FIELD AUTOMORPHISMS OF R AND Q_p

KEITH CONRAD

1. INTRODUCTION

An *automorphism* of a field K is an isomorphism of K with itself: a function $f: K \to K$ that is a bijective field homomorphism (additive and multiplicative). For example, the identity function f(x) = x is an automorphism of K. Here are two examples of non-identity automorphisms of fields.

Example 1.1. Complex conjugation is a field automorphism of **C**. If $f: \mathbf{C} \to \mathbf{C}$ by f(a+bi) = a - bi for $a, b \in \mathbf{R}$ then f is a bijection since it is its own inverse (f(f(z)) = z). It is additive and multiplicative since

$$f((a+bi) + (c+di)) = f((a+c) + (b+d)i)$$

= $(a+c) - (b+d)i$
= $(a-bi) + (c-di)$
= $f(a+bi) + f(c+di)$

and

$$f((a+bi)(c+di)) = f((ac-bd) + (ad+bc)i) = (ac-bd) - (ad+bc)i = (a-bi)(c-di) = f(a+bi)f(c+di).$$

Example 1.2. The set $\mathbf{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbf{Q}\}$ is a subfield of \mathbf{R} : it's clearly closed under addition and negation, it's closed under multiplication because

$$(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}$$

and it's closed under inversion because

$$\frac{1}{a+b\sqrt{2}} = \frac{a-b\sqrt{2}}{(a+b\sqrt{2})(a-b\sqrt{2})} = \frac{a-b\sqrt{2}}{a^2-2b^2} = \frac{a}{a^2-2b^2} - \frac{b}{a^2-2b^2}\sqrt{2}.$$

The denominator $a^2 - 2b^2$ is not 0, since otherwise $2 = (a/b)^2$, which contradicts $\sqrt{2}$ being irrational.

On $\mathbf{Q}(\sqrt{2})$ we have a conjugation operation: $f(a + b\sqrt{2}) = a - b\sqrt{2}$.¹ That f is an automorphism of $\mathbf{Q}(\sqrt{2})$ is similar to complex conjugation being an automorphism of \mathbf{C} :

¹This is well-defined because the rational coefficients of a number in $\mathbf{Q}(\sqrt{2})$ are unique: if $a + b\sqrt{2} = c + d\sqrt{2}$ then a = c and b = d. Indeed, the equation implies $a - c = (d - b)\sqrt{2}$, and if $b \neq d$ then $\sqrt{2} = (a - c)/(d - b)$ would be rational, which is false, so b = d and thus a = c.

KEITH CONRAD

f is bijective since it is its own inverse $(f(f(a + b\sqrt{2})) = a + b\sqrt{2})$, and it is additive and multiplicative since

$$f((a + b\sqrt{2}) + (c + d\sqrt{2})) = f((a + c) + (b + d)\sqrt{2})$$

= $(a + c) - (b + d)\sqrt{2}$
= $(a - b\sqrt{2}) + (c - d\sqrt{2})$
= $f(a + b\sqrt{2}) + f(c + d\sqrt{2})$

and

$$f((a + b\sqrt{2})(c + d\sqrt{2})) = f((ac + 2bd) + (ad + bc)\sqrt{2})$$

= $(ac + 2bd) - (ad + bc)\sqrt{2}$
= $(a - b\sqrt{2})(c - d\sqrt{2})$
= $f(a + b\sqrt{2})f(c + d\sqrt{2}).$

As an illustration of the similarities between \mathbf{R} and \mathbf{Q}_p , we will show the only automorphism of each field is the identity. In both cases this will be derived from the dense subset \mathbf{Q} having that same property: its only automorphism is the identity. However, bear in mind that even when field operations are continuous, continuity is not a necessary property of a field automorphism. For example, since $\mathbf{Q}(\sqrt{2})$ is inside of \mathbf{R} we can talk about continuous functions on $\mathbf{Q}(\sqrt{2})$ and the automorphism f in Example 1.2 is not continuous: there are rational numbers r_n that tend to $\sqrt{2}$, and $f(r_n) = r_n$ does not tend to $f(\sqrt{2}) = -\sqrt{2}$. On the other hand, complex conjugation on \mathbf{C} is continuous.

