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1. Introduction

An automorphism of a field K is an isomorphism of K with itself: a function f : K → K
that is a bijective field homomorphism (additive and multiplicative). For example, the
identity function f(x) = x is an automorphism of K. Here are two examples of non-identity
automorphisms of fields.

Example 1.1. Complex conjugation is a field automorphism of C. If f : C → C by
f(a+ bi) = a− bi for a, b ∈ R then f is a bijection since it is its own inverse (f(f(z)) = z).
It is additive and multiplicative since

f((a+ bi) + (c+ di)) = f((a+ c) + (b+ d)i)

= (a+ c)− (b+ d)i

= (a− bi) + (c− di)
= f(a+ bi) + f(c+ di)

and

f((a+ bi)(c+ di)) = f((ac− bd) + (ad+ bc)i)

= (ac− bd)− (ad+ bc)i

= (a− bi)(c− di)
= f(a+ bi)f(c+ di).

Example 1.2. The set Q[
√

2] = {a+ b
√

2 : a, b ∈ Q} is a subfield of R: it’s clearly closed
under addition and negation, it’s closed under multiplication because

(a+ b
√

2)(c+ d
√

2) = (ac+ 2bd) + (ad+ bc)
√

2

and it’s closed under inversion because

1

a+ b
√

2
=

a− b
√

2

(a+ b
√

2)(a− b
√

2)
=
a− b

√
2

a2 − 2b2
=

a

a2 − 2b2
− b

a2 − 2b2

√
2.

The denominator a2 − 2b2 is not 0, since otherwise 2 = (a/b)2, which contradicts
√

2 being
irrational.

On Q[
√

2] we have a conjugation operation: f(a + b
√

2) = a − b
√

2.1 That f is an
automorphism of Q[

√
2] is similar to complex conjugation being an automorphism of C: f

1This is well-defined because the rational coefficients of a number in Q[
√

2] are unique: if a+b
√

2 = c+d
√

2

then a = c and b = d. Indeed, the equation implies a− c = (d− b)
√

2, and if b 6= d then
√

2 = (a− c)/(d− b)
would be rational, which is false, so b = d and thus a = c.

1



2 KEITH CONRAD

is bijective since it is its own inverse (f(f(a + b
√

2)) = a + b
√

2), and it is additive and
multiplicative since

f((a+ b
√

2) + (c+ d
√

2)) = f((a+ c) + (b+ d)
√

2)

= (a+ c)− (b+ d)
√

2

= (a− b
√

2) + (c− d
√

2)

= f(a+ b
√

2) + f(c+ d
√

2)

and

f((a+ b
√

2)(c+ d
√

2)) = f((ac+ 2bd) + (ad+ bc)
√

2)

= (ac+ 2bd)− (ad+ bc)
√

2

= (a− b
√

2)(c− d
√

2)

= f(a+ b
√

2)f(c+ d
√

2).

As an illustration of the similarities between R and Qp, we will show the only automor-
phism of each field is the identity. In both cases this will be derived from the dense subset
Q having that same property: its only automorphism is the identity. However, bear in mind
that even when field operations are continuous, continuity is not a necessary property of a
field automorphism. For example, since Q[

√
2] is inside of R we can talk about continuous

functions on Q[
√

2] and the automorphism f in Example 1.2 is not continuous: there are
rational numbers rn that tend to

√
2, and f(rn) = rn does not tend to f(

√
2) = −

√
2. On

the other hand, complex conjugation on C is continuous.

2. Field automorphisms of Q

Theorem 2.1. The only field homomorphism Q → Q is the identity. In particular, the
only field automorphism of Q is the identity.

Proof. Let f : Q→ Q be a field homomorphism. Since 12 = 1 we get f(1)2 = f(1), so f(1)
is 0 or 1. If f(1) = 0 then for all x ∈ Q we have f(x) = f(x · 1) = f(x)f(1) = f(x) · 0 = 0,
so f is identically 0. The zero function is not considered to be a homomorphism of fields, so
f(1) = 1. Then by induction we get f(n) = n for n ∈ Z+, so f(−n) = −f(n) by additivity,
and thus f(n) = n for all n ∈ Z. Finally, for any r ∈ Q, writing r = a/b with a, b ∈ Z
implies from br = a that f(b)f(r) = f(a), so f(r) = f(a)/f(b) = a/b = r. �

3. Field automorphisms of R

Theorem 3.1. The only field automorphism R→ R is the identity.

