in any complete valued extension field of Fp((1/T )),

so a priori the formal series eC((A/M)ξp) make sense in Fp((1/T ))((−T )1/(p−1)), a finite
extension of the complete field Fp((1/T )); every finite extension of a complete valued field
is complete with respect to a unique extension of the absolute value on the smaller field.

Corollary 8.7. As Fp[T ]-modules,
⋃
M ΛM ∼= Fp(T )/Fp[T ].

Proof. The map Fp(T )→
⋃
M ΛM given by A/B 7→ eC((A/B)ξp) is Fp[T ]-linear, surjective,

and its kernel is Fp[T ]. �

Corollary 8.7 is analogous to the isomorphism of Q/Z with all roots of unity in Q
×

by
r 7→ e2πir.

The Carlitz exponential helps us describe the coefficients of [M ](X) whenM 6= 0. Finding
these coefficients is analogous to finding the coefficients of [m](X) = (1 + X)m − 1 =∑m

j=1

(
m
j

)
Xj from scratch as if we did not know what binomial coefficients were. In fact,

we will show how to find the formula for binomial coefficients first, and then translate the
steps into the Carlitz setting.

We start off by writing

(8.5) [m](X) = (1 +X)m − 1 =
m∑
j=1

cj,mX
j ,

where cm,m = 1. (One doesn’t need to know the binomial theorem to see that (1 +X)m− 1
has leading term Xm and constant term 0.) Our goal is to show cj,m is given by a universal
polynomial formula in m. Because [m](eX − 1) = emX − 1, replacing X with log(1 +X) =
X + · · · gives

(8.6) [m](X) = em log(1+X) − 1 =
∑
j≥1

mj(log(1 +X))j

j!
.

The right side is in Q[[X]] and makes sense since (log(1 +X))j = Xj + higher order terms.
Replacing m with an indeterminate Y ,

eY log(1+X) − 1 =
∑
j≥1

Y j(log(1 +X))j

j!
=
∑
j≥1

Pj(Y )Xj

for some Pj(Y ) ∈ Q[Y ]. Because (log(1 +X))j = Xj + higher order terms, degPj(Y ) = j.
Since e0 − 1 = 0, Pj(0) = 0 for all j. Now setting Y = m,

[m](X) =
∑
j≥1

Pj(m)Xj .
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Comparing this with (8.5), we observe that

cj,m = Pj(m) for 1 ≤ j ≤ m, and Pj(m) = 0 for j > m.

The first part tells us cj,m is some universal polynomial of degree j that is evaluated at
m, and the second part actually tells us what the polynomial is: since Pj(Y ) vanishes at
positive integers less than j and at 0, Pj(Y ) is divisible by Y (Y − 1) · · · (Y − (j− 1)), which
has degree j. Since the degree of Pj(Y ) is j and Pj(j) = cj,j = 1, we must have

(8.7) Pj(Y ) =
Y (Y − 1) · · · (Y − (j − 1))

j(j − 1) · · · (j − (j − 1))
=
Y (Y − 1) · · · (Y − (j − 1))

j!
.

Therefore cj,m = Pj(m) is our friend the binomial coefficient
(
m
j

)
.

Now we turn to characteristic p, and carry out an analogous procedure. For nonzero M ,
write

(8.8) [M ](X) =

degM∑
j=0

aj,M (T )Xpj , aj,M (T ) ∈ Fp[T ].

(In Theorem 2.5 we wrote the coefficients as aj(T ) rather than as aj,M (T ), but the coef-
ficients depend on M and now we need to keep track of that information.) We know by
Theorem 2.5 that adegM,M = leadM , so adegM,M = 1 for monic M . Since [M ](eC(X)) =
eC(MX), we want to replace X with the composition inverse of eC(X) to mimic (8.6).
This inverse of eC(X) is the Carlitz logarithm, denoted logC(X). Since eC(X) = X + · · · ,
logC(X) = X+ · · · . Since eC(X) is additive, logC(X) is additive, so it is a series with terms

Xpj . (In particular, log′C(X) = 1.) The logarithmic equivalent of (8.4) is logC([M ](X)) =
M logC(X). Explicitly, Carlitz found the formula

logC(X) = X − Xp

T p − T
+

Xp2

(T p2 − T )(T p − T )
− · · · =

∑
j≥0

(−1)j
Xpj

Lj
,

where L0 = 1 and Lj = (T p
j − T )(T p

j−1 − T ) · · · (T p − T ) for j ≥ 1. We will not need to
know this explicit formula for logC(X), just as we never needed to know explicit coefficients
of log(1 +X) above when using that series.

