THE SPLITTING FIELD OF $X^3 - 7$ OVER \mathbb{Q}

KEITH CONRAD

In this note, we calculate all the basic invariants of the number field

$$K = \mathbb{Q}(\sqrt[3]{7}, \omega),$$

where $\omega = (-1 + \sqrt{-3})/2$ is a primitive cube root of unity.

Here is the notation for the fields and Galois groups to be used. Let

$$k = \mathbb{Q}(\sqrt[3]{7}),$$
$$K = \mathbb{Q}(\sqrt[3]{7}, \omega),$$
$$F = \mathbb{Q}(\omega) = \mathbb{Q}(\sqrt{-3}),$$
$$G = \text{Gal}(K/\mathbb{Q}) \cong S_3,$$
$$N = \text{Gal}(K/F) \cong A_3,$$
$$H = \text{Gal}(K/k).$$

First we work out the basic invariants for the fields F and k.

Theorem 1. The field $F = \mathbb{Q}(\omega)$ has ring of integers $\mathbb{Z}[\omega]$, class number 1, discriminant -3, and unit group $\{\pm 1, \pm \omega, \pm \omega^2\}$. The ramified prime 3 factors as $3 = (\sqrt{-3})^2$. For $p \neq 3$, the way p factors in $\mathbb{Z}[\omega] = \mathbb{Z}[X]/(X^2 + X + 1)$ is identical to the way $X^2 + X + 1$ factors mod p, so p splits if $p \equiv 1 \mod 3$ and p stays prime if $p \equiv 2 \mod 3$.

We now turn to the field k.

Since $\text{disc}(\mathbb{Z}[\sqrt[3]{7}]) = -N_{k/\mathbb{Q}}(3(\sqrt[3]{7})^2) = -3^2 7^2$, only 3 and 7 can ramify in k. Clearly 7 is totally ramified: $(7) = (\sqrt[3]{7})^3$. The prime 3 is also totally ramified, since

$$(X + 1)^3 - 7 = X^3 + 3X^2 + 3X - 6$$

is Eisenstein at 3. So by [2, Lemma 2], $\mathcal{O}_K = \mathbb{Z}[\sqrt[3]{7}]$ and $\text{disc}(\mathcal{O}_K) = -3^2 7^2$.

Let's find the fundamental unit of k. The norm form for k is

$$N_{k/\mathbb{Q}}(a + b\sqrt[3]{7} + c\sqrt[3]{49}) = a^3 + 7b^3 + 49c^3 - 21abc,$$

so an obvious unit is $v \overset{\text{def}}{=} 2 - \sqrt[3]{7}$, which is between 0 and 1. Let $u \overset{\text{def}}{=} 1/v = 4 + 2\sqrt[3]{7} + \sqrt[3]{49} \approx 11.4$. Letting U be the fundamental unit for \mathcal{O}_k, we have

$$\frac{3^2 7^2}{4} < U^3 + 7 \Rightarrow U^2 > \left(\frac{3^2 7^2}{4} - 7\right)^{2/3} \approx 47.1 > u,$$

so $U = u$.

(It turns out that $\mathbb{Z}[u] = \mathbb{Z}[\sqrt[3]{7}]$ – explicitly, $\sqrt[3]{7} = -4 + 12u - u^2$.)

The Minkowski bound for k is

$$\frac{3!}{3^3} \left(\frac{4}{\pi}\right) 21\sqrt{3} = \frac{56\sqrt{3}}{3\pi} \approx 10.3,$$
so we factor 2, 3, 5, 7. Since
\[X^3 - 7 \equiv (X + 1)(X^2 + X + 1) \pmod{2}, \quad X^3 - 7 = (X - 3)(X^2 + 3X - 1) \pmod{5}, \]
so
\[(2) = p_2p_2', \quad (3) = p_3^3, \quad 5 = p_5p_5', \quad (7) = (\sqrt[3]{7})^3, \]
where \(Np_2 = 2, Np_2' = 4, Np_5 = 5, Np_5' = 25. \)

If \(p_2 \) is principal, say \(p_2 = (\alpha) \), then \(N_{K/Q}(\alpha) = 2 \). But by (1), the norm of an element of \(\mathbb{Z}[\sqrt[3]{7}] \) is a cube mod 7, so there is no algebraic integer with norm 2, since the only nonzero cubes mod 7 are \(\pm 1 \). Thus \(p_2 \) is not principal, so \(\delta(k) > 1 \). Similarly \(p_3 \) is not principal.

