
THE SPLITTING FIELD OF X3 − 7 OVER Q

KEITH CONRAD

In this note, we calculate all the basic invariants of the number field

K = Q(
3
√

7, ω),

where ω = (−1 +
√
−3)/2 is a primitive cube root of unity.

Here is the notation for the fields and Galois groups to be used. Let

k = Q(
3
√

7),

K = Q(
3
√

7, ω),

F = Q(ω) = Q(
√
−3),

G = Gal(K/Q) ∼= S3,

N = Gal(K/F ) ∼= A3,

H = Gal(K/k).

First we work out the basic invariants for the fields F and k.

Theorem 1. The field F = Q(ω) has ring of integers Z[ω], class number 1, discriminant
−3, and unit group {±1,±ω,±ω2}. The ramified prime 3 factors as 3 = −(

√
−3)2. For

p 6= 3, the way p factors in Z[ω] = Z[X]/(X2 +X + 1) is identical to the way X2 +X + 1
factors mod p, so p splits if p ≡ 1 mod 3 and p stays prime if p ≡ 2 mod 3.

We now turn to the field k.
Since disc(Z[ 3

√
7]) = −Nk/Q(3( 3

√
7)2) = −3372, only 3 and 7 can ramify in k. Clearly 7

is totally ramified: (7) = ( 3
√

7)3. The prime 3 is also totally ramified, since

(X + 1)3 − 7 = X3 + 3X2 + 3X − 6

is Eisenstein at 3. So by [2, Lemma 2], OK = Z[ 3
√

7] and disc(OK) = −3372.
Let’s find the fundamental unit of k. The norm form for k is

(1) Nk/Q(a+ b
3
√

7 +
3
√

49) = a3 + 7b3 + 49c3 − 21abc,

so an obvious unit is v
def
= 2− 3

√
7, which is between 0 and 1. Let u

def
= 1/v = 4+2 3

√
7+ 3
√

49 ≈
11.4. Letting U be the fundamental unit for Ok, we have

3372

4
< U3 + 7⇒ U2 >

(
3372

4
− 7

)2/3

≈ 47.1 > u,

so U = u.
(It turns out that Z[u] = Z[ 3

√
7] – explicitly, 3

√
7 = −4 + 12u− u2.)

The Minkowski bound for k is

3!

33

(
4

π

)
21
√

3 =
56
√

3

3π
≈ 10.3,
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so we factor 2, 3, 5, 7. Since

X3 − 7 ≡ (X + 1)(X2 +X + 1) mod 2, X3 − 7 = (X − 3)(X2 + 3X − 1) mod 5,

so

(2) (2) = p2p
′
2, (3) = p33, 5 = p5p

′
5, (7) = (

3
√

7)3,

where N p2 = 2, N p′2 = 4, N p5 = 5, N p′5 = 25.
If p2 is principal, say p2 = (α), then Nk/Q(α) = 2. But by (1), the norm of an element of

Z[ 3
√

7] is a cube mod 7, so there is no algebraic integer with norm 2, since the only nonzero
cubes mod 7 are ±1. Thus p2 is not principal, so h(k) > 1. Similarly p3 is not principal.
Since p33 = (3), [p3] has order 3 in Cl(k), hence 3 | h(k). We now show that [p3] generates
Cl(k), so h(k) = 3.

By (2), Cl(k) is generated by p2, p3, p5. Since Nk/Q(2 + 3
√

7) = 15, p3p5 ∼ 1, so p5 ∼ p23.

Since Nk/Q(−1 + 3
√

7) = 6, p2 ∼ p23. Therefore Cl(k) is generated by [p3].

Theorem 2. The field k = Q( 3
√

7) has class number 3 and discriminant −3372. The
ramified primes 3 and 7 factor as

(3) = (3, 1− 3
√

7)3, (7) = (
3
√

7)3,

with p3 = (3, 1 − 3
√

7) generating Cl(k) ∼= Z/3Z. The ring of integers of k is Z[ 3
√

7]. The
unit group of Ok has two roots of unity, rank 1, and generator u = 4 + 2 3

√
7 + 3
√

49. The
minimal polynomial of u is

T 3 − 12T 2 + 6T − 1

and Ok = Z[u].

We now turn to K = Q( 3
√

7, ω). By [2, Corollary 7], the discriminant is

disc(K) = disc(F ) disc(k)2 = −3774.

Let’s factor the ramified primes 3 and 7. In OF , (7) = (2 +
√
−3)(2 −

√
−3). In Ok,

(7) = ( 3
√

7)3. So in OK , 3 | e7 and g7 ≥ 2, hence e7 = 3 and g7 = 2. Thus 7 factors
principally, with ramification index 3:

(3) 7OK = (2 +
√
−3)3(2−

√
−3)3.