2. Field automorphisms of \mathbf{Q}

Theorem 2.1. The only field homomorphism $\mathbf{Q} \to \mathbf{Q}$ is the identity. In particular, the only field automorphism of \mathbf{Q} is the identity.

Proof. Let $f: \mathbf{Q} \to \mathbf{Q}$ be a field homomorphism. Since $1^2 = 1$ we get $f(1)^2 = f(1)$, so f(1) is 0 or 1. If f(1) = 0 then for all $x \in \mathbf{Q}$ we have $f(x) = f(x \cdot 1) = f(x)f(1) = f(x) \cdot 0 = 0$, so f is identically 0. The zero function is not considered to be a homomorphism of fields, so f(1) = 1. Then by induction we get f(n) = n for $n \in \mathbf{Z}^+$, so f(-n) = -f(n) by additivity, and thus f(n) = n for all $n \in \mathbf{Z}$. Finally, for any $r \in \mathbf{Q}$, writing r = a/b with $a, b \in \mathbf{Z}$ implies from br = a that f(b)f(r) = f(a), so f(r) = f(a)/f(b) = a/b = r.

3. Field automorphisms of \mathbf{R}

Theorem 3.1. The only field automorphism $\mathbf{R} \to \mathbf{R}$ is the identity.

Proof. Let $f: \mathbf{R} \to \mathbf{R}$ be a field automorphism.

Step 1: f(r) = r for all $r \in \mathbf{Q}$.

The same reasoning as in the proof of Theorem 2.1 shows f(1) = 1 and then from this f(r) = r for all $r \in \mathbf{Q}$.

Step 2: f preserves inequalities.

The key point is that being positive can be described algebraically: x > 0 if and only if x is a nonzero square in **R**. Therefore if x > 0, writing $x = y^2$ implies $f(x) = f(y^2) = f(y)^2$, so f(x) > 0 since $f(y) \neq 0$. (A field automorphism has f(0) = 0 and f is injective, so $y \neq 0 \implies f(y) \neq 0$.) If x > x', then x - x' > 0 so f(x - x') > 0. Since f(x - x') = f(x) - f(x') we get f(x) - f(x') > 0, so f(x) > f(x').

 $\mathbf{2}$

Step 3: f(x) = x for all $x \in \mathbf{R}$.

For each $x \in \mathbf{R}$ there are rational numbers r_n and s_n such that $r_n < x < s_n$ for all n and $r_n \to x^-$ and $s_n \to x^+$. Since f preserves inequalities, $f(r_n) < f(x) < f(s_n)$, so $r_n < f(x) < s_n$ since r_n and s_n are rational. Letting $n \to \infty$, $r_n < f(x) \Longrightarrow x \le f(x)$ and $f(x) < s_n \Longrightarrow f(x) \le x$, so f(x) = x.

In this proof we did not use surjectivity of f, only that it is a field homomorphism $\mathbf{R} \to \mathbf{R}$. (We did need $y \neq 0 \Longrightarrow f(y) \neq 0$, but this is true for all field homomorphisms: from f(1) = 1 we get for $y \neq 0$ that 1 = y(1/y), so 1 = f(1) = f(y)f(1/y) and thus $f(y) \neq 0$.) Therefore we have proved a slightly stronger result.

Corollary 3.2. The only field homomorphism $\mathbf{R} \to \mathbf{R}$ is the identity.

4. Field automorphisms of \mathbf{Q}_p

Theorem 4.1. The only field automorphism of \mathbf{Q}_p is the identity.

Proof. Let $f: \mathbf{Q}_p \to \mathbf{Q}_p$ be a field automorphism.

Step 1: f(r) = r for all $r \in \mathbf{Q}$.

