IDEAL CLASSES AND SL_{2}

KEITH CONRAD

1. Introduction

A standard group action in complex analysis is the action of $\mathrm{GL}_{2}(\mathbf{C})$ on the Riemann sphere $\mathbf{C} \cup\{\infty\}$ by linear fractional transformations (Möbius transformations):

$$
\left(\begin{array}{ll}
a & b \tag{1.1}\\
c & d
\end{array}\right) z=\frac{a z+b}{c z+d} .
$$

We need to allow the value ∞ since $c z+d$ might be 0 . (If that happens, $a z+b \neq 0$ since $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible.) When $z=\infty$, the value of (1.1) is $a / c \in \mathbf{C} \cup\{\infty\}$.

It is easy to see this action of $\mathrm{GL}_{2}(\mathbf{C})$ on the Riemann sphere is transitive (that is, there is one orbit): for every $a \in \mathbf{C}$,

$$
\left(\begin{array}{cc}
a & a-1 \tag{1.2}\\
1 & 1
\end{array}\right) \infty=a
$$

so the orbit of ∞ passes through all points. In fact, since $\left(\begin{array}{c}a \\ 1\end{array} \frac{a-1}{1}\right)$ has determinant 1 , the action of $\mathrm{SL}_{2}(\mathbf{C})$ on $\mathbf{C} \cup\{\infty\}$ is transitive.

However, the action of $\mathrm{SL}_{2}(\mathbf{R})$ on the Riemann sphere is not transitive. The reason is the formula for imaginary parts under a real linear fractional transformation:

$$
\operatorname{Im}\left(\frac{a z+b}{c z+d}\right)=\frac{(a d-b c) \operatorname{Im}(z)}{|c z+d|^{2}}
$$

when $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbf{R})$. Thus the imaginary parts of z and $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) z$ have the same sign when $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has determinant 1. The action of $\mathrm{SL}_{2}(\mathbf{R})$ on the Riemann sphere has three orbits: $\mathbf{R} \cup\{\infty\}$, the upper half-plane $\mathfrak{h}=\{x+i y: y>0\}$, and the lower half-plane. To see that the action of $\mathrm{SL}_{2}(\mathbf{R})$ on \mathfrak{h} is transitive, pick $x+i y$ with $y>0$. Then

$$
\left(\begin{array}{cc}
\sqrt{y} & x / \sqrt{y} \\
0 & 1 / \sqrt{y}
\end{array}\right) i=x+i y
$$

and the matrix here is in $\mathrm{SL}_{2}(\mathbf{R})$. (This action of $\mathrm{SL}_{2}(\mathbf{R})$ on the upper half-plane is essentially one of the models for the isometries of the hyperbolic plane.)

The action (1.1) makes sense with \mathbf{C} replaced by any field K, and gives a transitive group action of $\mathrm{GL}_{2}(K)$ on the set $K \cup\{\infty\}$. Just as over the complex numbers, the formula (1.2) shows the action of $\mathrm{SL}_{2}(K)$ on $K \cup\{\infty\}$ is transitive.

Now take K to be a number field, and replace the group $\mathrm{SL}_{2}(K)$ with its subgroup $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$. The point ∞ and all of \mathcal{O}_{K} are in the same $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$-orbit on $K \cup\{\infty\}$ (take $a \in \mathcal{O}_{K}$ in (1.2)), but there could be more than one $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$-orbit.

Theorem 1.1. For a number field K, the number of orbits for $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$ on $K \cup\{\infty\}$ is the class number of K.

There are finitely many orbits since the class number of K is finite, and this finiteness is a non-trivial statement!

In Section 2, we will prove $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$ acts transitively on $K \cup\{\infty\}$ if and only if K has class number 1. This is the simplest case of Theorem 1.1. As preparation for the general case, in Section 3 we will change our language from $K \cup\{\infty\}$ to the projective line over K, whose relevance (among other things) is that it removes the peculiar status of ∞. (It seems useful to treat the special case of class number 1 without mentioning the projective line, if only to underscore what it is one is gaining by using the projective line in the general case.) In Section 4 we prove Theorem 1.1 in general. This theorem is particularly important for totally real K (in the context of Hilbert modular forms [1, pp. 36-38], [2, pp. 7-8]), but it holds for any number field K.