Replacing X with logC(X) in the equation [M ](eC(X)) = eC(MX), we get

(8.9) [M ](X) = eC(M logC(X)) =
∑
j≥0

Mpj (logC(X))p
j

Dj
.

This series is in Fp(T )[[X]]. If we replace X with X/M in the first equation of (8.9), then

(8.10) [M ](X/M) = eC(M logC(X/M)).

As degM→∞, 1/M → 0 in Fp((1/T )), so M logC(X/M) = X+
∑

j≥1(−1)jXpj/(LjM
pj−1)

tends to X in Fp((1/T ))[[X]] as degM →∞. Therefore (8.10) implies

lim
degM→∞

[M ](X/M) = eC(X),

where the convergence on the left is coefficientwise convergence as a series in X. This is a
Carlitz analogue of the formula limn→∞(1 + x/n)n = ex. I thank Darij Grinberg for this
observation.
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Returning to (8.9), replace M with a variable Y :

eC(Y logC(X)) =
∑
j≥0

Y pj (logC(X))p
j

Dj
:=
∑
j≥0

Ej(Y )Xpj ,

which defined the polynomials Ej(Y ) ∈ Fp(T )[Y ]. (The series for eC(Y logC(X)) involves
only p-power terms in X since that is all that occurs in logC(X), which itself is being raised

to p-powers when eC(Y logC X) is expanded out.) Because (logC(X))p
j

begins with the

term Xpj , Ej(Y ) has degree pj in Y . Since eC(0) = 0, Ej(0) = 0 for all j.
Now setting Y = M ∈ Fp[T ]− {0} in (8.9), we get

[M ](X) = eC(M logC(X)) =
∑
j≥0

Ej(M)Xpj ,

so a comparison with (8.8) gives for M 6= 0 that

(8.11) aj,M (T ) = Ej(M) for 0 ≤ j ≤ degM, and Ej(M) = 0 for j > degM.

Since [0](X) = 0, also Ej(0) = 0. That and (8.11) implies Ej(X) is divisible by∏
deg h<j

(X − h),

where the product runs over all h, not just monic h, and includes h = 0. This product has
degree pj = degEj(X), so it differs from Ej(X) by a factor in Fp(T )×. Since Ej(T

j) =
aj,T j (T ) = 1 (because T j is monic), we obtain

(8.12) Ej(X) =

∏
deg h<j(X − h)∏
deg h<j(T

j − h)
=

∏
deg h<j(X − h)∏

h monic
deg h=j

h
=

∏
deg h<j(X − h)

Dj
,

where the last formula comes from Remark 8.2 and the product in the numerator includes
h = 0 for every j. Therefore when M 6= 0 and j ≤ degM ,

(8.13) aj,M = Ej(M) =

∏
deg h<j(M − h)

Dj
,

which gives a universal polynomial formula for aj,M in terms of M . The formula is also valid
for j > degM since the formula is then 0. (In particular, aj,0 = 0.) This is the analogue

of (8.7) and suggests that, on account of the degrees involved, Ej(X) is an analogue of
(
X
pj

)
and Dj , the denominator in the coefficient of Xpj in eC(X), is an analogue of (pj)!.

Example 8.8. E0(X) = X/D0 = X and E1(X) =
∏
c∈Fp(X−c)/D1 = (Xp−X)/(T p−T ),

so a0,M = E0(M) = M and a1,M = E1(M) = (Mp −M)/(T p − T ).

We can extend the polynomials Ej(X) to an analogue of all
(
X
n

)
as follows. For n ≥ 0,

write n in base p, say n = c0 + c1p+ · · ·+ ckp
k where 0 ≤ ci ≤ p− 1. Define

En(X) = E0(X)c0E1(X)c1 · · ·Ek(X)ck ∈ Fp(T )[X].