Since \(p_3^3 = (3) \), \([p_3] \) has order 3 in \(\text{Cl}(k) \), hence \(3 | \delta(k) \). We now show that \([p_3] \) generates \(\text{Cl}(k) \), so \(\delta(k) = 3. \)

By (2), \(\text{Cl}(k) \) is generated by \(p_2, p_3, p_5 \). Since \(N_{K/Q}(2 + \sqrt[3]{7}) = 15, p_3p_5 \sim 1 \), so \(p_5 \sim p_5^2. \) Since \(N_{K/Q}(-1 + \sqrt[3]{7}) = 6, p_2 \sim p_2^2. \) Therefore \(\text{Cl}(k) \) is generated by \([p_3] \).

Theorem 2. The field \(k = \mathbb{Q}(\sqrt[3]{7}) \) has class number 3 and 7 factor as
\[(3) = (3, 1 - \sqrt[3]{7})^3, \quad (7) = (\sqrt[3]{7})^3, \]
with \(p_3 = (3, 1 - \sqrt[3]{7}) \) generating \(\text{Cl}(k) \cong \mathbb{Z}/3\mathbb{Z}. \) The ring of integers of \(k \) is \(\mathbb{Z}[\sqrt[3]{7}] \). The unit group of \(\mathcal{O}_k \) has two roots of unity, rank 1, and generator \(u = 4 + 2\sqrt[3]{7} + \sqrt[3]{49} \). The minimal polynomial of \(u \) is
\[T^3 - 12T^2 + 6T - 1 \]
and \(\mathcal{O}_k = \mathbb{Z}[u]. \)

We now turn to \(K = \mathbb{Q}(\sqrt[3]{7}, \omega) \). By [2, Corollary 7], the discriminant is
\[\text{disc}(K) = \text{disc}(F) \text{disc}(k)^2 = -3^27^4. \]
Let’s factor the ramified primes 3 and 7. In \(\mathcal{O}_F, \ (7) = (2 + \sqrt[3]{-3})(2 - \sqrt[3]{3}) \). In \(\mathcal{O}_K \),
\[(7) = (\sqrt[3]{7})^3. \]
So in \(\mathcal{O}_K, \ 3 | e_7 \) and \(g_7 \geq 2, \) hence \(e_7 = 3 \) and \(g_7 = 2. \) Thus 7 factors principally, with ramification index 3:
\[(3) \]
\[7\mathcal{O}_K = (2 + \sqrt[3]{-3})^3(2 - \sqrt[3]{3})^3. \]
Since
\[3\mathcal{O}_F = (\sqrt[3]{-3})^2, \quad 3\mathcal{O}_K = p_3^3, \]
we get \(3\mathcal{O}_K = \mathfrak{p}_3^3 \). Therefore \(g\mathfrak{p}_3 = \mathfrak{p}_3 \) for all \(g \in G \) and
\[\mathfrak{p}_3 = \sqrt[3]{3}\mathcal{O}_K, \quad \mathfrak{p}_3^2 = p_3\mathcal{O}_K. \]
The ideal \(\mathfrak{p}_3 \) is not principal, since if \(\mathfrak{p}_3 = (x) \) then \(N_{K/k}\mathfrak{p}_3 = p_3 = (N_{K/k}(x)) \) is principal, which is not so. By (4), \([\mathfrak{p}_3] \in \text{Cl}(K) \) has order 3.

To compute \(\text{Cl}(K) \), we compute the Minkowski bound:
\[\frac{6!}{6^5} \left(\frac{4}{\pi} \right)^3 7^23^3\sqrt[3]{3} = \frac{3920\sqrt[3]{3}}{3\pi^3} \approx 72.992, \]
so \(\text{Cl}(K) \) is generated by the prime ideal factors of all rational primes \(\leq 71 \):
\[(5) \]
\[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71. \]
We will determine relations in \(\text{Cl}(K) \) that allow us to avoid working directly with most of the primes.