As a further illustration of the link between SL_{2} and classical number theory, we show in an appendix that the Euclidean algorithm on \mathbf{Z} is more or less equivalent to the group $\mathrm{SL}_{2}(\mathbf{Z})$ being generated by the matrices $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.

The prerequisites we need about number fields are: in any number field all fractional ideals are invertible, and any fractional ideal has two generators. That only two generators are needed for fractional ideals in a number field appears as an exercise in several introductory algebraic number theory books, but it may seem like an isolated fact in such books (I thought so when I first saw it!). Its use in the proof of Theorem 1.1 shows it is not.

2. Transitivity and Class Number One

As an example of class number one, take $K=\mathbf{Q}$. We will show every rational number is in the $\mathrm{SL}_{2}(\mathbf{Z})$-orbit of ∞. Pick a rational number r, and write it in reduced form as $r=a / c$, so a and c are relatively prime integers. (If $r=0$, use $a=0$ and $c=1$.) Since $(a, c)=1$, we can solve the equation $a d-b c=1$ in integers b and d, which means we get a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in $\mathrm{SL}_{2}(\mathbf{Z})$ whose first column is $\binom{a}{c}$. This matrix sends ∞ to $a / c=r$.

Conversely, if we know by some independent means that the $\mathrm{SL}_{2}(\mathbf{Z})$-action on $\mathbf{Q} \cup\{\infty\}$ is transitive, then for any rational number r we can find a matrix $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})$ sending ∞ to r, so $r=a / c$. Since $a d-b c=1, a$ and c have no common factors, so we can write r as a ratio of relatively prime integers. Thus, the fact that the $\mathrm{SL}_{2}(\mathbf{Z})$-action on $\mathbf{Q} \cup\{\infty\}$ is transitive is equivalent to the ability to write rational numbers in reduced form over \mathbf{Z}.

A similar argument shows the action of $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$ on $K \cup\{\infty\}$ is transitive if and only if every element of K can be written in 'reduced form,' i.e., as a ratio of relatively prime algebraic integers from \mathcal{O}_{K}.

Theorem 2.1. Every element of K^{\times}has the form α / β where $(\alpha, \beta)=(1)$ in \mathcal{O}_{K} if and only if K has class number 1.

Proof. If K has class number 1 then \mathcal{O}_{K} is a PID, so a UFD, so any ratio of nonzero elements of \mathcal{O}_{K} can be put in a reduced form.

Conversely, suppose each ratio of nonzero elements of \mathcal{O}_{K} can be put in reduced form. To show every ideal is principal, pick an ideal \mathfrak{a}. We may suppose $\mathfrak{a} \neq(0)$, so $\mathfrak{a}=(x, y)$ where x and y are in \mathcal{O}_{K} and neither is 0 . By hypothesis we can write $x / y=\alpha / \beta$ where $(\alpha, \beta)=(1)$. Then $x \beta=y \alpha$, so $(x)(\beta)=(y)(\alpha)$. The ideals (α) and (β) are relatively prime, so $(\alpha) \mid(x)$. Thus $\alpha \mid x$, so $x=\alpha \gamma$ for some $\gamma \in \mathcal{O}_{K}$. Then $\alpha \gamma \beta=y \alpha$, so $y=\beta \gamma$. It follows that $\mathfrak{a}=(x, y)=(\alpha \gamma, \beta \gamma)=(\alpha, \beta)(\gamma)=(1)(\gamma)=(\gamma)$ is principal.

Thus, the number of orbits for $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$ on $K \cup\{\infty\}$ is 1 if and only if K has class number 1.

3. The Projective Line

In this section, K is any field.
The set of numbers $K \cup\{\infty\}$ can be thought of as the possible slopes of different lines through the origin in K^{2}. Rather than determine such lines by their slopes, we can determine such lines by naming a representative point (x, y) on the line, excluding $(0,0)$ (which lies on all such lines). But we face the issue: when do two non-zero points (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ lie on the same line through the origin? Since a line through the origin is the set of scalar multiples of any non-zero point on that line, (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ lie on the same line through the origin when $\left(x^{\prime}, y^{\prime}\right)=\lambda(x, y)$ for some $\lambda \in K^{\times}$.