Then degEn(X) = c0 + c1p+ · · ·+ ckp
k = n and Epj (X) = Ej(X). One justification of the

analogy En(X)↔
(
X
n

)
occurs in the description of integral-valued polynomials.

• For all m ∈ Z,
(
m
n

)
∈ Z, and the polynomials

(
X
n

)
are a basis of the integral-valued

polynomials: f(X) ∈ Q[X] satisfies f(Z) ⊂ Z if and only if f(X) =
∑d

n=0 cn
(
X
n

)
with cn ∈ Z, and the coefficients are unique.
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• En(Fp[T ]) ⊂ Fp[T ] since Ej(Fp[T ]) ⊂ Fp[T ], by (8.11). The En(X)’s are an Fp[T ]-
basis of all polynomials f(X) ∈ Fp(T )[X] satisfying f(Fp[T ]) ⊂ Fp[T ], and the
Ej(X)’s are an Fp[T ]-basis of the p-polynomials f(X) satisfying f(Fp[T ]) ⊂ Fp[T ].

Remark 8.9. A wider context for this construction of a basis of integral-valued polynomials
via digit expansions (enlarging the set of Ej ’s to the En’s by writing n in base p) is in [4].

We said already that Dj , which is the common denominator of the coefficients of Ej(X),
is a Carlitz analogue of (pj)!. Carlitz considered the common denominator of the coefficients
of En(X) to be an analogue of n!. This denominator is

n!C := Dc0
0 D

c1
1 · · ·D

ck
k

where n =
∑k

i=0 cip
i with 0 ≤ ci ≤ p − 1. (Since D0 = 1, c0 plays no role in n!C .) For

example, n!C = 1 for 0 ≤ n ≤ p − 1 and p!C = D1 = T p − T . To see a genuine analogy
between n! and n!C , let’s compare their factorizations. Legendre proved

(8.14) n! =
∏
p

p
∑
s≥1[n/ps].

The irreducible factorization of n!C was determined by Sinnott and looks just like (8.14).

Theorem 8.10. For all n ≥ 0, n!C =
∏

monic π

π
∑
s≥1[n/N(π)s].

In Theorem 8.10 and below, a product over π is understood to have π irreducible.

Proof. Since n!C is a product of powers of the polynomials Dj , first we write down an
explicit formula for the Dj ’s. We know D0 doesn’t matter. For j ≥ 1, the recursive formula

Dj = (T p
j − T )Dp

j−1 from Definition 8.1 can be turned into an explicit formula:

Dj =

j∏
m=1

(T p
m − T )p

j−m
.

Therefore when n =
∑k

i=0 cip
i,

n!C =

k∏
i=1

Dci
i

=
k∏
i=1

i∏
m=1

(T p
m − T )cip

i−m

=
k∏

m=1

k∏
i=m

(T p
m − T )cip

i−m

=

k∏
m=1

(T p
m − T )cm+cm+1p+···+ckpk−m

=
k∏

m=1

(T p
m − T )[n/pm].
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In Fp[T ], T p
m−T factors into the monic irreducibles π of degree dividing m, each irreducible

appearing once. Therefore

n!C =
k∏

m=1

∏
deg π|m

π[n/pm] =
∏

deg π≤k
π
∑
m≡0 mod deg π [n/pm],

where the sum in the exponent on π runs over all m ≥ 1 that are divisible by deg π; we
don’t have to restrict to m ≤ k since if m > k then pm ≥ pk+1 > n, so [n/pm] = 0. Writing
m = sdeg π with s ≥ 1,

n!C =
∏

deg π≤k
π
∑
s≥1[n/ps deg π ] =

∏
deg π≤k

π
∑
s≥1[n/N(π)s].

We can let the product run over all monic π, not just those with degree at most k, since if
deg π ≥ k + 1 then N(π) > n and therefore [n/N(π)s] = 0 for all s ≥ 1. �

Example 8.11. For all π we have N(π) ≥ p, so the product in Theorem 8.10 is 1 for
0 ≤ n < p, which is also n!C . For n = p we have∏

monic π

π
∑
s≥1[p/N(π)s] =

∏
deg π=1

π[p/p] =
∏
c∈Fp

(T − c) = T p − T = p!C .

