THE SPLITTING FIELD OF $X^{3}-7$ OVER Q

KEITH CONRAD

In this note, we calculate all the basic invariants of the number field

$$
K=\mathbf{Q}(\sqrt[3]{7}, \omega)
$$

where $\omega=(-1+\sqrt{-3}) / 2$ is a primitive cube root of unity.
Here is the notation for the fields and Galois groups to be used. Let

$$
\begin{aligned}
k & =\mathbf{Q}(\sqrt[3]{7}) \\
K & =\mathbf{Q}(\sqrt[3]{7}, \omega) \\
F & =\mathbf{Q}(\omega)=\mathbf{Q}(\sqrt{-3}) \\
G & =\operatorname{Gal}(K / \mathbf{Q}) \cong S_{3} \\
N & =\operatorname{Gal}(K / F) \cong A_{3} \\
H & =\operatorname{Gal}(K / k)
\end{aligned}
$$

First we work out the basic invariants for the fields F and k.
Theorem 1. The field $F=\mathbf{Q}(\omega)$ has ring of integers $\mathbf{Z}[\omega]$, class number 1 , discriminant -3 , and unit group $\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\}$. The ramified prime 3 factors as $3=-(\sqrt{-3})^{2}$. For $p \neq 3$, the way p factors in $\mathbf{Z}[\omega]=\mathbf{Z}[X] /\left(X^{2}+X+1\right)$ is identical to the way $X^{2}+X+1$ factors $\bmod p$, so p splits if $p \equiv 1 \bmod 3$ and p stays prime if $p \equiv 2 \bmod 3$.

We now turn to the field k.
Since $\operatorname{disc}(\mathbf{Z}[\sqrt[3]{7}])=-\mathrm{N}_{k / \mathbf{Q}}\left(3(\sqrt[3]{7})^{2}\right)=-3^{3} 7^{2}$, only 3 and 7 can ramify in k. Clearly 7 is totally ramified: $(7)=(\sqrt[3]{7})^{3}$. The prime 3 is also totally ramified, since

$$
(X+1)^{3}-7=X^{3}+3 X^{2}+3 X-6
$$

is Eisenstein at 3. So by [2, Lemma 2], $\mathcal{O}_{K}=\mathbf{Z}[\sqrt[3]{7}]$ and $\operatorname{disc}\left(\mathcal{O}_{K}\right)=-3^{3} 7^{2}$.
Let's find the fundamental unit of k. The norm form for k is

$$
\begin{equation*}
\mathrm{N}_{k / \mathbf{Q}}(a+b \sqrt[3]{7}+\sqrt[3]{49})=a^{3}+7 b^{3}+49 c^{3}-21 a b c \tag{1}
\end{equation*}
$$

so an obvious unit is $v \stackrel{\text { def }}{=} 2-\sqrt[3]{7}$, which is between 0 and 1 . Let $u \stackrel{\text { def }}{=} 1 / v=4+2 \sqrt[3]{7}+\sqrt[3]{49} \approx$ 11.4. Letting U be the fundamental unit for \mathcal{O}_{k}, we have

$$
\frac{3^{3} 7^{2}}{4}<U^{3}+7 \Rightarrow U^{2}>\left(\frac{3^{3} 7^{2}}{4}-7\right)^{2 / 3} \approx 47.1>u
$$

so $U=u$.
(It turns out that $\mathbf{Z}[u]=\mathbf{Z}[\sqrt[3]{7}]-\operatorname{explicitly}, \sqrt[3]{7}=-4+12 u-u^{2}$.)
The Minkowski bound for k is

$$
\frac{3!}{3^{3}}\left(\frac{4}{\pi}\right) 21 \sqrt{3}=\frac{56 \sqrt{3}}{3 \pi} \approx 10.3
$$

so we factor $2,3,5,7$. Since

$$
X^{3}-7 \equiv(X+1)\left(X^{2}+X+1\right) \bmod 2, \quad X^{3}-7=(X-3)\left(X^{2}+3 X-1\right) \bmod 5
$$

so

$$
\begin{equation*}
(2)=\mathfrak{p}_{2} \mathfrak{p}_{2}^{\prime}, \quad(3)=\mathfrak{p}_{3}^{3}, \quad 5=\mathfrak{p}_{5} \mathfrak{p}_{5}^{\prime}, \quad(7)=(\sqrt[3]{7})^{3}, \tag{2}
\end{equation*}
$$