Definition 3.1. The projective line over K is the set of points in $K^{2}-\{(0,0)\}$ modulo scaling by K^{\times}. That is, we set $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if and only if there is some $\lambda \in K^{\times}$such that $x^{\prime}=\lambda x$ and $y^{\prime}=\lambda y$. The equivalence classes for \sim form the projective line over K.

We denote the projective line over K by $\mathbf{P}^{1}(K)$. (Strictly speaking, the projective line over K is a richer geometric object than merely the set of equivalence classes $\mathbf{P}^{1}(K)$, but our definition will be adequate for our purposes.) The equivalence class of (x, y) in $\mathbf{P}^{1}(K)$ is denoted $[x, y]$ and is called a point of $\mathbf{P}^{1}(K)$. For instance, in $\mathbf{P}^{1}(\mathbf{R}),[2,3]=[4,8]=[1,3 / 2]$. Provided $x \neq 0$, we have $[x, y]=[1, y / x]$, and $[1, a]=[1, b]$ if and only if $a=b$. We have $[0, y]=\left[x^{\prime}, y^{\prime}\right]$ if and only if $x^{\prime}=0$, and in this case $[0, y]=[0,1]$. Thus, every point of $\mathbf{P}^{1}(K)$ equals $[1, y]$ for a unique $y \in K$ or is the point $[0,1]$. By an analogous argument, every point of $\mathbf{P}^{1}(K)$ is $[x, 1]$ for a unique $x \in K$ or is the point $[1,0]$. For the points $[x, y]$ with neither x nor y equal to 0 , we can write them either as $[1, y / x]$ or $[x / y, 1]$. (To change between the two coordinates amounts to $t \leftrightarrow 1 / t$ on K^{\times}.)

The passage from $[x, y]$ to the ratio y / x, with the exceptional case $x=0$, corresponds to the idea of recovering a line's slope as a number in $K \cup\{\infty\}$. In other words, the correspondence between $\mathbf{P}^{1}(K)$ and $K \cup\{\infty\}$ comes about from

$$
[x, y] \mapsto \begin{cases}y / x, & \text { if } x \neq 0 \\ \infty, & \text { if } x=0\end{cases}
$$

Since $[x, y]=\left[x^{\prime}, y^{\prime}\right]$ if and only if (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are non-zero scalar multiples, the ratio y / x (provided $x \neq 0$) is a well-defined number in terms of the point $[x, y]$ even though the coordinates x and y themselves are not uniquely determined from $[x, y]$.

We get another correspondence between $\mathbf{P}^{1}(K)$ and $K \cup\{\infty\}$ by associating $[x, y]$ to x / y or ∞ :

$$
[x, y] \mapsto \begin{cases}x / y, & \text { if } y \neq 0 \tag{3.1}\\ \infty, & \text { if } y=0\end{cases}
$$

Now we describe an action of $\mathrm{GL}_{2}(K)$ on $\mathbf{P}^{1}(K)$ that corresponds to (1.1). For an invertible matrix $A \in \mathrm{GL}_{2}(K)$, and a non-zero vector $v \in K^{2}$, the product $A v$ is non-zero and

$$
A(\lambda v)=\lambda A v
$$

for any $\lambda \in K$. Therefore A sends all points on one line through the origin in K^{2} to all points on another line through the origin in K^{2}. (No such line collapses under A since A is invertible.) This means the usual action of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ on column vectors in K^{2} lets us
define A as a transformation of $\mathbf{P}^{1}(K)$:

$$
\left(\begin{array}{ll}
a & b \tag{3.2}\\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y} \rightsquigarrow\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)[x, y]:=[a x+b y, c x+d y] .
$$

When $y \neq 0$, let $z=x / y$. Then the element of $K \cup\{\infty\}$ corresponding by (3.1) to $[a x+b y, c x+d y]$ is

$$
\frac{a x+b y}{c x+d y}=\frac{a z+b}{c z+d},
$$

interpreted as ∞ when the denominator is 0 . Writing $[x, y]$ as $[z, 1]$, we see that the action of $\mathrm{GL}_{2}(K)$ on $K \cup\{\infty\}$ given by (1.1), with the peculiar role of ∞, is the same as the action of $\mathrm{GL}_{2}(K)$ on $\mathbf{P}^{1}(K)$ given by the right side of (3.2). And now, in $\mathbf{P}^{1}(K)$, there is no more mysterious ∞. Everything is homogeneous.