By (3), we can ignore \(p = 7. \)

If \(p \equiv 1 \pmod{3} \) and \(7 \pmod{7} \) is not a cube (with \(p \neq 7 \)), then \(p = \alpha\overline{\alpha} \) in \(\mathcal{O}_F \) and \(p \) stays prime in \(\mathcal{O}_K. \) Thus \(f_p(K/Q) = 3, g_p(K/Q) = 2 \), so \(\alpha\mathcal{O}_K \) and \(\overline{\alpha}\mathcal{O}_K \) are prime, hence \(p \)
factors principally in \mathcal{O}_K. This applies to the primes 13, 31, 37, 43, 61, 67. The only $p \equiv 1 \mod 3$, $p \leq 71$, $p \neq 7$, which it does not apply to is $p = 19$. We'll consider the prime factors of 19 in \mathcal{O}_K later.

Turning to the case of $p \equiv 2 \mod 3$, we have $p\mathcal{O}_K = pp'$ where $Np = p$, $Np' = p^2$. From this we get that in \mathcal{O}_K, $\mathfrak{P} \overset{\text{def}}{=} p\mathcal{O}_K$ is prime, $\overline{\mathfrak{P}} = \mathfrak{P}$, and $p'\mathcal{O}_K = \sigma\mathfrak{P}\sigma'^{-1}\mathfrak{P} = \sigma\mathfrak{P}\sigma\mathfrak{P}$, where σ is a generator of $N = \text{Gal}(K/F)$, i.e. σ has order 3 in $G = \text{Gal}(K/Q)$. If p is a norm from $\mathbb{Z}[\sqrt[3]{7}]$, then $p \equiv \pm 1 \mod 7$, p is principal in \mathcal{O}_K, and \mathfrak{P} (and hence each of its Galois conjugates) is principal in \mathcal{O}_K. The $p \equiv 2 \mod 3$ in (5) that are $\equiv \pm 1 \mod 7$ are $p = 29, 41, 71$, and happily they are all norms from $\mathbb{Z}[\sqrt[3]{7}]$:

$$29 = N_{K/Q}(-3 + 2\sqrt[3]{7}), \quad 41 = N_{K/Q}(-2 + \sqrt[3]{49}), \quad 71 = N_{K/Q}(4 + \sqrt[3]{7}).$$

So 29, 41, 71 factor principally in \mathcal{O}_K. For the other $p \equiv 2 \mod 3$, which are not norms from $\mathbb{Z}[\sqrt[3]{7}]$, Theorem 2 says $p \sim p_3$ or $p \sim p_3^2$ in $\text{Cl}(k)$. Extending these relations from $\text{Cl}(k)$ to $\text{Cl}(K)$ implies $\mathfrak{P} \sim \mathfrak{P}_3^2$ or $\mathfrak{P} \sim \mathfrak{P}_3$ in $\text{Cl}(K)$. Since \mathfrak{P}_3 is fixed by $\text{Gal}(K/Q)$, applying G to \mathfrak{P} shows all prime ideal factors of p in \mathcal{O}_K are equivalent to \mathfrak{P}_3 or \mathfrak{P}_3^2 in $\text{Cl}(K)$.

To summarize, $\text{Cl}(K)$ is generated by $[\mathfrak{P}_3]$ (with order 3) and the prime ideal factors of 19. It turns out that the factors of 19 are related to \mathfrak{P}_3 in $\text{Cl}(K)$, so $h(K) = 3$. To show this, we'll need to factor some principal ideals of \mathcal{O}_K, which requires using some explicit algebraic integers in \mathcal{O}_K. So let's defer calculation of $\text{Cl}(K)$ and turn to computing a basis for \mathcal{O}_K.

Since $\mathcal{O}_F = \mathbb{Z}[\omega]$ is a PID, \mathcal{O}_K is a free \mathcal{O}_F-module of rank 3. To find a basis we will use disc(K/F):

$$\text{disc}(K/Q) = N_{K/Q}(\text{disc}(K/F)) \text{disc}(F/Q)^3 \Rightarrow N_{K/Q}(\text{disc}(K/F)) = 3^47^4.$$

Since $2 + \sqrt{-3}$ and $2 - \sqrt{-3}$ both ramify in K with ramification index 3, we conclude that (6)

$$\text{disc}(K/F) = (\sqrt{-3})^4(2 + \sqrt{-3})^2(2 + \sqrt{-3})^2 = 9 \cdot 49.$$