9. Larger constant fields

We have carried out the construction of Carlitz extensions over Fp(T ), but everything
extends to Fq(T ) as the base field for every finite field Fq. Set [T ](X) = Xq+TX rather than
Xp + TX, and define [Tn](X) by iteration and [M ](X) for M ∈ Fq[T ] by Fq-linearity (not
Fp-linearity). These are Carlitz polynomials adapted to Fq. Now [M ](X) is a q-polynomial

in X (a linear combination of X,Xq, Xq2
, and so on) and its roots ΛM in an algebraic

closure Fq(T ) form an Fq[T ]-module of size N(M) := qdegM (new definition of the norm,
adapted to the larger constant field). We get a functor A  C(A) from Fq[T ]-algebras to
Fq[T ]-modules by letting C(A) be A as an Fq-vector space with Fq[T ] acting on it through
the Carlitz polynomials rather than through the original Fq[T ]-algebra structure on A. The

particular case C(Fq(T )), which is the field Fq(T ) equipped with the action of the Carlitz
polynomials [M ](X) as defined above, is called the Carlitz module (over Fq). All properties
of Carlitz polynomials and Carlitz torsion still work, by replacing p by q everywhere.16 In
particular, for M ∈ Fq[T ] the roots of [M ](X) generate an abelian extension of Fq(T ) with
Galois group isomorphic to (Fq[T ]/M)×.

Our treatment of quadratic reciprocity in Fp[T ] for p 6= 2 extends to Fq[T ] for odd q.

The Carlitz exponential eC(X) for Fq[T ] has denominators Dj = (T q
j−T )Dq

j−1 for j ≥ 1

and D0 = 1, and the zeros of this eC(X) are Fq[T ]-multiples of a transcendental ξq that is
given by the same formula as ξp, with p replaced by q.

Appendix A. Additive Polynomials

Let A be an integral domain. A polynomial f(X) ∈ A[X] is called additive if f(X+Y ) =
f(X) + f(Y ) in A[X,Y ]. If A contains a field F then we say f(X) ∈ A[X] is F -linear if it

16In Theorems 4.5 and 6.2, for instance, the distinction between p = 2 and p 6= 2 becomes q = 2 and
q 6= 2, rather than q being even and q being odd.
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is additive and f(cX) = cf(X) for all c ∈ F .17 We will classify the additive and F -linear
polynomials.

Before we see what additive polynomials look like in general, we give a result that shows
how they can be constructed using finite additive subgroups of F . (Such subgroups are
nontrivial only in positive characteristic.)

Theorem A.1. Let A be an integral domain of characteristic p.

1) If V is a finite additive subgroup of A then the product∏
v∈V

(X − v) = X |V | + · · ·

is an additive polynomial.
2) If F is a finite field in A and V is an F -vector subspace of A, then the polynomial

in part 1 is F -linear.

Proof. 1) Call the product f(X). For indeterminates X and Y , let g(Y ) = f(X + Y ) −
f(X) − f(Y ) in A[X][Y ] = A[X,Y ]. We want to show g(Y ) = 0 in A[X,Y ]. The leading
Y -terms in f(X + Y ) and f(Y ) match, so degY (g) < |V |. Therefore we can show g(Y ) = 0
by showing g(Y ) has |V | roots in A. For each w ∈ V ,

g(w) = f(X + w)− f(X) ∈ A[X].

We will show this is 0 in A[X]. The leading X-terms of f(X+w) and f(X) match, so g(w)
is a polynomial whose X-degree is less than |V |. Since f(X +w)− f(X) vanishes when we
set X to be an arbitrary u ∈ V (since u+w and u are both roots of f), g(w) = 0 in A[X].
Since g(w) = 0 for each w ∈ V and the Y -degree of g is less than |V |, g = 0 in A[X,Y ].

2) To show f(cX) = cf(X) for all c ∈ F , we can assume c 6= 0 since the result is obvious
for c = 0. Since multiplication by c permutes V ,

f(cX) =
∏
v∈V

(cX − v) =
∏
v∈V

(cX − cv) = c|V |f(X).