4. Orbits and Ideal Classes

For $x, y \in K$, not both zero, we write $[x, y]$ for a point in $\mathbf{P}^{1}(K)$ and $(x, y)=x \mathcal{O}_{K}+y \mathcal{O}_{K}$ for a fractional ideal. Since every fractional ideal has two generators, (x, y) is a completely general fractional ideal as x and y vary (avoiding $x=y=0$).

Now we are ready to prove Theorem 1.1 in general.
Proof. Step 1: If $[x, y]$ and $\left[x^{\prime}, y^{\prime}\right]$ are in the same $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$-orbit, then the fractional ideals (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are in the same ideal class.

Being in the same orbit means

$$
\left(\begin{array}{ll}
a & b \tag{4.1}\\
c & d
\end{array}\right)\binom{x}{y}=\binom{\lambda x^{\prime}}{\lambda y^{\prime}}
$$

for some $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}\left(\mathcal{O}_{K}\right)$ and $\lambda \in K^{\times}$. Thus

$$
\begin{aligned}
& a x+b y=\lambda x^{\prime}, \\
& c x+d y=\lambda y^{\prime},
\end{aligned}
$$

so $\left(\lambda x^{\prime}, \lambda y^{\prime}\right) \subset(x, y)$. Multiplying both sides of (4.1) by the inverse $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1} \in \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$ gives the reverse containment, so $(x, y)=\left(\lambda x^{\prime}, \lambda y^{\prime}\right)=\lambda\left(x^{\prime}, y^{\prime}\right)$.

As far as Step 1 is concerned, $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ could have been in $\mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)$ rather than $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$.
Step 2: If (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are in the same ideal class, then the points $[x, y]$ and $\left[x^{\prime}, y^{\prime}\right]$ in $\overline{\mathbf{P}^{1}(K)}$ are in the same $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$-orbit.

We can write $(x, y)=\lambda\left(x^{\prime}, y^{\prime}\right)=\left(\lambda x^{\prime}, \lambda y^{\prime}\right)$ for some $\lambda \in K^{\times}$and we want to show $[x, y]$ and $\left[x^{\prime}, y^{\prime}\right]=\left[\lambda x^{\prime}, \lambda y^{\prime}\right]$ are in the same orbit of $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$. Since $(x, y)=\left(\lambda x^{\prime}, \lambda y^{\prime}\right)$, we seek a relation between pairs of generators for the same fractional ideal.

Let $\mathfrak{a}=(x, y)$. The inverse ideal \mathfrak{a}^{-1} has two generators, say $\mathfrak{a}^{-1}=(r, s)$. From the equation (1) $=(x, y)(r, s)=(x r, x s, y r, y s)$, there are $\alpha, \beta, \gamma, \delta \in \mathcal{O}_{K}$ such that

$$
\begin{aligned}
1 & =\alpha x r+\beta x s+\gamma y r+\delta y s \\
& =(\alpha r+\beta s) x+(\gamma r+\delta s) y
\end{aligned}
$$

Note $\alpha r+\beta s$ and $\gamma r+\delta s$ are in \mathfrak{a}^{-1}. Setting $\mu=-(\gamma r+\delta s)$ and $\nu=\alpha r+\beta s$, the matrix $M=\left(\begin{array}{c}x \mu \\ y \\ \nu\end{array}\right)$ in $\mathrm{M}_{2}(K)$ has determinant 1 and its second column has entries in \mathfrak{a}^{-1}.