Since
3OF = (

√
−3)2, 3Ok = p33,

we get 3OK = P6
3. Therefore gP3 = P3 for all g ∈ G and

(4) P3
3 =
√
−3OK , P2

3 = p3OK .

The ideal P3 is not principal, since if P3 = (x) then NK/k P3 = p3 = (NK/k(x)) is principal,
which is not so. By (4), [P3] ∈ Cl(K) has order 3.

To compute Cl(K), we compute the Minkowski bound:

6!

66

(
4

π

)3

7233
√

3 =
3920
√

3

3π3
≈ 72.992,

so Cl(K) is generated by the prime ideal factors of all rational primes ≤ 71:

(5) 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71.

We will determine relations in Cl(K) that allow us to avoid working directly with most of
the primes.

By (3), we can ignore p = 7.
If p ≡ 1 mod 3 and 7 mod p is not a cube (with p 6= 7), then p = αα in OF and p stays

prime in Ok. Thus fp(K/Q) = 3, gp(K/Q) = 2, so αOK and αOK are prime, hence p
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factors principally in OK . This applies to the primes 13, 31, 37, 43, 61, 67. The only
p ≡ 1 mod 3, p ≤ 71, p 6= 7, which it does not apply to is p = 19. We’ll consider the prime
factors of 19 in OK later.

Turning to the case of p ≡ 2 mod 3, we have pOk = pp′ where N p = p, N p′ = p2.

From this we get that in OK , P
def
= pOK is prime, P = P, and p′OK = σPσ2P = σPσP,

where σ is a generator of N = Gal(K/F ), i.e. σ has order 3 in G = Gal(K/Q). If p is a
norm from Z[ 3

√
7], then p ≡ ±1 mod 7, p is principal in Ok, and P (and hence each of its

Galois conjugates) is principal in OK . The p ≡ 2 mod 3 in (5) that are ≡ ±1 mod 7 are
p = 29, 41, 71, and happily they are all norms from Z[ 3

√
7]:

29 = Nk/Q(−3 + 2
3
√

7), 41 = Nk/Q(−2 +
3
√

49), 71 = Nk/Q(4 +
3
√

7).

So 29, 41, 71 factor principally in OK . For the other p ≡ 2 mod 3, which are not norms
from Z[ 3

√
7], Theorem 2 says p ∼ p3 or p ∼ p23 in Cl(k). Extending these relations from

Cl(k) to Cl(K) implies P ∼ P2
3 or P ∼ P4

3 ∼ P3 in Cl(K). Since P3 is fixed by Gal(K/Q),
applying G to P shows all prime ideal factors of p in OK are equivalent to P3 or P2

3 in
Cl(K).

To summarize, Cl(K) is generated by [P3] (with order 3) and the prime ideal factors of
19. It turns out that the factors of 19 are related to P3 in Cl(K), so h(K) = 3. To show
this, we’ll need to factor some principal ideals of OK , which requires using some explicit
algebraic integers in OK . So let’s defer calculation of Cl(K) and turn to computing a basis
for OK .

Since OF = Z[ω] is a PID, OK is a free OF -module of rank 3. To find a basis we will
use disc(K/F ):

disc(K/Q) = NF/Q(disc(K/F )) disc(F/Q)3 ⇒ NF/Q(disc(K/F )) = 3474.

Since 2 +
√
−3 and 2−

√
−3 both ramify in K with ramification index 3, we conclude that

(6) disc(K/F ) = (
√
−3)4(2 +

√
−3)2(2 +

√
−3)2 = 9 · 49.

The natural first thing to check is if OK = Z[ω][ 3
√

7] = Z[ 3
√

7, ω]. Alas,

discK/F (1,
3
√

7,
3
√

49) = 3372

is off from discK/F (OF ) by a factor of 3. So we want to find an element of Z[ 3
√

7, ω] that

upon division by
√
−3 is nonobviously still in OK . Since

(1− 3
√

7)Ok = p2p3 ⇒ (1− 3
√

7)OK = p2P
2
3, and (

√
−3)OK = P3

3,

we have
(1− 3

√
7)2

(
√
−3)

= p22P3

is an integral ideal, so

η
def
=

(1− 3
√

7)2

−
√
−3

= (2ω + 1) · 1− 2 3
√

7 + 3
√

49

3

is an algebraic integer that is not in Z[ 3
√

7, ω]. Since discK/F (1, 3
√

7, η) = 9 · 49, {1, 3
√

7, η}
is a Z[ω]-basis of OK , by (6). (But discK/F (1, η, η2) = 9 · 25 · 49, so OK 6= OF [η].)