Let q = |F | and d = dimF (V ), so |V | = qd. From cq = c we get c|V | = c, so f(cX) =
cf(X). �

Theorem A.2. If A is an integral domain of characteristic 0 then f(X) ∈ A[X] is additive
if and only if it has the form f(X) = aX. If A has characteristic p then f(X) ∈ A[X] is

additive if and only if it is of the form f(X) = a0X + a1X
p + a2X

p2
+ · · · + amX

pm for
some m.

Proof. The indicated examples (aX in characteristic 0 and a0X+a1X
p+a2X

p2
+· · ·+amXpm

in characteristic p) are additive.
To prove the converse, let f(X) be additive in A[X]. We apply differentiation with

respect to Y to the identity f(X + Y ) = f(X) + f(Y ) and then set Y = 0. The result is

f ′(X) = f ′(0) ∈ A. Putting f(X) =
∑d

i=0 ciX
i, we get

∑d
i=1 iciX

i−1 = c1, so ici = 0 for
i > 1. If A has characteristic 0 then ci = 0 for i > 1, so f(X) = c0 + c1X. Since f(0) = 0,
c0 = 0 so f(X) = c1X. If A has characteristic p then ci = 0 when i is not divisible by p
(with i > 1), so f(X) = c1X + g(Xp) for some g. Write c1 as a0, so f(X) = a0X + g(Xp).

17Don’t confuse this notion of an F -linear polynomial with the high school notion of a linear polynomial
as one with degree at most 1.
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If g(X) = 0 then we are done. Suppose g(X) 6= 0. Since f(0) = 0, also g(0) = 0, so g(X)
is a multiple of X and f(X) ≡ a0X mod Xp. We have

g(Xp + Y p) = g((X + Y )p)

= f(X + Y )− a0(X + Y )

= f(X) + f(Y )− a0X − a0Y

= g(Xp) + g(Y p).

This implies g(U + V ) = g(U) + g(V ), so g is additive. Therefore g(X) = a1X + h(Xp) for
some a1 ∈ A, so

f(X) = a0X + a1X
p + h(Xp2

).

If h(X) = 0 then we are done. If h(X) 6= 0 then h(X) is divisible by X, so f(X) ≡
a0X + a1X

p mod Xp2
. By a similar argument from before, h(X) is additive and this lets

us pull out an a2X
p2

term. Repeating this argument enough times, we eventually see f(X)
has the desired form since it is a polynomial. �

Corollary A.3. Let A be an integral domain containing a field F . If F is infinite, a
polynomial f(X) ∈ A[X] is F -linear if and only if f(X) = aX. If F is finite with size q

then f(X) ∈ A[X] is F -linear if and only if it is of the form f(X) = b0X + b1X
q + b2X

q2
+

· · ·+ bnX
qn for some n.

The difference between the F -linear and additive polynomials in the case of finite F is
that the exponents are q-powers rather than simply p-powers. For instance, X + Xp is
additive in characteristic p and is Fp-linear but is not Fp2-linear.

Proof. The indicated examples in the corollary (aX for infinite F and b0X+b1X
q+b2X

q2
+

· · ·+ bnX
qn when |F | = q) are F -linear.

To prove the converse, first suppose A has characteristic 0, so F is necessarily infinite.
Then additivity alone already forces f(X) = aX. When A has characteristic p, additivity

implies f(X) = a0X + a1X
p + a2X

p2
+ · · · + amX

pm for some m. The F -linearity says

f(cX) = cf(X) for all c ∈ F , so aic
pi = cai, which means cp

i
= c for all c ∈ F and all i

where ai 6= 0. For i > 0, the equation cp
i

= c has finitely many roots, so when F is infinite
with characteristic p we are forced to have ai = 0 for i > 0, so f(X) = a0X.

Now suppose F is finite with characteristic p and size q. Then the equation cp
i

= c

is satisfied for all c ∈ F if and only if Xpi − X vanishes on F , which is equivalent to

(Xq − X) | (Xpi − X) in F [X]. Since q is a power of p, such a divisibility relation holds
only when pi is a power of q (proof left as an exercise), which means the only terms in f(X)
with nonzero coefficients are those where the exponent of X is a q-power. This makes f(X)
of the desired form. �

Theorem A.2 and Corollary A.3 and their proofs carry over from polynomials to power
series: the additive and F -linear power series are the same as the corresponding polynomials
except there need not be a final term in the series. Checking the details is left as an exercise.
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