BINOMIAL COEFFICIENTS AND p-ADIC LIMITS

KEITH CONRAD

Look at the power series for $\sqrt{1+x}, \sqrt[3]{1+x}$, and $\sqrt[6]{1+x}$ at $x=0$:

$$
\begin{aligned}
& \sqrt{1+x}=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\frac{5}{128} x^{4}+\frac{7}{256} x^{5}-\frac{21}{1024} x^{6}+\cdots \\
& \sqrt[3]{1+x}=1+\frac{1}{3} x-\frac{1}{9} x^{2}+\frac{5}{81} x^{3}-\frac{10}{243} x^{4}+\frac{22}{729} x^{5}-\frac{154}{6561} x^{6}+\cdots \\
& \sqrt[6]{1+x}=1+\frac{1}{6} x-\frac{5}{72} x^{2}+\frac{55}{1296} x^{3}-\frac{935}{31104} x^{4}+\frac{4301}{186624} x^{5}-\frac{124729}{6718464} x^{6}+\cdots
\end{aligned}
$$

It appears that the Taylor coefficients are all rational. Now look at their denominators. In $\sqrt{1+x}$ each coefficient has denominator that is a power of 2 , in $\sqrt[3]{1+x}$ each coefficient has denominator that is a power of $3\left(243=3^{5}\right.$ and $\left.729=3^{6}\right)$, and in $\sqrt[6]{1+x}$ each coefficient is a power of 2 times a power of $3\left(1296=2^{4} 3^{4}, 31104=2^{7} 3^{5}, 186624=2^{8} 3^{6}\right.$, and $6718464=2^{10} 3^{8}$). We will show the power series of $\sqrt[n]{1+x}$ at $x=0$ has rational Taylor coefficients and the prime factors of the denominators of the coefficients divide n.

It is not hard to get a formula for the coefficients in $\sqrt[n]{1+x}=(1+x)^{1 / n}$: the coefficient of x^{k} is

$$
\frac{d^{k}}{d x^{k}}(1+x)^{1 / n}=\frac{1}{n}\left(\frac{1}{n}-1\right)\left(\frac{1}{n}-2\right) \cdots\left(\frac{1}{n}-(k-1)\right)(1+x)^{1 / n-k}
$$

so the coefficient of x^{k} is

$$
\left.\frac{(\sqrt[n]{1+x})^{(k)}}{k!}\right|_{x=0}=\frac{(1 / n)(1 / n-1) \cdots(1 / n-(k-1))}{k!}=\binom{1 / n}{k}
$$

These numbers for $k \geq 0$ are all rational. They are binomial coefficients evaluated at $1 / n$.
For $r \in \mathbf{Q}$ the power series for $(1+x)^{r}$ at $x=0$ has coefficients that are binomial coefficients evaluated at r :

$$
(1+x)^{r}=\sum_{k \geq 0} \frac{r(r-1)(r-2) \cdots(r-(k-1))}{k!} x^{k}=\sum_{k \geq 0}\binom{r}{k} x^{k} .
$$

What primes occur in the denominators of $\binom{r}{k}$? Writing $r=a / b$ in reduced form,

$$
\binom{a / b}{k}=\frac{(a / b)(a / b-1)(a / b-2) \cdots(a / b-(k-1))}{k!}=\frac{a(a-b)(a-2 b) \cdots(a-k b)}{b^{k} k!}
$$

and it is obvious that the only possible primes in the denominator are prime factors of b or a prime factor of k !. It is true, but not at all clear, that only prime factors of b matter: a prime factor of k ! that is not a factor of b gets completely canceled out when the ratio in $\binom{r}{k}$ is simplified. We will explain this purely algebraic phenomenon by using p-adic limits!
Theorem 1. For rational r, a prime dividing the denominator of $\binom{r}{k}$ must divide the denominator of r. In particular, a prime dividing the denominator of $\binom{1 / n}{k}$ must divide n.