Writing 2ω + 1 = 3ω + (1− ω), we’re led from η to the algebraic integer

(7) θ
def
=

(ω − 1)(1− 3
√

7)2

3
= −ω2η,

so {1, 3
√

7, θ} is a second basis for OK /OF (and discK/F (1, 3
√

7, θ) = 9 · 49ω).
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Having expressed OK as a free module over OF , can we do likewise over Ok? Since Ok

is not a PID, we have no reason to suppose that OK is a free Ok-module, and in fact it is
not. To show this, we mimic the argument in [3].

Assume OK is a free Ok-module, so it must have rank 2:

OK = Ok e1 ⊕Ok e2.

Thus
1 = α1e1 + α2e2, ω = β1e1 + β2e2,

where αi, βi ∈ Ok = Z[ 3
√

7]. Applying complex conjugation (the nontrivial element of
Gal(K/k)),

1 = α1e1 + α2e2, ω2 = β1e1 + β2e2.

These can be combined into the matrix equation(
α1 α2

β1 β2

)(
e1 e1
e2 e2

)
=

(
1 1
ω ω2

)
.

The determinant ∆
def
= α1β2 − α2β1 of the first matrix is in Ok. The determinant of the

second matrix is negated under complex conjugation, so its square is in Ok. And the
determinant of the matrix on the right is ω2 − ω = −1 − 2ω = −

√
−3. So equating the

squares of the determinants of both sides yields

∆2δ = −3,

where δ = (e1e2 − e1e2)2. As an equation in ideals of Ok, we get

(∆)2(δ) = 3Ok = p33.

Since p3 and p23 are not principal ideals, and p33 is not the square of an integral ideal, the
only way for this equation to hold is if (∆)2 = (1), (δ) = (3). Thus (∆) = (1), so ∆ ∈ O×k .
That means {1, ω} is an Ok-basis for OK . So

OK = Ok⊕Ok ω = Z[
3
√

7, ω],

which we already saw is false. So OK is not a free Ok-module.
We now return to the computation of Cl(K). Recall θ, defined in (7). Since θ + θ =

−(1− 3
√

7)2 and θθ = −9 + 3
√

7 + 2 3
√

49, the minimal polynomial of θ over k is

f(T ) = T 2 + (1− 3
√

7)2T + (−9 +
3
√

7 + 2
3
√

49),

so the minimal polynomial of θ over Q is

g(T ) = fσ(f)σ2(f) = T 6 + 3T 5 + 18T 4 + 45T 3 + 237T 2 + 180T + 48.

Thus NK/Q(θ− 1) = g(1) = 532 = 22 · 7 · 19, so (θ− 1) = P2(2±
√
−3)P19, where P2 | (2),

P19 | (19). Therefore P19 ∼ P−12 . From the discussion of factoring primes p ≡ 2 mod 3,
the ideal class of a factor of 2 is [P3] or [P2

3]. Therefore [P19] = [P2]
−1 = [P3] or [P2

3]. So
Cl(K) is generated by [P3].

(In fact, [P19] = [P2
3]. We saw already that in Cl(k), p2 ∼ p−13 ∼ p23 Therefore in Cl(K),

p2OK ∼ P4
3 ∼ P3. Since P3 is fixed by G, all prime factors of 2 in OK are equivalent to

P3. So by the previous paragraph, P19 ∼ P2
3.)

We now can find a pair of fundamental units for O×K . By [2, Corollary 7] and the
discussion following it,

h(K)R(K) = h(F )R(F )(h(k)R(k))2 = (3 log u)2 = 9(log u)2

and
[O×K /µK : 〈u, σu〉] = 3h(K)/h(F )h(k)2 = h(K)/3.

Since h(K) = 3, {u, σu} is a pair of fundamental units forK and R(K) = 3(log u)2 ≈ 17.876.
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Theorem 3. The field K = Q( 3
√

7, ω) has class number 3, discriminant −3774, and regu-
lator 3(log u)2, where u = 4 + 2 3

√
7 + 3
√

49. The ramified primes 3 and 7 factor as

3 = P6
3, (7) = (2 +

√
−3)3(2−

√
−3)3.

The ring of integers of K is

OK = OF ⊕OF
3
√

7⊕OF θ,

where θ = (ω − 1)(1− 3
√

7)2/3. The ideal class group of OK is generated by [P3]. The unit
group of OK has six roots of unity, rank 2, and basis {u, σu}.

There is no power basis for OK . See [1].
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