The argument is the same one used in the proof of Theorem 3.1.

Step 2: If $|x|_p = 1$ then $|f(x)|_p = 1$.

We use the multiplicative decomposition

$$\mathbf{Z}_p^{\times} = \mu_{p-1} \times (1 + p\mathbf{Z}_p).$$

For $x \in \mathbf{Z}_p^{\times}$ write $x = \omega v$ where $\omega^{p-1} = 1$ and $v \in 1 + p\mathbf{Z}_p$. Then $f(x) = f(\omega)f(v)$. Since $\omega^{p-1} = 1$ we get $f(\omega)^{p-1} = f(1) = 1$, so $|f(\omega)|_p = 1$. For every $n \in \mathbf{Z}^+$ that is not divisible by p, v is an nth power in \mathbf{Z}_p by Hensel's lemma for the polynomial $X^n - v$ with approximate root 1. When v is an nth power, f(v) is also an nth power $(v = a^n \Longrightarrow f(v) = f(a)^n)$, so f(v) is an nth power for infinitely many positive integers n. Since f is injective, $f(v) \neq 0$. Then $n \mid \operatorname{ord}_p f(v)$ for infinitely many n, so $\operatorname{ord}_p(f(v)) = 0$ and therefore $|f(v)|_p = 1$. Finally, $|f(x)|_p = |f(\omega)|_p |f(v)|_p = 1$.

Step 3: For x and y in \mathbf{Q}_p , $|f(x) - f(y)|_p = |x - y|_p$.

This is clear if x = y, so assume $x \neq y$. Write $x - y = p^n u$ where $u \in \mathbf{Z}_p^{\times}$. Then $f(x) - f(y) = f(x-y) = f(p^n u) = f(p)^n f(u)$. By Step 1 we have f(p) = p, so $f(x) - f(y) = p^n f(u)$. By Step 2 we have $|f(u)|_p = 1$, so $|f(x) - f(y)|_p = |p^n|_p = 1/p^n = |x - y|_p$. Step 4: f(x) = x for all $x \in \mathbf{Q}_p$.

For each $x \in \mathbf{Q}_p$ let r_n be a sequence of rational numbers tending *p*-adically to *x*, so $|x - r_n|_p \to 0$ as $n \to \infty$. By Step 3 $|x - r_n|_p = |f(x) - f(r_n)|_p$, which equals $|f(x) - r_n|_p$ since $f(r_n) = r_n$ (Step 1). Thus $|f(x) - r_n|_p \to 0$ as $n \to \infty$, so $f(x) = \lim_{n \to \infty} r_n = x$. \Box

Our proof did not use surjectivity of f, so just as in the real case we really proved a stronger result.

Corollary 4.2. The only field homomorphism $\mathbf{Q}_p \to \mathbf{Q}_p$ is the identity.

Remark 4.3. The real numbers lie in the larger field \mathbf{C} , which is 2-dimensional over \mathbf{R} , but it turns out we can't dig inside \mathbf{R} in a finite-dimensional way: if a field K is contained in \mathbf{R} and \mathbf{R} is finite-dimensional over K then $K = \mathbf{R}$. The proof uses the complex numbers and a piece of algebra called the Artin–Schreier theorem. There is a *p*-adic analogue: if a field K is contained in \mathbf{Q}_p and \mathbf{Q}_p is finite-dimensional over K then $K = \mathbf{Q}_p$. The proof uses a generalization of the automatic continuity in the proof of Theorem 4.1, together with Galois theory. See https://math.stackexchange.com/questions/2893911.