Proof. Let f : R→ R be a field automorphism.
Step 1: f(r) = r for all r ∈ Q.
The same reasoning as in the proof of Theorem 2.1 shows f(1) = 1 and then from this

f(r) = r for all r ∈ Q.
Step 2: f preserves inequalities.
The key point is that being positive can be described algebraically: x > 0 if and only if x

is a nonzero square in R. Therefore if x > 0, writing x = y2 implies f(x) = f(y2) = f(y)2,
so f(x) > 0 since f(y) 6= 0. (A field automorphism has f(0) = 0 and f is injective, so
y 6= 0 =⇒ f(y) 6= 0.) If x > x′, then x−x′ > 0 so f(x−x′) > 0. Since f(x−x′) = f(x)−f(x′)
we get f(x)− f(x′) > 0, so f(x) > f(x′).
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Step 3: f(x) = x for all x ∈ R.
For each x ∈ R there are rational numbers rn and sn such that rn < x < sn for all

n and rn → x− and sn → x+. Since f preserves inequalities, f(rn) < f(x) < f(sn), so
rn < f(x) < sn since rn and sn are rational. Letting n→∞, rn < f(x) =⇒ x ≤ f(x) and
f(x) < sn =⇒ f(x) ≤ x, so f(x) = x. �

In this proof we did not use surjectivity of f , only that it is a field homomorphism
R → R. (We did need y 6= 0 =⇒ f(y) 6= 0, but this is true for all field homomorphisms:
from f(1) = 1 we get for y 6= 0 that 1 = y(1/y), so 1 = f(1) = f(y)f(1/y) and thus
f(y) 6= 0.) Therefore we have proved a slightly stronger result.

Corollary 3.2. The only field homomorphism R→ R is the identity.

4. Field automorphisms of Qp

Theorem 4.1. The only field automorphism of Qp is the identity.

Proof. Let f : Qp → Qp be a field automorphism.
Step 1: f(r) = r for all r ∈ Q.
The argument is the same one used in the proof of Theorem 3.1.
Step 2: If |x|p = 1 then |f(x)|p = 1.
We use the multiplicative decomposition

Z×p = µp−1 × (1 + pZp).

For x ∈ Z×p write x = ωv where ωp−1 = 1 and v ∈ 1 + pZp. Then f(x) = f(ω)f(v). Since

ωp−1 = 1 we get f(ω)p−1 = f(1) = 1, so |f(ω)|p = 1. For every n ∈ Z+ that is not divisible
by p, v is an nth power in Zp by Hensel’s lemma for the polynomial Xn−v with approximate
root 1. When v is an nth power, f(v) is also an nth power (v = an =⇒ f(v) = f(a)n), so
f(v) is an nth power for infinitely many positive integers n. Thus n | ordp f(v) for infinitely
many n, so ordp(f(v)) = 0 and therefore |f(v)|p = 1. Finally, |f(x)|p = |f(ω)|p|f(v)|p = 1.

Step 3: For x and y in Qp, |f(x)− f(y)|p = |x− y|p.
This is clear if x = y, so assume x 6= y. Write x − y = pnu where u ∈ Z×p . Then

f(x)−f(y) = f(x−y) = f(pnu) = f(p)nf(u). By Step 1 we have f(p) = p, so f(x)−f(y) =
pnf(u). By Step 2 we have |f(u)|p = 1, so |f(x)− f(y)|p = |pn|p = 1/pn = |x− y|p.

Step 4: f(x) = x for all x ∈ Qp.
For each x ∈ Qp let rn be a sequence of rational numbers tending p-adically to x, so

|x − rn|p → 0 as n → ∞. By Step 3 |x − rn|p = |f(x) − f(rn)|p, which equals |f(x) − rn|p
since f(rn) = rn (Step 1). Thus |f(x)− rn|p → 0 as n→∞, so f(x) = limn→∞ rn = x. �

Our proof did not use surjectivity of f , so just as in the real case we really proved a
stronger result.

Corollary 4.2. The only field homomorphism Qp → Qp is the identity.

Remark 4.3. The real numbers lie in the larger field C, which is 2-dimensional over R,
but it turns out we can’t dig inside R in a finite-dimensional way: if a field K is contained
in R and R is finite-dimensional over K then K = R. The proof uses the complex numbers
and a piece of algebra called the Artin–Schreier theorem. There is a p-adic analogue: if a
field K is contained in Qp and Qp is finite-dimensional over K then K = Qp. The proof
uses a generalization of the automatic continuity in the proof of Theorem 4.1, together with
Galois theory. See https://math.stackexchange.com/questions/2893911.

https://math.stackexchange.com/questions/2893911
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5. Automorphisms of a rational function field