where $N \mathfrak{p}_{2}=2, N \mathfrak{p}_{2}^{\prime}=4, N p_{5}=5, N \mathfrak{p}_{5}^{\prime}=25$.
If \mathfrak{p}_{2} is principal, say $\mathfrak{p}_{2}=(\alpha)$, then $\mathrm{N}_{k / \mathbf{Q}}(\alpha)=2$. But by (1), the norm of an element of $\mathbf{Z}[\sqrt[3]{7}]$ is a cube $\bmod 7$, so there is no algebraic integer with norm 2 , since the only nonzero cubes $\bmod 7$ are ± 1. Thus \mathfrak{p}_{2} is not principal, so $h(k)>1$. Similarly \mathfrak{p}_{3} is not principal. Since $\mathfrak{p}_{3}^{3}=(3),\left[\mathfrak{p}_{3}\right]$ has order 3 in $\mathrm{Cl}(k)$, hence $3 \mid h(k)$. We now show that $\left[\mathfrak{p}_{3}\right]$ generates $\mathrm{Cl}(k)$, so $h(k)=3$.
$\mathrm{By}(2), \mathrm{Cl}(k)$ is generated by $\mathfrak{p}_{2}, \mathfrak{p}_{3}, \mathfrak{p}_{5}$. Since $\mathrm{N}_{k / \mathbf{Q}}(2+\sqrt[3]{7})=15, \mathfrak{p}_{3} \mathfrak{p}_{5} \sim 1$, so $\mathfrak{p}_{5} \sim \mathfrak{p}_{3}^{2}$. Since $\mathrm{N}_{k / \mathbf{Q}}(-1+\sqrt[3]{7})=6, \mathfrak{p}_{2} \sim \mathfrak{p}_{3}^{2}$. Therefore $\mathrm{Cl}(k)$ is generated by $\left[\mathfrak{p}_{3}\right]$.
Theorem 2. The field $k=\mathbf{Q}(\sqrt[3]{7})$ has class number 3 and discriminant $-3^{3} 7^{2}$. The ramified primes 3 and 7 factor as

$$
(3)=(3,1-\sqrt[3]{7})^{3}, \quad(7)=(\sqrt[3]{7})^{3}
$$

with $\mathfrak{p}_{3}=(3,1-\sqrt[3]{7})$ generating $\mathrm{Cl}(k) \cong \mathbf{Z} / 3 \mathbf{Z}$. The ring of integers of k is $\mathbf{Z}[\sqrt[3]{7}]$. The unit group of \mathcal{O}_{k} has two roots of unity, rank 1 , and generator $u=4+2 \sqrt[3]{7}+\sqrt[3]{49}$. The minimal polynomial of u is

$$
T^{3}-12 T^{2}+6 T-1
$$

and $\mathcal{O}_{k}=\mathbf{Z}[u]$.
We now turn to $K=\mathbf{Q}(\sqrt[3]{7}, \omega)$. By [2, Corollary 7], the discriminant is

$$
\operatorname{disc}(K)=\operatorname{disc}(F) \operatorname{disc}(k)^{2}=-3^{7} 7^{4} .
$$

Let's factor the ramified primes 3 and 7. In $\mathcal{O}_{F},(7)=(2+\sqrt{-3})(2-\sqrt{-3})$. In \mathcal{O}_{k}, (7) $=(\sqrt[3]{7})^{3}$. So in $\mathcal{O}_{K}, 3 \mid e_{7}$ and $g_{7} \geq 2$, hence $e_{7}=3$ and $g_{7}=2$. Thus 7 factors principally, with ramification index 3 :

$$
\begin{equation*}
7 \mathcal{O}_{K}=(2+\sqrt{-3})^{3}(2-\sqrt{-3})^{3} \tag{3}
\end{equation*}
$$

Since

$$
3 \mathcal{O}_{F}=(\sqrt{-3})^{2}, \quad 3 \mathcal{O}_{k}=\mathfrak{p}_{3}^{3},
$$

we get $3 \mathcal{O}_{K}=\mathfrak{P}_{3}^{6}$. Therefore $g \mathfrak{P}_{3}=\mathfrak{P}_{3}$ for all $g \in G$ and

$$
\begin{equation*}
\mathfrak{P}_{3}^{3}=\sqrt{-3} \mathcal{O}_{K}, \quad \mathfrak{P}_{3}^{2}=\mathfrak{p}_{3} \mathcal{O}_{K} \tag{4}
\end{equation*}
$$

The ideal \mathfrak{P}_{3} is not principal, since if $\mathfrak{P}_{3}=(x)$ then $\mathrm{N}_{K / k} \mathfrak{P}_{3}=\mathfrak{p}_{3}=\left(\mathrm{N}_{K / k}(x)\right)$ is principal, which is not so. By (4), $\left[\mathfrak{P}_{3}\right] \in \mathrm{Cl}(K)$ has order 3 .