KEITH CONRAD

5. Automorphisms of a rational function field

For a field K, we write K(t) for the field of rational functions in one indeterminate with coefficients in K. A field automorphism of K(t) can be created using an invertible linear fractional transformation: $f(t) \mapsto f((at+b)/(ct+d))$ for all $f \in K(t)$, where $a, b, c, d \in K$ and $ad - bc \neq 0$. Such an automorphism of K(t) fixes all the constants (the elements of K) and it can be shown that every field automorphism of K(t) that fixes the elements of K arises in this way.²

It is not true in general that a field automorphism of K(t) has to fix all of K, or even map K to K. For example, if K = F(u) for a field F and an indeterminate u, then K(t) = F(u)(t) = F(t)(u) and we get a field automorphism of K(t) by swapping the elements t and u and fixing the elements of F. However, if K is \mathbf{R} or \mathbf{Q}_p , then we'll use our earlier work to show the field automorphisms of K(t) must fix all of K, so they are described using linear fractional transformations as indicated above.

Theorem 5.1. Each field automorphism of $\mathbf{R}(t)$ fixes every element of \mathbf{R} .

Proof. Each real number is an *n*th power of some real number for infinitely many positive integers *n*. For example, this is true for odd *n*. We will use this property to show for each field automorphism $\varphi : \mathbf{R}(t) \to \mathbf{R}(t)$ that $\varphi(\mathbf{R}) \subset \mathbf{R}$. Then φ is a field homomorphism $\mathbf{R} \to \mathbf{R}$, so φ fixes all of **R** by Corollary 3.2.

Since φ is multiplicative, if $c \in \mathbf{R}$ then $\varphi(c)$ is an *n*th power for infinitely many $n \geq 1$ (*e.g.*, for odd *n*). To show $\varphi(c) \in \mathbf{R}$, it suffices to show nonconstant elements of $\mathbf{R}(t)$ are not *n*th powers for infinitely many *n*.

Let $f(t) \in \mathbf{R}(t)$ with $f(t) \notin \mathbf{R}$. Write f in reduced form as g/h, where g and h are in $\mathbf{R}[t] - \{0\}$ and are relatively prime. They are not both constant, since f is not constant. We'll show that if f is an nth power then $n \leq \max(\deg g, \deg h)$.

Suppose f(t) is an *n*th power of a rational function written in reduced form as a(t)/b(t), so a(t) and b(t) are relatively prime polynomials and they are not both constant (otherwise $f = (a/b)^n$ would be constant, but f is nonconstant). Since $g/h = (a/b)^n$, clearing denominators gives us $b^n g = a^n h$ in $\mathbf{R}[t]$. From $a^n \mid b^n g$ and a and b being relatively prime, $a^n \mid g$. In a similar way, $b^n \mid h$. If a is nonconstant then g is nonconstant (it's a multiple of a^n), and $a^n \mid g \Rightarrow \deg(a^n) \leq \deg g$, so $n \deg a \leq \deg g$. Thus $n \leq \deg g$ (since $\deg a > 0$). If b is nonconstant, then we get $n \leq \deg h$ in a similar way. At least one of these bounds on n holds, so $n \leq \max(\deg g, \deg h)$.

The argument in the last paragraph of the previous proof did not depend on the coefficients being in **R**. For all fields K, no element of K(t) - K can be an *n*th power for infinitely many *n*. That will let us carry over part of the previous proof from $\mathbf{R}(t)$ to $\mathbf{Q}_p(t)$.

Theorem 5.2. Each field automorphism of $\mathbf{Q}_p(t)$ fixes every element of \mathbf{Q}_p .

Proof. As in the previous theorem, it suffices (now by Corollary 4.2) to show a field automorphism φ of $\mathbf{Q}_p(t)$ maps \mathbf{Q}_p to \mathbf{Q}_p .

Unlike **R**, elements of \mathbf{Q}_p might not be *n*th powers in \mathbf{Q}_p infinitely often: *p* is not an *n*th power in \mathbf{Q}_p for n > 1. But elements of $1 + p\mathbf{Z}_p$ are *n*th powers infinitely often, and that will turn out to be enough.

²See https://math.stackexchange.com/questions/13129.