Similarly, using λx^{\prime} and λy^{\prime} in place of x and y, there is a matrix $N=\binom{\lambda x^{\prime} \mu^{\prime}}{\lambda y^{\prime} \nu^{\prime}} \in \mathrm{M}_{2}(K)$ with determinant 1 and its second column has entries in \mathfrak{a}^{-1}.

Since $\mu, \nu, \mu^{\prime}, \nu^{\prime} \in \mathfrak{a}^{-1}$, the product

$$
M N^{-1}=\left(\begin{array}{ll}
x & \mu \\
y & \nu
\end{array}\right)\left(\begin{array}{cc}
\nu^{\prime} & -\mu^{\prime} \\
-\lambda y^{\prime} & \lambda x^{\prime}
\end{array}\right)
$$

has determinant 1 and entries in \mathcal{O}_{K}. Therefore $M N^{-1}$ is in $\mathrm{SL}_{2}(K) \cap \mathrm{M}_{2}\left(\mathcal{O}_{K}\right)=\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$.
As $M\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $N\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}\lambda x^{\prime} \\ \lambda y^{\prime}\end{array}\right]$, we have $M N^{-1}\left[\begin{array}{c}\lambda x^{\prime} \\ \lambda y^{\prime}\end{array}\right]=M\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]$, so $[x, y]$ and $\left[\lambda x^{\prime}, \lambda y^{\prime}\right]=\left[x^{\prime}, y^{\prime}\right]$ are in the same $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$-orbit.

Our bijection between the $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$-orbits in $\mathbf{P}^{1}(K)$ and the ideal classes of K associates the identity ideal class $(x=1, y=0)$ with the orbit of $[1,0]=\infty$ in $\mathbf{P}^{1}(K)$.

Remark 4.1. Different pairs of generators of the same fractional ideal usually correspond to different points in $\mathbf{P}^{1}(K)$. For example, $(2,1)=(-2,1)=\mathcal{O}_{K}$ as ideals, but $[2,1] \neq[-2,1]$ in $\mathbf{P}^{1}(K)$ (that is, $2 \neq-2$ in K).

Everything we have done here carries over to a general Dedekind domain, with identical proofs. We will just state the result.

Theorem 4.2. Let R be a Dedekind domain and F be its fraction field. When $\mathrm{SL}_{2}(R)$ acts on $F \cup\{\infty\}$ by (1.1), its orbits are in bijection with the ideal class group of R. In particular, $\mathrm{SL}_{2}(R)$ acts transitively on $F \cup\{\infty\}$ if and only if R is a PID.

Let's see what Theorem 1.1 says in an example.
Example 4.3. The ideal class group of $\mathbf{Q}(\sqrt{-5})$ has order 2, so $\mathrm{SL}_{2}(\mathbf{Z}[\sqrt{-5}])$ acting on $\mathbf{P}^{1}(\mathbf{Q}(\sqrt{-5}))$ has two orbits. The ideal classes are represented by (1) and $(2,1+\sqrt{-5})$, so the $\mathrm{SL}_{2}(\mathbf{Z}[\sqrt{-5}])$-orbits in $\mathbf{P}^{1}(\mathbf{Q}(\sqrt{-5}))$ are represented by the points $[1,0]$ and $[2,1+\sqrt{-5}]$. Since all nonprincipal ideals in $\mathrm{SL}_{2}(\mathbf{Z}[\sqrt{-5}])$ are in the same ideal class, if ideals (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ in $\mathbf{Z}[\sqrt{-5}]$ are nonprincipal then the points $[x, y]$ and $\left[x^{\prime}, y^{\prime}\right]$ in $\mathbf{P}^{1}(\mathbf{Q}(\sqrt{-5}))$ are in the same $\mathrm{SL}_{2}(\mathbf{Z}[\sqrt{-5}])$-orbit: $[x, y]=A\left[x^{\prime}, y^{\prime}\right]$ for some $A \in \mathrm{SL}_{2}(\mathbf{Z}[\sqrt{-5}])$.

If we are given two numbers z and z^{\prime} in K, how can we determine if they are in the same $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$-orbit? The proof of Theorem 1.1 provides a method.