To compute $\mathrm{Cl}(K)$, we compute the Minkowski bound:

$$
\frac{6!}{6^{6}}\left(\frac{4}{\pi}\right)^{3} 7^{2} 3^{3} \sqrt{3}=\frac{3920 \sqrt{3}}{3 \pi^{3}} \approx 72.992
$$

so $\mathrm{Cl}(K)$ is generated by the prime ideal factors of all rational primes ≤ 71 :

$$
\begin{equation*}
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71 . \tag{5}
\end{equation*}
$$

We will determine relations in $\mathrm{Cl}(K)$ that allow us to avoid working directly with most of the primes.

By (3), we can ignore $p=7$.
If $p \equiv 1 \bmod 3$ and $7 \bmod p$ is not a cube (with $p \neq 7$), then $p=\alpha \bar{\alpha}$ in \mathcal{O}_{F} and p stays prime in \mathcal{O}_{k}. Thus $f_{p}(K / \mathbf{Q})=3, g_{p}(K / \mathbf{Q})=2$, so $\alpha \mathcal{O}_{K}$ and $\bar{\alpha} \mathcal{O}_{K}$ are prime, hence p
factors principally in \mathcal{O}_{K}. This applies to the primes $13,31,37,43,61,67$. The only $p \equiv 1 \bmod 3, p \leq 71, p \neq 7$, which it does not apply to is $p=19$. We'll consider the prime factors of 19 in \mathcal{O}_{K} later.

Turning to the case of $p \equiv 2 \bmod 3$, we have $p \mathcal{O}_{k}=\mathfrak{p p}^{\prime}$ where $\mathrm{N} \mathfrak{p}=p, \mathrm{~N} \mathfrak{p}^{\prime}=p^{2}$. From this we get that in $\mathcal{O}_{K}, \mathfrak{P} \stackrel{\text { def }}{=} \mathfrak{p} \mathcal{O}_{K}$ is prime, $\overline{\mathfrak{P}}=\mathfrak{P}$, and $\mathfrak{p}^{\prime} \mathcal{O}_{K}=\sigma \mathfrak{P} \sigma^{2} \mathfrak{P}=\sigma \mathfrak{P} \bar{\sigma} \mathfrak{P}$, where σ is a generator of $N=\operatorname{Gal}(K / F)$, i.e. σ has order 3 in $G=\operatorname{Gal}(K / \mathbf{Q})$. If p is a norm from $\mathbf{Z}[\sqrt[3]{7}]$, then $p \equiv \pm 1 \bmod 7, \mathfrak{p}$ is principal in \mathcal{O}_{k}, and \mathfrak{P} (and hence each of its Galois conjugates) is principal in \mathcal{O}_{K}. The $p \equiv 2 \bmod 3$ in (5) that are $\equiv \pm 1 \bmod 7$ are $p=29,41,71$, and happily they are all norms from $\mathbf{Z}[\sqrt[3]{7}]$:

$$
29=\mathrm{N}_{k / \mathbf{Q}}(-3+2 \sqrt[3]{7}), \quad 41=\mathrm{N}_{k / \mathbf{Q}}(-2+\sqrt[3]{49}), \quad 71=\mathrm{N}_{k / \mathbf{Q}}(4+\sqrt[3]{7})
$$

So 29, 41, 71 factor principally in \mathcal{O}_{K}. For the other $p \equiv 2 \bmod 3$, which are not norms from $\mathbf{Z}[\sqrt[3]{7}]$, Theorem 2 says $\mathfrak{p} \sim \mathfrak{p}_{3}$ or $\mathfrak{p} \sim \mathfrak{p}_{3}^{2}$ in $\mathrm{Cl}(k)$. Extending these relations from $\mathrm{Cl}(k)$ to $\mathrm{Cl}(K)$ implies $\mathfrak{P} \sim \mathfrak{P}_{3}^{2}$ or $\mathfrak{P} \sim \mathfrak{P}_{3}^{4} \sim \mathfrak{P}_{3}$ in $\mathrm{Cl}(K)$. Since \mathfrak{P}_{3} is fixed by $\operatorname{Gal}(K / \mathbf{Q})$, applying G to \mathfrak{P} shows all prime ideal factors of p in \mathcal{O}_{K} are equivalent to \mathfrak{P}_{3} or \mathfrak{P}_{3}^{2} in $\mathrm{Cl}(K)$.