For a field K, we write K(t) for the field of rational functions in one indeterminate with
coefficients in K. A field automorphism of K(t) can be created using an invertible linear
fractional transformation: f(t) 7→ f((at+ b)/(ct+ d)) for all f ∈ K(t), where a, b, c, d ∈ K
and ad− bc 6= 0. Such an automorphism of K(t) fixes all the constants (the elements of K)
and it can be shown that every field automorphism of K(t) that fixes the elements of K
arises in this way.2

It is not true in general that a field automorphism of K(t) has to fix all of K, or even
map K to K. For example, if K = F (u) for a field F and an indeterminate u, then
K(t) = F (u)(t) = F (t)(u) and we get a field automorphism of K(t) by swapping the
elements t and u and fixing the elements of F . However, if K is R or Qp, then we’ll use
our earlier work to show the field automorphisms of K(t) must fix all of K, so they are
described using linear fractional transformations as indicated above.

Theorem 5.1. Each field automorphism of R(t) fixes every element of R.

Proof. Each real number is an nth power of some real number for infinitely many positive
integers n. For example, this is true for odd n. We will use this property to show for each
field automorphism ϕ : R(t) → R(t) that ϕ(R) ⊂ R. Then ϕ is a field homomorphism
R→ R, so ϕ fixes all of R by Corollary 3.2.

Since ϕ is multiplicative, if c ∈ R then ϕ(c) is an nth power for infinitely many n ≥ 1
(e.g., for odd n). To show ϕ(c) ∈ R, it suffices to show nonconstant elements of R(t) are
not nth powers for infinitely many n.

Let f(t) ∈ R(t) with f(t) 6∈ R. Write f in reduced form as g/h, where g and h are in
R[t] − {0} and are relatively prime. They are not both constant, since f is not constant.
We’ll show that if f is an nth power then n ≤ max(deg g,deg h).

Suppose f(t) is an nth power of a rational function written in reduced form as a(t)/b(t), so
a(t) and b(t) are relatively prime polynomials and they are not both constant (otherwise f =
(a/b)n would be constant, but f is nonconstant). Since g/h = (a/b)n, clearing denominators
gives us bng = anh in R[t]. From an | bng and a and b being relatively prime, an | g. In a
similar way, bn | h. If a is nonconstant then g is nonconstant (it’s a multiple of an), and
an | g ⇒ deg(an) ≤ deg g, so n deg a ≤ deg g. Thus n ≤ deg g (since deg a > 0). If b is
nonconstant, then we get n ≤ deg h in a similar way. At least one of these bounds on n
holds, so n ≤ max(deg g,deg h). �

The argument in the last paragraph of the previous proof did not depend on the coeffi-
cients being in R. For all fields K, no element of K(t)−K can be an nth power for infinitely
many n. That will let us carry over part of the previous proof from R(t) to Qp(t).

Theorem 5.2. Each field automorphism of Qp(t) fixes every element of Qp.

Proof. As in the previous theorem, it suffices (now by Corollary 4.2) to show a field auto-
morphism ϕ of Qp(t) maps Qp to Qp.

Unlike R, elements of Qp might not be nth powers in Qp infinitely often: p is not an nth
power in Qp for n > 1. But elements of 1 + pZp are nth powers infinitely often, and that
will turn out to be enough.

2See https://math.stackexchange.com/questions/13129.

https://math.stackexchange.com/questions/13129
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Step 1: ϕ(1+pZp) ⊂ Qp. Each v ∈ 1+pZp is an nth power in 1+pZp for infinitely many
n, so ϕ(v) is an nth power in Qp(t) for infinitely many n. Just as in the previous proof, we
conclude that ϕ(v) ∈ Qp (in fact, ϕ(v) ∈ Z×p , but that’s not strictly needed here).

Step 2: ϕ(Qp) ⊂ Qp. This is obvious at 0. For x ∈ Q×p , write x = pnu for u ∈ Z×p and

u = ωv, where ωp−1 = 1 and v ∈ 1 + pZp. Then ϕ(x) = ϕ(pnωv) = ϕ(p)nϕ(ω)ϕ(v). By
Step 1, ϕ(v) ∈ Qp. Why are ϕ(p) and ϕ(ω) in Qp?

Since ϕ fixes every rational number (from fixing 1 and being a field homomorphism),
ϕ(p) = p. Since ϕ(ω)p−1 = ϕ(ωp−1) = ϕ(1) = 1, ϕ(ω) is a (p − 1)-th root of unity. The
polynomial T p−1 − 1 has p − 1 roots in Qp, which matches the degree of the polynomial,
so all of the roots of T p−1 − 1 in a larger field like Qp(t) must be its roots in Qp, and thus
ϕ(ω) ∈ Qp. �
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