<u>Step 1</u>: $\varphi(1+p\mathbf{Z}_p) \subset \mathbf{Q}_p$. Each $v \in 1+p\mathbf{Z}_p$ is an *n*th power in $1+p\mathbf{Z}_p$ for infinitely many n, so $\varphi(v)$ is an *n*th power in $\mathbf{Q}_p(t)$ for infinitely many n. Just as in the previous proof, we conclude that $\varphi(v) \in \mathbf{Q}_p$ (in fact, $\varphi(v) \in \mathbf{Z}_p^{\times}$, but that's not strictly needed here).

<u>Step 2</u>: $\varphi(\mathbf{Q}_p) \subset \mathbf{Q}_p$. This is obvious at 0. For $x \in \mathbf{Q}_p^{\times}$, write $x = p^n u$ for $u \in \mathbf{Z}_p^{\times}$ and $u = \omega v$, where $\omega^{p-1} = 1$ and $v \in 1 + p\mathbf{Z}_p$. Then $\varphi(x) = \varphi(p^n \omega v) = \varphi(p)^n \varphi(\omega) \varphi(v)$. By Step 1, $\varphi(v) \in \mathbf{Q}_p$. Why are $\varphi(p)$ and $\varphi(\omega)$ in \mathbf{Q}_p ?

Since φ fixes every rational number (from fixing 1 and being a field homomorphism), $\varphi(p) = p$. Since $\varphi(\omega)^{p-1} = \varphi(\omega^{p-1}) = \varphi(1) = 1$, $\varphi(\omega)$ is a (p-1)-th root of unity. The polynomial $T^{p-1} - 1$ has p - 1 roots in \mathbf{Q}_p , which matches the degree of the polynomial, so all of the roots of $T^{p-1} - 1$ in a larger field like $\mathbf{Q}_p(t)$ must be its roots in \mathbf{Q}_p , and thus $\varphi(\omega) \in \mathbf{Q}_p$.

The reasoning used here never needed surjectivity of the automorphisms of $\mathbf{R}(t)$ or $\mathbf{Q}_p(t)$, so we proved a stronger result.

Theorem 5.3. Each field homomorphism $\mathbf{R}(t) \to \mathbf{R}(t)$ or $\mathbf{Q}_p(t) \to \mathbf{Q}_p(t)$ fixes all elements of \mathbf{R} or \mathbf{Q}_p .

6. Automatic continuity of homomorphisms between local fields

If you know about finite extensions of \mathbf{Q}_p , the local fields of characteristic 0, then the following result will be of interest. It says the only way there can be field homomorphisms among such fields (allowing p to vary) is when the fields are finite extensions of the same \mathbf{Q}_p , in which case the homomorphism must be continuous.

Theorem 6.1. Let K be a finite extension of \mathbf{Q}_p and L be a finite extension of \mathbf{Q}_q for some primes p and q. If there is a field homomorphism $f: K \to L$, then p = q and f is a \mathbf{Q}_p -linear isometry.

Proof. Write the ring of integers of K and its maximal ideal as \mathcal{O}_K and \mathfrak{m}_K , and likewise define \mathcal{O}_L and \mathfrak{m}_L .

Step 1: $f(1 + \mathfrak{m}_K) \subset \mathcal{O}_L^{\times}$.

Let $x \in 1 + \mathfrak{m}_K$. By Hensel's lemma, x is an nth power in $1 + \mathfrak{m}_K$ for infinitely many $n \geq 1$, which makes f(x) an nth power in L for infinitely many $n \geq 1$, and $f(x) \neq 0$. Thus $f(x) \in \mathcal{O}_L^{\times}$ for the same reason a nonzero element of \mathbf{Q}_p that's an nth power infinitely often is in \mathbf{Z}_p^{\times} (see Step 2 in the proof of Theorem 4.1).

Step 2:
$$f(\mathcal{O}_K^{\times}) \subset \mathcal{O}_L^{\times}$$

Let $x \in \mathcal{O}_K^{\times}$. Using Teichmuller representatives, $x = \zeta y$ where ζ is a root of unity and $y \in 1 + \mathfrak{m}_K$. Since $f(\zeta)$ is a root of unity and $f(y) \in \mathcal{O}_L^{\times}$ by Step 1, $f(x) = f(\zeta)f(y) \in \mathcal{O}_L^{\times}$. Step 3: $f(\mathcal{O}_K) \subset \mathcal{O}_L$.