Proof. To prove the theorem we will prove the contrapositive: each prime p that does not divide the denominator of r also does not divide the denominator of $\binom{r}{k}$. Expressed in terms of p-adic absolute values, this says: if $|r|_{p} \leq 1$ then $\left|\binom{r}{k}\right|_{p} \leq 1$ for $k \geq 0$. To prove this, observe that the expression

$$
\binom{x}{k}=\frac{x(x-1)(x-2) \cdots(x-(k-1))}{k!}
$$

is a polynomial in x with rational coefficients, so it is a continuous function $\mathbf{Q} \rightarrow \mathbf{Q}$ when \mathbf{Q} has the p-adic topology just as it is a continuous function $\mathbf{Q} \rightarrow \mathbf{Q}$ when \mathbf{Q} has its usual real topology. (For every field F and absolute value $|\cdot|$ on F, polynomials with coefficients in F are continuous functions $F \rightarrow F$ with respect to $|\cdot|$.) When $|r|_{p} \leq 1, r$ is a p-adic limit of nonnegative integers: writing $r=a / b$ with $p \nmid b$, for each $i \geq 1$ we can solve $b m_{i} \equiv a \bmod p^{i}$ for an integer m_{i}, so $\left|r-m_{i}\right|_{p}=\left|a / b-m_{i}\right|_{p}=\left|\left(a-b m_{i}\right) / b\right|_{p}=\left|a-b m_{i}\right|_{p} \leq 1 / p^{i}$. Thus $r=\lim _{i \rightarrow \infty} m_{i}$ where the limit is using the p-adic absolute value. By p-adic continuity of the polynomial function $\binom{x}{k}$,

$$
\binom{r}{k}=\lim _{i \rightarrow \infty}\binom{m_{i}}{k} .
$$

Each $\binom{m_{i}}{k}$ is in \mathbf{Z} since binomial coefficients with nonnegative integers upstairs are integers $\left(\binom{m_{i}}{k}=0\right.$ if $0 \leq m_{i}<k$ and $\binom{m_{i}}{k} \in \mathbf{Z}^{+}$if $m_{i} \geq k$, by combinatorics). Thus $\left|\binom{m_{i}}{k}\right|_{p} \leq 1$ for each i, so taking a p-adic limit of $\binom{m_{i}}{k}$ tells us $\left|\binom{r}{k}\right|_{p} \leq 1$.
Example 2. When the binomial coefficient $\left(\begin{array}{c}33 / 20\end{array}\right)$ is expanded out and simplified, the denominator can only have prime factors 2 and 5. Explicitly,

$$
\binom{33 / 20}{7}=-\frac{352590381}{102400000000}=-\frac{352590381}{2^{18} 5^{8}} .
$$

The theorem we proved admits a converse.
Theorem 3. Each prime p that divides the denominator of r also divides the denominator of every $\binom{r}{k}$ for $k \geq 1$.
Proof. Let's reformulate the theorem in terms of p-adic absolute values: if $|r|_{p}>1$ then $\left.\left|\binom{r}{k}\right|\right|_{p}>1$ for all $k \geq 1$. (This is not true for $k=0$.) The top of $\binom{r}{k}$ is $r(r-1) \cdots(r-(k-1))$, and for each positive integer j we have $|r-j|_{p}=|r|_{p}$ since $|r|_{p}>1 \geq|j|_{p}$ so

$$
\begin{aligned}
\left|\binom{r}{k}\right|_{p} & =\left|\frac{r(r-1)(r-2) \cdots(r-(k-1))}{k!}\right|_{p} \\
& =\frac{|r|_{p}|r-1|_{p}|r-2|_{p} \cdots|r-(k-1)|_{p}}{|k!|_{p}} \\
& =\frac{|r|_{p}^{k}}{|k!|_{p}} \\
& =|r|_{p}^{k} p^{\operatorname{ord}_{p}(k!)} \\
& \geq|r|_{p}^{k} \\
& >1 .
\end{aligned}
$$

Example 4. Every Taylor coefficient of $\sqrt[6]{1+x}$ besides the constant term must have its reduced form denominator divisible by 2 and by 3 ; it can never be a power of just one of those primes.