The natural first thing to check is if $\mathcal{O}_K = \mathbb{Z}[\omega][\sqrt[3]{7}] = \mathbb{Z}[\sqrt[3]{7}, \omega]$. Alas,

$$\text{disc}_{K/F}(1, \sqrt[3]{7}, \sqrt[3]{49}) = 3^37^2$$

is off from $\text{disc}_{K/F}(O_F)$ by a factor of 3. So we want to find an element of $\mathbb{Z}[^3\sqrt{7}, \omega]$ that upon division by $\sqrt{-3}$ is nonobviously still in \mathcal{O}_K. Since

$$(1 - \sqrt[3]{7})\mathcal{O}_K = p_2p_3 \Rightarrow (1 - \sqrt[3]{7})\mathcal{O}_K = p_2\mathfrak{P}_3^2, \quad \text{and} \quad (\sqrt{-3})\mathcal{O}_K = \mathfrak{P}_3^2,$$

we have

$$\frac{(1 - \sqrt[3]{7})^2}{\sqrt{-3}} = p_2^2\mathfrak{P}_3$$

is an integral ideal, so

$$\eta \overset{\text{def}}{=} \frac{(1 - \sqrt[3]{7})^2}{\sqrt{-3}} = (2\omega + 1) \cdot \frac{1 - 2\sqrt[3]{7} + \sqrt[3]{49}}{3}$$

is an algebraic integer that is not in $\mathbb{Z}[\sqrt[3]{7}, \omega]$. Since $\text{disc}_{K/F}(1, \sqrt[3]{7}, \eta) = 9 \cdot 49$, $\{1, \sqrt[3]{7}, \eta\}$ is a $\mathbb{Z}[\omega]$-basis of \mathcal{O}_K, by (6). (But $\text{disc}_{K/F}(1, \eta, \eta^2) = 9 \cdot 25 \cdot 49$, so $\mathcal{O}_K \neq \mathcal{O}_F[\eta]$.)

Writing $2\omega + 1 = 3\omega + (1 - \omega)$, we're led from η to the algebraic integer

$$\theta \overset{\text{def}}{=} \frac{(\omega - 1)(1 - \sqrt[3]{7})^2}{3} = -\omega^2\eta,$$

so $\{1, \sqrt[3]{7}, \theta\}$ is a second basis for $\mathcal{O}_K / \mathcal{O}_F$ (and $\text{disc}_{K/F}(1, \sqrt[3]{7}, \theta) = 9 \cdot 49\omega$).
Thus \(N \) discussion following it, so the minimal polynomial of the ideal class of a factor of 2 is \(P \). Therefore \(\Delta \) is not a PID, we have no reason to suppose that \(O_K \) is a free \(O_k \)-module, and in fact it is not. To show this, we mimic the argument in [3].

Assume \(O_K \) is a free \(O_k \)-module, so it must have rank 2:

\[
O_K = O_k e_1 \oplus O_k e_2.
\]

Thus

\[
1 = \alpha_1 e_1 + \alpha_2 e_2, \quad \omega = \beta_1 e_1 + \beta_2 e_2,
\]

where \(\alpha_i, \beta_i \in O_k = \mathbb{Z}[\sqrt{7}] \). Applying complex conjugation (the nontrivial element of \(\text{Gal}(K/k) \)),

\[
1 = \alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2, \quad \omega^2 = \beta_1 \bar{e}_1 + \beta_2 \bar{e}_2.
\]

These can be combined into the matrix equation

\[
\begin{pmatrix}
\alpha_1 & \alpha_2 \\
\beta_1 & \beta_2
\end{pmatrix}
\begin{pmatrix}
e_1 & \bar{e}_1 \\
e_2 & \bar{e}_2
\end{pmatrix}
= \begin{pmatrix} 1 & 1 \\ \omega & \omega^2 \end{pmatrix}.
\]

The determinant \(\Delta \) of the second matrix is negated under complex conjugation, so its square is in \(O_k \). And the determinant of the matrix on the right is \(\omega^2 - \omega = -1 - 2\omega = -\sqrt{-3} \). So equating the squares of the determinants of both sides yields

\[
\Delta^2 \delta = -3,
\]

where \(\delta = (e_1 \bar{e}_2 - \bar{e}_1 e_2)^2 \). As an equation in ideals of \(O_k \), we get

\[
(\Delta)^2(\delta) = 3 O_K = p_3^3.
\]

Since \(p_3 \) and \(p_3^2 \) are not principal ideals, and \(p_3^3 \) is not the square of an integral ideal, the only way for this equation to hold is if \((\Delta)^2 = (1), (\delta) = (3) \). Thus \((\Delta) = (1) \), so \(\Delta \in O_K^\times \).