Step 1. Write z and z^{\prime} as ratios from $\mathcal{O}_{K}: z=x / y$ and $z^{\prime}=x^{\prime} / y^{\prime}$ for $x, y, x^{\prime}, y^{\prime} \in \mathcal{O}_{K}$. Determine if the ideals (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are in the same ideal class. ${ }^{1}$ If they aren't, then z and z^{\prime} aren't in the same orbit.

Step 2. If (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are in the same ideal class, then there is $\lambda \in K^{\times}$such that $(x, y)=\lambda\left(x^{\prime}, y^{\prime}\right)=\left(\lambda x^{\prime}, \lambda y^{\prime}\right)$. We seek $A \in \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$ such that $A z^{\prime}=z: A\left(x^{\prime} / y^{\prime}\right)=x / y$.

Set $(x, y)^{-1}=(r, s)$ as fractional ideals and pick $\alpha, \beta, \gamma, \delta \in \mathcal{O}_{K}$ such that $1=\alpha x r+$ $\beta x s+\gamma r y+\delta y s$. Set $M=\left(\begin{array}{c}x \\ y \\ \nu\end{array}\right)$ where $\mu=-(\gamma r+\delta s)$ and $\nu=\alpha r+\beta s$, so $M \infty=x / y=z$.

Since $(x, y)=\left(\lambda x^{\prime}, \lambda y^{\prime}\right)$, run through the previous paragraph with λx^{\prime} in place of x and λy^{\prime} in place of y (and use the same r and s) to get a 2×2 matrix $N=\left(\begin{array}{c}\lambda x^{\prime} \mu^{\prime} \\ \lambda y^{\prime} \\ \nu^{\prime}\end{array}\right)$, so $N \infty=\left(\lambda x^{\prime} / \lambda y^{\prime}\right)=x^{\prime} / y^{\prime}=z^{\prime}$. The matrix $A=M N^{-1}$ is in $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$ and $A z^{\prime}=$ $M N^{-1} z^{\prime}=M \infty=z$.

Example 4.4. Consider the ideals

$$
\mathfrak{p}=(2,1+\sqrt{-5})=(2,1-\sqrt{-5}), \quad \mathfrak{q}=(3,1+\sqrt{-5}), \quad \mathfrak{q}^{\prime}=(3,1-\sqrt{-5}) .
$$

[^0]These are all nonprincipal, so the numbers $2 /(1+\sqrt{-5}), 2 /(1-\sqrt{-5}), 3 /(1+\sqrt{-5})$, and $3 /(1-\sqrt{-5})$ are all in the same $\mathrm{SL}_{2}(\mathbf{Z}[\sqrt{-5}])$-orbit. It is easy to link the first and third numbers and second and fourth numbers with a matrix from $\mathrm{SL}_{2}(\mathbf{Z})$:

$$
\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) \frac{2}{1+\sqrt{-5}}=\frac{2 /(1+\sqrt{-5})-1}{2 /(1+\sqrt{-5})}=\frac{1-\sqrt{-5}}{2}=\frac{3}{1+\sqrt{-5}}
$$

and

$$
\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) \frac{2}{1-\sqrt{-5}}=\frac{2 /(1-\sqrt{-5})-1}{2 /(1-\sqrt{-5})}=\frac{1+\sqrt{-5}}{2}=\frac{3}{1-\sqrt{-5}}
$$

Linking $2 /(1+\sqrt{-5})$ and $3 /(1-\sqrt{-5})$ is not as simple: there is A in $\mathrm{SL}_{2}(\mathbf{Z}[\sqrt{-5}])$ such that $A \frac{3}{1-\sqrt{-5}}=\frac{2}{1+\sqrt{-5}}$, but there is no such A in $\mathrm{SL}_{2}(\mathbf{Z}) .{ }^{2}$ To find A we will follow Step 2 of the procedure above with $z=2 /(1+\sqrt{-5})$ and $z^{\prime}=3 /(1-\sqrt{-5})$: set $x=2$, $y=1+\sqrt{-5}, x^{\prime}=3$, and $y^{\prime}=1-\sqrt{-5}$, so $\mathfrak{p}=(x, y)$ and $\mathfrak{q}^{\prime}=\left(x^{\prime}, y^{\prime}\right)$. Since $\mathfrak{p}^{2}=(2)$ and $\mathfrak{p} \mathfrak{q}^{\prime}=(1-\sqrt{-5})$, we have $2 \mathfrak{q}^{\prime}=(1-\sqrt{-5}) \mathfrak{p}$, so $\mathfrak{p}=\lambda \mathfrak{q}^{\prime}$ for $\lambda=2 /(1-\sqrt{-5})$.