To summarize, $\mathrm{Cl}(K)$ is generated by $\left[\mathfrak{P}_{3}\right]$ (with order 3) and the prime ideal factors of 19. It turns out that the factors of 19 are related to \mathfrak{P}_{3} in $\mathrm{Cl}(K)$, so $h(K)=3$. To show this, we'll need to factor some principal ideals of \mathcal{O}_{K}, which requires using some explicit algebraic integers in \mathcal{O}_{K}. So let's defer calculation of $\mathrm{Cl}(K)$ and turn to computing a basis for \mathcal{O}_{K}.

Since $\mathcal{O}_{F}=\mathbf{Z}[\omega]$ is a PID, \mathcal{O}_{K} is a free \mathcal{O}_{F}-module of rank 3 . To find a basis we will use $\operatorname{disc}(K / F)$:

$$
\operatorname{disc}(K / \mathbf{Q})=\mathrm{N}_{F / \mathbf{Q}}(\operatorname{disc}(K / F)) \operatorname{disc}(F / \mathbf{Q})^{3} \Rightarrow \mathrm{~N}_{F / \mathbf{Q}}(\operatorname{disc}(K / F))=3^{4} 7^{4}
$$

Since $2+\sqrt{-3}$ and $2-\sqrt{-3}$ both ramify in K with ramification index 3 , we conclude that

$$
\begin{equation*}
\operatorname{disc}(K / F)=(\sqrt{-3})^{4}(2+\sqrt{-3})^{2}(2+\sqrt{-3})^{2}=9 \cdot 49 \tag{6}
\end{equation*}
$$

The natural first thing to check is if $\mathcal{O}_{K}=\mathbf{Z}[\omega][\sqrt[3]{7}]=\mathbf{Z}[\sqrt[3]{7}, \omega]$. Alas,

$$
\operatorname{disc}_{K / F}(1, \sqrt[3]{7}, \sqrt[3]{49})=3^{3} 7^{2}
$$

is off from $\operatorname{disc}_{K / F}\left(\mathcal{O}_{F}\right)$ by a factor of 3 . So we want to find an element of $\mathbf{Z}[\sqrt[3]{7}, \omega]$ that upon division by $\sqrt{-3}$ is nonobviously still in \mathcal{O}_{K}. Since

$$
(1-\sqrt[3]{7}) \mathcal{O}_{k}=\mathfrak{p}_{2} \mathfrak{p}_{3} \Rightarrow(1-\sqrt[3]{7}) \mathcal{O}_{K}=\mathfrak{p}_{2} \mathfrak{P}_{3}^{2}, \quad \text { and }(\sqrt{-3}) \mathcal{O}_{K}=\mathfrak{P}_{3}^{3},
$$

we have

$$
\frac{(1-\sqrt[3]{7})^{2}}{(\sqrt{-3})}=\mathfrak{p}_{2}^{2} \mathfrak{P}_{3}
$$

is an integral ideal, so

$$
\eta \stackrel{\text { def }}{=} \frac{(1-\sqrt[3]{7})^{2}}{-\sqrt{-3}}=(2 \omega+1) \cdot \frac{1-2 \sqrt[3]{7}+\sqrt[3]{49}}{3}
$$

is an algebraic integer that is not in $\mathbf{Z}[\sqrt[3]{7}, \omega]$. Since $\operatorname{disc}_{K / F}(1, \sqrt[3]{7}, \eta)=9 \cdot 49,\{1, \sqrt[3]{7}, \eta\}$ is a $\mathbf{Z}[\omega]$-basis of \mathcal{O}_{K}, by (6). $\left(\right.$ But $\operatorname{disc}_{K / F}\left(1, \eta, \eta^{2}\right)=9 \cdot 25 \cdot 49$, so $\mathcal{O}_{K} \neq \mathcal{O}_{F}[\eta]$.)