By Step 2, it suffices to show $f(\mathfrak{m}_K) \subset \mathcal{O}_L$. Let $x \in \mathfrak{m}_K$. Then $1 + x \in \mathcal{O}_K^{\times}$, so f(1+x) = 1 + f(x) is in \mathcal{O}_L^{\times} by Step 1, so $f(x) \in \mathcal{O}_L$.

Step 4: p = q.

By Step 3, the field homomorphism $f: K \to L$ restricts a ring homomorphism $\mathcal{O}_K \to \mathcal{O}_L$. Compose this with the standard reduction map $\mathcal{O}_L \to \mathcal{O}_L/\mathfrak{m}_L$ to get a ring homomorphism $\mathcal{O}_K \to \mathcal{O}_L/\mathfrak{m}_L$. Its kernel must be a nonzero ideal in \mathcal{O}_K since \mathcal{O}_K is infinite while $\mathcal{O}_L/\mathfrak{m}_L$ is finite. Every nonzero ideal in \mathcal{O}_K has the form \mathfrak{m}_K^i for some $i \ge 0$, so there is an injective ring homomorphism $\mathcal{O}_K/\mathfrak{m}_K^i \to \mathcal{O}_L/\mathfrak{m}_L$. Since $\mathcal{O}_L/\mathfrak{m}_L$ is a finite field, its subrings are fields, which makes $\mathcal{O}_K/\mathfrak{m}_K^i$ a field. Thus i = 1, so the residue field $\mathcal{O}_K/\mathfrak{m}_K$ embeds into

KEITH CONRAD

the residue field $\mathcal{O}_L/\mathfrak{m}_L$. That implies the residue fields have the same characteristic. Since their characteristics are p and q, p = q.

Step 5: $|f(x)|_p = |x|_p$ for all $x \in K$, so f is an isometry.

This is obvious when x = 0, so take $x \neq 0$.

By Step 4, K and L are finite extensions of the same \mathbf{Q}_p . Let π be a prime element of K, so $p = \pi^e u$ for some $e \ge 1$ and $u \in \mathcal{O}_K^{\times}$. Since $x \ne 0$, $x = \pi^m v$ for some $m \in \mathbf{Z}$ and $v \in \mathcal{O}_K^{\times}$. Then $|x|_p = |\pi^m|_p = |\pi|_p^m$, so $|x^e|_p = |\pi^e|_p^m = |p|_p^m = |p^m|_p$, so $|x^e/p^m|_p = 1$. Then Step 2 implies $|f(x^e/p^m)|_p = 1$, so $|f(x)^e/p^m|_p = 1$. Thus $|f(x)|_p^e = |p|_p^m = |x^e|_p = |x|_p^e$, so $|f(x)|_p = |x|_p$.

Since f is an isometry by Step 5, f is continuous. It necessarily fixes \mathbf{Q} , so by continuity it has to fix \mathbf{Q}_p : when $c \in \mathbf{Q}_p$ there's a sequence $\{r_n\}$ in \mathbf{Q} such that $|c - r_n|_p \to 0$ as $n \to \infty$, so

$$|f(c) - c|_{p} = |f(c) - r_{n} + r_{n} - c|_{p}$$

$$\leq \max(|f(c) - r_{n}|_{p}, |r_{n} - c|_{p})$$

$$\leq \max(|f(c - r_{n})|_{p}, |c - r_{n}|_{p})$$

since $f(r_n) = r_n$ due to $r_n \in \mathbf{Q}$. Since $|f(c - r_n)|_p = |c - r_n|_p$ by Step 5, $|f(c) - c|_p \leq |c - r_n|_p \to 0$ as $n \to \infty$, so $|f(c) - c|_p = 0$. Thus f(c) = c. For all $x \in K$ and $c \in \mathbf{Q}_p$, f(cx) = f(c)f(x) = cf(x), so f is \mathbf{Q}_p -linear.