From $\mathfrak{p}^{2}=(2), \mathfrak{p}^{-1}=\frac{1}{2} \mathfrak{p}=(1,(1+\sqrt{-5}) / 2)$ as a fractional ideal. Then

$$
(1)=\mathfrak{p p}^{-1}=(2,1+\sqrt{-5})(1,(1+\sqrt{-5}) / 2)=(2,1+\sqrt{-5}, 1+\sqrt{-5},-2+\sqrt{-5})
$$

In Step 2 , let $\alpha=-1, \beta=1, \gamma=0$, and $\delta=-1, \mu=(1+\sqrt{-5}) / 2$, and $\nu=(-1+\sqrt{-5}) / 2$, so $M=\left(\begin{array}{cc}x & \mu \\ y & \nu\end{array}\right)=\left(\begin{array}{cc}2 & (1+\sqrt{-5}) / 2 \\ 1+\sqrt{-5} & (-1+\sqrt{-5}) / 2\end{array}\right)$. In a similar way, with x and y replaced by $\lambda x^{\prime}=1+\sqrt{-5}$ and $\lambda y^{\prime}=2$, and using $\alpha=1, \beta=-1, \gamma=-1, \delta=0, \mu^{\prime}=1$, and $\nu^{\prime}=(1-\sqrt{-5}) / 2$, we get the matrix $N=\left(\begin{array}{cc}\lambda x^{\prime} & \mu^{\prime} \\ \lambda y^{\prime} & \nu^{\prime}\end{array}\right)=\left(\begin{array}{cc}1+\sqrt{-5} & 1 \\ 2 & (1-\sqrt{-5}) / 2\end{array}\right)$. Then

$$
\begin{aligned}
A=M N^{-1} & =\left(\begin{array}{cc}
2 & (1+\sqrt{-5}) / 2 \\
1+\sqrt{-5} & (-1+\sqrt{-5}) / 2
\end{array}\right)\left(\begin{array}{cc}
(1-\sqrt{-5}) / 2 & -1 \\
-2 & 1+\sqrt{-5}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-2 \sqrt{-5} & -4+\sqrt{-5} \\
4-\sqrt{-5} & -4-\sqrt{-5}
\end{array}\right)
\end{aligned}
$$

Check $A \in \mathrm{SL}_{2}(\mathbf{Z}[\sqrt{-5}])$ and $A z^{\prime}=z$, so $A(3 /(1-\sqrt{-5}))=2 /(1+\sqrt{-5})$.

Appendix A. Generators for $\mathrm{SL}_{2}(\mathbf{Z})$

There are two important matrices in $\mathrm{SL}_{2}(\mathbf{Z})$:

$$
S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

It is left to the reader to check that $S^{2}=-I_{2}$, so S has order 4 , while $T^{k}=\left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right)$ for any $k \in \mathbf{Z}$, so T has infinite order.
Theorem A.1. The group $\mathrm{SL}_{2}(\mathbf{Z})$ is generated by S and T.
Proof. As the proof will reveal, this theorem is the Euclidean algorithm in disguise.
First we check how S and any power of T change the entries in a matrix. Verify that

$$
S\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
-c & -d \\
a & b
\end{array}\right)
$$

and

$$
T^{k}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a+c k & b+d k \\
c & d
\end{array}\right)
$$

[^1]Thus, up to a sign change, multiplying by S on the left interchanges the rows. Multiplying by a power of T on the left adds a multiple of the second row to the first row and does not change the second row. Given a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in $\mathrm{SL}_{2}(\mathbf{Z})$, we can carry out the Euclidean algorithm on a and c by using left multiplication by S and powers of T. We use the power of T to carry out the division (if $a=c q+r$, use $k=-q$) and use S to interchange the roles of a and c to guarantee that the larger of the two numbers (in absolute value) is in the upper-left corner. (Multiplication by S will cause a sign change, but this has no serious effect on the algorithm.)