Writing $2 \omega+1=3 \omega+(1-\omega)$, we're led from η to the algebraic integer

$$
\begin{equation*}
\theta \stackrel{\text { def }}{=} \frac{(\omega-1)(1-\sqrt[3]{7})^{2}}{3}=-\omega^{2} \eta, \tag{7}
\end{equation*}
$$

so $\{1, \sqrt[3]{7}, \theta\}$ is a second basis for $\mathcal{O}_{K} / \mathcal{O}_{F}\left(\right.$ and $\left.\operatorname{disc}_{K / F}(1, \sqrt[3]{7}, \theta)=9 \cdot 49 \omega\right)$.

Having expressed \mathcal{O}_{K} as a free module over \mathcal{O}_{F}, can we do likewise over \mathcal{O}_{k} ? Since \mathcal{O}_{k} is not a PID, we have no reason to suppose that \mathcal{O}_{K} is a free \mathcal{O}_{k}-module, and in fact it is not. To show this, we mimic the argument in [3].

Assume \mathcal{O}_{K} is a free \mathcal{O}_{k}-module, so it must have rank 2:

$$
\mathcal{O}_{K}=\mathcal{O}_{k} e_{1} \oplus \mathcal{O}_{k} e_{2} .
$$

Thus

$$
1=\alpha_{1} e_{1}+\alpha_{2} e_{2}, \quad \omega=\beta_{1} e_{1}+\beta_{2} e_{2},
$$

where $\alpha_{i}, \beta_{i} \in \mathcal{O}_{k}=\mathbf{Z}[\sqrt[3]{7}]$. Applying complex conjugation (the nontrivial element of $\operatorname{Gal}(K / k))$,

$$
1=\alpha_{1} \bar{e}_{1}+\alpha_{2} \bar{e}_{2}, \quad \omega^{2}=\beta_{1} \bar{e}_{1}+\beta_{2} \bar{e}_{2} .
$$

These can be combined into the matrix equation

$$
\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2} \\
\beta_{1} & \beta_{2}
\end{array}\right)\left(\begin{array}{ll}
e_{1} & \bar{e}_{1} \\
e_{2} & \bar{e}_{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
\omega & \omega^{2}
\end{array}\right) .
$$

The determinant $\Delta \stackrel{\text { def }}{=} \alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}$ of the first matrix is in \mathcal{O}_{k}. The determinant of the second matrix is negated under complex conjugation, so its square is in \mathcal{O}_{k}. And the determinant of the matrix on the right is $\omega^{2}-\omega=-1-2 \omega=-\sqrt{-3}$. So equating the squares of the determinants of both sides yields

$$
\Delta^{2} \delta=-3,
$$

where $\delta=\left(e_{1} \bar{e}_{2}-\bar{e}_{1} e_{2}\right)^{2}$. As an equation in ideals of \mathcal{O}_{k}, we get

$$
(\Delta)^{2}(\delta)=3 \mathcal{O}_{k}=\mathfrak{p}_{3}^{3} .
$$

Since \mathfrak{p}_{3} and \mathfrak{p}_{3}^{2} are not principal ideals, and \mathfrak{p}_{3}^{3} is not the square of an integral ideal, the only way for this equation to hold is if $(\Delta)^{2}=(1),(\delta)=(3)$. Thus $(\Delta)=(1)$, so $\Delta \in \mathcal{O}_{k}^{\times}$. That means $\{1, \omega\}$ is an \mathcal{O}_{k}-basis for \mathcal{O}_{K}. So

$$
\mathcal{O}_{K}=\mathcal{O}_{k} \oplus \mathcal{O}_{k} \omega=\mathbf{Z}[\sqrt[3]{7}, \omega],
$$

which we already saw is false. So \mathcal{O}_{K} is not a free \mathcal{O}_{k}-module.
We now return to the computation of $\mathrm{Cl}(K)$. Recall θ, defined in (7). Since $\theta+\bar{\theta}=$ $-(1-\sqrt[3]{7})^{2}$ and $\theta \bar{\theta}=-9+\sqrt[3]{7}+2 \sqrt[3]{49}$, the minimal polynomial of θ over k is

$$
f(T)=T^{2}+(1-\sqrt[3]{7})^{2} T+(-9+\sqrt[3]{7}+2 \sqrt[3]{49})
$$

so the minimal polynomial of θ over \mathbf{Q} is

$$
g(T)=f \sigma(f) \sigma^{2}(f)=T^{6}+3 T^{5}+18 T^{4}+45 T^{3}+237 T^{2}+180 T+48 .
$$