That means \(\{1, \omega\} \) is an \(O_K \)-basis for \(O_K \). So

\[
O_K = O_k \oplus O_k \omega = \mathbb{Z}[\sqrt{7}, \omega],
\]

which we already saw is false. So \(O_K \) is not a free \(O_k \)-module.

We now return to the computation of \(\text{Cl}(K) \). Recall \(\theta \), defined in (7). Since \(\theta + \bar{\theta} = -(1 - \sqrt{7})^2 \) and \(\theta \theta = -9 + \sqrt{7} + 2\sqrt{49} \), the minimal polynomial of \(\theta \) over \(k \) is

\[
f(T) = T^2 + (1 - \sqrt{7})^2T + (-9 + \sqrt{7} + 2\sqrt{49}),
\]

so the minimal polynomial of \(\theta \) over \(\mathbb{Q} \) is

\[
g(T) = f \sigma(f) \sigma^2(f) = T^6 + 3T^5 + 18T^4 + 45T^3 + 237T^2 + 180T + 48.
\]

Thus \(N_{K/\mathbb{Q}}(\theta - 1) = g(1) = 532 = 2^2 \cdot 3 \cdot 19 \), so \((\theta - 1) = \mathfrak{P}_2(2 \pm \sqrt{-3})\mathfrak{P}_{19} \), where \(\mathfrak{P}_2 \mid (2), \mathfrak{P}_{19} \mid (19) \). Therefore \(\mathfrak{P}_{19} \sim \mathfrak{P}_2^{-1} \). From the discussion of factoring primes \(p \equiv 2 \mod 3 \), the ideal class of a factor of 2 is \([\mathfrak{P}_3] \) or \([\mathfrak{P}_3^2] \). Therefore \([\mathfrak{P}_{19}] = [\mathfrak{P}_2]^{-1} = [\mathfrak{P}_3] \) or \([\mathfrak{P}_3^2] \). So \(\text{Cl}(K) \) is generated by \([\mathfrak{P}_3] \).

(In fact, \([\mathfrak{P}_{19}] = [\mathfrak{P}_3^2] \). We saw already that in \(\text{Cl}(k) \), \(\mathfrak{p}_2 \sim \mathfrak{p}_3^{-1} \sim \mathfrak{p}_3^2 \). Therefore in \(\text{Cl}(K) \), \(\mathfrak{p}_2 O_K \sim \mathfrak{p}_3^{-1} \sim \mathfrak{p}_3^2 \). Since \(\mathfrak{P}_3 \) is fixed by \(G \), all prime factors of 2 in \(O_K \) are equivalent to \(\mathfrak{P}_3 \). So by the previous paragraph, \(\mathfrak{P}_{19} \sim \mathfrak{P}_3^2 \).)

We now can find a pair of fundamental units for \(O_K^\times \). By [2, Corollary 7] and the discussion following it,

\[
h(K) R(K) = h(F) R(F)(h(k) R(k))^2 = (3 \log u)^2 = 9(\log u)^2
\]

and

\[
[O_K^\times / \mu_K : \langle u, \sigma u \rangle] = 3h(K)/h(F)h(k)^2 = h(K)/3.
\]

Since \(h(K) = 3 \), \(\{u, \sigma u\} \) is a pair of fundamental units for \(K \) and \(R(K) = 3(\log u)^2 \approx 17.876 \).
Theorem 3. The field $K = \mathbb{Q}(\sqrt[3]{7}, \omega)$ has class number 3, discriminant -3^77^4, and regulator $3(\log u)^2$, where $u = 4 + 2\sqrt[3]{7} + \sqrt[3]{49}$. The ramified primes 3 and 7 factor as

$$3 = \mathfrak{P}_3^2, \quad (7) = (2 + \sqrt[3]{-3})(2 - \sqrt[3]{-3})^3.$$

The ring of integers of K is

$$\mathcal{O}_K = \mathcal{O}_F \oplus \mathcal{O}_F \sqrt[3]{7} \oplus \mathcal{O}_F \theta,$$

where $\theta = (\omega - 1)(1 - \sqrt[3]{7})^2/3$. The ideal class group of \mathcal{O}_K is generated by $[\mathfrak{P}_3]$. The unit group of \mathcal{O}_K has six roots of unity, rank 2, and basis $\{u, \sigma u\}$.

There is no power basis for \mathcal{O}_K. See [1].

References