Since $a d-b c=1, a$ and c are relatively prime, so the last step of Euclid's algorithm will have a remainder of 1 . This means, after suitable multiplication by S 's and T 's, we will have transformed the matrix $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ into a matrix with first column $\binom{ \pm 1}{0}$ or $\binom{0}{ \pm 1}$. Leftmultiplying by S interchanges the rows up to a sign, so we can suppose the first column is $\binom{ \pm 1}{0}$. Any matrix of the form $\left(\begin{array}{ll}1 & x \\ 0 & y\end{array}\right)$ in $\mathrm{SL}_{2}(\mathbf{Z})$ must have $y=1$ (the determinant is 1), and then it is $\left(\begin{array}{cc}1 & x \\ 0 & 1\end{array}\right)=T^{x}$. A matrix $\left(\begin{array}{cc}-1 & x \\ 0 & y\end{array}\right)$ in $\mathrm{SL}_{2}(\mathbf{Z})$ must have $y=-1$, so the matrix is $\left(\begin{array}{cc}-1 & x \\ 0 & -1\end{array}\right)=\left(-I_{2}\right) T^{-x}$. Since $-I_{2}=S^{2}$, we can finally unwind and express our original matrix in terms of S 's and T 's.

Example A.2. Take $A=\left(\begin{array}{ll}26 & 7 \\ 11 & 3\end{array}\right)$. Since $26=11 \cdot 2+4$, we want to subtract $11 \cdot 2$ from 26 :

$$
T^{-2} A=\left(\begin{array}{cc}
4 & 1 \\
11 & 3
\end{array}\right)
$$

Now we want to switch the roles of 4 and 11 . Multiply by S :

$$
S T^{-2} A=\left(\begin{array}{cc}
-11 & -3 \\
4 & 1
\end{array}\right)
$$

Dividing -11 by 4 , we have $-11=4 \cdot(-3)+1$, so we want to add $4 \cdot 3$ to -11 . Multiply by T^{3} :

$$
T^{3} S T^{-2} A=\left(\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right)
$$

Once again, multiply by S two switch the entries of the first column (up to sign):

$$
S T^{3} S T^{-2} A=\left(\begin{array}{cc}
-4 & -1 \\
1 & 0
\end{array}\right)
$$

Our final division is: $-4=1(-4)+0$. We want to add 4 to -4 , so multiply by T^{4} :

$$
T^{4} S T^{3} S T^{-2} A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=S
$$

Left-multiplying by the inverses of all the S 's and T 's on the left side, we obtain

$$
A=T^{2} S^{-1} T^{-3} S^{-1} T^{-4} S
$$

Since $S^{4}=I_{2}$, we can write S^{-1} as S^{3} if we wish to use a positive exponent on S. However, a similar idea does not apply to the negative powers of T.

Remark A.3. Since $S T=\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$ has order 6 , we can write $\mathrm{SL}_{2}(\mathbf{Z})=\langle S, S T\rangle$, which is a generating set of elements with finite order.

References

[1] E. B. Freitag, "Hilbert Modular Forms," Springer-Verlag, 1990.
[2] P. B. Garrett, "Holomorphic Hilbert Modular Forms," Wadsworth \& Brooks/Cole, 1990.

[^0]: ${ }^{1}$ These ideals are $y(z, 1)$ and $y^{\prime}\left(z^{\prime}, 1\right)$, so they are equivalent in the ideal class group to the fractional ideals $(z, 1)$ and $\left(z^{\prime}, 1\right)$.

[^1]: ${ }^{2}$ We can link these numbers by an integral matrix with determinant $-1:\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \frac{3}{1-\sqrt{-5}}=\frac{1-\sqrt{-5}}{3}=\frac{2}{1+\sqrt{-5}}$.

