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Look at the power series for
√

1 + x, 3
√

1 + x, and 6
√

1 + x at x = 0:
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It appears that the Taylor coefficients are all rational. Now look at their denominators. In√
1 + x each coefficient has denominator that is a power of 2, in 3

√
1 + x each coefficient has

denominator that is a power of 3 (243 = 35 and 729 = 36), and in 6
√

1 + x each coefficient
is a power of 2 times a power of 3 (1296 = 2434, 31104 = 2735, 186624 = 2836, and
6718464 = 21038). We will show the power series of n

√
1 + x at x = 0 has rational Taylor

coefficients and the prime factors of the denominators of the coefficients divide n.
It is not hard to get a formula for the coefficients in n

√
1 + x = (1 + x)1/n: the coefficient

of xk is
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so the coefficient of xk is
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These numbers for k ≥ 0 are all rational. They are binomial coefficients evaluated at 1/n.
For r ∈ Q the power series for (1 + x)r at x = 0 has coefficients that are binomial

coefficients evaluated at r:

(1 + x)r =
∑
k≥0

r(r − 1)(r − 2) · · · (r − (k − 1))

k!
xk =

∑
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(
r

k

)
xk.

What primes occur in the denominators of
(
r
k

)
? Writing r = a/b in reduced form,(

a/b

k

)
=

(a/b)(a/b− 1)(a/b− 2) · · · (a/b− (k − 1))

k!
=

a(a− b)(a− 2b) · · · (a− kb)

bkk!

and it is obvious that the only possible primes in the denominator are prime factors of b or
a prime factor of k!. It is true, but not at all clear, that only prime factors of b matter: a
prime factor of k! that is not a factor of b gets completely canceled out when the ratio in(
r
k

)
is simplified. We will explain this purely algebraic phenomenon by using p-adic limits!

Theorem 1. For rational r, a prime dividing the denominator of
(
r
k

)
must divide the

denominator of r. In particular, a prime dividing the denominator of
(1/n

k

)
must divide n.
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Proof. To prove the theorem we will prove the contrapositive: each prime p that does not
divide the denominator of r also does not divide the denominator of

(
r
k

)
. Expressed in terms

of p-adic absolute values, this says: if |r|p ≤ 1 then |
(
r
k

)
|p ≤ 1 for k ≥ 0. To prove this,

observe that the expression(
x

k

)
=

x(x− 1)(x− 2) · · · (x− (k − 1))

k!

is a polynomial in x with rational coefficients, so it is a continuous function Q→ Q when Q
has the p-adic topology just as it is a continuous function Q→ Q when Q has its usual real
topology. (For every field F and absolute value | · | on F , polynomials with coefficients in F
are continuous functions F → F with respect to | · |.) When |r|p ≤ 1, r is a p-adic limit of
nonnegative integers: writing r = a/b with p - b, for each i ≥ 1 we can solve bmi ≡ a mod pi

for an integer mi, so |r −mi|p = |a/b −mi|p = |(a − bmi)/b|p = |a − bmi|p ≤ 1/pi. Thus
r = limi→∞mi where the limit is using the p-adic absolute value. By p-adic continuity of
the polynomial function

(
x
k

)
, (

r

k

)
= lim

i→∞

(
mi

k

)
.

Each
(
mi
k

)
is in Z since binomial coefficients with nonnegative integers upstairs are integers

(
(
mi
k

)
= 0 if 0 ≤ mi < k and

(
mi
k

)
∈ Z+ if mi ≥ k, by combinatorics). Thus |

(
mi
k

)
|p ≤ 1 for

each i, so taking a p-adic limit of
(
mi
k

)
tells us |

(
r
k

)
|p ≤ 1. �

Example 2. When the binomial coefficient
(
33/20

7

)
is expanded out and simplified, the

denominator can only have prime factors 2 and 5. Explicitly,(
33/20

7

)
= − 352590381

102400000000
= −352590381

21858
.

The theorem we proved admits a converse.

Theorem 3. Each prime p that divides the denominator of r also divides the denominator
of every

(
r
k

)
for k ≥ 1.

Proof. Let’s reformulate the theorem in terms of p-adic absolute values: if |r|p > 1 then
|
(
r
k

)
|p > 1 for all k ≥ 1. (This is not true for k = 0.) The top of

(
r
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)
is r(r−1) · · · (r−(k−1)),

and for each positive integer j we have |r − j|p = |r|p since |r|p > 1 ≥ |j|p so∣∣∣∣(rk
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> 1. �

Example 4. Every Taylor coefficient of 6
√

1 + x besides the constant term must have its
reduced form denominator divisible by 2 and by 3; it can never be a power of just one of
those primes.