Corollary 6.2. Let K be a finite extension of \mathbf{Q}_p . Every field homomorphism $K \to K$ must be continuous and is a \mathbf{Q}_p -automorphism of K.

Proof. Let $f: K \to K$ be a field homomorphism, so it is injective. By Theorem 6.1, f is continuous and \mathbf{Q}_p -linear. Since K is a finite-dimensional vector space over \mathbf{Q}_p , f is an injective \mathbf{Q}_p -linear map of a finite-dimensional \mathbf{Q}_p -vector space to itself, so for dimension reasons the injectivity of f implies it is surjective. Thus f is a field automorphism of K. \Box

Example 6.3. Let K be a finite extension of $\mathbf{Q}_5(\sqrt{2})$. A field homomorphism $f: K \to K$ has to be a \mathbf{Q}_5 -linear field automorphism of K by Corollary 6.2. It must map $\sqrt{2}$ in K to $\pm\sqrt{2}$ (why?), so f on $\mathbf{Q}_5(\sqrt{2})$ is either the identity map or the conjugation map $x + y\sqrt{2} \to x - y\sqrt{2}$ for all $x, y \in \mathbf{Q}_5$.

What about field homomorphisms between a finite extension of \mathbf{Q}_p and \mathbf{R} or \mathbf{C} ?

Theorem 6.4. When K is a finite extension of \mathbf{Q}_p , there are no field homomorphisms $K \to \mathbf{R}$ or $\mathbf{R} \to K$. There is no field homomorphism $\mathbf{C} \to K$ and there is no continuous field homomorphism $K \to \mathbf{C}$, but there are field homomorphisms $K \to \mathbf{C}$.

Proof. In \mathbf{Q}_p there are negative integers that are squares (use -7 when p = 2 and 1-p when $p \ge 3$), so if there were a field homomorphism $f: K \to \mathbf{R}$ then, since f has to be injective and fix \mathbf{Z} , there would be negative integers that are squares in \mathbf{R} , which is impossible.

In \mathbf{R} , p is an nth power for all $n \geq 1$, so if there were a field homomorphism $f : \mathbf{R} \to K$ then, since f has to be injective and fix \mathbf{Z} , p would be an nth power in K for all $n \geq 1$. That would imply $p \in \mathcal{O}_{K}^{\times}$, which is false.

If there were a continuous field homomorphism $f: K \to \mathbb{C}$ then from $p^n \to 0$ in K we'd get $p^n \to 0$ in \mathbb{C} , which is false. So f doesn't exist.

The reason there are field homomorphisms $K \to \mathbf{C}$ (just not continuous ones) depends on Zorn's lemma, so it is completely non-constructive. Let \overline{K} be an algebraic closure of K. Since \mathbf{Q}_p has the same uncountable cardinality as \mathbf{R} , and thus as \mathbf{C} , the finite extension K of \mathbf{Q}_p also has the same uncountable cardinality as \mathbf{C} . Every infinite field has the same cardinality as its algebraic closure, so \overline{K} and \mathbf{C} have the same cardinality. Using Zorn's lemma (and a transcendence basis argument), it can be shown that two uncountable algebraically closed fields of the same characteristic and cardinality are isomorphic as abstract fields. (Warning: countable algebraically closed fields of the same characteristic need not be isomorphic, like the algebraic closures of \mathbf{Q} and $\mathbf{Q}(t)$.) Since \overline{K} and \mathbf{C} are algebraically closed of characteristic 0 with the same uncountable cardinality, they are thus (very non-constructively) isomorphic as abstract fields, so the embedding of K into its algebraic closure \overline{K} can be composed with an isomorphism $\overline{K} \to \mathbf{C}$ to produce a field homomorphism $K \to \mathbf{C}$.