Thus $\mathrm{N}_{K / \mathbf{Q}}(\theta-1)=g(1)=532=2^{2} \cdot 7 \cdot 19$, so $(\theta-1)=\mathfrak{P}_{2}(2 \pm \sqrt{-3}) \mathfrak{P}_{19}$, where $\mathfrak{P}_{2} \mid(2)$, $\mathfrak{P}_{19} \mid$ (19). Therefore $\mathfrak{P}_{19} \sim \mathfrak{P}_{2}^{-1}$. From the discussion of factoring primes $p \equiv 2 \bmod 3$, the ideal class of a factor of 2 is $\left[\mathfrak{P}_{3}\right]$ or $\left[\mathfrak{P}_{3}^{2}\right]$. Therefore $\left[\mathfrak{P}_{19}\right]=\left[\mathfrak{P}_{2}\right]^{-1}=\left[\mathfrak{P}_{3}\right]$ or $\left[\mathfrak{P}_{3}^{2}\right]$. So $\mathrm{Cl}(K)$ is generated by $\left[\mathfrak{P}_{3}\right]$.
(In fact, $\left[\mathfrak{P}_{19}\right]=\left[\mathfrak{P}_{3}^{2}\right]$. We saw already that in $\mathrm{Cl}(k), \mathfrak{p}_{2} \sim \mathfrak{p}_{3}^{-1} \sim \mathfrak{p}_{3}^{2}$ Therefore in $\mathrm{Cl}(K)$, $\mathfrak{p}_{2} \mathcal{O}_{K} \sim \mathfrak{P}_{3}^{4} \sim \mathfrak{P}_{3}$. Since \mathfrak{P}_{3} is fixed by G, all prime factors of 2 in \mathcal{O}_{K} are equivalent to \mathfrak{P}_{3}. So by the previous paragraph, $\mathfrak{P}_{19} \sim \mathfrak{P}_{3}^{2}$.)

We now can find a pair of fundamental units for \mathcal{O}_{K}^{\times}. By $[2$, Corollary 7] and the discussion following it,

$$
h(K) R(K)=h(F) R(F)(h(k) R(k))^{2}=(3 \log u)^{2}=9(\log u)^{2}
$$

and

$$
\left[\mathcal{O}_{K}^{\times} / \mu_{K}:\langle u, \sigma u\rangle\right]=3 h(K) / h(F) h(k)^{2}=h(K) / 3 .
$$

Since $h(K)=3,\{u, \sigma u\}$ is a pair of fundamental units for K and $R(K)=3(\log u)^{2} \approx 17.876$.

Theorem 3. The field $K=\mathbf{Q}(\sqrt[3]{7}, \omega)$ has class number 3 , discriminant $-3^{7} 7^{4}$, and regulator $3(\log u)^{2}$, where $u=4+2 \sqrt[3]{7}+\sqrt[3]{49}$. The ramified primes 3 and 7 factor as

$$
3=\mathfrak{P}_{3}^{6}, \quad(7)=(2+\sqrt{-3})^{3}(2-\sqrt{-3})^{3} .
$$

The ring of integers of K is

$$
\mathcal{O}_{K}=\mathcal{O}_{F} \oplus \mathcal{O}_{F} \sqrt[3]{7} \oplus \mathcal{O}_{F} \theta
$$

where $\theta=(\omega-1)(1-\sqrt[3]{7})^{2} / 3$. The ideal class group of \mathcal{O}_{K} is generated by $\left[\mathfrak{P}_{3}\right]$. The unit group of \mathcal{O}_{K} has six roots of unity, rank 2 , and basis $\{u, \sigma u\}$.

There is no power basis for \mathcal{O}_{K}. See [1].

References

[1] M-L. Chang, Non-monogeneity in a family of sextic fields, J. Number Theory 97 (2002), 252-268.
[2] K. Conrad, The Splitting Field of $X^{3}-2$ over Q. Online at https://kconrad.math.uconn.edu/blurbs/ gradnumthy/Qw2.pdf.
[3] R. MacKenzie and J. Schuneman, A Number Field Without a Relative Integral Basis, Amer. Math. Monthly, 78 (1971), 882-883.

